



CDMTCS Research Report Series

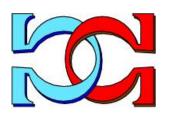
Liouville numbers

absolutely disjunctive

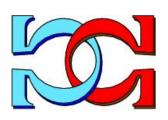
A simple construction of

Cristian S. Calude University of Auckland

Ludwig Staiger Martin-Luther-Universität Halle-Wittenberg



CDMTCS-505 March 2017



Centre for Discrete Mathematics and Theoretical Computer Science For submission to the Journal of Automata, Languages and Combinatorics Created on November 19, 2017 $\,$

A SIMPLE CONSTRUCTION OF ABSOLUTELY DISJUNCTIVE LIOUVILLE NUMBERS

CRISTIAN S. $CALUDE^{(A)}$ LUDWIG STAIGER^(B)

(A) Department of Computer Science, University of Auckland, Auckland, New Zealand cristian@cs.auckland.ac.nz

^(B) Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik Halle, Germany staiger@informatik.uni-halle.de

ABSTRACT

A disjunctive sequence is an infinite sequence in which every finite string appears as a substring. An absolutely disjunctive number (or lexicon) is a real whose expansion with respect to every base is disjunctive.

In this note we give a simple construction of absolutely disjunctive Liouville numbers (reals which can be "quite closely" approximated by sequences of rationals).

Keywords: Disjunctive sequences, Liouville numbers, computability

1. Introduction

Disjunctivity is a qualitative form of (Borel) normality: normal sequences are disjunctive, but the converse is false. Like normality [7, 15], disjunctivity is not base-invariant (for more details see [9]).

Jürgensen and Thierrin [11] gave a construction of Liouville numbers disjunctive in base b. Highly incomputable Liouville numbers disjunctive to every base have been presented in [19, Theorem 15].

The recent construction of a computable absolutely normal Liouville number in [1] yields also computable, absolutely disjunctive Liouville numbers. This construction, however, is based on rather complicated measure-theoretic arguments from [2]. The aim of this note is to present a simple algorithm producing weaker examples, that is, computable Liouville numbers disjunctive to every base.

1.1. Notation

In this section we introduce the notation used throughout the paper. By $\mathbb{N} = \{0, 1, 2, ...\}$ we denote the set of natural numbers. Its elements will be usually de-

noted by letters i, \ldots, n . The set $A_b = \{0, 1, \ldots, b-1\}$, where $b \ge 2$ is a positive integer, is called the *b*-base; the elements of A_b are called *b*-digits. By A_b^* we denote the set of all finite strings (words) with ε denoting the empty string; A_b^{ω} is the set of all infinite sequences (ω -words) over A_b ; ω -words are usually denoted by \mathbf{x}, \mathbf{y} . The length of a finite or infinite string η over A_b is denoted by $|\eta|$.

For $w \in A_b^*$ and $\eta \in A_b^* \cup A_b^\omega$, $w \cdot \eta$ is their concatenation. This concatenation product extends in an obvious way to subsets $L \subseteq A_b^*$ and $B \subseteq A_b^* \cup A_b^\omega$. If $w \in A_b^*$ and $i \ge 0$ is an integer, then w^i is the concatenation $ww \cdots w$ (*i* times) and w^ω is the infinite concatenation $ww \cdots w \cdots$. The \cdot operator can be omitted when the meaning is clear, as in $w\eta$.

By $w \sqsubseteq u$ and $w \sqsubset \mathbf{y}$ we denote that w is a prefix of u and \mathbf{y} , respectively. Further, let $\mathbf{pref}(\mathbf{y}) = \{w : w \sqsubset \mathbf{y}\}$ and $\mathbf{infix}(\mathbf{y}) = \{w : \exists v(v \cdot w \sqsubset \mathbf{y})\}$ be the set of prefixes and infixes of \mathbf{y} , respectively.

1.2. Preliminary definitions and results

In this section we define the classes of real numbers studied in the paper.

A real number α is called a *Liouville number* if it is irrational and for every positive integer k, there exist integers p_k and q_k with $q_k > 1$ such that

$$\left|\alpha - \frac{p_k}{q_k}\right| < \frac{1}{q_k^k}$$

A real $\alpha \in [0, 1]$ is called *computable* if for some $b \geq 2$ it has a b-ary computable expansion $\alpha = 0.x_1x_2...$, that is, there is a computable function f_{α} such that $f_{\alpha}(n) = x_n$, for all $n \geq 1$. This condition is equivalent to the requirement that there is a computable sequence of rationals $\left(\frac{p_n}{q_n}\right)_{n \in \mathbb{N}}$ such that

$$|\alpha - \frac{p_n}{q_n}| \le \frac{1}{2^n},$$

for all $n \in \mathbb{N}$. This shows that if α is computable, then its expansions in any base b are computable.

