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1 Introduction

Randomness is an important resource in a diverse range of domains: it has uses in science,
statistics, cryptography, gambling, and even in art and politics. In many of these domains, it is
crucial that the randomness be of high quality. This is most directly the case in cryptography,
where good randomness is vital to the security of data and communication, but is equally, albeit
more subtly, true in other areas such as politics, where decisions of consequence may be made
based on scientific and statistical studies relying crucially on randomness.

For a long time, people have predominantly relied on pseudo random number generators (PRNGs)
– that is, computer algorithms designed to simulate randomness – to serve such needs. Problems
with various PRNGs, often only uncovered when it is already too late, are all too common and can
have serious consequences.1 This has driven a recent surge of interest in RNGs exploiting physical
phenomena, and more particularly in quantum RNGs (QRNGs) that utilize the purportedly
inherent randomness in quantum mechanics [16, 48, 55, 57]. QRNGs are generally considered
to be, by their very nature, better than classical RNGs (such as PRNGs), but how (or can) one
test this in practice?

RNGs are generally tested by conducting batteries of tests on (finite) sequences they have pro-
duced [41, 49]. Traditionally, such tests have focused on intuitive aspects of randomness, such
as the frequencies of certain (strings of) bits, but human intuition about randomness is noto-
riously poor [14, 31] and many other symptoms of randomness remain untested. Indeed, the
randomness of strings and sequences is an incomputable property and thus cannot be verified
completely and, moreover, it is characterised by an infinity of properties [22]. With standard
randomness tests designed with PRNGs in mind, it is reasonable to wonder whether there are
tests more appropriate for analysing QRNGs and perceiving the advantage they can provide.
Indeed, QRNGs should excel precisely on properties of randomness where algorithmic PRNGs
are doomed to fail: incomputability and their inherent unpredictability [5, 7, 9, 24]. Although
incomputability is not directly testable (not least because it is a property of infinite sequences
and thus holds only in the limit), one may ask whether there are tests than can reveal related
advantages in practice.

⇤University Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
†Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand.
1An example is the discovery in 2012 of a weakness in the encryption system used worldwide for online shopping,

banking, email; the flaw was traced to the numbers a PRNG has produced [39]. As of 2017, Java still relies on a
linear congruential generator, a low quality PRNG.
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With this goal, we study several possible tests of randomness based on algorithmic information
theory. In particular, we consider tests based on Borel normality [18, 19] as well as novel tests
based on the Solovay-Strassen probabilistic primality test [54] – an algorithm which can be made
deterministic when given access to algorithmic randomness [26]. We test several classical RNGs
as well as a semiconductor-based QRNG [38] with these tests and observe a clear advantage of
the QRNG in the latter test.

2 Randomness

In order to guide the development of tests for QRNG, it is important to understand what ran-
domness is and thus what one should test. Historically, the quest to develop a formal under-
standing of randomness focused on the problem of determining whether a given (finite) string
or (infinite) sequence of bits is random. One of the first attempts to formalise such a no-
tion of randomness is due to Borel, who defined the concept of Borel normality for infinite
sequences [18]. Borel normality formalises the notion that bits should be evenly and equally
distributed within a sequence. Although this captures one of the most intuitive features of ran-
domness, it does not alone capture fully the desired concept. For example, the Champernowne
sequence 0 1 00 01 10 11 000 001 011 100 . . . [27] contains every string of length k with the same
limiting frequency of 2�k, and yet the sequence has a simple description: concatenate the binary
representation of all the strings of length k in lexicographical order for k = 1, 2, . . . . Given this
description, it is clear that the Champernowne sequence is not random, but highly ordered.

The study of algorithmic information theory, developed in the 1960s by Solomonoff, Kolmogorov
and Chaitin, provides a more robust and acceptable definition of random sequence. In this frame-
work, random sequences are those that are asymptotically incompressible [25] or, equivalently,
pass all effective Martin-Löf tests [44]. Incompressibility also allows notions of randomness for
finite strings to be formalised, although the notion is only defined up to a choice of universal
Turing machine, so that the notions only converge in the limit of long strings [22].

