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Abstract

We present and compare various methods to construct efficient QUBO formulations
for the Graph Isomorphism Problem—one of a very few problems in NP that is neither
known to be solvable in polynomial time nor NP-complete—and two related Subgraph
Isomorphism Problems that are NP-hard. Experimental results on two QUBO formu-
lations of the Graph Isomorphism Problem suggest that our direct formulation is more
practical than the others with respect to running on the D-Wave architecture.
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1 Introduction

The D-Wave computers use quantum annealing to improve convergence of the system’s en-
ergy towards the ground state energy of a Quadratic Unconstrained Binary Optimisation
(QUBO) problem. The computer architecture consists of qubits arranged with a host con-
figuration as a subgraph of a Chimera graph which consists of an M × N two-dimensional
lattice of blocks, with each block consisting of 2L vertices (a complete bipartite graph KL,L),
in total 2MNL vertices.

D-Wave qubits are loops of superconducting wire, the coupling between qubits is magnetic
wiring and the machine itself is supercooled. See more in [1, 2]. The latest model, D-Wave
2XTM, uses a Chimera graph with 1,152 qubits based on L = 4 and M = N = 12 (out of
which 1,098 qubits are active) chilled close to absolute zero to get quantum effects [3].

The standard way to solve a problem with D-Wave is to find an equivalent QUBO for-
mulation of the problem (or, alternatively, an Ising formulation).

In order to “solve” a QUBO problem with the D-Wave machine the logical qubits have to
be “mapped” onto the physical qubits of the Chimera graph of the machine, process known as
“embedding”. Each logical qubit corresponds (via an embedding) to one or more connected
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physical qubits, called chain. As the number of physical qubits is severely limited, it is
desirable to minimise the number of variables (or logical qubits) in the QUBO formulation
as well as the number of extra physical qubits. The efficiency of an embedding—which is an
important component of the efficiency of the overall solution—is measured by the number
of resulting physical qubits and the maximum chain length. In this process the density of
the QUBO matrix plays an important role.

This paper studies comparatively different methods for constructing efficient QUBO for-
mulations for the Graph Isomorphism Problem, the Subgraph Isomorphism Problem and the
Induced Subgraph Problem.

We experimentally compared the efficiency of the QUBO formulations in terms of the
number of logical qubits, density of the QUBO matrices and the quality of the embeddings
(which relates to the number of physical qubits). The results obtained using the two QUBO
formulations of size n2 for the Graph Isomorphism Problem on graphs of order n suggest
that the direct formulation is more practical than the other one and that there may be some
foreseeable scalability issues with the Chimera graphs.

2 Prerequisites

In this section we present the notation needed in what follows.

The cardinality of a set X is denoted by |X|. By lg we denote the logarithm in base 2
and Z2 = {0, 1}.

A graph G = (V,E) consists a finite non-empty set of vertices V together with a set of
edges E. The order of G, denoted by n, is the number of vertices in V . The vertices are
labelled by V = {vi | 0 ≤ i < n}. The set (of edges) E consists of unordered pairs of vertices
u, v ∈ V . We denote an edge by e = uv or e = {u, v}, u < v. The number of edges, denoted
by m, is called the size of G.

In what follows we will only consider simple graphs, that is, graphs with no multi-edges
nor self-loops. The first condition means that for all pairs of vertices u and v, there is at
most one edge between u and v; the second condition states that for every vertex v ∈ V we
have vv /∈ E.

Discrete optimisation problems for the adiabatic quantum (annealing) computing model
are specified using the Ising or QUBO models [4]; these equivalent formulations are the
standard representations for problems for the D-Wave.

The QUBO is an NP-hard mathematical problem consisting in the minimisation of a
quadratic objective function f(x) = xTQx, where x is a n-vector of binary variables and Q
is an upper-triangular n× n matrix of real numbers:

x∗ = min
x

∑
i≤j

xiQ(i,j)xj, where xi ∈ {0, 1}. (1)

For two vectors x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , ym−1), the concatenation of x
and y is defined as z = xy = (x0, x1, . . . , xn−1, y0, y1, . . . , ym−1).
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A minor embedding of a graph G1 = (V1, E1) onto a graph G2 = (V2, E2) is a function
f : V1 → 2V2 that satisfies the following three conditions:

1. The sets of vertices {f(v) | v ∈ V1} are disjoint.

2. For all v ∈ V1, there is a subset of edges E ′ ∈ E2 such that G′ = (f(v), E ′) is connected.

3. If {u, v} ∈ E1, then there exist u′, v′ ∈ V2 such that u′ ∈ f(u), v′ ∈ f(v) and {u′, v′} is
an edge in E2.

Within the scope of a minor embedding, G1 is referred to as the guest graph while G2 is
called the host graph. We view a QUBO matrix Q as a weighted adjacency matrix (guest
graph) to be embedding onto the D-Wave’s Chimera graph (host graph).

3 The Graph Isomorphism Problem

The Graph Isomorphism Problem is the computational problem of determining whether two
finite graphs are isomorphic. The problem is one of very few problems in NP that is neither
known to be solvable in polynomial time nor NP-complete. Moreover, it is the only problem
listed in [5] which remains still unsolved.

The problem can be solved in polynomial time for many special classes of graphs and
in practice the Graph Isomorphism Problem can often be solved efficiently, see [6]. L.
Babai posted a paper [7] showing that the Graph Isomorphism Problem can be solved in
quasi-polynomial (exp((lg n)O(1))) time. These mathematical facts suggest that the Graph
Isomorphism Problem has an intermediate complexity, hence a good chance to be solved
efficiently using the D-Wave.

If the graphs have different sizes or orders, then they cannot be isomorphic and these
cases can be decided quickly. So in what follows we will assume that the input to the Graph
Isomorphism Problem are two graphs G1 = (V1, E1) and G2 = (V2, E2) with the same order
and the same size. If the graphs are isomorphic, then the output is a bijective edge-invariant
vertex mapping f : V1 → V2; edge-invariant means that for every pair of vertices {u, v}, we
have uv ∈ E1 if and only if f(u)f(v) ∈ E2.

Formally the problem can be stated as follows:

Graph Isomorphism Problem:

Instance: Two graphs G1 = (V1, E1) and G2 = (V2, E2) with
|V1| = |V2| and |E1| = |E2|.

Question: Determine whether there exists a bijective edge-invariant
vertex mapping (isomorphism) f : V1 → V2.

The required mapping f is a permutation of vertices in V1. To represent any of the n!
permutations we only need min{k | 2k ≥ n!} = dlg(n!)e bits, which is about ndlg ne bits. A
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QUBO formulation of the problem with this theoretical lower bound seems difficult to be
realised.

3.1 Simple approach using Integer Programming

In this section we present a simple formulation (i.e. a polynomial-time reduction) of the
Graph Isomorphism Problem to an Integer Programming (IP) Optimisation Problem (see [8]).

Integer Programming Optimisation Problem (standard form):

Instance: A p× q-matrix A, an p-vector c and an q-vector b of integers.
Question: Find a p-vector x and a q-vector of slack variables s of integers

such that the objective function cTx =
∑p

i=1 cixi is minimum
subject to Ax + s = b and s ≥ 0.

Recall the input consists of two graphs G1 and G2 with both being of order n and size
m. We use the following n+ 2m integer variables:

• vi, 0 ≤ i < n, denotes the permutation from vertices of G1 to G2,

• xk, 0 ≤ k < 2m, denotes the bijection from edges of G1 to G2.

For both graphs, we rank the m edges with two different values each from 0 to 2m−1, by
considering the pairs of integers (i, j) and (j, i) as two equivalent representations of a possible
edge ij. We say that rank(a, b) < rank(c, d) if na+ b < nc+d. That is, the edges are ranked
by considering their index within the (row-wise flattened) adjacency matrix representation of
a graph. Let E∗ denote this double set of 2m ordered pairs obtained from a set of unordered
edges E.

A dummy objective function for our optimisation problem is min v0, which indicates
that the first vertex of G1 is mapped to the smallest indexed vertex of G2, if at least one
isomorphism exits.

The integer programming constraints given below justify the conditions of an isomorphism
between G1 and G2.

