
CDMTCS

Research

Report

Series

Computation with Finitely

Generated Abelian Groups

Peter Huxford

University of Auckland, New Zealand

CDMTCS-517
January 2018

Centre for Discrete Mathematics and
Theoretical Computer Science



Computation with Finitely Generated
Abelian Groups

Peter Huxford

0 Introduction

This aim of this report is to explain the theory of finitely generated abelian groups, and
some computational methods pertaining to them. Knowledge of introductory group theory
is required to understand the main ideas.

There is no algorithm to determine if a given finite presentation defines a group of
finite order (or even defines the trivial group). However, such an algorithm exists if the
group is also known to be abelian. We give a procedure in this report which, given a
description of a finitely generated abelian group G, calculates integers d1, . . . , dr, k such
that G ≥= Zd1 ü · · · ü Zdr ü Zk. The description of G is given by an integer matrix, which
we transform into a diagonal matrix, known as its Smith Normal Form.

Naive algorithms inspired by Gaussian elimination often fail because of integer overflow.
Intermediate matrices have entries which are very large even for relatively small inputs,
making calculations in practice far too expensive to carry out. We will explore some useful
techniques, which allow us to perform calculations with respect to an appropriate modulus.

1 Preliminaries

In these notes, we will always write the group operation of an abelian group additively,
unless otherwise stated.

Definition 1.1 (Universal Property). A group G is free abelian on a subset X ™ G if
every map from X to an abelian group H extends to a unique homomorphism G æ H.
We call X a basis for G if G is free abelian on X.

There is a similarity with vector spaces: B is a basis of a vector space V if and only if
every map from B to a vector space W extends uniquely to a linear map V æ W . The
existence of such a linear map is equivalent to B being a linearly independent set, and the
uniqueness is equivalent to B spanning V .

Theorem 1.2. The free abelian groups with finite basis, up to isomorphism, consist of
the groups Zn for n œ N.

1



Proof. Let ei œ Zn be the ith standard basis vector. Each element of Zn takes the form
m1e1 + · · · mnen, for unique integers mi œ Z. Given a map from {e1, . . . , en} to a group
H, we can extend it to a group homomorphism Zn æ H as follows. If ei ‘æ hi, then define

m1e1 + · · · + mnen ‘æ m1h1 + · · · + mnhn.

It is readily seen that this defines a group homomorphism from Zn to H, sending ei ‘æ hi.
Moreover each group homomorphism Zn æ H which maps ei ‘æ hi must agree with this.
Hence Zn is free abelian on {e1, . . . , en}.

Conversely, suppose that G is free abelian on X = {x1, . . . , xn}. By the universal property,
we obtain a homomorphism „ : G æ Zn which maps xi ‘æ ei. Similarly we have a
homomorphism Â : Zn æ G which maps ei ‘æ xi. Then Â ¶ „ is an endomorphism of G

fixing X. By the uniqueness in the universal property, Â ¶ „ must be the identity on G.
Similarly „ ¶ Â is the identity on Zn. Hence G ≥= Zn.

Let G be an abelian group generated by n elements. Since Zn is free abelian there is
an epimorphism Zn ⇣ G with kernel H. By the first isomorphism theorem, Zn

/H is
isomorphic to G. Thus understanding the structure of subgroups of Zn will give us insight
into the structure of finitely generated abelian groups.

Theorem 1.3 (Dedekind). A subgroup of Zn can be generated by at most n elements.

Proof. We proceed by induction on n. Defining Z0 := {0}, the case n = 0 becomes trivial.
Let n > 0, and let Ï : Zn ⇣ Zn

/ÈenÍ be the natural map. Note that Zn
/ÈenÍ ≥= Zn≠1. If

H Æ Zn, then Ï(H) is isomorphic to a subgroup of Zn≠1. Inductively, we may assume
Ï(H) = Èh1 + ÈenÍ, . . . , hn≠1 + ÈenÍÍ, for hi œ H. Note that H fl ÈenÍ is cyclic, so let
H fl ÈenÍ = ÈhnÍ for some hn œ H. We claim H = Èh1, . . . , hnÍ.

If h œ H, then Ï(h) = h
ÕÕ +ÈenÍ for some h

Õ œ Èh1, . . . , hn≠1Í. Now h≠h
Õ œ H flÈenÍ = ÈhnÍ.

Thus h œ Èh1, . . . , hnÍ, and hence H = Èh1, . . . , hnÍ. By induction the theorem follows.

Definition 1.4. The integer row space of an m ◊ n integer matrix A is S(A) := {xA :
x œ Zm}, i.e. the set of all integral linear combinations of rows of A.

If H = Èh1, . . . , hmÍ Æ Zn, then H consists of all integral linear combinations of the hi.
Hence each finitely generated abelian group is isomorphic to Zn

/S(A) for some m ◊ n

integer matrix A. For most descriptions of finitely generated abelian groups, we can
explicitly find such an A.

For example, consider the abelianisation Gab := G/[G, G] of a finitely presented group
G. If G = ÈX | RÍ, then the abelianisation Gab is a finitely generated abelian group,
with presentation ÈX | R, [X, X]Í. If X = {x1, . . . , xn}, then we can rewrite each of the
relations in R in the form x

–1
1 · · · x

–n
n , –i œ Z. The epimorphism Zn ⇣ Gab sending ei ‘æ xi

has kernel generated by the (–1, . . . , –n) appearing in the relations. Using these rows we
can form a “relation matrix” A, and then Gab

≥= Zn
/S(A).

2 Integer Row Reduction

A notion of row space can be defined for matrices over an arbitrary ring. When working
over a field, we can apply row operations to produce a matrix in reduced row echelon form

2



(e.g. using Gaussian elimination). We develop a similar theory for integer matrices below.

Definition 2.1. An integer row operation applied to a matrix is one of the following:

1. Swap two rows.

2. Multiply a row by ≠1.

3. Add an integer multiple of one row to another row.

Two m ◊ n integer matrices A and B are row equivalent if there is a sequence of integer
row operations transforming one into the other, and in this case we write A ≥ B.

