
CDMTCS
Research
Report
Series

Formulating Graph Covering
Problems for Adiabatic
Quatumn Computers

Michael J. Dinneen
Rong Wang

Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-495
Februarry 2016

Centre for Discrete Mathematics and
Theoretical Computer Science

Formulating Graph Covering Problems for
Adiabatic Quantum Computers

Michael J. Dinneen and Rong Wang

Department of Computer Science, University of Auckland,
Auckland, New Zealand

mjd@cs.auckland.ac.nz rwan074@aucklanduni.ac.nz

Abstract

We provide efficient quadratic unconstrained binary optimization (QUBO) formu-
lations for the Dominating Set and Edge Cover combinatorial problems suitable for
adiabatic quantum computers, which are viewed as a real-world enhanced model of
simulated annealing (e.g. a type of genetic algorithm with quantum tunneling). The
number of qubits (dimension of QUBO matrices) required to solve both these set cover
problems is O(n lg n), where n is the number of vertices, even though the classical com-
plexities differ. We also extend our formulations for the Minimum Vertex-Weighted
Dominating Set problem and Minimum Edge-Weighted Edge Cover problem. Exper-
imental results for the NP-hard Dominating Set problem using a D-Wave Systems
quantum computer with 424 active qubit-coupled processors are also provided for a
selection of known common graphs.

1 Introduction

Adiabatic quantum computing is based on the process of evolving a ground state of a Hamil-
tonian representing a problem to a minimum-energy solution state [9, 8]. It has been shown
to be equivalent to the more traditional quantum “circuit model” [1]. Other introductory
details about the application of adiabatic quantum computing may be found in [18, 4]. The
current family of D-Wave computers can solve problems formulated in either Ising form
or Quadratic Unconstrained Binary Optimization (QUBO) form, defined later. There is a
simple translation between the variable spin values -1/+1 of the Ising (physics) model and
the binary values 0/1 of QUBO (logic) model (see [5]). The focus of this paper is to use the
mathematical QUBO formulation to solve hard combinatorial problems and not to be overly
concerned about the actual physics theory required for actual computation. The paper by
Lucas [16] provides a good foundation of Ising/QUBO formulations of many hard combi-
natorial problems. Some of these initial formulations have recently be improved by several
authors, including us, motivated by the limitations on the number of actual available qubits
in existing machines.

1

mailto:mjd@cs.auckland.ac.nz?subject=CDMTCS-495_paper
mailto:rwan074@aucklanduni.ac.nz?subject=CDMTCS-495_paper

We study two main optimization problems in this paper. One is NP-hard and the other
is polynomial-time solvable, but our QUBO formulations are very similar in complexity
(e.g. both require O(n lg n) qubits for graphs of order n). Given a graph G = (V,E), a
dominating set D of G is a subset of V , such that for every vertex v ∈ V , either v ∈ D or
w ∈ D, where w is a neighbor of v. An edge cover C of G is a subset of E, such that for
every vertex v ∈ V , v is incident to at least one edge in C. The two problems defined below
involves finding the smallest such D and C, that is, a dominating set with the minimum
number of vertices and an edge cover with the minimum number of edges. For convenience,
we assume all graphs are connected and have at least one edge.

Dominating Set Problem:

Instance: A graph G = (V,E).
Question: What is the smallest subset D of V such that D is a dominating set of G?

Edge Cover Problem:

Instance: A graph G = (V,E).
Question: What is the smallest subset C of E such that C is an edge cover of G?

The decision version of the Dominating Set problem was one of the original classic prob-
lems included by Garey and Johnson [11]. It is also one of the harder NP-complete problems
being classified as W[2]-hard when considering parameterized complexity [2]. An extensive
history on this problem may be found in [13]. Contrastly, solving the Edge Cover problem
for graphs (without isolated vertices) is easily achievable in polynomial time. This is done by
observing that the smallest edge cover is equal to the order of the graph minus its maximum
matching size [15].

The paper is organized as follows. In Sections 2, we present efficient QUBO formulations,
along with proofs of correctness, of the Dominating Set and Edge Cover problems. Then in
Section 3, we address the weighted version of the combinatorial problems. Finally, in Sec-
tion 4 we present our experimental results and some discussion about using actual quantum
annealing hardware for the Dominating Set problem.

2 QUBO Formulation

QUBO is an NP-hard mathematical optimization problem of minimizing a quadratic ob-
jective function x∗ = xTQx, where x = (x1, x2, . . . , xn) is a n-vector of binary (Boolean)
variables and Q is a symmetric n× n matrix. Formally, QUBO problems are of the form:

x∗ = min
x

∑
i≤j

xiQ(i,j)xj, where xi ∈ {0, 1}.

2.1 Dominating Set

We provide a simple QUBO formulation of the Dominating Set problem. The best known
exact algorithm to solve the Dominating Set problem has time complexity O(20.610n) [10].