First, every vertex of G1 is mapped to a vertex of G2, zero indexed:

0 ≤ vi < n, for all 0 ≤ i < n. (2)

Next, every vertex of G1 is mapped to a different vertex of G2:

(vi − vj)2 > 0, for all 0 ≤ i < j < n. (3)

Each edge ij of E1 needs to be mapped to the correct two indices in E∗2 with respect to
the given vi variables:

nvi + vj = xk, for i 6= j, (i, j) ∈ E∗1 and rank(i, j) = k. (4)
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Note that constraints (2)–(4) ensure that 1 ≤ xk ≤ n2− 2, which are the possible indices
into the flattened adjacency matrix of G2. These three sets of constraints also imply that
xk 6= xk′ for all k 6= k′.

Next we check that the bijection, given by the map i 7→ vi, is edge-invariant. Let the pre-
computed integer constant yl, 0 ≤ l < 2m, be the edge encoding yl = na + b for (a, b) ∈ E∗2
with rank(a, b) = l:

Πyl∈E∗2 (xk − yl) = 0, for all xk. (5)

The constraints given in (5) ensure that each edge of G1 is mapped to an edge in G2. Since
xk acts as an injective function and both input graphs have the same size m, the function is
also surjective, so we do not need to explicitly check that non-edges map to non-edges.

To convert the IP to one with only linear binary constraints, we use standard conversion
techniques (see [13]): a) dlg ne binary variables to represent each variable vi and dlg(n2−2)e
binary variables to represent each variable xk. b) each product xy of binary variables is
replaced with a new binary variable z and two linear constraints involving x, y and z.
Lastly, we need to convert the final binary linear IP to a standard form (equality constraints
only) by introducing slack variables.

The final step is to build an equivalent QUBO matrix Q from the IP formulation.
Here consider each linear equation constraint Ck of the form

∑n
i=1 c(k,i)xi = dk for xi ∈

{0, 1} with fixed integer constants c(k,i) and dk. This equation is satisfied if and only if∑n
i=1 c(k,i)xi − dk = 0, or equivalently, the optimal solution of x∗ = minxC

′
k(x) is 0 where

C ′k(x) = (
∑n

i=1 c(k,i)xi − dk)2. We (symbolically) add all these quadratic expressions C ′k(x)
together, combining coefficients for any same terms xixj, to get a final QUBO objective
function xTQx. Note that the coefficients of the linear terms xi = xixi correspond to the
diagonal entries of Q and we can safely ignore any constant terms, which have no impact on
the selection of the best assignment of the binary variables x = (x0, x2, . . . , xn−1).

Theorem 1. The IP approach for generating a QUBO formulation for the Graph Isomor-
phism Problem described above requires O(m3 lg n) qubits.

Proof. We make a tally of the number of integer variables and their integer range to determine
the number of binary variables needed. For the n variables vi we need n lg n binary variables.
For the possible n2 products vivj we need 2n2 lg n binary variables. For the 2m variables
xk we need 4m lg n binary variables. Further, for the products of constraints (5), we need
to represent all powers xjk for 1 ≤ j ≤ 2m, which increases the number of binary variables
is slightly over 8m3 lg n. This is because we have to choose all combinations of selecting
products of all the lg n binary variables for each xk, which is approximately

∑2m
i=2(
√

2 lg n+i)2.
Following the standard reduction, see [2], we need at most lg n binary slack variables for
constraints of type (2) and at most 2 log n binary slack variables for constraints of type (3).
The other constraints are already in equality form. Thus the total number of binary variables
is O(m3 lg n).
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3.1.1 An example: the graph P3

Consider the path graph P3 of order 3 and two copies represented as G1 with edges E1 =
{{0, 1}, {1, 2}} and G2 with edges E2 = {{0, 1}, {0, 2}}. It is easy to see there are two
possible isomorphisms between G1 and G2, where we require vertex 1 of G1 to be mapped to
vertex 0 of G2. With variables x1, x2, x3, and x4 from the ranked edges in E∗1 and constants
y1 = 1, y2 = 2, y3 = 3 and y4 = 6 from E∗2 we have the following integer programming
constraints.

0 ≤ v0 ≤ 2, 0 ≤ v1 ≤ 2, 0 ≤ v2 ≤ 2,

1 ≤ (v0 − v1)
2 ≤ 4, 1 ≤ (v0 − v2)

2 ≤ 4, 1 ≤ (v1 − v2)
2 ≤ 4,

3v0 + v1 − x0 = 0, 3v1 + v0 − x1 = 0, 3v1 + v2 − x2 = 0, 3v2 + v1 − x3 = 0,

(x0 − 1)(x0 − 2)(x0 − 3)(x0 − 6) = 0, (x1 − 1)(x1 − 2)(x1 − 3)(x1 − 6) = 0,
(x2 − 1)(x2 − 2)(x2 − 3)(x2 − 6) = 0, (x3 − 1)(x3 − 2)(x3 − 3)(x3 − 6) = 0.

Converting to binary variables and adding slack variables we have the following constraints:

2v0,1 + v0,0 + 2s0,1 + s0,0 = 2,
2v1,1 + v1,0 + 2s1,1 + s1,0 = 2,
2v2,1 + v2,0 + 2s2,1 + s2,0 = 2,

−(2v0,1 + v0,0 − 2v1,1 − v1,0)2 + 2s3,1 + s3,0 = −1,

−(2v0,1 + v0,0 − 2v2,1 − v2,0)2 + 2s4,1 + s4,0 = −1,

−(2v1,1 + v1,0 − 2v2,1 − v2,0)2 + 2s5,1 + s5,0 = −1,
6v0,1 + 3v0,0 + 2v1,1 + v1,0 − 4x0,2 − 2x0,1 − x0,0 = 0,
6v1,1 + 3v1,0 + 2v0,1 + v0,0 − 4x1,2 − 2x1,1 − x1,0 = 0,
6v1,1 + 3v1,0 + 2v2,1 + v2,0 − 4x2,2 − 2x2,1 − x2,0 = 0,
6v2,1 + 3v2,0 + 2v1,1 + v1,0 − 4x3,2 − 2x3,1 − x3,0 = 0,

(4x0,2 + 2x0,1 + x0,0 − 1)(4x0,2 + 2x0,1 + x0,0 − 2)(4x0,2 + 2x0,1 + x0,0 − 3)(4x0,2 + 2x0,1 + x0,0 − 6) = 0,
(4x1,2 + 2x1,1 + x1,0 − 1)(4x1,2 + 2x1,1 + x1,0 − 2)(4x1,2 + 2x1,1 + x1,0 − 3)(4x1,2 + 2x1,1 + x1,0 − 6) = 0,
(4x2,2 + 2x2,1 + x2,0 − 1)(4x2,2 + 2x2,1 + x2,0 − 2)(4x2,2 + 2x2,1 + x2,0 − 3)(4x2,2 + 2x2,1 + x2,0 − 6) = 0,
(4x3,2 + 2x3,1 + x3,0 − 1)(4x3,2 + 2x3,1 + x3,0 − 2)(4x3,2 + 2x3,1 + x3,0 − 3)(4x3,2 + 2x3,1 + x3,0 − 6) = 0.

Here we added 6 additional binary slack variables (labeled si,j) for constraints of type (2)
and 6 additional for constraints of type (3). Finally, to convert to linear constraints we
need to add (ndlg(n− 1)e)2 = 62 = 36 additional binary variables for those of type (3) and

2m
∑2m

i=2

(dlg(n2−2)+i−1e
i

)
= 4(6 + 10 + 15) = 124 additional binary variables for those of type

(5). Thus, 6+12+6+6+36+124=190 total qubits required for the final QUBO matrix for
this input.

3.2 A direct QUBO formulation

We present an improved, direct QUBO objective function F for the Graph Isomorphism
Problem. The formulation requires n2 binary variables represented by a binary vector x ∈
Zn2

2 :
x = (x0,0, x0,1, . . . , x0,n−1, x1,0, x1,1, . . . , x1,n−1, . . . , xn−1,0, . . . , xn−1,n−1).
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The equality xi,i′ = 1 encodes the property that the function f maps the vertex vi in G1

to the vertex vi′ in G2: f(vi) = vi′ . For this mapping we need to pre-compute n2 binary
constants ei,j, 0 ≤ i < n and 0 ≤ j < n: ei,j = 1 if ij ∈ E2.