We can reverse each integer row operation with another. The first two types are involutions.
To reverse adding q times row i to row j, for i ”= j, we add ≠q times row i to row j. This
makes ≥ an equivalence relation on integer m ◊ n matrices.

In the above definition rows may only be multiplied by ≠1, in contrast to row operations
over a field, where rows may be multiplied by an arbitrary non-zero scalar. This is because
multiplying a row by a scalar can be reversed when multiplying by a unit, and the units
of a field are its non-zero elements, but the units of Z are just 1 and ≠1.

Theorem 2.2. If A and B are integer matrices with A ≥ B, then S(A) = S(B).

Proof. If B is obtained from A by a single integer row operation, then the rows of B

are clearly in S(A), so S(B) ™ S(A). Moreover this row operation can be reversed, thus
S(A) ™ S(B).

The corresponding notion of reduced row echelon form for integer matrices is row Hermite
Normal Form (HNF).

Definition 2.3. An integer m ◊ n matrix A is in row Hermite Normal Form (HNF) if

1. The nonzero rows of A are the first r rows of A, for some r Æ m.

2. If ji is minimal with Ai,ji nonzero, for 1 Æ i Æ r, then j1 < j2 < · · · < jr.

3. If 1 Æ i Æ r, then Ai,ji > 0.

4. If 1 Æ k < i Æ r, then 0 Æ Ak,ji < Ai,ji .

In the above definition, the entries Ai,ji behave similarly to the pivot entries in reduced
row echelon form. Below is a sample matrix in row Hermite Normal Form.

A :=

S

WU
2 1 2 3
0 0 7 5
0 0 0 9

T

XV .

Suppose we want to determine whether a given u œ Z4 is in S(A). For instance, let
u = (4, 2, ≠3, 10). We seek x, y, z œ Z with u = xa1+ya2+za3, where a1, a2, a3 are the rows
of A. Isolating the first column, we see 4 = 2x, so x = 2. Next set v = u≠2a1 = (0, 0, ≠7, 4).
We require v = ya2 + za3. The second column holds no information. The third column
tells us that ≠7 = 7y, so y = ≠1. Set w = v + a2 = (0, 0, 0, 9). We require w = za3.
Observing the last column shows 9 = 9z, so z = 1. Hence u = 2a1 ≠ a2 + a3, and so
u œ S(A).

3



If at any stage we found an equation that was not solvable for integer x, y, z, then we
would instead conclude that u /œ S(A). Clearly, testing membership in S(A) is easy when
A is in HNF. One can also show the nonzero rows of A form a basis of S(A) when A is in
HNF.

Theorem 2.4. If A is an m ◊ n integer matrix, then there is a unique m ◊ n integer
matrix B with A ≥ B and B in row Hermite Normal Form.

Proof. We prove this by induction. The result holds trivially when m = 0 or n = 0.
Suppose that m, n Ø 1, and that the result holds for all smaller matrices. If there are two
nonzero entries in the first column, say 0 < |Ak,1| Æ |A¸.1| with k ”= ¸, then we decrease
the quantity |A1,1| + · · · + |Am,1| as follows.

First multiply rows k, ¸ by ≠1 if necessary so that Ak,1, A¸,1 > 0. Next, subtract row
k away from row ¸. Since 0 Æ A¸,1 ≠ Ak,1 < A¸,1, this strictly decreases the quantity
|A1,1| + · · · + |Am,1|. This quantity is a non-negative integer, so it can only be decreased
finitely many times. Hence we may assume that A has at most one nonzero entry in the
first column. If all entries in the first column are zero, then A has the block form

A =

S

WWU

0
.
.
. A

Õ

0

T

XXV

By induction we can reduce A
Õ to HNF by row operations, thus we can reduce A to HNF

by row operations. Suppose that A has only one nonzero entry in the first column. By
swapping rows and multiplying by ≠1 if necessary, we may assume that the nonzero entry
is A1,1 and A1,1 > 0. Now A has the block form

A =

S

WWWWWU

A1,1 A1,2 · · · A1,n

0
.
.
. A

Õ

0

T

XXXXXV

By induction we can reduce A
Õ to HNF by row operations, so we may assume that A

Õ is
in HNF. Suppose that the nonzero rows of A are now the first r rows, and that the first
nonzero entry in each row is given by Ai,ji , for 1 Æ i Æ r. Let 2 Æ k Æ r, and suppose we
have already arranged for 0 Æ A1,ji < Ai,ji to hold, for each i = 2, . . . , k ≠ 1.

Using the division algorithm we may write A1,jk
= qAk,jk

+ r, where 0 Æ r < Ak,jk
. We

subtract q times row k away from row 1. Because Ak,jk
is the first nonzero entry in row k,

and 1 = j1 < j2 < · · · < jk, we still have 0 Æ A1,ji < Ai,ji for each i = 2, . . . , k ≠ 1.

Hence by induction we can reduce A to some matrix B in HNF, by integer row operations.
Let B

Õ be another matrix for which A ≥ B
Õ and B

Õ is in HNF. Let b1, . . . , bm and
b

Õ
1, . . . , b

Õ
m be the rows of B and B

Õ respectively. If B ”= B
Õ, then there are entries with

Bi,j ”= B
Õ
i,j. Choose such i, j with j minimal, without loss of generality Bi,j > B

Õ
i,j. We

have bi, b
Õ
i œ S(B) = S(A) = S(BÕ), hence bi ≠ b

Õ
i œ S(B).

Suppose that only the first r rows of B are nonzero, and let Bi,ji be the first nonzero
entry in bi for 1 Æ i Æ r. The first j ≠ 1 entries of bi ≠ b

Õ
i are zero, so bi ≠ b

Õ
i is an integral

4



linear combination of the rows bk with jk Ø j. However bij ≠ b
Õ
ij ”= 0, and so we must

have jk = j for some k and Bk,j | Bi,j ≠ B
Õ
i,j. Since 0 Æ B

Õ
i,j < Bi,j < Bk,j, we must have

|Bi,j ≠ B
Õ
i,j| < Bk,j, so Bi,j ≠ B

Õ
i,j = 0, which is a contradiction. Therefore B = B

Õ, and so
each integer matrix A is row equivalent to a unique integer matrix B in HNF.