2

Given a graph G = (V,E) with n vertices, let V = {v1, v2, . . . , vn}, ∆(v) denote the degree
of the vertex v and N(v) denotes the set of neighbors of vertex v. This formulation requires
n +

∑
vi∈V (blog(∆(vi))c+ 1) binary variables, that is, for every vertex vi in G, we need one

variable xi to represent vi as well as blg(∆(vi))c + 1 redundant variables for each vertex.
For the sake of readability, we will label these redundant variables as yi,k, where 0 ≤ k ≤
blog(∆(vi))c. Thus we have a vector x = (x1, x2, . . . , xn, y1,0, . . . , yn,blg(∆(vn))c) of named
variables.

The objective function that is to be minimized is of the form:

F (x) =
∑
vi∈V

xi + A
∑
vi∈V

Pi

where

Pi =

1− (xi +
∑

vj∈N(vi)

xj) +

blg(∆(xi))c∑
k=0

2kyi,k

2

(1)

To obtain a solution of the Dominating Set problem, we take D(x) = {vi | xi = 1},
a subset of V as the dominating set. In the objective function, A > 1 is a real positive
constant and the term

∑
vi∈V xi represents a penalty for the size of the chosen set, and Pi

serves as a penalty if a non-dominating set is chosen. If the assignment of the variables
is a dominating set, then for each vertex vi in G, we have xi +

∑
vj∈N(vi)

xj ≥ 1. And

therefore 1 − (xi +
∑

vj∈N(vi)
xj) ≤ 0. Finally, we use the term

∑blg(∆(xi))c
k=0 2kyi,k to counter

balance the penalty if more than one vertex in the set vi ∪ N(vi) is chosen as it does not
violate the definition of a dominating set and should not be penalized. In the worst case,
1−(xi+

∑
vj∈N(vi)

xj) = −∆(vi) where vi and all of its neighbors are chosen, so a total number

of (blg(∆(vi))c+ 1) redundant variables are needed to represent integers up to ∆(vi). Hence
the total number of variables of this formulation is O(n + n lg n) in the worst case.

Theorem 1. The objective function (1) is correct.

Proof. First, we show that it is always possible to transform a non-dominating set into a
dominating set which will have a smaller value in the objective function.

Suppose we have x∗ = minx F (x) and D(x∗) is not a dominating set. Then there must
exist some vertices such that these vertices themselves nor any of their neighbors are present
in D(x∗). Then the corresponding penalty Pi for each of these vertices will be 1. Therefore,
if we set the corresponding xi of these vertices to 1, then for each one of them, a penalty
of size 1 will be added to the term

∑
vi∈V xi while the corresponding Pi will be reduced to

0 and so F (x∗) will be reduced by A − 1 at least. Hence the solution from x∗ = minx F (x)
will always be a dominating set.

The second part of the proof is to show that an assignment of x that produces a smaller
dominating set will have a smallest value in the objective function. This is trivial as if D(x)
is a dominating set, then each Pi will have to be 0, so the value of the objective function
solely depends on the size of D(x).

3

2.2 Dominating Set Q3 example

In this subsection, we will provide an example of the QUBO formulation (1) on Q3. Formally,
The hypercube Q3 is defined as follows. The vertices of Q3 are V = {0, 1, . . . , 7} and the
edges are E = {(0, 1), (0, 2), (0, 4), (1, 3), (1, 5), (2, 3), (2, 6), (3, 7), (4, 5), (4, 6), (5, 7), (6, 7)}.
It can be visualized as a 3-dimensional cube where the each corner of the cube is a vertex.
Now, by expanding the bracket in objective function (1), we get

∑
vi∈V

xi+A
∑
vi∈V

1− xi −
∑

vj∈N(vi)

xj +

blg(∆(xi))c∑
k=0

2kyi,k−xi+x2
i +xi

∑
vj∈N(vi)

xj−xi

blg(∆(xi))c∑
k=0

2kyi,k

−
∑

vj∈N(vi)

xj + xi

∑
vj∈N(vi)

xj + (
∑

vj∈N(vi)

xj)
2 −

∑
vj∈N(vi)

xj

blg(∆(xi))c∑
k=0

2kyi,k

+

blg(∆(xi))c∑
k=0

2kyi,k − xi

blg(∆(xi))c∑
k=0

2kyi,k −
∑

vj∈N(vi)

xj

blg(∆(xi))c∑
k=0

2kyi,k + (

blg(∆(xi))c∑
k=0

2kyi,k)2

 (2)

Technically, the objective function of a QUBO problem can only contain quadratic terms,
so a few terms in (2) have to be modified. Firstly, the constant term nA where n is the order
of the graph, is ignored completely. Removing this constant does not have any impact
over the optimal solutions of the QUBO problem. As removing nA will reduce the value
of the objective function by nA across all different assignments of all the binary variables,
therefore even though the value of the objective function will decrease, the assignment of
variable will remain the same regardless. Secondly, all linear terms will be converted into
quadratic terms, that is, we will replace all xi and yi,k by x2

i and y2
i,k respectively. Since all

variables are binary, we have xi = x2
i and yi,k = y2

i,k for xi, yi,k ∈ {0, 1} so it will not affect
the value of the objective function.