While algorithmic information theory thus provides a sound notion of randomness for strings
and sequences, two important points must be mentioned. Firstly, it is not effectively decidable
whether a string or sequence is random, so the notion does not provide an effective way to test
the randomness of a sequence of bits. Secondly, it is possible to define ever stronger notions
of randomness: from an algorithmic perspective, no notion of “pure” or “absolute” randomness
exists, only degrees of randomness [22, 23, 33]. This should temper any desire to verify the
randomness of a RNG by tests on its output. Instead, we can only hope to compare the quality
of strings produced.

As interest in generating random numbers increased, the concept of randomness received in-
creased philosophical attention and it became clearer that the algorithmic notion of randomness
fails to capture aspects of randomness important for RNGs [3]. Indeed, as von Neumann noted,
“there is no such thing as a random number – there are only methods to produce random num-
bers” [58]. The insight of von Neumann is not that the algorithmic notion of randomness is
problematic – indeed, it is highly satisfactory as a notion of random objects – but that there is
a dual concept of randomness, that of random processes [3, 30]. Such a concept has historically
received little attention, but the most convincing attempts to make it rigorous are perhaps those
which define it as a form of maximal unpredictability: the outcome of such a process should be
unpredictable for any physical observer [8, 29].

There are thus two legitimate notions of randomness to be reconciled: that of process randomness,
formalised by the uniform probability measure; and that of product randomness, formalised by
algorithmic randomness. The distinction between these notions is important for understanding
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tests of randomness.

3 Random number generators

An ideal random number generator is generally taken to be a random process producing the
same probability distribution as the ideal (but unphysical) unbiased coin. It thus produces
bits sequentially generating a sequence x = x1x2 . . . with each bit xi being equiprobable, i.e.
p(xi = 0) = p(xi = 1) = 1/2, and with successive bits produced independently. Thus, all strings
x of length k have probably p(x) = 2�k and, in the infinite limit, one obtains the Lebesgue
measure over all infinite sequences [21].

If one tries to implement such a device in practice, two issues immediately become apparent.

Firstly, how is one to know that the process exploited is really random and actually produces the
expected ideal distribution? This issue touches on the interpretation of probability [34] (although
this is beyond the scope of the present article). For example, a physical process thought to be
represented by the uniform distribution might only exhibit epistemic randomness, and a more
precise, deterministic model of the process might be possible which reveals its non-randomness.
The most direct way to avoid such possibilities is to harness an indeterministic process to ensure
its unpredictability [8].

Secondly, how does one test or verify the randomness of a RNG given that one only has access
to (finite) strings produced by it? Although the concepts of process and product randomness
are indeed distinct, they are nonetheless related: long enough strings produced by an ideal RNG
will, with high probability, be random, while in the infinite limit the sequences produced will be
algorithmically random with probability 1 but not certainty : an ideal coin can in principle produce
non-random or even computable sequences. However, as mentioned earlier, the randomness of
sequences is already an incomputable property. Thus, one can do no better than verifying finitely
many properties of randomness to gain confidence in a RNG.

3.1 Pseudo RNGs (PRNGs)

The predominant approach to generating randomness is to use algorithms to produce “pseudo-
randomness”, and such PRNGs are ubiquitous as a result of their practicality and speed. However,
the very fact that such devices use computational methods to produce their outcomes distin-
guishes them from ideal RNGs. PRNGs typically use a short string from an external source
– generally assumed to be random – as an initial “seed” for an algorithm [2]. Thus, PRNGs
can only produce computable sequences, whereas such sequences should be produced only with
probability 0 by an ideal RNG. Instead, effort is made to make PRNGs difficult to distinguish
from an ideal RNG given limited (typically polynomial time) computational resources [32], since
this provides a degree of security against cryptographic attacks, even if the resulting distribution
(induced by the distribution over the initial seeds) is far from uniform in reality.