Corollary 2.5. If A and B are m ◊ n integer matrices with S(A) = S(B), then A ≥ B.

Proof. It su�ces to prove that if A and B are in HNF, then S(A) = S(B) =∆ A = B.
We refer the reader to [Sim94, Chapter 8, Proposition 1.1] for the proof of this.

The proof of this theorem is readily turned into an procedure, such as ROW_REDUCE
given below (from [Sim94, Chapter 8, Section 1]).

Procedure : ROW_REDUCE(~A);
Input: An m ◊ n integer matrix A

Result: Integer row operations are applied to A to reach row Hermite Normal Form
A := B; i := 1; j := 1;
while i Æ m and j Æ n do

if Ak,j = 0 for i Æ k Æ m then

j := j + 1
else

while there exist distinct k, ¸ with i Æ k, ¸ Æ m and 0 < |Ak,j| Æ |A¸,j| do

q := A¸,j div Ak,j;
Subtract q times row k of A from row ¸

end

Let Akj ”= 0 with i Æ k Æ m; (this k is unique)
if k ”= i then

swap rows i and k of A

end

if Ai,j < 0 then

multiply row i of A by ≠1
end

for ¸ := 1 to i ≠ 1 do

q := A¸,j div Ai,j;
Subtract q times row i of A from row ¸

end

i := i + 1; j := j + 1;
end

end

There is some freedom when implementing the above algorithm. In the inner while loop, we
must choose indices k, ¸ Ø i with 0 < |Ak,j| Æ |A¸,j|. If k, ¸ are chosen so that |A¸,j|≠ |Ak,j|
is maximized, then that the quantity |A1,j| + · · · + |Am,j| decreases as much as possible in
each iteration. As described in the second paragraph of the previous proof, the condition
in the while loop fails when this quantity can no longer decrease. Thus one might expect
this strategy to be the most e�cient.

In practice one finds that this strategy can result in A having large entries, significantly
increasing run time. This issue is discussed in [Ros52], where an alternative strategy is
proposed. The Rosser strategy is to choose ¸ so that |A¸,j| is as large as possible, and

5



then choose k so that |Ak,j| is as large as possible with k ”= ¸. Many authors recommend
this because they expect it to control the size of the entries during the procedure. See
Appendix A for a Magma implementation of the row reduction algorithm employing this
strategy.

3 Smith Normal Form

In the previous section we showed that integer row operations applied to an m ◊ n matrix
A do not change S(A). We prove that column operations do not a�ect the isomorphism
type of Zn

/S(A).

Definition 3.1. An integer column operation applied to a matrix is one of the following:

1. Swap two columns.

2. Multiply a row by ≠1.

3. Add an integer multiple of one column to another column.

Definition 3.2. Two m ◊ n integer matrices A and B are equivalent if there is a sequence
of integer row and column operations transforming one into the other, and we write A ¥ B.

Theorem 3.3. If A, B are m ◊ n integer matrices, then A ¥ B if and only if there exist
matrices P œ GLm(Z) and Q œ GLn(Z) such that B = PAQ.

Proof. For each integer row operation on an m ◊ n matrix, there is a corresponding matrix
P œ GLm(Z) such that the e�ect of applying the row operation is equivalent to left
multiplication by P . Moreover these “elementary” matrices generate GLm(Z). Similarly
integer column operations correspond to right multiplication by matrices in GLn(Z).

Theorem 3.4. If A, B are equivalent integer m ◊ n matrices, then Zn
/S(A) ≥= Zn

/S(B).

Proof. There exist P œ GLm(Z), Q œ GLn(Z) such that B = PAQ. Then B ≥ AQ, hence
S(B) = S(AQ). Notice that S(A)Q := {uQ : u œ S(A)} = {xAQ : x œ Zm} = S(AQ).
It follows that the mapping illustrated in the diagram is a well defined homomorphism
Zn

/S(A) æ Zn
/S(AQ) = Zn

/S(B). It is an isomorphism because Q is invertible.

Zn Zn

Zn
/S(A) Zn

/S(AQ)

Q : x ‘æ xQ

x+S(A) ‘æ xQ+S(AQ)

We now define a normal form which distinguishes the isomorphism types of Zn
/S(A).

Definition 3.5. An m ◊ n integer matrix A is in Smith Normal Form (SNF) if there is
some r such that di := Ai,i > 0 for each 1 Æ i Æ r, all remaining entries of A are zero, and
d1 | d2 | · · · | dr. The integers d1, . . . , dr are the invariant factors of A.

6



Here is a sample matrix in Smith Normal Form

A :=

S

WU
2 0 0 0 0
0 4 0 0 0
0 0 12 0 0

T

XV .

Note that S(A) = {(2x, 4y, 12z, 0, 0) : x, y, z œ Z}. This is the kernel of the epimorphism

Z5 ⇣ Z2 ü Z4 ü Z12 ü Z ü Z
(a, b, c, d, e) ‘æ (a mod 2, b mod 4, c mod 12, d, e).

Therefore Z5
/S(A) ≥= Z2 ü Z4 ü Z12 ü Z ü Z. Determining the isomorphism type of

Zn
/S(A) for an m ◊ n matrix A is easy when A is in Smith Normal Form.

Theorem 3.6. Let A be an m ◊ n integer matrix in SNF, with invariant factors
d1, d2, . . . , dr. Then Zn

/S(A) ≥= Zd1 ü · · · ü Zdr ü Zn≠r.

Theorem 3.7. If A is an integer matrix, then there exists an integer matrix B in Smith
Normal Form with A ¥ B.

Proof. Suppose A is not the zero matrix. The first goal is to reduce A to the block form
S

WWWWWU

d 0 · · · 0
0
.
.
. A

Õ

0

T

XXXXXV
(ı)

with d > 0. Let Ai,j be a nonzero entry of A. Swap rows i and 1, and columns j and 1 if
required, to ensure i = j = 1, and multiply row 1 by ≠1 if necessary to ensure A1,1 > 0. If
A1,1 divides all entries in row and column 1, then add multiples of row/column 1 to the
other rows/columns, to reach the form (ı).