Originally, ω -words **x** were called disjunctive because the syntactic monoid of the set {**x**} is disjunctive, that is, its syntactic congruence is the identity (see [10]). Equivalently, disjunctive ω -words are those which have every finite word as subword.¹ In fact, in a disjunctive ω -word every word appears infinitely many times.

Disjunctivity is also related to randomness: disjunctive ω -words are exactly the ω -words not contained in any null-set definable by finite automata [16, 17]. For more properties of disjunctive sequences see [4].

A real number $\alpha \in [0, 1]$ is *disjunctive* (or *rich*) in base b if its b-ary expansion is disjunctive. For example, Champernowne's number 0.0123456789101112... is computable and disjunctive in base 10 [8]. No rational number is disjunctive in any base.

 $^{^1 \}mathrm{In}$ view of this latter property they are also called *rich* $\omega\text{-words}.$

Absolutely disjunctive Liouville numbers

An *absolutely disjunctive* number (or *lexicon*) is a real which is disjunctive in every base. Every Martin-Löf random real is a lexicon, but the converse is false [3].

In the sequel we denote by \mathcal{L} , \mathcal{C} and \mathcal{D} the set of all Liouville numbers, computable numbers and absolutely disjunctive numbers in [0, 1], respectively.

1.3. Co-meagre and dense sets

It is useful to consider the unit interval [0, 1] and the spaces of infinite sequences A_b^{ω} as metric spaces. Suitable metrics are the usual distance $|\alpha - \beta|$ in [0, 1] and

$$\rho(\mathbf{x}, \mathbf{y}) = b^{-\inf\{i \in \mathbb{N} | i \ge 1, x_i \ne y_i\}},$$

for infinite words $\mathbf{x} = x_1 \cdots x_i \cdots \mathbf{y} = y_1 \cdots y_i \cdots$ with $x_i, y_i \in A_b$. With these metrics [0, 1] and A_b^{ω} become complete metric spaces.

Let \mathcal{X} be a complete metric space. A set $M \subseteq \mathcal{X}$ is nowhere dense if its closure (smallest closed set containing M) does not contain a non-empty open subset. A set $M \subseteq \mathcal{X}$ is meagre (or of first Baire category) if it is a countable union of nowhere dense sets. A complement of a meagre set is called *co-meagre* (or *residual*).

The following closure property of co-meagre sets is well-known (see [12]).

Fact 1. In a complete metric space the family of co-meagre sets is closed under countable intersection.

A set $M \subseteq \mathcal{X}$ is *dense* if $M \cap M' \neq \emptyset$ for every non-empty open set $M' \subseteq \mathcal{X}$. Note that in a complete metric space every co-meagre set is dense, but a dense set might be meagre, even countable.

The following relations hold for subsets $F \subseteq A_b^{\omega}$ and their counterparts in [0, 1].

Lemma 2 [18]. Let $F \subseteq A_b^{\omega}$ and $M_F = \{0, \mathbf{x} \mid \mathbf{x} \in F\} \subseteq [0, 1]$. Then

- (I) F is nowhere dense if and only if M_F is nowhere dense.
- (II) F is co-meagre if and only if M_F is co-meagre.
- (III) F is dense if and only if M_F is dense.

Fact 3 [14]. (I) The set of Liouville numbers L is co-meagre.
(II) The set of computable numbers C is countable, meagre and dense.

2. Disjunctive ω -words

As mentioned above disjunctive ω -words are infinite words $\mathbf{x} \in A_b^{\omega}$ having $\inf \mathbf{x}(\mathbf{x}) = A_b^*$. By

$$D_b = \{ \mathbf{x} \mid \mathbf{x} \in A_b^{\omega} \land \operatorname{infix}(\mathbf{x}) = A_b^* \}$$

we denote the set of all disjunctive ω -words in A_b^{ω} . Then the set of all absolutely disjunctive numbers in [0, 1] is

$$\mathcal{D} = \{ \alpha \mid \alpha \in [0,1] \land \forall b (b \ge 2 \to \exists \mathbf{x} (\mathbf{x} \in D_b \land \alpha = 0.\mathbf{x})) \}.$$

The set \mathcal{D} has the following topological property:

Lemma 4 [6, 18]. The set \mathcal{D} is co-meagre in [0, 1].

Then from Fact 1 and Lemma 2 it follows that the set of absolutely disjunctive Liouville numbers is "topologically" large:

Corollary 5. The intersection $\mathcal{L} \cap \mathcal{D}$ is co-meagre in [0, 1].