The function F consists of two parts, H(x) and
∑

ij∈E1
Pi,j(x). Each part serves as a

penalty for the case when the function f is not an isomorphism. The first part H ensures
that f is a bijective function: H = 0 if and only if the function f encoded by the vector x
is a bijection. The second term ensures that f is edge-invariant:

∑
ij∈E1

Pi,j(x) > 0 if and
only if there exists an edge uv ∈ E1 such that f(u)f(v) /∈ E2.

The objective function F (x) has the following form:

F (x) = H(x) +
∑
ij∈E1

Pi,j(x), (6)

where

H(x) =
∑

0≤i<n

(
1−

∑
0≤i′<n

xi,i′

)2

+
∑

0≤i′<n

(
1−

∑
0≤i<n

xi,i′

)2

, (7)

and

Pi,j(x) =
∑

0≤i′<n

(
xi,i′

∑
0≤j′<n

xj,j′(1− ei′,j′)

)
. (8)

Assume that x∗ = minx F (x). Then, the mapping f can be ‘decoded’ from the values of
the variables xi,i′ using an additional partial function D. Let F be the set of all bijections
between V1 and V2. Then D : Zn2

2 → F is a partial ‘decoder’ function that re-constructs the
vertex mapping f from the vector x, if such f exists. The domain of D contains all vectors
x ∈ Zn2

2 that can be ‘decoded’ into a bijective function f :

dom(D) =

{
x ∈ Zn2

2

∣∣∣∣∣ ∑
0≤i′<n

xi,i′ = 1, for all 0 ≤ i < n

and
∑

0≤i<n

xi,i′ = 1, for all 0 ≤ i′ < n

}
,

and

D(x) =

{
f, if x ∈ dom(D),

undefined, otherwise,

where f : V1 → V2 is a bijection such that f(vi) = vi′ if and only if xi,i′ = 1.

Let I(v) denote the set of edges incident to the vertex v. The term xi,i′xj,j′ in the right-
hand side of (8) has a positive coefficient if and only if i′j′ /∈ I(vi′), hence an equivalent,
simpler definition of Pi,j(x) in (8) can be given without ei′,j′ as follows:

Pi,j(x) =
∑

0≤i′<n

xi,i′ ∑
i′j′ /∈I(vi′ )

xj,j′

 . (9)
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The following two lemmata will be used to prove correctness of the objective function F
in (6).

Lemma 2. For every x ∈ Zn2

2 , H(x) = 0 if and only if D(x) is defined (in this case D(x)
is a bijection).

Proof. Fix x ∈ Zn2

2 . The term H(x) has two components,

∑
0≤i<n

(
1−

∑
0≤i′<n

xi,i′

)2

and
∑

0≤i′<n

(
1−

∑
0≤i<n

xi,i′

)2

.

Since both components consist of only quadratic terms, we have H(x) = 0 if and only if
both components are equal to 0.

First,

∑
0≤i<n

(
1−

∑
0≤i′<n

xi,i′

)2

= 0 (10)

if and only if for each 0 ≤ i < n, exactly one variable in the set {xi,i′ | 0 ≤ i′ < n} has value
1, that is, every vertex v ∈ V1 has an image.

Second, with the same argument,

∑
0≤i′<n

(
1−

∑
0≤i<n

xi,i′

)2

= 0 (11)

if and only if for each 0 ≤ i′ < n, exactly one variable in the set {xi,i′ | 0 ≤ i < n} has value
1, hence the function vi 7→ vi′ is surjective.

Together the conditions (10) and (11) are equivalent with the property that every vertex
vi ∈ V1 is mapped to a unique vertex vi′ ∈ V2, and since the orders of G1 and G2 are same,
the mapping vi 7→ vi′ is bijective.

The second lemma stated below ensures that the mapping f , if bijective, is also edge-
invariant.

Lemma 3. Let x ∈ Zn2

2 and assume that D(x) is a bijective function. Then,
∑

ij∈E1
Pi,j(x) =

0 if and only if the mapping f = D(x) is edge-invariant.

Proof. Fix x ∈ Zn2

2 . Note that Pi,j(x) from (8) does not contain cubic terms, so, as all ei′,j′
are constants, Pi,j(x) contains only quadratic terms (see also (9)); consequently, Pi,j(x) ≥ 0,
for all ij ∈ E1. Furthermore,

∑
ij∈E1

Pi,j(x) = 0 if and only if Pi,j(x) = 0, for all ij ∈ E1.

After expanding the left hand side of equation (8), we get

Pi,j(x) =
∑

0≤i′<n

xi,i′ (xj,0(1− ei′,0) + xj,1(1− ei′,1) + · · ·+ xj,n−1(1− ei′,n−1)) .
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Since f is a bijection, for every edge ij ∈ E1, in the set {xi,i′ | 0 ≤ i′ < n} there is a unique
variable, denoted by x∗i,i′ , with value 1, and in the set {xj,j′ | 0 ≤ j′ < n} there is exactly
one variable, denoted by x∗j,j′ , with value 1.

Assume that
∑

ij∈E1
Pi,j(x) 6= 0, i.e. for some ij ∈ E1 we have Pi,j(x) 6= 0. It is easy to

see that Pi,j(x) 6= 0 if and only if x∗i,i′x
∗
j,j′(1− ei′,j′) 6= 0, or equivalently, ei′,j′ = 0. The last

equality violates the condition of an edge-invariant mapping as ei′,j′ = 0 implies that there
is no edge between the vertices vi′ and vj′ in G2.

Conversely, if
∑

ij∈E1
Pi,j(x) = 0, then Pi,j(x) = 0 for all ij ∈ E1, hence x∗i,i′x

∗
j,j′(1 −

ei′,j′) = 0 which implies ei′,j′ = 1. This means that for all ij ∈ E1, f(i)f(j) ∈ E2. Since
f is bijective and |E1| = |E2|, every edge ij ∈ E2 must also have a corresponding edge
f−1(i)f−1(j) ∈ E1, so f is edge-invariant.

Using Lemmata 2 and 3 we now prove the main result of the section.

Theorem 4. For every x ∈ Zn2

2 , F (x) = 0 if and only if the mapping f : V1 → V2 defined
by f = D(x) is an isomorphism.

Proof. Since both H(x) and
∑

ij∈E1
Pi,j(x) contain only quadratic terms, we have F (x) = 0

if and only if both H(x) = 0 and
∑

ij∈E1
Pi,j(x) = 0.

Assume F (x) = 0. Then by Lemmas 2 and 3, f must be bijective and edge-invariant.

On the other hand, if F (x) 6= 0, then we have either H(x) 6= 0 or
∑

ij∈E1
Pi,j(x) 6= 0. If

H(x) 6= 0, then f is not bijective by Lemma 2. If H(x) = 0 and
∑

ij∈E1
Pi,j(x) 6= 0, then by

Lemma 3 the mapping is not edge-invariant.

3.2.1 Populating the QUBO matrix

The matrix QUBO can only contain quadratic terms, so some terms of F (x) have to be
modified in such a way that this condition is satisfied and the optimal solutions of (1) are
preserved. Two operations will be performed. First, any constant term is ignored because
removing it does not modify the optimal solutions of (1): the value of F (x) is reduced by a
constant amount for all x ∈ Z9

2. Second, as all variables xi,i′ are binary, we replace xi,i′ with
x2i,i′ for all xi,i′ with no effect on the value of F (x).

3.2.2 An example: the graph P3 revisited

We use the same instances of G1 and G2 as described in Section 3.1.1. The direct QUBO
formulation requires 32 = 9 variables and the binary variable vector x ∈ Z9

2 is:

x = (x0,0, x0,1, x0,2, x1,0, x1,1, x1,2, x2,0, x2,1, x2,2).

By expanding equation (7), we have the following penalty terms:

H(x) = (1− (x0,0 + x0,1 + x0,2))
2 + (1− (x1,0 + x1,1 + x1,2))

2

+ (1− (x2,0 + x2,1 + x2,2))
2 + (1− (x0,0 + x1,0 + x2,0))

2

+ (1− (x0,1 + x1,1 + x2,1))
2 + (1− (x0,2 + x1,2 + x2,2))

2 .

9



Using definition of Pi,j given by equation (8) we need to pre-compute the following binary
constants ei,j: e0,0 = 0, e0,1 = 1, e0,2 = 1, e1,0 = 1, e1,1 = 0, e1,2 = 0, e2,0 = 1, e2,1 = 0, e2,2 = 0.
By substituting the variables and the constants ei,j in equation (8), we obtain the following
penalty terms:

P0,1 = x0,0x1,0 + x0,1(x1,1 + x1,2) + x0,2(x1,1 + x1,2),
P1,2 = x1,0x2,0 + x1,1(x2,1 + x2,2) + x1,2(x2,1 + x2,2).