If A1,1 does not divide all entries in row and column 1, then we decrease this entry as
follows. Suppose that A1,1 - Ai,1 for some i. Write Ai,1 = qA1,1 + r with 0 < r < A1,1. Add
≠q times row 1 to row i, and swap rows 1 and i. Similarly, if A1,1 - A1,j for some j, then
write A1,j = qA1,1 + r with 0 < r < A1,1. Add ≠q times column 1 to column j, and swap
columns 1 and j.

If we repeat the operations in the previous paragraph, eventually A1,1 will divide all entries
in row and column 1, and thus we can reach the block form (ı). Inductively, we reduce A

Õ

to SNF by row and column operations, so we can reduce A to a matrix with block form
S

WWWWWWWU

d1
. . . 0

dr

0 0

T

XXXXXXXV

where di > 0. If the divisibility condition d1 | d2 | · · · | dr holds, then we have produced
a matrix in SNF. If not, suppose that di - dj for some i < j. Set a := di and b := dj.

7



The Euclidean algorithm produces integers u, v with d := gcd(a, b) = ua + vb, and then
¸ := lcm(a, b) = ab/d. Now

C
u v

≠b/d a/d

D C
a 0
0 b

D C
1 ≠vb/d

1 ua/d

D

=
C
d 0
0 ¸

D

.

In this way, we can use row and column operations to replace di and dj with gcd(di, dj) and
lcm(di, dj) respectively. Repeating this will produce a matrix in Smith Normal Form.

Uniqueness follows from the uniqueness of the integers in the following important theorem.
Note that the previous result implies the existence of such integers. To prove the uniqueness,
we refer the reader to [DF04, Chapter 5, Theorem 3].

Theorem 3.8 (Fundamental Theorem of Finitely Generated Abelian Groups). Let G

be a finitely generated abelian group. There exist unique integers n, d1, . . . , dr > 0 with
d1 | d2 | · · · | dr, and

G ≥= Zd1 ü · · · ü Zdr ü Zn≠r
.

Corollary 3.9. If A is an m ◊ n integer matrix, then there is a unique m ◊ n integer
matrix B with A ¥ B and B in Smith Normal Form.

Thus it makes sense to define the invariant factors of an integer matrix to be the invariant
factors of the matrix equivalent to it which is in SNF.

Corollary 3.10. If A and B are m ◊ n integer matrices with Zn
/S(A) ≥= Zn

/S(B), then
A ¥ B.

Proof. By Theorem 3.8, A and B have the same invariant factors. Because they have the
same dimensions, they must be equivalent to the same matrix in SNF. Hence A ¥ B.

The proof of Theorem 3.7 is readily transformed into a procedure for computing the Smith
Normal Form of a given matrix. See Appendix B for a Magma implementation. However
one quickly finds that it has certain defects. For example, I ran the implementation in
Appendix B on a random 100 ◊ 100 matrix with entries in {≠1, 0, 1}, on the machine
described in Section 5. After 13 hours the procedure had still not terminated. We
investigate here what can happen with a smaller example. Consider the following matrix

A :=

S

WWU

6 9 8 2 6 5 2 0
5 10 1 4 8 5 4 8
3 1 9 6 3 10 5 3
6 10 3 2 5 0 3 10
6 1 3 8 6 6 9 1
6 2 2 1 8 1 10 10
4 4 10 7 10 8 3 3
7 0 1 9 8 5 5 1

T

XXV

If we run the Magma implementation given in Appendix B on A, then the intermediate
matrix in which the entry with largest modulus appears is

S

WWWU

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 48829330326663043031960 ≠769507651269581073
0 0 0 0 0 0 ≠97658660653326086254291 1539015302539162149
0 0 0 0 0 0 9403552434308768827094970352 ≠148191783481495923038334

T

XXXV

8



The SNF of A is given by S

WWU

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 10615254

T

XXV

The entries of A have modulus at most 10. However intermediate matrices appear with
entries of modulus roughly 9.4 ◊ 1027, much larger than the entries in the resulting SNF.
This “entry explosion” is only worsened by increasing the dimensions of the input matrix,
and increasing the size of its entries. Row and column operations with entries so large is
expensive, so circumventing this issue is of great importance if one wishes to compute the
SNF of larger matrices in reasonable time.

4 Modular techniques

The methods discussed in the previous section to compute Smith Normal Form are
inadequate for large matrices. The Magma intrinsic SmithForm is much more capable
of computing the SNF of a large matrix. This is an indication that the approach taken
earlier can be improved. We discuss some ideas described in [Sim94, Chapter 8, Section 4],
which aim to reduce the maximum modulus entry of matrices produced along the way.

We redevelop some of the theory from the previous sections, so that computations can
be carried out modulo a fixed integer. Many of the proofs of the following theorems are
similar to ones already given, so we omit them. More detail can be found in [Sim94,
Chapter 8, Section 4]. Fix an integer d > 1. We write A to denote the matrix A with
entries reduced modulo d.

Definition 4.1. A row operation modulo d applied to an integer matrix is one of the
following:

1. Swap two rows.

2. Multiply a row by an integer c with gcd(c, d) = 1, reducing entries modulo d.

3. Add an integral multiple of one row to another row, reducing entries modulo d.

We define column operations modulo d in a similar fashion. Two m ◊ n integer matrices
A and B are row equivalent modulo d if there is a sequence of row operations modulo d

transforming A to B, and they are equivalent modulo d if there is a sequence of row and
column operations modulo d transforming A to B.

Definition 4.2. An integer matrix A is in row Hermite Normal Form modulo d (HNF

modulo d) if

1. A = A.

2. A is in row Hermite Normal Form.

3. The first nonzero entry in each nonzero row divides d.

When we work modulo a prime p, the third condition ensures that the first nonzero entry
in each nonzero row is 1, thus in this case the HNF modulo p agrees with the reduced row
echelon form over the field Zp.

9



Theorem 4.3. If A is an m ◊ n integer matrix, then there is a unique m ◊ n integer
matrix B with A ≥ B and B in row Hermite Normal Form modulo d.