PRNGs generally produce sequences that satisfy many intuitive aspects of randomness – such as
the equidistribution of the bits produced – and pass most standard statistical tests of random-
ness despite their computability. Nonetheless, deficiencies resulting from the non-randomness of
PRNGs are regularly exploited (e.g. [17]) and much of the interest in quantum randomness has
been driven by the potential to avoid the shortcomings of PRNGs.
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4 Quantum randomness

For some time now, quantum mechanics has garnered interest as a potential source of randomness
for RNGs. Such interest stems from the fact that certain quantum phenomena, such as the
radioactive decay of an atom or the detection of a photon having passed through a beamsplitter,
are generally taken to be “intrinsically random” under the standard interpretation of quantum
mechanics [11]. We will first discuss these claims in a little more detail – since it is important
to base the randomness of QRNGs on more formal grounds rather than simply assuming such
randomness – before discussing one approach to the generation of quantum randomness in more
detail.

Claims about quantum randomness originate with the fact that, as a formal theory, quantum
mechanics differs fundamentally from classical physics in that not all observable properties are
simultaneous defined with arbitrary precision. Instead, quantum mechanics, via the Born rule,
only specifies the probabilities with which individual measurement outcomes occur for the mea-
surement of a physical quantity – i.e., a quantum observable. Formally, if a system is in a quantum
state | i and one measures an observable A with spectral decomposition A =

P
i aiPi, where

we adopt the notation Pi = |iihi| for rank-1 projection observables, then one obtains outcome ai
with probability

P (ai| ) = |hi| i|2. (1)

Thus, whereas randomness in classical physics is due to ignorance of the precise initial conditions
of a systems (e.g., as in chaotic systems) [40], in quantum mechanics it is intrinsic to the formal
theory.

Nonetheless, the Born rule is a purely formal statement, and interpreting the probability distri-
bution specified by the Born rule remains the subject of ongoing debate. The orthodox inter-
pretation, however, is that the distribution should be understood ontically as representing an
indeterministic phenomenon [11]. Crucially, this interpretation is more than a blind assump-
tion: several well-known no-go theorems rule out classical statistical interpretations of quantum
randomness.

Bell’s Theorem [15] is the most well-known of these results, and shows that a classical, local hid-
den variable theory cannot reproduce the statistics of quantum correlations that are observed [12]
between entangled particles. The Kochen-Specker Theorem [37], although perhaps lesser known,
pinpoints this breakdown in determinism in an arguably more precise way: it shows that, for
any quantum system with more than 2 dimensions, it is logically impossible to predetermine all
measurement outcomes prior to measurement in a noncontextual fashion (i.e., in a way which is
independent of other compatible – and thus non-disturbing – measurements one can perform).

More recently, this theorem has been refined to show that the only observables that can be
predetermined in a noncontextual way are those for which the Born rule assigns the probability
1 to a particular outcome [6, 10]. More precisely, we call an observable A value definite for a
state | i if it has a predetermined measurement outcome v (A). This stronger result shows that
for systems of more than 2 dimensions, if we assume that any such value definite observables
should be noncontextual, then A is value definite if and only if | i is an eigenstate of A; all other
observables must be value indefinite.

This result makes the extent of quantum value indefiniteness – and thus indeterminism – clear
and pinpoints which measurements are protected by such formal results, allowing the random-
ness of QRNGs to be based more rigorously on physical principles and clarifying its link to
indeterminism. Crucially, this result also allows one to show that the measurement of such value
indefinite observables satisfies a strong form of unpredictability [9], proving that one really can-
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not provide better predictions than the Born rule specifies, and thus giving a stronger theoretical
grounding to claims about the form of quantum randomness proposed for QRNGs.

4.1 Quantum RNGs (QRNGs)

These properties of quantum measurements make it an ideal candidate for random number
generation: if one measures an observable for which the Born rule predicts a uniform distribution,
then the QRNG embodies a perfect coin. Moreover, the results discussed above show that –
subject to very reasonable physical assumptions about how classical objects should behave – this
distribution can’t be given an epistemic interpretation and is truly of indeterministic origin. The
attractiveness of QRNGs is further enhanced by the possibility of obtaining high bitrates and
the simplicity of their physical models – in contrast to RNGs based on classical physics, such as
chaotic systems.