By the definition of a QUBO problem given in Section 2, the objective function F (x) can
only contains quadratic terms. Therefore we need to process some of the penalty terms before
we can encode them in a QUBO instance. Take the first penalty term (1−(x0,0+x0,1+x0,2))

2

for example. After expanding the brackets, we get

(1− (x0,0 + x0,1 + x0,2))
2 = 1− (2x0,0 + 2x0,1 + 2x0,2) + x20,0 + x0,0x0,1

+ x0,0x0,2 + x0,1x0,0 + x20,1 + x0,1x0,2 + x0,2x0,0 + x0,2x0,1 + x20,2.

We have one constant term as well as three linear terms in the penalty term above. As
described in Section 3.2.1, first the constant term 1 can be ignored. Second, all variables
xi,i′ will be replaced by x2i,i′ . After summing up the new terms, we get the final penalty term
that will be encoded into the QUBO instance:

−x20,0 − x20,1 − x20,2 + 2x0,0x0,1 + 2x0,0x0,2 + 2x0,1x0,2.

The process has to be applied to all penalty terms in F (x) to finally obtain an objective
function F (x) that has quadratic only terms, so it can be encoded into a QUBO instance.
In our example we obtain a 9× 9 QUBO matrix Q.

For all elements xi,i′ in x we map the variable xi,i′ to the index d(xi,i′) = 3i + i′ + 1
(between 1 and 9) and then the entry Q(d(xi,i′ ),d(xj,j′ ))

is assigned the coefficient of the term
xi,i′xj,j′ in F (x). As for each pair xi,i′ and xj,j′ there are two possible equivalent terms,
xi,i′xj,j′ and xj,j′xi,i′ , as a convention, we will use the term that is be mapped to the upper-
triangle part of Q. That is, we use xi,i′xj,j′ if d(xi,i′) ≤ d(xj,j′) and xj,j′xi,i′ otherwise. The
upper-triangular matrix representation of Q is shown in Table 1.

Table 1: QUBO matrix for P3

variables x0,0 x0,1 x0,2 x1,0 x1,1 x1,2 x2,0 x2,1 x2,2

x0,0 -2 2 2 3 0 0 2 0 0
x0,1 -2 2 0 3 1 0 2 0
x0,2 -2 0 1 3 0 0 2
x1,0 -2 2 2 3 0 0
x1,1 -2 2 0 3 1
x1,2 -2 0 1 3
x2,0 -2 2 2
x2,1 -2 2
x2,2 -2

Note that the removal of any constants will introduce an offset to the value of the objective
function. In our case, we have removed a constant value of 6 from F (x) when encoding it
into Q. As a result, the optimal solution of f(x) = xTQx will now have a value of −6.
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As mentioned in Section 3.1, the vertex 1 in G1 is mapped to vertex 0 in G2, hence we
have the following two optimal solutions:

x1 = (0, 1, 0, 1, 0, 0, 0, 0, 1) and x2 = (0, 0, 1, 1, 0, 0, 0, 1, 0).

3.2.3 An example: the graph C4

In this section we present a different example. A cycle graph Cn of order n is a graph that
consists of a single cycle of length n. The graph C4 consists of V = {0, 1, 2, 3} and

E = {{0, 1}, {1, 2}, {2, 3}, {0, 3}}.

Let G1 = G2 = C4. Applying the procedure described in Section 3.2.1 we get 16 vari-
ables. Each variable xi,i′ will be mapped to the index 4i + i′ + 1. The coefficients of each
quadratic term xi,i′xj,j′ in F (x) are then computed and the entry Q(4i+i′+1,4j+j′+1) is set to
that coefficient. The complete QUBO matrix is shown in Table 2.

Table 2: QUBO matrix for C4

variables x0,0 x0,1 x0,2 x0,3 x1,0 x1,1 x1,2 x1,3 x2,0 x2,1 x2,2 x2,3 x3,0 x3,1 x3,2 x3,3

x0,0 -2 2 2 2 3 0 1 0 2 0 0 0 3 0 1 0
x0,1 -2 2 2 0 3 0 1 0 2 0 0 0 3 0 1
x0,2 -2 2 1 0 3 0 0 0 2 0 1 0 3 0
x0,3 -2 0 1 0 3 0 0 0 2 0 1 0 3
x1,0 -2 2 2 2 3 0 1 0 2 0 0 0
x1,1 -2 2 2 0 3 0 1 0 2 0 0
x1,2 -2 2 1 0 3 0 0 0 2 0
x1,3 -2 0 1 0 3 0 0 0 2
x2,0 -2 2 2 2 3 0 1 0
x2,1 -2 2 2 0 3 0 1
x2,2 -2 2 1 0 3 0
x2,3 -2 0 1 0 3
x3,0 -2 2 2 2
x3,1 -2 2 2
x3,2 -2 2
x3,3 -2

If we consider the vertex mapping f as a permutation of the vertices in V1 and the
sequence 0, 1, 2, 3 as a cycle in G1, then the sequence of vertices in the permutation corre-
sponds to a cycle in G2. There are eight different cycles in G2. A cycle can start at any of
the four vertices, and after fixing the starting vertex of the cycle, the path can take on two
different orientations. Using this ideas, we find the eight optimal solutions of the equation
x∗ = minx F (x):

x1 = (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1), x2 = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0),

x3 = (0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0), x4 = (0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0),

x5 = (0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0), x6 = (0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1),
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x7 = (0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0), x8 = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0),

each of which gives an isomorphism between G1 and G2.

3.3 Isomorphism formulation via reduction to the Clique Problem

In this section we give an alternate QUBO formulation that requires n2 binary variables for
the Graph Isomorphism Problem. The construction is based on a known polynomial-time
reduction from the Graph Isomorphism Problem to the Clique Problem [9]. Then later in
this section we provide an optimal QUBO formulation of the Clique Problem to complete
the formulation. Recall that a clique of a graph G = (V,E) is a subgraph induced by a
subset of vertices V ′ ⊆ V such that for all {a, b} ⊆ V ′ we have ab ∈ E.

Clique Problem:

Instance: Graph G = (V,E) and integer k.
Question: Is there a clique V ′ ⊆ V of size k?

The maximum clique of size k of a graph is called the clique number, denoted by χ(G).
For our construction we use some ideas developed in [10]. For two graphs G1 = (V1, E1) and
G2 = (V2, E2) define the associated graph product Ψ(G1, G2) with vertices V = V1 × V2 and
edges E = {((a, b), (c, d)) ∈ V × V | a 6= c, b 6= d and ac ∈ E1 ⇔ bd ∈ E2}

Theorem 5. Two graphs G1 and G2 with |V1| = |V2| = n are isomorphic if and only if
χ(Ψ(G1, G2)) = n.

Proof. Let us first consider the case where G1 and G2 are isomorphic via a bijection f :
V1 → V2. Then we claim that the subset V ′ = {(i, f(i)) | i ∈ V1} ⊆ V is a clique in
Ψ(G1, G2). Since V ′ has n vertices, we just need to check there is an edge between any pair
of vertices. Consider a pair (a, b) and (c, d) in V ′ with a 6= c. Since f is a bijection we have
b 6= d when b = f(a) and d = f(c). Since any isomorphism is edge-invariant, we also have
ac ∈ E1 ⇔ bd ∈ E2, which is preserved by the definition of E for Ψ(G1, G2).

For the other direction, we assume there is clique V ′ of order n in Ψ(G1, G2) and we
extract an isomorphism f from this set. First note that for any distinct pair of vertices (a, b)
and (c, d) in V ′, we have a 6= c and b 6= d since otherwise, we would not have an edge between
them in the clique. Thus, with exactly n pairs of vertices (u, v) with u ∈ V1 and v ∈ V2, we
have a well-defined bijective function f from V1 to V2 defined by b = f(a) for (a, b) ∈ V ′. For
f to be an isomorphism we need ac ∈ E1 ⇔ f(a)f(c) ∈ E2. Again, since V ′ was assumed to
be a clique and, for a 6= c, there exists an edge between (a, f(a)) and (c, f(c)) so using the
definition of E we must have ac ∈ E1 ⇔ f(a)f(c) ∈ E2.

