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ABSTRACT

A disjunctive sequence is an infinite sequence in which every finite string appears
as a substring. An absolutely disjunctive number (or lexicon) is a real whose expansion
with respect to every base is disjunctive.

In this note we give a simple construction of absolutely disjunctive Liouville numbers
(reals which can be “quite closely” approximated by sequences of rationals).
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1. Introduction

Disjunctivity is a qualitative form of (Borel) normality: normal sequences are disjunc-
tive, but the converse is false. Like normality [7, 15], disjunctivity is not base-invariant
(for more details see [9]).

Jürgensen and Thierrin [11] gave a construction of Liouville numbers disjunctive
in base b. Highly incomputable Liouville numbers disjunctive to every base have been
presented in [19, Theorem 15].

The recent construction of a computable absolutely normal Liouville number in [1]
yields also computable, absolutely disjunctive Liouville numbers. This construction,
however, is based on rather complicated measure-theoretic arguments from [2]. The
aim of this note is to present a simple algorithm producing weaker examples, that is,
computable Liouville numbers disjunctive to every base.

1.1. Notation

In this section we introduce the notation used throughout the paper. By IN =
{0, 1, 2, . . .} we denote the set of natural numbers. Its elements will be usually de-



2 C. S. Calude, L. Staiger

noted by letters i, . . . , n. The set Ab = {0, 1, . . . , b ≠ 1}, where b Ø 2 is a positive
integer, is called the b–base; the elements of Ab are called b-digits. By Aú

b we denote
the set of all finite strings (words) with Á denoting the empty string; AÊ

b is the set of
all infinite sequences (Ê-words) over Ab; Ê-words are usually denoted by x, y. The
length of a finite or infinite string ÷ over Ab is denoted by |÷|.

For w œ Aú
b and ÷ œ Aú

b fi AÊ
b , w · ÷ is their concatenation. This concatenation

product extends in an obvious way to subsets L ™ Aú
b and B ™ Aú

b fi AÊ
b . If w œ Aú

b
and i Ø 0 is an integer, then wi is the concatenation ww · · · w (i times) and wÊ is the
infinite concatenation ww · · · w · · · . The · operator can be omitted when the meaning
is clear, as in w÷.

By w ı u and w @ y we denote that w is a prefix of u and y, respectively. Further,
let pref(y) = {w : w @ y} and infix(y) = {w : ÷v(v · w @ y)} be the set of prefixes
and infixes of y, respectively.

1.2. Preliminary definitions and results

In this section we define the classes of real numbers studied in the paper.
A real number – is called a Liouville number if it is irrational and for every positive

integer k, there exist integers pk and qk with qk > 1 such that
----– ≠ pk

qk

---- <
1
qk

k

.

A real – œ [0, 1] is called computable if for some b Ø 2 it has a b-ary computable
expansion – = 0.x1x2 . . . , that is, there is a computable function f– such that f–(n) =
xn, for all n Ø 1. This condition is equivalent to the requirement that there is a
computable sequence of rationals

! pn

qn

"
nœIN such that

|– ≠ pn

qn
| Æ 1

2n
,

for all n œ IN. This shows that if – is computable, then its expansions in any base b
are computable.

Originally, Ê-words x were called disjunctive because the syntactic monoid of the
set {x} is disjunctive, that is, its syntactic congruence is the identity (see [10]). Equiv-
alently, disjunctive Ê-words are those which have every finite word as subword.1 In
fact, in a disjunctive Ê-word every word appears infinitely many times.

Disjunctivity is also related to randomness: disjunctive Ê-words are exactly the
Ê-words not contained in any null-set definable by finite automata [16, 17]. For more
properties of disjunctive sequences see [4].

A real number – œ [0, 1] is disjunctive (or rich) in base b if its b-ary expansion is
disjunctive. For example, Champernowne’s number 0.0123456789101112 . . . is com-
putable and disjunctive in base 10 [8]. No rational number is disjunctive in any base.

1In view of this latter property they are also called rich Ê-words.
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An absolutely disjunctive number (or lexicon) is a real which is disjunctive in every
base. Every Martin-Löf random real is a lexicon, but the converse is false [3].

In the sequel we denote by L, C and D the set of all Liouville numbers, computable
numbers and absolutely disjunctive numbers in [0, 1], respectively.

1.3. Co-meagre and dense sets
It is useful to consider the unit interval [0, 1] and the spaces of infinite sequences AÊ

b
as metric spaces. Suitable metrics are the usual distance |– ≠ —| in [0, 1] and

fl(x, y) = b≠ inf{iœIN|iØ1,xi ”=yi},

for infinite words x = x1 · · · xi · · · , y = y1 · · · yi · · · with xi, yi œ Ab. With these
metrics [0, 1] and AÊ

b become complete metric spaces.

Let X be a complete metric space. A set M ™ X is nowhere dense if its closure
(smallest closed set containing M) does not contain a non-empty open subset. A set
M ™ X is meagre (or of first Baire category) if it is a countable union of nowhere
dense sets. A complement of a meagre set is called co-meagre (or residual).

The following closure property of co-meagre sets is well-known (see [12]).

Fact 1. In a complete metric space the family of co-meagre sets is closed under
countable intersection.

A set M ™ X is dense if M fl M Õ ”= ÿ for every non-empty open set M Õ ™ X . Note
that in a complete metric space every co-meagre set is dense, but a dense set might
be meagre, even countable.

The following relations hold for subsets F ™ AÊ
b and their counterparts in [0, 1].

Lemma 2 [18]. Let F ™ AÊ
b and MF = {0.x | x œ F} ™ [0, 1]. Then

(I) F is nowhere dense if and only if MF is nowhere dense.
(II) F is co-meagre if and only if MF is co-meagre.

