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ABSTRACT

A disjunctive sequence is an infinite sequence in which every finite string appears
as a substring. An absolutely disjunctive number (or lexicon) is a real whose expansion
with respect to every base is disjunctive.

In this note we give a simple construction of absolutely disjunctive Liouville numbers
(reals which can be “quite closely” approximated by sequences of rationals).
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1. Introduction

Disjunctivity is a qualitative form of (Borel) normality: normal sequences are disjunc-
tive, but the converse is false. Like normality [7, 15], disjunctivity is not base-invariant
(for more details see [9]).

Jirgensen and Thierrin [11] gave a construction of Liouville numbers disjunctive
in base b. Highly incomputable Liouville numbers disjunctive to every base have been
presented in [19, Theorem 15].

The recent construction of a computable absolutely normal Liouville number in [1]
yields also computable, absolutely disjunctive Liouville numbers. This construction,
however, is based on rather complicated measure-theoretic arguments from [2]. The
aim of this note is to present a simple algorithm producing weaker examples, that is,
computable Liouville numbers disjunctive to every base.

1.1. Notation

In this section we introduce the notation used throughout the paper. By IN =
{0,1,2,...} we denote the set of natural numbers. Its elements will be usually de-
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noted by letters 4,...,n. The set A, = {0,1,...,b — 1}, where b > 2 is a positive
integer, is called the b—base; the elements of Ay are called b-digits. By A; we denote
the set of all finite strings (words) with € denoting the empty string; Ay is the set of
all infinite sequences (w-words) over Ap; w-words are usually denoted by x,y. The
length of a finite or infinite string 7 over A, is denoted by |n)|.

For w € A} and n € Aj U AY, w - n is their concatenation. This concatenation
product extends in an obvious way to subsets L C A; and B C A7 UAY. If w € A;
and i > 0 is an integer, then w' is the concatenation ww - - -w (i times) and w*® is the
infinite concatenation ww---w---. The - operator can be omitted when the meaning
is clear, as in wn.

By w C u and w C y we denote that w is a prefix of u and y, respectively. Further,
let pref(y) = {w: w C y} and infix(y) = {w : Jv(v-w C y)} be the set of prefixes
and infixes of y, respectively.

1.2. Preliminary definitions and results

In this section we define the classes of real numbers studied in the paper.
A real number « is called a Liouville number if it is irrational and for every positive
integer k, there exist integers p; and q; with g > 1 such that
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A real o € [0,1] is called computable if for some b > 2 it has a b-ary computable
expansion « = 0.z1x2 . .., that is, there is a computable function f, such that f,(n) =
Ty, for all n > 1. This condition is equivalent to the requirement that there is a

computable sequence of rationals (z—")n eI such that
1
o= 22 < o
qn — 27

for all n € IN. This shows that if « is computable, then its expansions in any base b
are computable.

Originally, w-words x were called disjunctive because the syntactic monoid of the
set {x} is disjunctive, that is, its syntactic congruence is the identity (see [10]). Equiv-
alently, disjunctive w-words are those which have every finite word as subword.! In
fact, in a disjunctive w-word every word appears infinitely many times.

Disjunctivity is also related to randomness: disjunctive w-words are exactly the
w-words not contained in any null-set definable by finite automata [16, 17]. For more
properties of disjunctive sequences see [4].

A real number « € [0, 1] is disjunctive (or rich) in base b if its b-ary expansion is
disjunctive. For example, Champernowne’s number 0.0123456789101112... is com-
putable and disjunctive in base 10 [8]. No rational number is disjunctive in any base.

n view of this latter property they are also called rich w-words.
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An absolutely disjunctive number (or lexicon) is a real which is disjunctive in every
base. Every Martin-Lof random real is a lexicon, but the converse is false [3].

In the sequel we denote by £, C and D the set of all Liouville numbers, computable
numbers and absolutely disjunctive numbers in [0, 1], respectively.

1.3. Co-meagre and dense sets

It is useful to consider the unit interval [0, 1] and the spaces of infinite sequences A}’
as metric spaces. Suitable metrics are the usual distance |a — | in [0, 1] and

p(X, Y) . inf{i€1N|i21,1:,;;aéyi}7

for infinite words x = xy---x;---,y = y1---y; -+ with z;,y; € Ap. With these
metrics [0, 1] and A} become complete metric spaces.

Let X be a complete metric space. A set M C X is nowhere dense if its closure
(smallest closed set containing M) does not contain a non-empty open subset. A set
M C X is meagre (or of first Baire category) if it is a countable union of nowhere
dense sets. A complement of a meagre set is called co-meagre (or residual).

The following closure property of co-meagre sets is well-known (see [12]).

Fact 1. In a complete metric space the family of co-meagre sets is closed under
countable intersection.

A set M C X is dense if M N M’ # () for every non-empty open set M’ C X. Note
that in a complete metric space every co-meagre set is dense, but a dense set might
be meagre, even countable.

The following relations hold for subsets F' C AY and their counterparts in [0, 1].
Lemma 2 [18]. Let F C AY and Mp ={0x|x € F} C[0,1]. Then
(1) F is nowhere dense if and only if Mp is nowhere dense.