Early QRNGs relied on features such as radioactive decay [51], but simpler systems based, for
example, on measuring the polarisation [36, 52, 55] or detection time [56] of a photon, have
become the norm due to the practical advantages they provide. Such approaches have led to the
development of commercial QRNGs, such as ID Quantique’s Quantis [35].

Many successful QRNGs exploit 2-dimensional systems to generate randomness (e.g. Quantis uses
the polarisation of photons). This greatly simplifies the design and production of such devices but
neither Bell’s theorem (which requires entanglement) nor the Kochen-Specker Theorem (which
requires at least 3-dimensional systems) are applicable, and these QRNGs thus lack the rigorous
theoretical certification that quantum mechanics can provide, even if it is reasonable to think
that the measurements they exploit should still be indeterministic.

More recently there has been significant interest in implementing QRNGs that violate Bell’s
inequalities in order to provide a much stronger certification [28, 48]. Specifically, such devices
allow the indeterminism of a QRNG to be certified in a device-independent way – i.e., without
assuming knowledge of how the device works – which is particularly important in cryptographic
settings, where the workings of a RNG should perhaps not be trusted. Such certification, however,
comes at a cost, since not only does it require an initial small random seed anyway, but it
also relies on the QRNG being separated into two space-like separated (or at least isolated)
components and the stringent requirements of loophole-free Bell tests reduce the obtainable
bitrate by several orders of magnitude compared to “standard” QRNGs [48].

An alternative approach outlined in [5, 7] is to use 3-dimensional systems exhibiting value in-
definiteness (via the Kochen-Specker Theorem) to certify a QRNG. While such a certification
is device dependent (i.e., one relies on knowledge of the functioning of the QRNG), it allows
the practical advantages of standard QRNGs to be maintained while providing stronger the-
oretical certification. Figure 1 shows the schematic of the proposed QRNG, which uses a
spin-1 particle as a 3-dimensional system. The system is prepared in the state |Sz = 0i (i.e.,
with spin-0 in the z-direction) before measuring the spin in the x-direction, i.e. the observable
Sx =

P1
sx=�1 sx|Sx = sxihSx = sx|. Since the state |Sz = 0i is an eigenstate of the projection

observable P0 = |Sx = 0ihSx = 0|, this observable is value definite with value v(P0) = 0 – that
is, the result of the Sx measurement is never Sx = 0. However, by the results of [5, 10], both
P± = |Sx = ±1ihSx = ±1| are value indefinite and, moreover, both outcomes Sx = ±1 occur
with probability 1/2 according to the Born rule (1). Thus, the QRNG operates as an ideal coin
certified by value indefiniteness.

This approach to certifying a QRNG via value indefiniteness leads to some interesting additional
consequences if one is willing to accept slightly stronger physical assumptions (in particular,
about whether being able to compute properties in advance implies well-defined physical prop-
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Figure 1: Schematic of a QRNG certified by value indefiniteness exploiting the measurement of
a spin-1 particle [5]. [It doesn’t make any sense to give the generalised beamsplitter setup too because it
is actually less related to what Arkady et al. implemented.]
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FIG. 2. (a) Simplified diagram of the measurement setup. A transmon type multi-level quantum system is incorporated into
a 3D microwave copper cavity attached to the cold stage of a dilution cryostat. A magnetically tunable Josephson junction
(SQUID) is used to control the transition frequency of the qutrit by a superconducting coil attached to the cavity. Amplitude-
controlled and phase-controlled microwave pulses are applied to the input port of the cavity by a quadrature IF (IQ) mixer
driven by a local oscillator (LO) and sideband modulated by an arbitrary waveform generator (AWG). The measurement signals
transmitted through the cavity are amplified by quantum Josephson parmateric amplifier (JPA), by a high-electron-mobility
transistor (HEMT) amplifier at 4 K and a chain of room temperature (RT) amplifiers. The sample at 20 mK is isolated
from the higher temperature stages by three circulators (C) in series. The amplified transmission signal is down-converted
to an intermediate frequency of 25 MHz in an IQ mixer driven by a dedicated LO, and is digitized by an analog-to-digital
converter (ADC) for data analysis. (b) The energy level diagram of a qutrit coupled to a microwave cavity. The transition
frequencies of the qutrit and cavity are in GHz while the anharmonicity of the qutrit is ⇠ 300MHz. When the coupling g
between the transmon and the cavity is much smaller than their mutual detuning, the system is in the dispersive regime used
for measurement of the qutrit.