Next we give a simple construction of an optimal QUBO matrix for the Clique Problem.
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For a graph G = (V,E) of order n we build an upper-triangle matrix Q of dimension n where

Q(i,j) =


−1, if i = j,
0, if i < j and ij ∈ E,
2, if i < j and ij 6∈ E.

Theorem 6. For every graph G, the minimum value of the QUBO objective function f(x) =
xTQx is −χ(G); in this case the set of variables of x with value 1 correspond to a maximum
clique.

Proof. First, let V ′ be a maximum clique of G and set xi = 1 if i ∈ V ′, otherwise xi = 0.
The sum

∑
i≤j xiQ(i,j)xj has χ(G) terms with value -1 whenever i = j and xi = 1. All other

terms will be 0 since, by assumption, if both xi and xj are 1 then there is an edge between
i and j in V ′ and the corresponding entries Q(i,j) are defined to be 0. In other cases, one of
xi or xj is 0, so it does not matter what value is set for Q(i,j). Hence the sum f(x) totals to
−χ(G) for any maximum clique.

Now let us assume x∗ is an optimal minimum value of the objective f(x) for some
assignment of x that does not correspond to a clique V ′ of G. Let i and j be two vertices
such that ij 6∈ E but xi = xj = 1. The sum

∑
i≤j xiQ(i,j)xj has at least one term with

value 2. If we slightly change x, say setting xi = 0, the sum will decrease by 2 for that
term (and possibly more for other non-edges involving i) and increase by 1 for the diagonal
term xiQ(i,i)xi. This global decrease with at least 1 which contradicts the minimality of x∗.
Finally, if the clique V ′ is not as large as possible, then x∗ is also not optimal, so the theorem
is proved.

3.3.1 Example: the graph P3 revisited

We use the same instances of G1 and G2 as described in Section 3.1.1. The associated
product graph with nine vertices is given in Figure 1. We can see there are two cliques of
size 3, which correspond to the two possible isomorphisms of G1 and G2. The shared vertex
‘1,0’ (of the two 3-cliques) indicates that both of these two isomorphisms require vertex 1 to
be mapped to vertex 0.

The QUBO matrix for the Clique Problem applied to this graph Ψ(G1, G2) is given in
Table 3.

Note that for this particular input P3, this clique-based n2 formulation has slightly more
non-zero entries than the direct formulation given in Table 1. Thus, embedding the QUBO
instance on the D-Wave architecture may require more physical qubits even though the
number of logical qubits are the same.

4 Minor embedding comparison

We ran several experiments to investigate the difference hardware embeddings can make
between the clique and direct formulations. Relevant test cases are too big to be embedded
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Figure 1: The graph Ψ(G1, G2).

Table 3: The alternative QUBO matrix for P3

vertices 0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2
0, 0 -1 2 2 2 0 0 2 2 2
0, 1 -1 2 0 2 2 2 2 0
0, 2 -1 0 2 2 2 0 2
1, 0 -1 2 2 2 0 0
1, 1 -1 2 0 2 2
1, 2 -1 0 2 2
2, 0 -1 2 2
2, 1 -1 2
2, 2 -1

in the actual D-Wave 2XTM chipset; consequently, they are embedded in two larger Chimera
graphs. Our results may have some relevance for future versions of the D-Wave machine [11].

The first host graph is a Chimera graph with 7200 vertices and 21360 edges (L = 4,
M = N = 30). The second is a Chimera graph with 6800 vertices and 31680 edges (L = 8,
M = N = 20). For convenience, we will call them host1 and host2, respectively. The
hardware structure of actual D-Wave quantum computers has blocks of K4,4 graphs; host2
graphs have blocks of K8,8 graphs, which doubles the connectivity (number of edges) inside
each block. As a result, host2 has about 50% more edges than host1. We purposely chosen
K8,8 in order to check whether a substantial increase in the connectivity inside each block
(which seems to be an engineering challenging task) leads to better embeddings.

In our experiments we used the minor embedding algorithm provided by the D-Wave
software package [12]. The input graphs are the graphs studied in [13] (see also the sup-
plemental data). A random permutation of the vertices of each graph G1 was generated to
obtain G2, hence the graphs G1 and G2 are always isomorphic. The QUBO instances for
the clique and direct formulations have been generated using scripts in [14]. As the minor
embedding algorithm is very time consuming, we run two trials on each test case and only
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the best result (the one with the smallest number of physical qubits) is shown in the following
tables. The algorithm was terminated after about 15 minutes, even if a minor embedding
was not found.

4.1 Results

In Table 4, the second and third columns contain the order and size of the input graphs
G1 and G2. The next two columns contain the number of variables of the QUBO instances
obtained through the three different approaches described in Sections 3.1–3.3. Note, for the
fifth column, the number of variables obtained in Section 3.3 and Section 3.3 are the same.
The last two columns contain the densities of the QUBO instances for the direct and clique
formulations. The density of a QUBO instance is defined as the number of non-zero entries
in Q(i,j) with i < j, divided by the total number of entries in the same part of the matrix.
The main diagonal was excluded because the connection of a logical qubit to itself does not
affect the minor embedding of the guest graph.

In Table 5, we provide the embedding results for both host1 and host2. The column
physical qubits contains the number of physical qubits required to embed the QUBO instance
and max chain length is the maximum number of physical qubits a single logical qubit is
mapped to.

4.2 Discussion

The IP formulation does not seem very useful as the number of variables (logical qubits)
required quickly grows. The same behaviour was noted also for the IP formulation of the
Broadcast Time Problem [13]. In spite of the fact that the number of logical qubits is
the same for the clique and direct formulations, in all test cases the density of the QUBO
instances from the direct formulation is always smaller or equal to the one obtained by
the clique formulation. One would have expected that the QUBO instance of the direct
formulation is easier to embed on the host graph. Due to the non-deterministic nature the
minor embedding algorithm—a heuristic algorithm [15]—there are several test cases where
the direct formulation generates more physical qubits than the clique formulation.

The results obtained show that the direct QUBO formulation requires less physical qubits
to embed on the host than the clique approach and the embedding max chain length is shorter
too. This pattern becomes more visible as the QUBO instance gets larger. We suspect that
the difference in densities is related to the fact that the clique approach does not make any
assumptions on the two input graphs G1 and G2 (with the same order and size). In other
words, the direct formulation uses more information of the input, hence better results. Both
formulations get better results than the more generic IP approach.

The entries in Table 5 marked by a dash ‘-’ correspond to the cases where the algorithm
was not able to find a minor embedding. The large number of such cases is likely due to the
increase in the number of physical qubits required on the difficulty of the minor embedding
problem. More precisely, as the order of input graphs increase by one, the number of physical
qubits approximately doubles. In spite of the large increase in the connectivity or host2, the
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algorithm was not able to embed any test cases of order bigger than 12 (QUBO of size 144).
With host1, the largest embeddable case has order 11 (QUBO of size 121).

Previous experimental studies (see [16, 17]) have shown that longer embedding chains are
correlated with less accurate results. The large embedding chains which appeared in both
test cases can be a reason to expect relatively poor performance of the machine.

5 The Subgraph Isomorphism Problem

The Subgraph Isomorphism Problem—a generalisation of the Graph Isomorphism Problem—
is the following NP-hard problem.

Subgraph Isomorphism Problem:

Instance: Two graphs G1 = (V1, E1) and G2 = (V2, E2) with n1 = |V1|
≤ |V2| = n2 and |E1| ≤ |E2|.

Question: Find an edge-preserving injective function f : V1 → V2.

Note that for this problem the function f is not necessarily edge-invariant: it has only
to be “edge-preserving”, that is, for every uv ∈ E1 we have f(u)f(v) ∈ E2.

5.1 A direct QUBO formulation

The objective function (6) can be modified to solve the Subgraph Isomorphism Problem
using the same method as in Section 3.2. As the order of G1 and G2 can be different, all
possible mappings could be represented by a vector x ∈ Zn1n2

2 :

x = (x0,0, x0,1, . . . , x0,n2−1, x1,0, x1,1, . . . , x1,n2−1, . . . , xn1−1,0, . . . , xn1−1,n2−1).

We also need n2 slack variables encoded in y = (y0, y1, . . . , yn2−1), which will be appended

to x ∈ Zn1n2
2 to form the binary vector z ∈ Z(n1+1)n2

2 : z = xy.