(1) F is co-meagre if and only if Mg is co-meagre.
(i) F is dense if and only if Mp is dense.

Fact 3 [14]. (1) The set of Liouville numbers L is co-meagre.
(i1) The set of computable numbers C is countable, meagre and dense.

2. Disjunctive w-words

As mentioned above disjunctive w-words are infinite words x € AY having infix(x) =
Af. By

D, = {x | x € AY ANinfix(x) = A} }
we denote the set of all disjunctive w-words in AY. Then the set of all absolutely
disjunctive numbers in [0, 1] is

D={a|ael0,]]AVb(b>2— Ix(x € Dy Aa=0.x))}.
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The set D has the following topological property:
Lemma 4 [6, 18]. The set D is co-meagre in [0,1].

Then from Fact 1 and Lemma 2 it follows that the set of absolutely disjunctive
Liouville numbers is “topologically” large:

Corollary 5. The intersection L ND is co-meagre in [0, 1].

Corollary 5 gives only an existence proof, not a constructive one. Further more,
since the set of computable reals C is countable, it does not even show that LNDNC
is not empty.

To show the existence of computable absolutely disjunctive Liouville numbers we
use a representation of the b-ary counterparts {x € Ay | 0.x € D} of D via computable
languages. In Section 4 we then show how this description can be transformed into
an algorithm computing an absolutely disjunctive Liouville number.

Theorem 6 [18]. For every base b there effectively exists a computable language
Wy, C A} such that the w-language {x € AY | the set pref(x) N Wy is infinite} is the
set of all b-ary expansions of absolutely disjunctive reals in [0,1].

More explicitly, Theorem 6 ([18, Theorem 21]) provides, for every base b, an in-
creasing computable function g : IN — A} such that g(IN) = W;. This function ¢
naturally induces a computable order on W.

Since D is dense in [0, 1], from Lemma 2.111 we deduce that the w-language {x €
Ay | the set pref(x) N W, is infinite} is dense in AY. This yields the following.

Corollary 7. For every u € A} there is a v € Wy such that u C v.

Proof. As the w-language {x € Ay’ | the set pref(x) N W, is infinite} is dense, every

open subset of AY contains an x such that pref(x) N W, is infinite.
Consider the open w-language u - A% (see e.g. [18]). Then there is an x for which
pref(x) N W, is infinite. Consequently, there is a v € pref(x) N W} such that u C v.
0

3. Expansions of Liouville numbers

For our purposes it is useful to have the following property of b-ary expansions x
of reals which guarantees that 0.x is a Liouville number. A similar criterion was
sketched, without proof, by Maillet in [13].

Using finitely or infinitely many strings w; € A} and a function f: IN — IN'\ {0}
we construct b-ary expansions of real numbers in the following way.

Deiine A;-’O:wa(j) as the concatenation of wy (f(0) times), wy (f(1) times),ws (f(2)
times). ...
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Lemma 8 [5]. Let _(wi)ielN be a family of non-empty strings w; € Af, f: IN —
IN\ {0}, and n; =37, f(5) - lwl. If

i inf M=t E Wil 0, (1)
i—oo MN;_1 + f(’L) . \wl\

then x = A;’;Ow;(j) 1s the b-ary expansion of a rational or a Liouville number.

4. The Algorithm

The following algorithm computes the b-ary expansion x = A‘J?';Ow‘jf @) of an absolutely
disjunctive Liouville number whose b-ary expansion starts with a given word wg € A;.
It uses the computable injective ordering g : IN — W), of the computable language
Wy, given by Theorem 6.

Algorithm Liouville-disjunctive

0 initialise wy = up =vp, f(0)=1
1 for i =1 to co do
2 v; = first word in (W, Nw;—y - Af) \ {ui—1}
3 calculate w; from v; = u;_1 - w;
. . [wi—1] 4w 1
4 calculate f(i) = mln{k —_— < f}
f(@)

U; = Uj—1 W5
endfor

The algorithm computes three families of words (u;);en, (v;)iew, and (w;);ew and
a function f : IN — IN'\ {0}. Note that at each step the set (W, Nu;—1 - AF) \ {ui—1}
is effectively ordered according to g.

First, Step 2 implies v; € W}, and together with Step 5, by induction, w;_1 C v; C
u; T v;41. From the Step 3 and w;_; T v; we have |w;| > 0. Then, again using Step 5,
by induction one verifies that

u; = A;-:wa(j). (2)

It remains to show that the algorithm will produce an infinite computable w-word,
that is, it never stops. To this end it suffices to show that the choice in Step 2 is
always possible. From Corollary 7 we know that for every u € Aj there is a v € W}
such that v C v. This makes it possible to choose the first element in W, w.r.t. g
which has u as a proper prefix.

Thus the algorithm computes two computable approximations of an w-word x =
A‘J?';Ow'}c @) Via the families of prefixes (u;);ew and (v;);ew. From v; € Wy, we obtain
0.x € D via Theorem 6, and, because of (2), Step 4 shows that the words u; and
w; satisfy Eq. (1). Thus Lemma 8 verifies that 0.x is also a Liouville number. The
computability of x follows directly from the algorithm.
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