with the protocol of Ref. [4].
To distinguish between three di↵erent states with high

fidelity we use a Josephson parametric amplifier similar
to the one described in Ref. [14]. In addition, we set the
readout pulse frequency close to the cavity frequency cor-
responding to the |1i state of the qutrit, which allowed
the three possible qutrit states to be well separated on
I-Q plane (see Fig. 3). The readout frequency was fine-
tuned to maximize the three-level readout fidelity. Us-
ing the outlined procedure for initialization and measure-
ment we generated 10 Gbit of raw data at a rate of 50
kbit/s.

If the qutrit is prepared in the state |�i and we per-
form a quantum measurement described by the projec-
tors | ih | then Ref. [4] provides the condition to certify
the value-indefiniteness of the outcomes of the measure-
ments:

r
5

14
 |h |�i|  3p

14
. (6)

In our protocol we take {Sz = 0} state as |�i and

{Sx = ±1} as | ±i (see Fig. 1). If our system were
ideally prepared in the ground state and all the experi-
mental imperfections were generated only by errors in the
microwave control we could estimate |h ±|�i| directly as
the square root of the probability to obtain the outcomes
”0” and ”1”. The resulting probabilities to obtain ”0”
and ”1” were measured as 0.536±0.004 and 0.464±0.004
confirming that the control errors of our setup guarantee
value-indefiniteness with high confidence.

In reality the actual states of the system before and
after the measurement are not described by pure states.
The main contribution to the deviation of the probabil-
ities from the ideal value 1/2 is due to relaxation of the
qutrit during the dispersive measurement. As it leads
to the misinterpretation of the excited state as being
the ground state, we measured greater probability to ob-
tain ”0” rather than ”1”. Another sources of imperfec-
tions are thermal excitation of the qutrit (< 1%), fidelity
of gates (> 99%) and relaxation during the microwave
pulses. The result of these imperfections may lead to a
situation when for some runs the certification condition

Figure 2: An implementation of a qutrit as a superconducting transmon coupled to a microwave
cavity [38]. [I’m not convinced we should really include this figure since without further technical details
it doesn’t really mean much.]

erties). Specifically, it was shown in [5] that such a device, if used repeatedly ad infinitum to
generate an infinite sequence x of bits, will produce an x that is strongly incomputable (techni-
cally, “bi-immune”) not just with probability 1 but with certainty. Although such a result will not
alone lead to observable advantages for finite strings – recall that an ideal QRNG will produce
an incomputable sequence with probability 1 – but this nonetheless highlights the differences
between pseudo and quantum randomness in relation to computability.

The QRNG outlined in Fig. 1 has recently been implemented experimentally [38], not with spin-
1 particles but by exploiting a superconducting transmon coupled to a microwave cavity as a
qutrit, a system isomorphic to the spin-1 particle described above; see Fig. 2. The authors used
this QRNG implementation to generate a large number of bits, and in the subsequent sections we
will analyse these sequences produced from quantum randomness. In particular, we will focus on
observing differences between such sequences and pseudorandom ones arising from algorithmic
properties of the sequences.
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5 Testing RNGs

While it is crucial to have a good theoretical understanding of any RNG, there are several reasons
why testing experimentally their performance is nonetheless crucial. Firstly, one can never be
sure that the implementation of the RNG matches the theory, a fact that is equally as true for
hardware RNGs as for software RNGs. Indeed, in the extreme limit, one might not wish to
trust any theoretical claims about about a given RNG, and thus confidence in the RNG can
only be gained from performing carefully selected tests. Secondly, thorough testing gives one the
opportunity to detect any issues with assumptions made in the theoretical analysis of a device
or in its practical deployment (e.g., if the distribution of seeds does not match that assumed
theoretically the performance of a RNG might be compromised).