(III) F is dense if and only if MF is dense.

Fact 3 [14]. (I) The set of Liouville numbers L is co-meagre.
(II) The set of computable numbers C is countable, meagre and dense.

2. Disjunctive Ê-words

As mentioned above disjunctive Ê-words are infinite words x œ AÊ
b having infix(x) =

Aú
b . By

Db = {x | x œ AÊ
b · infix(x) = Aú

b}
we denote the set of all disjunctive Ê-words in AÊ

b . Then the set of all absolutely
disjunctive numbers in [0, 1] is

D = {– | – œ [0, 1] · ’b(b Ø 2 æ ÷x(x œ Db · – = 0.x))}.
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The set D has the following topological property:

Lemma 4 [6, 18]. The set D is co-meagre in [0, 1].

Then from Fact 1 and Lemma 2 it follows that the set of absolutely disjunctive
Liouville numbers is “topologically” large:

Corollary 5. The intersection L fl D is co-meagre in [0, 1].

Corollary 5 gives only an existence proof, not a constructive one. Further more,
since the set of computable reals C is countable, it does not even show that L fl D fl C
is not empty.

To show the existence of computable absolutely disjunctive Liouville numbers we
use a representation of the b-ary counterparts {x œ AÊ

b | 0.x œ D} of D via computable
languages. In Section 4 we then show how this description can be transformed into
an algorithm computing an absolutely disjunctive Liouville number.

Theorem 6 [18]. For every base b there e�ectively exists a computable language
Wb ™ Aú

b such that the Ê-language {x œ AÊ
b | the set pref(x) fl Wb is infinite} is the

set of all b-ary expansions of absolutely disjunctive reals in [0, 1].

More explicitly, Theorem 6 ([18, Theorem 21]) provides, for every base b, an in-
creasing computable function g : IN æ Aú

b such that g(IN) = Wb. This function g
naturally induces a computable order on Wb.

Since D is dense in [0, 1], from Lemma 2.III we deduce that the Ê-language {x œ
AÊ

b | the set pref(x) fl Wb is infinite} is dense in AÊ
b . This yields the following.

Corollary 7. For every u œ Aú
b there is a v œ Wb such that u @ v.

Proof. As the Ê-language {x œ AÊ
b | the set pref(x) fl Wb is infinite} is dense, every

open subset of AÊ
b contains an x such that pref(x) fl Wb is infinite.

Consider the open Ê-language u · AÊ
b (see e.g. [18]). Then there is an x for which

pref(x) fl Wb is infinite. Consequently, there is a v œ pref(x) fl Wb such that u @ v.
⇤

3. Expansions of Liouville numbers

For our purposes it is useful to have the following property of b-ary expansions x
of reals which guarantees that 0.x is a Liouville number. A similar criterion was
sketched, without proof, by Maillet in [13].

Using finitely or infinitely many strings wi œ Aú
b and a function f : IN æ IN \ {0}

we construct b-ary expansions of real numbers in the following way.
Define �Œ

j=0wf(j)
j as the concatenation of w0 (f(0) times), w1 (f(1) times),w2 (f(2)

times). . . .
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Lemma 8 [5]. Let (wi)iœIN be a family of non-empty strings wi œ Aú
b , f : IN æ

IN \ {0}, and ni =
qi

j=0 f(j) · |wj |. If

lim inf
iæŒ

ni≠1 + |wi|
ni≠1 + f(i) · |wi|

= 0 , (1)

then x = �Œ
j=0wf(j)

j is the b-ary expansion of a rational or a Liouville number.

4. The Algorithm

The following algorithm computes the b-ary expansion x = �Œ
j=0wf(j)

j of an absolutely
disjunctive Liouville number whose b-ary expansion starts with a given word w0 œ Aú

b .
It uses the computable injective ordering g : IN æ Wb of the computable language
Wb given by Theorem 6.

Algorithm Liouville-disjunctive
0 initialise w0 = u0 = v0, f(0) = 1
1 for i = 1 to Œ do
2 vi = first word in

!
Wb fl ui≠1 · Aú

b

"
\ {ui≠1}

3 calculate wi from vi = ui≠1 · wi

4 calculate f(i) = min
Ó

k | |ui≠1| + |wi|
|ui≠1| + k · |wi|

<
1
i

Ô

5 ui = ui≠1 · wf(i)
i

6 endfor
The algorithm computes three families of words (ui)iœIN, (vi)iœIN, and (wi)iœIN and

a function f : IN æ IN \ {0}. Note that at each step the set (Wb fl ui≠1 · Aú
b) \ {ui≠1}

is e�ectively ordered according to g.
First, Step 2 implies vi œ Wb and together with Step 5, by induction, ui≠1 @ vi ı

ui @ vi+1. From the Step 3 and ui≠1 @ vi we have |wi| > 0. Then, again using Step 5,
by induction one verifies that

ui = �i
j=0wf(j)

j . (2)

It remains to show that the algorithm will produce an infinite computable Ê-word,
that is, it never stops. To this end it su�ces to show that the choice in Step 2 is
always possible. From Corollary 7 we know that for every u œ Aú

b there is a v œ Wb

such that u @ v. This makes it possible to choose the first element in Wb w.r.t. g
which has u as a proper prefix.

Thus the algorithm computes two computable approximations of an Ê-word x =
�Œ

j=0wf(j)
j via the families of prefixes (ui)iœIN and (vi)iœIN. From vi œ Wb we obtain

0.x œ D via Theorem 6, and, because of (2), Step 4 shows that the words ui and
wi satisfy Eq. (1). Thus Lemma 8 verifies that 0.x is also a Liouville number. The
computability of x follows directly from the algorithm.
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