Corollary 5 gives only an existence proof, not a constructive one. Further more, since the set of computable reals C is countable, it does not even show that $\mathcal{L} \cap \mathcal{D} \cap \mathcal{C}$ is not empty.

To show the existence of computable absolutely disjunctive Liouville numbers we use a representation of the *b*-ary counterparts $\{\mathbf{x} \in A_b^{\omega} \mid 0.\mathbf{x} \in \mathcal{D}\}$ of \mathcal{D} via computable languages. In Section 4 we then show how this description can be transformed into an algorithm computing an absolutely disjunctive Liouville number.

Theorem 6 [18]. For every base b there effectively exists a computable language $W_b \subseteq A_b^*$ such that the ω -language $\{\mathbf{x} \in A_b^\omega \mid \text{the set } \mathbf{pref}(\mathbf{x}) \cap W_b \text{ is infinite}\}$ is the set of all b-ary expansions of absolutely disjunctive reals in [0, 1].

More explicitly, Theorem 6 ([18, Theorem 21]) provides, for every base b, an increasing computable function $g : \mathbb{N} \to A_b^*$ such that $g(\mathbb{N}) = W_b$. This function g naturally induces a computable order on W_b .

Since \mathcal{D} is dense in [0, 1], from Lemma 2.111 we deduce that the ω -language $\{\mathbf{x} \in A_{b}^{\omega} \mid \text{the set } \mathbf{pref}(\mathbf{x}) \cap W_{b} \text{ is infinite}\}$ is dense in A_{b}^{ω} . This yields the following.

Corollary 7. For every $u \in A_b^*$ there is a $v \in W_b$ such that $u \sqsubset v$.

Proof. As the ω -language $\{\mathbf{x} \in A_b^{\omega} \mid \text{the set } \mathbf{pref}(\mathbf{x}) \cap W_b \text{ is infinite}\}$ is dense, every open subset of A_b^{ω} contains an \mathbf{x} such that $\mathbf{pref}(\mathbf{x}) \cap W_b$ is infinite.

Consider the open ω -language $u \cdot A_b^{\omega}$ (see e.g. [18]). Then there is an **x** for which $\operatorname{pref}(\mathbf{x}) \cap W_b$ is infinite. Consequently, there is a $v \in \operatorname{pref}(\mathbf{x}) \cap W_b$ such that $u \sqsubset v$.

3. Expansions of Liouville numbers

For our purposes it is useful to have the following property of *b*-ary expansions \mathbf{x} of reals which guarantees that $0.\mathbf{x}$ is a Liouville number. A similar criterion was sketched, without proof, by Maillet in [13].

Using finitely or infinitely many strings $w_i \in A_b^*$ and a function $f : \mathbb{N} \to \mathbb{N} \setminus \{0\}$ we construct *b*-ary expansions of real numbers in the following way.

Define $\Lambda_{j=0}^{\infty} w_j^{f(j)}$ as the concatenation of w_0 (f(0) times), w_1 (f(1) times), w_2 (f(2) times)....

Absolutely disjunctive Liouville numbers

Lemma 8 [5]. Let $(w_i)_{i \in \mathbb{N}}$ be a family of non-empty strings $w_i \in A_b^*$, $f : \mathbb{N} \to \mathbb{N} \setminus \{0\}$, and $n_i = \sum_{j=0}^i f(j) \cdot |w_j|$. If

$$\liminf_{i \to \infty} \frac{n_{i-1} + |w_i|}{n_{i-1} + f(i) \cdot |w_i|} = 0,$$
(1)

then $\mathbf{x} = \Lambda_{j=0}^{\infty} w_j^{f(j)}$ is the b-ary expansion of a rational or a Liouville number.

4. The Algorithm

The following algorithm computes the *b*-ary expansion $\mathbf{x} = \Lambda_{j=0}^{\infty} w_j^{f(j)}$ of an absolutely disjunctive Liouville number whose *b*-ary expansion starts with a given word $w_0 \in A_b^*$. It uses the computable injective ordering $g : \mathbb{N} \to W_b$ of the computable language W_b given by Theorem 6.

Algorithm Liouville-disjunctive

The algorithm computes three families of words $(u_i)_{i \in \mathbb{N}}$, $(v_i)_{i \in \mathbb{N}}$, and $(w_i)_{i \in \mathbb{N}}$ and a function $f : \mathbb{N} \to \mathbb{N} \setminus \{0\}$. Note that at each step the set $(W_b \cap u_{i-1} \cdot A_b^*) \setminus \{u_{i-1}\}$ is effectively ordered according to g.