It is nonetheless important to recognise that experimental testing can never allow one to perfectly
characterise a device. Instead, with access only to finite strings produced by it and the ability to
perform a finite number of tests, one can only ever gain increasing confidence in the operation
of the device. One can never be sure, for instance, that the output obtained was not simply
atypical behaviour obtained purely by chance. This is doubly true since, as we discussed earlier,
randomness is characterised by an infinity of properties, so one must carefully choose the tests
one performs.

The issues arising when testing RNGs can be illustrated pointedly with an example. Imagine
a device which deterministically outputs the digits of the binary expansion of ⇡ = ⇡1⇡2⇡3 . . .
starting from the 1010th bit. If we are unaware of the behaviour of this box and believe it to be
a RNG, its output will appear extremely random to us; indeed, ⇡ passes all standard statistical
tests of randomness [43] despite the fact that it is not known to even be Borel normal [59].
Nevertheless, the sequence produced by this box would be computable and thus not random at
all.

Standard statistical tests of randomness focus on properties of the distribution of bits or bit
strings within sequences, properties more closely related to Borel normality than algorithmic
notions of randomness. Many such tests were developed with the aim of testing PRNGs, where
reproducing such statistical predictions is a primary issue, particularly since failing to do so may
leak information about the seed and thus break the security of the PRNG [39]. QRNGs have
generally been tested against similar tests, such as the NIST [49] and DIEHARD [41] batteries,
and generally perform well. For example, Quantis is officially certified as passing these tests on
1000 samples of 1 million bits [35]. Such tests, however, are far from confirming the randomness
of the device; indeed, analysis of longer sequences (of 232 bits) revealed (albeit it very small) bias
and correlation amongst the output bits [4].

Such statistical non-uniformity is, however, to be expected in RNGs exploiting physical phe-
nomena due to experimental imperfections and instability [7]. Inasmuch as this form of non-
uniformity is small enough for the required application, this is not necessarily problematic as long
as a QRNG remains certified by value indefiniteness: unlike for PRNGs, where non-uniformity
is often a symptom of deeper issues, for QRNGs the unpredictability is guaranteed by the in-
deterministic nature of the device. Moreover, bias can be reduced by post-processing [46, 58],
allowing quantum indeterminism to still be exploited sufficiently. Although testing such proper-
ties is crucial in order to ensure any bias remains tolerably low, such tests do not directly probe
crucial advantages of quantum randomness, such as a degree of algorithmic randomness of their
output.

While it is not possible to directly compute the algorithmic information content of strings pro-
duced by RNGs, one may still ask whether there are tests that indirectly probe this to try and
differentiate PRNGS – which always produce computable sequences – from QRNGs. In the
following sections we investigate more closely this question.
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6 Experimental evidence of incomputability

In this section we describe several tests based on algorithmic properties which we use to investi-
gate the properties of random bits obtained from both PRNGs and the QRNG detailed in Fig. 2.
We tested 10 sequences of 229 bits each obtain from sequences obtained from the initial bits of
⇡ – which can be seen as a form of pseudo-randomness [13] – as well as the PRNGs used by
Python (Mersenne Twister algorithm) [1], Random123 [50], PCG [45], xoroshilro128+ [42], as
well as the QRNG described in Sec. 4.1.

6.1 Tests of Borel normality

The notion of Borel normality was the first mathematical definition of algorithmic random-
ness [18], and although, like many standard tests of randomness, it focuses on the distribution
of bits within a sequence, it is nonetheless worth looking at in its own right.

An infinite sequence x 2 {0, 1}1 is (Borel) normal if every binary string appears in the sequence
with the right frequency (which is 2�n for a string of length n). Every algorithmic random infinite
sequence is Borel normal [22], but the converse implication is not true: there exist computable
normal sequences, such as Champernowne’s sequence mentioned earlier. Normality is invariant
under finite variations: adding, removing, or changing a finite number of bits in any normal
sequence leaves it normal.