Definition 4.4. An integer matrix A is in Smith Normal Form modulo d (SNF modulo

d) if

1. A = A.

2. A is in Smith Normal Form.

3. The nonzero entries of A divide d.

Theorem 4.5. If A is an m ◊ n integer matrix, then there is a unique m ◊ n integer
matrix B with A ≥ B and B in Smith Normal Form modulo d.

The algorithms for computing Hermite and Smith Normal Form modulo an integer are
similar to the corresponding procedures over Z, except all operations are performed
modulo d, and we multiply rows/columns by appropriate integers c with gcd(c, d) = 1
where appropriate to ensure that the relevant entries divide d.

Definition 4.6. Let A be an integer matrix, and let B be the unique matrix in HNF
modulo d which is row equivalent modulo d to A. The d-rank of A is the number of
nonzero rows of B.

Note that if A ≥ B and B is in HNF, then the number of nonzero rows of B is equal to
the rank of A. Thus the d-rank of an integer matrix is a lower bound for its rank.

Definition 4.7. For an m ◊ n integer matrix A, and 0 Æ k Æ m, n, let Dk(A) denote the
greatest common divisor of all determinants of k ◊ k submatrices of A. We adopt the
convention that the determinant of a 0 ◊ 0 matrix is 1, so that D0(A) = 1 for every integer
matrix A.

Theorem 4.8. If integer row or column operations are applied to A, then Dk(A) is
unchanged for each 0 Æ k Æ m, n.

Proof. This is clear except when an integer multiple of a row or column is added to another
row or column, respectively. See [Sim94, Chapter 8, Proposition 4.1] for the proof.

Corollary 4.9. Suppose that A ≥ B, and B is in SNF with invariant factors d1 | d2 |
· · · | dr. Then Dk(A) = d1 · · · dk for k Æ r, and Dk(A) = 0 for k > r. In particular
dk = Dk(A)/Dk≠1(A) when 1 Æ k Æ r.

While this gives an alternative way of computing the SNF of a matrix, there are
1

m
k

21
n
k

2

di�erent k ◊ k submatrices of an m ◊ n matrix. However consider the following theorem,
which follows from noting that the SNF modulo d can be computed by calculating the
SNF over Z, and then reducing entries modulo d.

Theorem 4.10. Let A be an integer matrix, and let B be in SNF with A ¥ B. Suppose
B has invariant factors d1 | d2 | · · · | dr, and let d > 1 with dr | d. Let C be the matrix
equivalent to A in SNF modulo d. If C has invariant factors c1 | c2 | · · · | cs, then s Æ r,
and di = ci for i Æ s, and di = d for s < i Æ r.

This suggests the following algorithm for computing the SNF of a given matrix A.

1. Find the rank r of A.

10



2. Find a small number of r ◊ r submatrices of A with nonzero determinant, and take
their greatest common divisor d. By Corollary 4.9, this will be a multiple of the
largest nonzero entry in the SNF of A.

3. Compute C, the SNF of A modulo d.

4. If C has s nonzero entries, then by Theorem 4.10 we can recover the SNF of A by
adding in r ≠ s copies of d on the diagonal after the nonzero entries of C.

We currently do not have a method to e�ciently compute the rank of a matrix A. The
HNF algorithm provided earlier also produces relatively large modulus entries for small
inputs. We also do not have a method to compute the determinant of an r ◊ r submatrix
of A, and find the r ◊ r submatrices with nonzero determinant.

We compute the d-rank of A by computing the the HNF of A modulo d. This is a lower
bound for the rank of A. If we calculate the d-rank for various d, then their maximum is a
lower bound of the rank of A. With some work, we can ensure that this is equal to the
rank.

Theorem 4.11 (Hadamard’s Inequality). Let A be an n ◊ n real matrix.

|det A| Æ
nŸ

i=1

Q

a
nÿ

j=1
A

2
ij

R

b
1/2

Proof. See [Gar07, Theorem 14.1.1].

We use this to get an easily computable bound to the determinant of every square submatrix
of an integer matrix.

Corollary 4.12. If A is an m ◊ n integer matrix with m Æ n, then the determinant of a
square submatrix of A has modulus at most

min

Y
_]

_[

Ÿ

i

Q

a
nÿ

j=1
A

2
ij

R

b
1/2

,

S

Umax
j

A
mÿ

i=1
A

2
ij

B1/2T

V
m

Z
_̂

_\
,

where the product is taken over the nonzero rows.

Definition 4.13. Given an m ◊ n matrix, we let h(A) be the bound given by Corollary
4.12 on A if m Æ n, and on A

t if m > n.

Theorem 4.14. Let A be an integer matrix. If p1, . . . , pk are distinct primes with
p1 · · · pk > h(A), then the rank of A is the maximum pi-rank of A for 1 Æ i Æ k.

Proof. Let r be the maximum pi-rank. It su�ces to prove that all square submatrices of
A with more than r rows have determinant 0. Let B be such a matrix. The pi-rank of A

is at most r, so det B © 0 (mod pi), for 1 Æ i Æ k. Hence det B © 0 (mod p1 · · · pk). But
by Corollary 4.12, |det B| Æ h(A) < p1 · · · pk, thus det B = 0.

Once we compute the rank r of an integer matrix A, we can exploit Hadamard’s Inequality
to compute e�ciently the determinants of r ◊ r submatrices.

11



Theorem 4.15. Let A be an integer matrix, and let B be a square submatrix of A. Let
p1, . . . , pk be distinct primes with p1 · · · pk > 2h(A). If det B © bi (mod pi), for 1 Æ i Æ k,
then det B is the integer b satisfying b © bi (mod pi), with least absolute value.

Proof. By the Chinese Remainder Theorem, the conditions determine det B modulo
p1 · · · pk. Also ≠h(A) Æ det B Æ h(A), and since p1 · · · pk > 2h(A), no two integers
between ≠h(A) and h(A) are congruent modulo p1 · · · pk.

We now discuss how to compute the p-rank of a matrix, and its determinant modulo p, for
some prime p. When p is prime, Zp is a field, so standard methods (e.g. row reduction to
row echelon form over a field) can be used to compute the p-rank and determinant modulo
p.