Let
F (z) = H(z) +

∑
ij∈E1

Pi,j(x), (12)

where

H(z) =
∑

0≤i<n1

(
1−

∑
0≤i′<n2

xi,i′

)2

+
∑

0≤i′<n2

(
1−

∑
0≤i<n1

xi,i′ − yi′
)2

, (13)

and

Pi,j(x) =
∑

0≤i′<n2

(
xi,i′

∑
0≤j′<n2

xj,j′(1− ei′,j′)

)
. (14)

The definition of the decoder function D : Zn1n2
2 → F is:
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dom(D) =

{
x ∈ Zn1n2

2

∣∣∣∣∣ ∑
0≤i′<n2

xi,i′ = 1, for all 0 ≤ i < n1

and
∑

0≤i<n1

xi,i′ = 1, for all 0 ≤ i′ < n2

}
,

and

D(x) =

{
f, if x ∈ dom(D),

undefined, otherwise,

where f : V1 → V2 is an injection such that f(vi) = vi′ where xi,i′ = 1.

Lemma 7. For every z ∈ Z(n1+1)n2

2 corresponding to the solution z∗ = minz F (z), H(z) = 0
if and only if D(x) is defined (in this case D(x) is an injection).

Proof. Fix z ∈ Z(n1+1)n2

2 where z corresponds to an optimal solution of z∗ = minz F (z). The
term H(z) has two components,

∑
0≤i<n1

(
1−

∑
0≤i′<n2

xi,i′

)2

and
∑

0≤i′<n2

(
1−

∑
0≤i<n1

xi,i′ − yi′
)2

.

Since both components consist of only quadratic terms, we have H(z) = 0 if and only if
both components are equal to 0. First,

∑
0≤i<n1

(
1−

∑
0≤i′<n2

xi,i′

)2

= 0 (15)

if and only if for each 0 ≤ i < n, exactly one variable in the set {xi,i′ | 0 ≤ i′ < n2} has value
1, hence every vertex v ∈ V1 has exactly one image in V2.

Second, with a similar argument,

∑
0≤i′<n2

(
1−

∑
0≤i<n1

xi,i′ − yi′
)2

= 0 (16)

if and only if for each 0 ≤ i′ < n2, 1−
∑

0≤i<n1
xi,i′ − yi′ = 0. We have the following cases:

1. None of the variables in the set {xi,i′ | 0 ≤ i < n1} has value 1.

2. Exactly one variable in the set {xi,i′ | 0 ≤ i < n1} has value 1.

3. More than one variables in the set {xi,i′ | 0 ≤ i < n1} have value of 1.
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In the first case, we have 1−
∑

0≤i<n1
xi,i′ = 1, so setting yi′ = 1 will avoid the penalty.

By assumption, n1 ≤ n2, so if n1 < n2, then not all vertices in V2 should have a pre-image
and no penalty should be given in this case. If n1 = n2 however, the mapping from V1 to V2
should be a bijection. Since condition (15) enforces every vertex in V1 to have an image in
V2, we will have either Case 2 or 3.

In the second case, exactly one variable in the set {xi,i′ | 0 ≤ i < n1} has value 1 which
means there is exactly one vertex in vi ∈ V1 that has been mapped to vi′ ∈ V2. As a result,
1−

∑
0≤i<n1

xi,i′ − yi′ = 0 when yi′ is assigned value 0.

In the last case, the mapping can not be injective, so no values for yi′ can avoid the
penalty.

Together conditions (15) and (16) are equivalent with the property that every vertex
vi ∈ V1 is mapped to exactly one unique vertex vi′ ∈ V2, that is, the map vi 7→ vi′ is
injective.

In the proof of Lemma 3, the bijectivity of the mapping f was essential to prove edge-
invariance. With the same argument one can prove that an injective function f is edge-
preserving. Indeed, for each edge ij ∈ E1, the equality Pi,j = 0 ensures that there is an edge
f(i)f(j) ∈ E2, so we have the following result:

Lemma 8. Let x ∈ Zn1n2
2 and assume that D(x) is an injective function. Then,

∑
ij∈E1

Pi,j(x) =
0 if and only if the mapping f = D(x) is edge-preserving.

Theorem 9. For every z ∈ Zn1n2
2 , F (z) = 0 if and only if the mapping f : V1 → V2 defined

by f = D(x) is a subgraph isomorphism.

Proof. As in the proof of Theorem 4, the statement of the theorem is a direct consequence
of Lemmata 7 and 8.

5.2 Another direct QUBO formulation

An alternative formulation with n1n2 variables can be obtained using

F (z) = H(z) + b
∑
ij∈E1

Pi,j(x), b ∈ R+ (17)

where
H(z) = a

∑
1≤i≤n1

(1−
∑

1≤i′≤n2

xi,i′)
2 +

∑
1≤i′≤n2

(1−
∑

1≤i≤n1

xi,i′)
2, a > 1, (18)

and

Pi,j(x) =
∑

1≤i′≤n2

(
xi,i′

∑
1≤j′≤n2

xj,j′(1− ei′,j′)

)
. (19)

This formulation has no extra variables but the result is weaker because it requires a
post-processing. Note that the constant b has to be sufficiently larger than a (for a proof
see [14]).
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Theorem 10. If G1 is a subgraph of G2, then solving x∗ = minx F (x) will produce a valid
vertex mapping.

We also have the following corollary as a direct consequence (contrapositive) of Theorem 10.

Corollary 11. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs, assuming x∗ = minx F (x).
If the mapping D(x) is not an edge-preserving injection from V1 to V2, then G1 is not a sub-
graph of G2.

5.3 Post-processing verification

Theorem 10 is a weaker form than Theorem 9. To demonstrate the difference, suppose
we have G1 = (V1, E1) and G2 = (V2, E2). Let x∗ = F (x∗) and y∗ = F ′(y∗) be the
optimal solutions and their corresponding variable assignments obtained using the objective
functions (12) and (17), respectively.

If x∗ = 0, then by Theorem 9, G1 is a subgraph of G2. As the correctness of f is encoded
in y∗ we do not need to generate the actual mapping f : V1 → V2 using the decoder function
D to verify its correctness. This is not the case with y∗ and y∗. Theorem 10 does not provide
a constant value for y∗ to distinguish whether G1 is a subgraph of G2. As a result, we need to
verify that the mapping f encoded in y∗, f = D(y∗), is injective and edge-preserving. Both
steps can be done efficiently and the overall verification can be performed in polynomial
time.

5.4 A formulation via reduction to the Clique Problem

In this section we give an alternate QUBO formulation that requires n1n2 binary variables
for checking if a graph of order n1 is a subgraph of a graph of order n2. To this aim we
slightly modify the product graph construction given earlier in Section 3.3.

For two graphs G1 = (V1, E1) and G2 = (V2, E2) we define the associated graph product
Ψ′(G1, G2) having the vertices V = V1× V2 and the edges E = {((a, b), (c, d)) ∈ V × V | a 6=
c, b 6= d and (ac 6∈ E1 or bd ∈ E2)}.

Theorem 12. The graph G1 = (V1, E1) is a subgraph of the graph G2 = (V2, E2) with
n1 = |V1| ≤ |V2| = n2 if and only if χ(Ψ′(G1, G2)) = n1.

Proof. We first consider the case when G1 is a subgraph of G2 and f : V1 → V2 is the
edge-preserving injective mapping. We claim that the subset of vertices V ′ = {(i, f(i)) | i ∈
V1} ⊆ V is a clique in Ψ′(G1, G2). By construction, V ′ has n1 vertices, so we only need to
check the existence of an edge between any pair in it. Let (a, b) and (c, d) be in V ′, with
a 6= c. Since f is injective by assumption, if b = f(a) and d = f(c), then b 6= d. Furthermore,
since f is edge-preserving, if ac ∈ E1 then bd ∈ E2. With the definition of E for Ψ′(G1, G2),
this means that ((a, b), (c, d)) is an edge in E.

Conversely, suppose V ′ ⊆ V is a clique of order n1 in Ψ′(G1, G2). From the definition
of E, we know that for any pair of distinct vertices (a, b) and (c, d) in E, a 6= c and b 6= d,
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so the same condition is true for all pairs of vertices (a, b) and (c, d) in V ′. Accordingly,
a well-defined injective function f : V1 → V2 can be defined by setting f(a) = b, for all
(a, b) ∈ V ′. In order for f to be a subgraph isomorphism the following condition has to
be satisfied: if ac ∈ E1 then f(a)f(c) ∈ E2. Since V ′ is a clique by assumption, if a 6= c,
then ((a, f(a), (c, f(c)) ∈ E. Therefore, in view of the definition of E, we must have either
ac /∈ E1 or f(a)f(c) ∈ E2, that is, f is edge-preserving.