First, Step 2 implies $v_i \in W_b$ and together with Step 5, by induction, $u_{i-1} \sqsubset v_i \sqsubseteq u_i \sqsubset v_{i+1}$. From the Step 3 and $u_{i-1} \sqsubset v_i$ we have $|w_i| > 0$. Then, again using Step 5, by induction one verifies that

$$u_i = \Lambda_{j=0}^i w_j^{f(j)}.$$
(2)

It remains to show that the algorithm will produce an infinite computable ω -word, that is, it never stops. To this end it suffices to show that the choice in Step 2 is always possible. From Corollary 7 we know that for every $u \in A_b^*$ there is a $v \in W_b$ such that $u \sqsubset v$. This makes it possible to choose the first element in W_b w.r.t. g which has u as a proper prefix.

Thus the algorithm computes two computable approximations of an ω -word $\mathbf{x} = \Lambda_{j=0}^{\infty} w_j^{f(j)}$ via the families of prefixes $(u_i)_{i \in \mathbb{N}}$ and $(v_i)_{i \in \mathbb{N}}$. From $v_i \in W_b$ we obtain $0.\mathbf{x} \in \mathcal{D}$ via Theorem 6, and, because of (2), Step 4 shows that the words u_i and w_i satisfy Eq. (1). Thus Lemma 8 verifies that $0.\mathbf{x}$ is also a Liouville number. The computability of \mathbf{x} follows directly from the algorithm.

Acknowledgement

The authors are grateful to Helmut Jürgensen for introducing them (long time ago) to Liouville numbers and disjunctive ω -words.

References

- V. BECHER, P. A. HEIBER, T. A. SLAMAN. A computable absolutely normal Liouville number, *Math. Comp.* 84 (2015) 296, 2939–2952.
- Y. BUGEAUD. Nombres de Liouville et nombres normaux, C. R. Math. Acad. Sci. Paris 335 (2002) 2, 117–120.
- C. S. CALUDE. Information and Randomness: An Algorithmic Perspective, Springer, Berlin, 2002. (2nd edition)
- [4] C. S. CALUDE, L. PRIESE, L. STAIGER. Disjunctive Sequences: An Overview, CDMTCS Research Report 63, 1997, 40 pp.
- [5] C. S. CALUDE, L. STAIGER. Liouville, Computable, Borel normal and Martin-Löf random numbers, *Theory Comput. Syst.*, First online 27 April 2017, https://link. springer.com/article/10.1007/s00224-017-9767-8.
- [6] C. S. CALUDE, T. ZAMFIRESCU. Most numbers obey no probability laws, *Publ. Math. Debrecen* 54 (1999) suppl., 619–623. Automata and formal languages, VIII (Salgótar-ján, 1996).
- J. W. S. CASSELS. On a problem of Steinhaus about normal numbers, *Colloq. Math.* 7 (1959), 95–101.
- [8] D. G. CHAMPERNOWNE. The construction of decimals normal in the Scale of Ten. J. London Math. Soc. S1-8, 4 (1933), 254.
- [9] P. HERTLING. Disjunctive ω-words and real numbers, J.UCS 2 7, (1996), 549–568.
- [10] H. JÜRGENSEN, H. J. SHYR, G. THIERRIN. Disjunctive ω-languages, Elektron. Informationsverarb. Kybernet. 19, 6 (1983), 267–278.
- [11] H. JÜRGENSEN, G. THIERRIN. Some structural properties of ω-languages, In: Proc. 13th Nat. School with Internat. Participation, Applications of Math. in Technology, Sofia, 1988, 56–63.
- [12] K. KURATOWSKI. Topology. Vol. I. New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966.
- [13] E. MAILLET. Sur les nombres quasi-rationnels et les fractions arithmétiques ordinaires ou continues quasi-périodiques, C. R. Acad. Sci., Paris 138 (1904), 410–411.
- [14] J. C. OXTOBY. *Measure and Category*, Springer-Verlag, New York-Berlin, 1980. (2nd edition)
- [15] W. M. SCHMIDT. On normal numbers, Pacific J. Math. 10 (1960), 661–672.
- [16] L. STAIGER. Reguläre Nullmengen, Elektron. Informationsverarbeit. Kybernetik 12, 6 (1976), 307–311.
- [17] L. STAIGER. Rich ω-words and monadic second-order arithmetic, In: M. NIELSEN, W. THOMAS (eds.), Computer science logic (Aarhus, 1997). Lecture Notes in Computer Science 1414, Springer-Verlag, Berlin, 1998, 478–490.

- [18] L. STAIGER. How large is the set of disjunctive sequences? J.UCS 8, 2 (2002) 348–362.
- [19] L. STAIGER. The Kolmogorov complexity of real numbers, *Theoret. Comput. Sci.* 284, 2 (2002), 455–466.