Moreover, [Sim94] suggests slightly modifying the procedure of row reduction modulo p,
to find r ◊ r submatrices of nonzero determinant, where r is the rank. For a matrix A

with reduced row echelon form R, let S denote the row indices in A which are eventually
swapped into a nonzero row position in R, and let T denote the column indices which
contain the first nonzero entry in some row of R. The r ◊ r submatrix of A with rows
indexed by S and columns indexed by T has nonzero determinant.

Using the above ideas, we produce an improved Smith Normal Form procedure. See
Appendix C for a Magma implementation.

5 Empirical Results and Discussion

We now compare three methods to compute the Smith Normal Form of a given integer
matrix in Magma [BCP97]. These are

• SmithNormalForm given in Appendix B (described in Section 3),

• SmithNormalFormImproved given in Appendix C (described in Section 4),

• the Magma intrinsic SmithForm.

We generated a random n ◊ n matrix with entries in {≠1, 0, 1} for n = 10, 20, . . . , 100, and
computed the Smith Normal Form of each of the matrices with each method. The machine
used had a clock speed of 2.6GHz, 690GB of RAM, and was running Magma version
V2.23-3. If a given computation took longer than 30 minutes to halt, it was terminated.

Our results are recorded in the following table. In each computation, the time taken to
compute the SNF, and total memory used in the Magma session were recorded. For the
computations using SmithNormalForm, the maximum modulus of an entry appearing in
some intermediate matrix was recorded (see the “Max” column). For the computations
using SmithNormalFormImproved, the modulus with respect to which calculations were
performed is recorded (see the “Modulus” column). There is no corresponding measurement
available for the Magma intrinsic SmithForm.

12



SmithNormalForm SmithNormalFormImproved SmithForm
Dimensions Time Memory Max Time Memory Modulus Time Memory

10 ◊ 10 0.00s 32.0MB 68 0.01s 32.0MB 40 0.00s 32.0MB
20 ◊ 20 0.00s 32.0MB 6.0 · 1042 0.01s 32.0MB 1.7 · 107 0.00s 32.0MB
30 ◊ 30 0.04s 32.0MB 7.8 · 104056 0.02s 32.0MB 2.5 · 1013 0.00s 32.0MB
40 ◊ 40 0.31s 32.0MB ≥ 101.4·105 0.05s 32.0MB 1.3 · 1019 0.02s 32.0MB
50 ◊ 50 >30m 384MB ≥ 102.5·106 0.08s 32.0MB 3.6 · 1027 0.02s 32.0MB
60 ◊ 60 >30m 928MB ≥ 102.5·106 0.15s 32.0MB 7.0 · 1034 0.02s 32.0MB
70 ◊ 70 >30m 2.89GB ≥ 105.4·106 0.24s 32.0MB 5.0 · 1042 0.02s 32.0MB
80 ◊ 80 >30m 25.0GB ≥ 101.2·107 0.38s 32.0MB 2.0 · 1051 0.03s 32.0MB
90 ◊ 90 >30m 2.56GB ≥ 108.9·105 0.60s 64.0MB 1.9 · 1060 0.07s 32.0MB

100 ◊ 100 >30m 14.8GB ≥ 102.3·106 0.79s 64.0MB 1.6 · 1058 0.06s 32.0MB

SmithNormalFormImproved outperforms the original procedure SmithNormalForm only
when the dimensions of the input are su�ciently large. This is because some extra computa-
tion, e.g. the bound given by Corollary 4.12, is performed by SmithNormalFormImproved.
The cost of these additional calculations are only outweighed by the benefit of performing
row operations with respect to an appropriate modulus when the entries appearing in
intermediate matrices are very large.

Observe that the Magma intrinsic SmithForm always performs better than the procedure
SmithNormalFormImproved. One reason is that SmithForm is a compiled C program, but
SmithNormalFormImproved is written in Magma, an interpreted language.

Moreover, there are other techniques beyond those discussed in Section 4 which can be
used to more e�ciently compute the SNF, many of which are discussed in [HHR93]. Recall
the beginning of the proof of Theorem 3.7. First a nonzero entry is selected. If it does not
divide every entry in its row and column, then we produce a smaller nonzero entry in the
same position by applying appropriate row and column operations. Eventually this entry
will divide all entries in its row and column.

In [HHR93], this process is called pivoting, and the nonzero entry which is selected is
called a pivot. In SmithNormalForm, the way a pivot is selected is to initially choose the
smallest modulus entry, and thereafter select the first entry in the current pivot’s row
and column which is not divisible by the current pivot. Havas et al. [HHR93] suggest
some alternate pivoting strategies which can improve performance. In particular it is
recommended to try certain pivoting strategies first, and only resort to modular methods
if these are unsuccessful.

There is an additional deficiency in both of the procedures described in this report. Given
an m ◊ n integer matrix A, computing the SNF of A determines the rank r and positive
integers d1 | d2 | · · · | dr such that Zn

/S(A) ≥= Zd1 ü · · · ü Zdr ü Zn≠r. However the SNF
alone does not provide an explicit description of such isomorphism, which is often useful.

When only row and column operations and no modular techniques are used to compute the
SNF of A, we can find P œ GLm(Z), Q œ GLn(Z) such that PAQ is in SNF, by applying
the row operations to Im to produce P , and the column operations to In to produce Q.
As in the proof of Theorem 3.4, P and Q can be used to describe such an isomorphism.

Unfortunately, when modular techniques are applied, such an isomorphism can only be
recovered in this way if r = n. If we define T := Zd1 ü · · · ü Zdr and F := Zn≠r, then
Zn

/S(A) ≥= T ü F , and T is torsion (every element has finite order), and Zn≠r is torsion

13



free (all non-identity elements have infinite order). Havas et al. [HHR93] describe how
Lattice Basis Reduction algorithms such as mlll can be used together with the modular
methods described here, to completely describe an isomorphism Zn

/S(A) æ T ü F .

References

[Ros52] J.B. Rosser. “A method of computing exact inverses of matrices with integer
coe�cients”. Journal of Research of the National Bureau of Standards 49.5
(1952), p. 349.