Finally, to solve the Subgraph Isomorphism Problem we just construct a QUBO instance
for the Clique Problem as in Section 3.3.

6 The Induced Subgraph Isomorphism

The Induced Subgraph Isomorphism Problem is a NP-hard problem related to both the
Graph and Subgraph Isomorphism Problems. The input are two graphs G1 = (V1, E1) and
G2 = (V2, E1) and the goal is to find an edge-invariant vertex mapping f : V1 → V2. We
formally define the problem as follows:

Induced Subgraph Isomorphism Problem:

Instance: Two graphs G1 = (V1, E1) and G2 = (V2, E2) with n1 = |V1|
≤ |V2| = n2 and |E1| ≤ |E2|.

Question: Find an edge-invariant injective function f : V1 → V2.

6.1 A direct formulation

We can extend the QUBO formulation given for the Subgraph Isomorphism Problem in
Section 5.1 to solve the Induced Subgraph Isomorphism Problem. This formulation uses
the same binary variable vector z ∈ Z(n1+1)n2

2 which is the concatenation of two vectors
x ∈ Zn1n2

2 and y ∈ Zn2
2 , each serving the same purpose as in Section 5.1: x encodes the

injective function f , y counter balances unnecessary penalties. At the end, the decoder
function D : Zn1n2

2 → F described in Section 5.1 can be used again to obtain the actual
mapping.

The objective function F (z) has the following form:

F (z) = H(z) +
∑
ij∈E1

Pi,j(x) +
∑
ij /∈E1

Ni,j(x), (20)

H(z) =
∑

0≤i<n1

(1−
∑

0≤i′<n2

xi,i′)
2 +

∑
0≤i′<n2

(1−
∑

0≤i<n1

xi,i′ − yi)2, (21)

Pi,j(x) =
∑

0≤i′<n2

(
xi,i′

∑
0≤j′<n2

xj,j′(1− ei′,j′)

)
, (22)
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and

Ni,j(x) =
∑

0≤i′<n2

(
xi,i′

∑
0≤j′<n2

xj,j′ei′,j′

)
. (23)

The parts H(z) and
∑

ij∈E1
Pi,j(x) serve the same purpose as in Equation (12), that is,

H(z) ensures the mapping decoded by D(x) is injective and
∑

ij∈E1
Pi,j(x) guarantees the

mapping is edge-preserving. Since both parts are identical as in Equation (12), Lemmata 7
and 8 hold and can be proved with the same argument as in Section 5.1.

The vertex mapping required for the Induced Subgraph Isomorphism Problem has to
be edge-invariant instead of edge-preserving. This means we need one more condition,
namely, for all ij /∈ E1 we have f(i)f(j) /∈ E2. This property is ensured by the new
term

∑
ij /∈E1

Ni,j(x) in F (x).

Lemma 13. Let x ∈ Zn1n2
2 and assume that D(x) is a function (injective). Then

∑
ij∈E1

Pi,j(x)+∑
ij /∈E1

Ni,j(x) = 0 if and only if the mapping f = D(x) is edge-invariant.

Proof. Since both Pi,j(x) and Ni,j(x) contain quadratic terms only, we have
∑

ij∈E1
Pi,j(x)+∑

ij /∈E1
Ni,j(x) = 0 if and only if Pi,j(x) = Ni,j(x) = 0, for all i and j.

As Lemma 8 holds here, f has to be edge-preserving when
∑

ij∈E1
Pi,j(x) = 0, hence we

only need to show that the non-edges are preserved as well under f . This is indeed true as
the term (1 − ei′,j′) in Equation (8) is replaced by ei′,j′ in Ni,j. If

∑
ij /∈E1

Ni,j(x) = 0, then
for all ij /∈ E1 we must have f(i)f(j) /∈ E2. Hence f is edge-invariant if

∑
ij∈E1

Pi,j(x) +∑
ij /∈E1

Ni,j(x) = 0.

Conversely, if
∑

ij∈E1
Pi,j(x) +

∑
ij /∈E1

Ni,j(x) 6= 0, then either at least one term of the
sum has to be non-zero. Therefore, either f is not edge-preserving by Lemma 8 or for some
ij /∈ E1, f(i)f(j) ∈ E2. In either case, f is not edge-invariant.

Next we show the correctness of our direct QUBO formulation.

Theorem 14. For every z ∈ Zn1n2
2 , F (z) = 0 if and only if the mapping f : V1 → V2 defined

by f = D(x) is an induced subgraph isomorphism.

Proof. If F (z) = 0, then H(z) =
∑

ij∈E1
Pi,j(x) =

∑
ij /∈E1

Ni,j(x) = 0. By Lemmata 7, 8
and 13, the mapping f must be injective and edge-invariant, therefore an induced subgraph
isomorphism.

On the other hand, if F (z) 6= 0, at least one of the terms H(z),
∑

ij∈E1
Pi,j(x) or∑

ij /∈E1
Ni,j(x) is not 0. By Lemmata 7 and 13, at least one of the requirement for an induced

subgraph isomorphism is not met, hence f is not an induced subgraph isomorphism.

6.2 Formulation via reduction to the Clique Problem

We now give another QUBO formulation that uses o n1n2 binary variables for checking
whether a graph of order n1 is an induced subgraph of a graph of order n2. For this we can
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use the same product graph construction given in Section 3.3. In the proof of Theorem 5 we
do not actually need that f is a bijection, we only require injectivity. As a result we have
the following corollary.

Corollary 15. Consider the graphs G1 = (V1, E1) and G2 = (V2, E2) with n1 = |V1| ≤ |V2| =
n2. Then, G1 is an induced subgraph of G2 if and only if χ(Ψ(G1, G2)) = n1.

The Induced Subgraph Isomorphism Problem can be solved using Corollary 15 and a
QUBO instance for the Clique Problem.

6.2.1 Example: the graphs P3 and C3

Consider again G1 = P3 with edges E1 = {{0, 1}, {1, 2}}, but now with G2 = C3 with edges
E2 = {{0, 1}, {0, 2}, {1, 2}}. The associated product graph with nine vertices is given in
Figure 2. This time we see that the maximum clique is of size 2. Thus, P3 is not an induced
subgraph of C3 since we would require a clique (mapping set) of size 3.

0,0

1,1

1,2

0,1

1,0

0,2

2,0 2,1

2,2

Figure 2: The graph Ψ(P3, C3).

7 Conclusions and open problems

We have presented different methods for constructing efficient QUBO formulations for the
Graph Isomorphism Problem, the Subgraph Isomorphism Problem and the Induced Sub-
graph Isomorphism Problem.

We experimentally compared the efficiency of two QUBO formulations of the Graph
Isomorphism Problem. Efficiency was measured in terms of the number of logical qubits and
physical qubits, along with the quality (size of max chains) of embeddings.
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Because relevant test cases are too big to be embedded in the actual D-Wave 2XTM

chipset, we used larger Chimera graphs: the first one is a Chimera graph with 7, 200 ver-
tices and 21, 360 edges and the second one is a Chimera graph with 6, 800 vertices and
31, 680 edges. The expectation—that the second denser Chimera graph will allow for better
embeddings—was not emphatically confirmed by the results obtained. This may suggest
some foreseeable scalability issues with the Chimera graphs. This conjecture has to be
further studied.

After obtaining the direct formulation presented in Section 3.2, we noted that the pa-
per [18] had an Ising formulation that is similar to ours. However, the Graph Isomorphism
Problem studied in [18] does not make the explicit assumption that G1 and G2 have the
same number of edges. As a result, our direct formulation is simpler and, in some cases, has
a lower time complexity (if we consider the formulation as a reduction to QUBO).