The notion of normality was subsequently transposed from infinite sequences to (finite) strings [22].
In doing so, one has to replace limits with inequalities, and one obtains the following definition.
For any fixed integer m > 1, consider the alphabet Bm = {0, 1}m consisting of all binary strings
of length m, and for every 1  i  2m denote by Nm

i the number of occurrences of the lexico-
graphical ith binary string of length m in the string x (considered over the alphabet Bm). By
|x|m we denote the length of x over Bm; |x|1 = |x|. A string x 2 Bm is Borel normal (with
accuracy 1

log2
) if for every natural 1  m  log2 log2 |x|, we have:

����
Nm

j (x)

|x|m
� 2�m

���� 
1

log2 |x|
, (2)

for every 1  j  2m. Almost all algorithmic random strings are Borel normal with accuracy 1
log2

,
[22]; in particular, they have approximately the same numbers number of 0s and 1s. Furthermore,
if all prefixes of a sequence are Borel normal, then the sequence is also Borel normal. The need to
state the accuracy with which a string is Borel normal for finite strings arises from the fact that
the right-hand-side of Eq. (2) may be replaced by any computable real function in |x| converging
to 0 for the definition to behave properly. The choice of accuracy thus allows one to consider
normality quantitatively; we choose here the accuracy 1

log2
by convention, and this will make

little difference since we are interested in the relative normality of different sequences.

In Figure 3,
���
Nm

j (x)

|x|m � 2�m
��� log2 |x| has been calculated, where m = 1, 2, . . . , 5. A value exceeding

1 indicates that a sequences fails the normality test at accuracy 1
log2

. Although we see that all
sequences pass the test at this accuracy, it is evident that the sequence produced by the QRNG is
significantly less normal than the pseudorandom sequences. This is, however, unexpected, since
the experiment implementing the QRNG was known to exhibit bias due to experimental imper-
fections [38] and, as discussed in the previous section, such a bias is not necessarily problematic
for a QRNG as long as it is sufficiently small for the relevant application.
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Figure 3: Borel normality test: Box-plot showing the distribution of the quantity���
Nm

j (x)

|x|m � 2�m
��� log2 |x| for the strings produced by the various RNGs. The averages for each

source are marked at the top of the plot.

6.2 A test of incomputability

Is it possible to possible to give a test which rejects the randomness for every computable se-
quence? The answer is affirmative: such a Martin-Löf test exists (for more technical details on
Martin-Löf tests and algorithmic randomness, see [22]). To specify the test we must define the
sequences of its nth component for all integers n > 0. The nth component is the union of all
{0, 1}⇤{0, 1}1 for which there is an e such that �(0) = 'e(0), . . . ,�(e+n+1) = 'e(e+n+1) and
� 2 {0, 1}⇤. This is an open computably enumerable class which that contains all computable
sets, as each computable set has a characteristic function 'e. Furthermore, the measure of the
nth component is bounded from above by the

P
2�n�e�2, which in turn is bounded from above

by 2�n�1, as the � derived from 'e has length e + n+ 2 and is a prefix of the set for which 'e

computes the characteristic function.

It is not difficult to see that the above test depends on the enumeration 'e, and there is no obvious
“natural” choice. Furthermore, invariance under finite variations renders the test unsuitable for
finite experiments. As a result, it is necessary to consider more indirect methods to test the
incomputability of sequences produced by RNGs.

6.3 The Chaitin-Schwartz-Solovay-Strassen test

In contrast with standard tests of randomness which check specific properties of randomness of
strings of bits, the proposed test is based solely on the behaviour of random strings as selectors
for the Solovay-Strassen probabilistic primality test [54].

To test whether a positive integer n is prime, we take k natural numbers uniformly distributed
between 1 and n � 1, inclusive, and, for each one i, check whether a certain, easy to compute,
predicate W (i, n) holds. If W (i, n) is true then “i is a witness of n’s compositeness”, hence
n is composite. If W (i, n) holds for at least one i then n is composite; otherwise, the test is
inconclusive, but in this case the probability that n is prime is greater than 1� 2�k. This is due
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to the fact that at least half the i’s from 1 to n� 1 satisfy W (i, n) if n is indeed composite, and
none of them satisfy W (i, n) if n is prime [54].