[HHR93] George Havas, Derek F. Holt, and Sarah Rees. “Recognizing badly presented
Z-modules”. Linear Algebra and its Applications 192 (1993), pp. 137–163.

[Sim94] C.C. Sims. Computation with Finitely Presented Groups. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1994.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. “The Magma algebra
system. I. The user language”. J. Symbolic Comput. 24.3-4 (1997), pp. 235–265.

[DF04] D.S. Dummit and R.M. Foote. Abstract Algebra. Wiley, 2004.
[Gar07] D. J. H. Garling. Inequalities: A Journey into Linear Analysis. Cambridge

University Press, 2007.

14



Appendix A Hermite Normal Form

1 RowReduce := procedure (~A)
m := NumberOfRows (A); n := NumberOfColumns (A);

3 i := 1; j := 1;

5 while i le m and j le n do
AbsEntries := [ Abs(A[k,j]) : k in [i..m] ];

7 Indices := [i..m];
ParallelSort (~ AbsEntries , ~ Indices );

9 while true do

11 if AbsEntries [# AbsEntries ] eq 0 then
j +:= 1;

13 break ;
elif i eq m or AbsEntries [# AbsEntries -1] eq 0 then

15 k := Indices [# Indices ];
if k ne i then

17 SwapRows (~A,i,k);
end if;

19 if A[i,j] lt 0 then
MultiplyRow (~A,-1,i);

21 end if;

23 for l in [1..i -1] do
q := A[l,j] div A[i,j];

25 AddRow (~A,-q,i,l);
end for;

27 i +:= 1; j +:= 1;
break ;

29

else
31 k := Indices [# Indices -1]; l := Indices [# Indices ];

q := A[l,j] div A[k,j];
33 AddRow (~A,-q,k,l);

AbsEntries [# AbsEntries ] := Abs(A[l,j]);
35 ParallelSort (~ AbsEntries , ~ Indices );

end if;
37 end while ;

end while ;
39 end procedure ;

15



Appendix B Smith Normal Form

1 // Uses row and column operations to diagonalise A
// max records maximum modulus entry

3 // overtime is a flag which is set to true if Cputime () exceeds maxtime
// computation halts shortly after overtime is set to true

5 procedure Diagonalise (~A, ~max , ~overtime , maxtime )
m := NumberOfRows (A); n := NumberOfColumns (A);

7 if not IsZero (A) and m ne 0 and n ne 0 then
// find min nonzero modulus entry A[i,j]

9 // store max modulus entry
r := 1; s := 1;

11 while A[r,s] eq 0 do
if s lt n then

13 s +:= 1;
else

15 r +:= 1; s := 1;
end if;

17 end while ;
i := r; j := s;

19 max := Abs(A[r,s]);
min := max;

21 while r le n do
if A[r,s] ne 0 and Abs(A[r,s]) lt min then

23 min := Abs(A[r,s]);
i := r; j := s;

25 elif Abs(A[r,s]) gt max then
max := Abs(A[r,s]);

27 end if;
if s lt n then

29 s +:= 1;
else

31 r +:= 1; s := 1;
end if;

33 end while ;

35 // ensure A[i,j] divides everything in its row and column
r := 1; s := 1;

37 while r le m or s le n do
if Cputime () gt maxtime then

39 overtime := true;
print " overtime ";

41 break ;
else

43 if r le m then
if A[r,j] mod A[i,j] ne 0 then

45 q := A[r,j] div A[i,j];
AddRow (~A,-q,i,r);

47 i := r; r := 1;
for k in [1..n] do

49 if Abs(A[i,k]) gt max then
max := Abs(A[i,k]);

51 end if;
end for;

53 else
r +:= 1;

55 end if;
elif A[i,s] mod A[i,j] ne 0 then

16



57 q := A[i,s] div A[i,j];
AddColumn (~A,-q,j,s);

59 j := s; r := 1; s := 1;
for k in [1..m] do

61 if Abs(A[k,j]) gt max then
max := Abs(A[k,j]);

63 end if;
end for;

65 else
s +:= 1;

67 end if;
end if;

69 end while ;

71 if not overtime then
SwapRows (~A,i ,1);

73 SwapColumns (~A,j ,1);

75 // make entries below and to the right of A[1 ,1] zero
for i in [2..m] do

77 q := A[i ,1] div A[1 ,1];
AddRow (~A,-q,1,i);

79 for k in [1..n] do
if Abs(A[i,k]) gt max then

81 max := Abs(A[i,k]);
end if;

83 end for;
end for;

85 for j in [2..n] do
q := A[1,j] div A[1 ,1];

87 AddColumn (~A,-q,1,j);
for k in [1..m] do

89 if Abs(A[k,j]) gt max then
max := Abs(A[k,j]);

91 end if;
end for;

93 end for;

95 if A[1 ,1] lt 0 then
A[1 ,1] := -A[1 ,1];

97 end if;

99 C := Submatrix (A, 2, 2, m-1, n -1);
submax := 0;

101 Diagonalise (~C, ~submax , ~overtime , maxtime );
InsertBlock (~A,C ,2 ,2);

103 if submax gt max then
max := submax ;

105 end if;
end if;

107 end if;
end procedure ;

109

// Computes the SNF of A by a Gaussian elimnation inspired method
111 // max stores the maximum modulus entry in computation

// maxtime is the time in seconds before the computation halts
113 procedure SmithNormalForm (~A, ~max : maxtime := 1800)

overtime := false ;

17



115 m := NumberOfRows (A); n := NumberOfColumns (A);
Diagonalise (~A,~max ,~ overtime , maxtime );

117 if not overtime then
r := 1;

119 while r le Min(m,n) do
if A[r,r] eq 0 then

121 break ;
else

123 r +:= 1;
end if;

125 end while ;
r -:= 1;

127

// enforce divisibility condition
129 for i in [1..r] do

for j in [i+1..r] do
131 if A[j,j] mod A[i,i] ne 0 then

d := Gcd(A[i,i],A[j,j]);
133 l := A[i,i]*A[j,j] div d;

A[i,i] := d; A[j,j] := l;
135 end if;

end for;
137 end for;

end if;
139 end procedure ;