For future work we want to prove that n2 is the lowest number of logical qubits required
for the general Graph Isomorphism Problem for two graphs of order n. We also want
to investigate how to reduce the density of the resulting QUBO matrices when possibly
exploiting other known properties of the input graphs, such as their degree sequences (which
limits the total number of feasible bijections). In a followup paper we plan to do experimental
runs on the D-Wave 2X machine to test the practicality of our QUBO formulations.
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Table 4: Number of variables and QUBO densities for different formulations
Logical Qubits Density

Graph Order Size IP Clique/Direct Clique Direct

BidiakisCube 12 18 6380377398 144 0.4895 0.3217
Bull 5 5 30315 25 0.6667 0.5000

Butterfly 5 6 74539 25 0.6533 0.4933
C10 10 10 17762575 100 0.4646 0.3232
C11 11 11 34339547 121 0.4333 0.3000
C12 12 12 252442038 144 0.4056 0.2797
C4 4 4 4056 16 0.6667 0.5333
C5 5 5 30315 25 0.6667 0.5000
C6 6 6 223191 36 0.6286 0.4571
C7 7 7 543235 49 0.5833 0.4167
C8 8 8 1194584 64 0.5397 0.3810
C9 9 9 8654166 81 0.5000 0.3500

Chvatal 12 24 68183718414 144 0.5455 0.3497
Clebsch 16 40 5142153247264 256 0.5098 0.3137
Diamond 4 5 10104 16 0.5667 0.4833
Dinneen 9 21 3607826070 81 0.5889 0.3944

Dodecahedral 20 30 3400324505130 400 0.3358 0.2155
Durer 12 18 6380377398 144 0.4895 0.3217
Errera 17 45 155792785116353 289 0.5047 0.3079
Frucht 12 18 6380377398 144 0.4895 0.3217

GoldnerHarary 11 27 23558624475 121 0.5832 0.3749
Grid2x3 6 7 543061 36 0.6413 0.4635
Grid3x3 9 12 63111360 81 0.5556 0.3778
Grid3x4 12 17 4013029118 144 0.4775 0.3157
Grid4x4 16 24 68183720736 256 0.4000 0.2588
Grid4x5 20 31 4617380539608 400 0.3423 0.2188
Grotzsch 11 20 2515662329 121 0.5523 0.3595
Heawood 14 21 22548907234 196 0.4410 0.2872
Herschel 11 18 1160070477 121 0.5336 0.3501

Hexahedral 8 12 14251368 64 0.6032 0.4127
Hoffman 16 32 766017051200 256 0.4627 0.2902
House 5 6 74539 25 0.6533 0.4933

Icosahedral 12 30 443520588882 144 0.5734 0.3636
K10 10 45 1156161672465 100 0.1818 0.1818
K2,3 5 6 74539 25 0.6533 0.4933
K2 2 1 12 4 0.6667 0.6667

K3,3 6 9 2423145 36 0.6286 0.4571
K3,4 7 12 14251185 49 0.6173 0.4337
K3 3 3 552 9 0.5000 0.5000

K4,4 8 16 88342552 64 0.6032 0.4127
K4,5 9 20 2515661504 81 0.5951 0.3975
K4 4 6 21932 16 0.4000 0.4000

K5,5 10 25 13219293745 100 0.5859 0.3838
K5,6 11 30 52178894829 121 0.5799 0.3733
K5 5 10 1062875 25 0.3333 0.3333

K6,6 12 36 2087102677590 144 0.5734 0.3636
K6 6 15 58434165 36 0.2857 0.2857
K7 7 21 515404071 49 0.2500 0.2500
K8 8 28 3442573800 64 0.2222 0.2222
K9 9 36 208710268992 81 0.2000 0.2000

Krackhardt 10 18 1160070063 100 0.5745 0.3782
Octahedral 6 12 14251011 36 0.5143 0.4000

Pappus 18 27 1278055259613 324 0.3653 0.2353
Petersen 10 15 308866125 100 0.5455 0.3636
Poussin 15 39 4138707982302 225 0.5336 0.3293

Q3 8 12 14251368 64 0.6032 0.4127
Q4 16 32 766017051200 256 0.4627 0.2902

Robertson 19 38 31291626737038 361 0.4111 0.2556
S10 11 10 17762989 121 0.4146 0.2906
S2 3 2 190 9 0.7222 0.6111
S3 4 3 1358 16 0.7000 0.5500
S4 5 4 10583 25 0.6533 0.4933
S5 6 5 80505 36 0.6032 0.4444
S6 7 6 223365 49 0.5561 0.4031
S7 8 7 543418 64 0.5139 0.3681
S8 9 8 3924080 81 0.4765 0.3383
S9 10 9 8654577 100 0.4436 0.3127

Shrikhande 16 48 24727250232768 256 0.5412 0.3294
Sousselier 16 27 182579326560 256 0.4254 0.2715

Tietze 12 18 6380377398 144 0.4895 0.3217
Wagner 8 12 14251368 64 0.6032 0.4127
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Table 5: Minor embedding results
Physical Qubits Embedding Max Chain

host1 host2 host1 host2
Graph Clique Direct Clique Direct Clique Direct Clique Direct

BidiakisCube - - 4916 4221 - - 54 54
Bull 220 183 114 101 10 10 6 6

Butterfly 210 160 100 101 11 9 6 6
C10 4216 3402 1997 1857 66 51 31 28
C11 5996 5685 3534 2699 79 76 44 30
C12 - - 5579 4735 - - 66 47
C4 65 70 40 40 5 5 3 3
C5 192 171 107 98 10 8 6 5
C6 516 406 218 206 17 14 8 8
C7 963 765 464 409 27 18 12 11
C8 1448 1345 897 702 31 31 19 15
C9 2956 2362 1343 1203 48 39 25 24

Chvatal - - 5440 4710 - - 55 53
Clebsch - - - - - - - -
Diamond 70 65 44 41 6 5 3 4
Dinneen 3021 2232 1283 1363 64 37 21 24

Dodecahedral - - - - - - - -
Durer - - 4833 4961 - - 54 51
Errera - - - - - - - -
Frucht - - 4546 5373 - - 55 55

GoldnerHarary 6457 6027 2920 3342 88 73 35 44
Grid2x3 445 348 233 252 17 14 9 9
Grid3x3 2893 2523 1508 1367 54 46 27 22
Grid3x4 - - 5050 5169 - - 54 52
Grid4x4 - - - - - - - -
Grid4x5 - - - - - - - -
Grotzsch 6204 5990 3225 3404 83 95 47 43
Heawood - - - - - - - -
Herschel 6059 5986 3181 3043 75 80 41 40

Hexahedral 1754 1385 812 857 38 31 19 17
Hoffman - - - - - - - -
House 210 178 117 110 10 8 6 7

Icosahedral - - 4738 4775 - - 53 46
K10 2513 2381 1361 1233 54 43 21 18
K2,3 192 179 96 92 12 8 5 6
K2 4 4 4 4 1 1 1 1

K3,3 312 380 173 187 11 14 7 7
K3,4 765 698 319 329 21 19 9 10
K3 20 20 12 12 3 3 2 2

K4,4 1792 1205 558 715 41 26 10 17
K4,5 1622 2019 1373 954 26 34 28 19
K4 58 60 44 43 4 5 3 3

K5,5 5178 3342 2178 1651 67 41 28 20
K5,6 6385 5553 3216 2498 83 78 42 32
K5 148 150 95 94 7 8 5 5

K6,6 - - 4856 4182 - - 50 50
K6 291 313 167 179 11 11 6 6
K7 558 577 345 320 19 16 10 9
K8 964 925 513 481 24 22 13 10
K9 1663 1574 825 937 32 33 15 17

Krackhardt 4132 4168 2133 1871 67 55 30 28
Octahedral 434 306 212 196 15 12 8 7

Pappus - - - - - - - -
Petersen 5030 4044 2299 2444 78 60 33 33
Poussin - - - - - - - -

Q3 1953 1671 854 807 41 37 19 17
Q4 - - - - - - - -

Robertson - - - - - - - -
S10 5935 4956 2801 2267 79 70 35 31
S2 24 24 13 13 4 3 2 2
S3 77 67 47 43 6 6 4 4
S4 199 161 111 106 10 9 6 5
S5 441 402 214 214 16 14 8 8
S6 805 713 380 385 25 20 10 11
S7 1503 1180 644 652 37 28 14 16
S8 2554 1872 1114 1064 67 49 20 25
S9 5031 3205 2398 1421 97 52 38 25

Shrikhande - - - - - - - -
Sousselier - - - - - - - -

Tietze - - 4648 3892 - - 50 55
Wagner 1728 1408 875 718 43 31 21 18
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