Selecting k natural numbers between 2 and n � 1 is equivalent to choosing a binary string s
of length n � 2 with k 1’s such that the ith bit is 1 if and only if i is selected. Chaitin and
Schwartz [26] proved that, if s is a long enough algorithmically random binary string, then n is
prime iff Z(s, n) is true, where Z is a predicate constructed directly from conjunctions of negations
of W . The crucial fact is that the set of algorithmically random strings is highly incomputable:
technically the set is immune, that is, it contains no infinite computably enumerable subset [22].
As a consequence, de-randomisation is non-constructive and not effective.

For our proposed tests, we focus on whether certain numbers succeed in witnessing the compos-
iteness of Carmichael numbers. A Carmichael number is a composite positive integer k satisfying
the congruence bk�1 ⌘ 1 (mod k) for all integers b relative prime to k. Carmichael numbers are
composite, but are difficult to factorise and thus are “very similar” to primes; they are some-
times called pseudo-primes. Carmichael numbers can fool Fermat’s primality test, but less the
Solovay-Strassen test. Increasingly Carmichael numbers become “rare” 2.

The Chaitin-Schwartz-Solovay-Strassen test examines the computational capacity of a random
string s when used by Solovay-Strassen primality test for Carmichael (composite) numbers. For
our analysis, we have used all Carmichael numbers less than 229 as computed in [47]. As a
metric to compare the performance of strings we look at the number of wrong answers – that
is, when the test determines incorrectly that a Carmichael number is prime – returned by the
Solovay-Strassen probabilistic algorithm.

The Solovay-Strassen test is capable of giving empirical evidence of incomputability, in stark
contrast to most tests of randomness. Indeed, the Borel normality test discussed before is unable
to do so: the normality of Champernowne’s sequence mentioned earlier is evidence of this.

In Figure 4 we plot the performance of various strings (the same ones as tested for Borel normality
in Fig. 3) using the metric described above. The box-plot shows, for each source of bits, the
average score over the 10 strings tested as well as the quartiles showing the spread of scores.
We have seen that quantum random bits perform significantly better than the bits generated
by all the PRNGs: they provide significantly fewer false claims of primality for the Carmichael
numbers on average. As all the Carmichael numbers tests were eventually proved composite by
all random strings, the quantum random bits are more “faster” in determining the compositeness
of pseudo-primes because the number of tests are smaller.

6.4 Solovay-Strassen practicality randomness test

As a final test, we performed another test inspired by the Solovay-Strassen test that was previ-
ously used in [20] to try to distinguish quantum randomness from pseudo randomness. Here we
again tested each Carmichael number n less than 229, as computed in [47], with witness numbers
selected from the binary representation of dlg ne bits of the source string, skipping the numbers
that were out-of-range. For this, the metric is given by the smallest k [Why smallest, not average?]
such at most k witness numbers were required to obtain a verdict of non-primality for all of the
483 Carmichael numbers less than 229. This test determines, in practice, whether the random
sequence of bits is more useful for deciding non-primality of a set of composite numbers with the
metric being the total number of bits required (smaller the better). As each Carmichael number
is tested we never recycled bits from the sample string; that is, we only reset the source string
to the first bit when there was a need to try a larger value of k to pass this metric.

2There are 1,401,644 Carmichael numbers in the interval [1, 1018].
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Figure 4: Chaitin-Schwartz-Solovay-Strassen test: Box-plot showing the distribution in the num-
ber of Carmichael numbers incorrectly identified as prime by the random sequences produced by
the various RNGs. The averages for each source are marked at the top of the plot.

In Figure 5 we plot the distribution of this metric. We see that there is little different between
the performance of the various source, except for the bits produced by the QRNG which again
show an advantage over all the PRNGs. Compared to the Chaitin-Schwartz-Solovay-Strassen
test of the previous section, however, this advantage is much less pronounced and only slightly
fewer bits (based on the smaller required k) were, on average, needed by the bits produced by
the QRNG compared to those produced by the PRNGs.

7 Conclusions
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