18



Appendix C Smith Normal Form Improved

1 // returns the bound given by Hadamard ’s inequality
function hadamard (A)

3 m := NumberOfRows (A); n := NumberOfColumns (A);
if m gt n then

5 return hadamard ( Transpose (A));
else

7 prod := 1;
for i in [1..m] do

9 sum := 0;
for j in [1..n] do

11 sum +:= A[i,j]^2;
end for;

13 if sum ne 0 then
prod *:= sum;

15 end if;
end for;

17

max := 0;
19 for j in [1..n] do

sum := 0;
21 for i in [1..m] do

sum +:= A[i,j]^2;
23 end for;

max := Max(max ,sum);
25 end for;

27 return Sqrt(Min(prod , max^m));
end if;

29 end function ;

31 // Uses row and column operations modulo d to diagonalise A
procedure DiagonaliseMod (~A,d)

33 Z := IntegerRing (); Zd := IntegerRing (d);
m := NumberOfRows (A); n := NumberOfColumns (A);

35

if not IsZero (A) and m ne 0 and n ne 0 then
37 A := ChangeRing (A, Zd);

// find a nonzero entry
39 i := 1; j := 1;

while A[i,j] eq 0 do
41 if j lt n then

j +:= 1;
43 else

i +:= 1; j := 1;
45 end if;

end while ;
47

// ensure A[i,j] divides everything in its row and column
49 r := 1; s := 1;

while r le m or s le n do
51 if r le m then

if (Z ! A[r,j]) mod (Z ! A[i,j]) ne 0 then
53 q := (Z ! A[r,j]) div (Z ! A[i,j]);

AddRow (~A,-q,i,r);
55 i := r; r := 1;

else

19



57 r +:= 1;
end if;

59 elif (Z ! A[i,s]) mod (Z ! A[i,j]) ne 0 then
q := (Z ! A[i,s]) div (Z ! A[i,j]);

61 AddColumn (~A,-q,j,s);
j := s; r := 1; s := 1;

63 else
s +:= 1;

65 end if;
end while ;

67

SwapRows (~A,i ,1);
69 SwapColumns (~A,j ,1);

71 // clear out entries below and to the right of A[1 ,1]
for i in [2..m] do

73 q := (Z ! A[i ,1]) div (Z ! A[1 ,1]);
AddRow (~A,-q,1,i);

75 end for;
for j in [2..n] do

77 q := (Z ! A[1,j]) div (Z ! A[1 ,1]);
AddColumn (~A,-q,1,j);

79 end for;

81 A := ChangeRing (A, Z);

83 C := Submatrix (A, 2, 2, m-1, n -1);
DiagonaliseMod (~C,d);

85 InsertBlock (~A,C ,2 ,2);
end if;

87 end procedure ;

89 // Computes the SNF of A using Modular techniques
// primestart is where to begin looking for primes to do calculations

91 // dnumber is the number of nonzero rxr determinants we find ,
// where r is the rank of A

93 procedure SmithNormalFormImproved (~A : primestart := 1000 , dnumber := 3)
X := SmithForm (A);

95 m := NumberOfRows (A); n := NumberOfColumns (A);
if not IsZero (A) and m ne 0 and n ne 0 then

97 b := hadamard (A);

99 // find sequence of distinct primes whose product exceeds 2*b
primes := [ NextPrime ( primestart )];

101 prod := primes [1];
while prod le 2*b do

103 Append (~ primes , NextPrime ( primes [# primes ]));
prod *:= primes [# primes ];

105 end while ;

107 submatrices := {};
rank := 0;

109

for p in primes do
111 // row reduction modulo p

// find the p-rank r of A
113 // and an rxr submatrix with full rank

rows := [1..m];

20



115 columns := [];

117 Zp := IntegerRing (p);
Ap := ChangeRing (A, Zp);

119

i := 1; j := 1;
121 while i le m and j le n do

k := i;
123 while k le m do

if Ap[k,j] eq 0 then
125 k +:= 1;

else
127 break ;

end if;
129 end while ;

131 if k le m then
Append (~ columns , j);

133 if k ne i then
SwapRows (~Ap , i, k);

135 tmp := rows[k];
rows[k] := rows[i];

137 rows[i] := tmp;
end if;

139 c := -1/Ap[i,j];
for l in [i+1..m] do

141 AddRow (~Ap , Ap[l,j]*c, i, l);
end for;

143 i +:= 1;
end if;

145 j +:= 1;
end while ;

147

r := i - 1;
149 rows := rows [[1.. r]];

Sort (~ rows);
151 if r gt rank then

rank := r;
153 submatrices := {[rows , columns ]};

elif r eq rank and # submatrices lt dnumber then
155 Include (~ submatrices , [rows , columns ]);

end if;
157 end for;

159 // compute determinants of submatrices
dets := [];

161 for indices in submatrices do
rows := indices [1]; columns := indices [2];

163 detsprimes := [];
for p in primes do

165 Z := IntegerRing (); Zp := IntegerRing (p);
Ap := ChangeRing (A, Zp);

167 detp := Z ! Determinant ( Submatrix (Ap , rows , columns ));
Append (~ detsprimes , detp);

169 end for;
sol := CRT(detsprimes , primes );

171 altsol := sol - prod;
if Abs( altsol ) lt sol then

21



173 Append (~dets , altsol );
else

175 Append (~dets , sol);
end if;

177 end for;

179 d := GCD(dets);
print d;

181

// Compute the SNF of A modulo d
183 DiagonaliseMod (~A,d);

s := 1;
185 while s le Min(m,n) do

if A[s,s] eq 0 then
187 break ;

else
189 s +:= 1;

end if;
191 end while ;

s -:= 1;
193 // enforce divisibility condition

for i in [1..s] do
195 for j in [i+1..s] do

if A[j,j] mod A[i,i] ne 0 then
197 g := Gcd(A[i,i],A[j,j]);

l := A[i,i]*A[j,j] div g;
199 A[i,i] := g; A[j,j] := l;

end if;
201 end for;

end for;
203

// Recover SNF of A
205 for i in [s+1.. rank] do

A[i,i] := d;
207 end for;

end if;
209 end procedure ;

22