After applying the two steps described in the paragraph above and summing up similar
terms, we get

(1− A)
∑
vi∈V

x2
i + A

∑
vi∈V

−2
∑

vj∈N(vi)

x2
j + 2

blg(∆(xi))c∑
k=0

2ky2
i,k + 2xi

∑
vj∈N(vi)

xj

−2xi

blg(∆(xi))c∑
k=0

2kyi,k + (
∑

vj∈N(vi)

xj)
2 − 2

∑
vj∈N(vi)

xj

blg(∆(xi))c∑
k=0

2kyi,k + (

blg(∆(xi))c∑
k=0

2kyi,k)2

 (3)

Now, we can finally obtain a valid matrix representation of the objective function. Let A = 2,
the matrix representation of the quadratic objective function (3) for Q3 is shown in Table 1.
The entries Qi,j where i ≤ j in the matrix is computed by extracting the coefficient of each
quadratic term from the objective function and entries Qi,j where i ≥ j are set to the values
of Qj,i in order to obtain a symmetric matrix.

4

Table 1: Dominating Set QUBO matrix for Q3

variables x0 x1 x2 x3 x4 x5 x6 x7 y0,0 y0,1 y1,0 y1,1 y2,0 y2,1 y3,0 y3,1 y4,0 y4,1 y5,0 y5,1 y6,0 y6,1 y7,0 y7,1
x0 -7 8 8 8 8 8 8 0 -4 -8 -4 -8 -4 -8 0 0 -4 -8 0 0 0 0 0 0
x1 8 -7 8 8 8 8 0 8 -4 -8 -4 -8 0 0 -4 -8 0 0 -4 -8 0 0 0 0
x2 8 8 -7 8 8 0 8 8 -4 -8 0 0 -4 -8 -4 -8 0 0 0 0 -4 -8 0 0
x3 8 8 8 -7 0 8 8 8 0 0 -4 -8 -4 -8 -4 -8 0 0 0 0 0 0 -4 -8
x4 8 8 8 0 -7 8 8 8 -4 -8 0 0 0 0 0 0 -4 -8 -4 -8 -4 -8 0 0
x5 8 8 0 8 8 -7 8 8 0 0 -4 -8 0 0 0 0 -4 -8 -4 -8 0 0 -4 -8
x6 8 0 8 8 8 8 -7 8 0 0 0 0 -4 -8 0 0 -4 -8 0 0 -4 -8 -4 -8
x7 0 8 8 8 8 8 8 -7 0 0 0 0 0 0 -4 -8 0 0 -4 -8 -4 -8 -4 -8

y0,0 -4 -4 -4 0 -4 0 0 0 6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y0,1 -8 -8 -8 0 -8 0 0 0 8 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y1,0 -4 -4 0 -4 0 -4 0 0 0 0 6 8 0 0 0 0 0 0 0 0 0 0 0 0
y1,1 -8 -8 0 -8 0 -8 0 0 0 0 8 16 0 0 0 0 0 0 0 0 0 0 0 0
y2,0 -4 0 -4 -4 0 0 -4 0 0 0 0 0 6 8 0 0 0 0 0 0 0 0 0 0
y2,1 -8 0 -8 -8 0 0 -8 0 0 0 0 0 8 16 0 0 0 0 0 0 0 0 0 0
y3,0 0 -4 -4 -4 0 0 0 -4 0 0 0 0 0 0 6 8 0 0 0 0 0 0 0 0
y3,1 0 -8 -8 -8 0 0 0 -8 0 0 0 0 0 0 8 16 0 0 0 0 0 0 0 0
y4,0 -4 0 0 0 -4 -4 -4 0 0 0 0 0 0 0 0 0 6 8 0 0 0 0 0 0
y4,1 -8 0 0 0 -8 -8 -8 0 0 0 0 0 0 0 0 0 8 16 0 0 0 0 0 0
y5,0 0 -4 0 0 -4 -4 0 -4 0 0 0 0 0 0 0 0 0 0 6 8 0 0 0 0
y5,1 0 -8 0 0 -8 -8 0 -8 0 0 0 0 0 0 0 0 0 0 8 16 0 0 0 0
y6,0 0 0 -4 0 -4 0 -4 -4 0 0 0 0 0 0 0 0 0 0 0 0 6 8 0 0
y6,1 0 0 -8 0 -8 0 -8 -8 0 0 0 0 0 0 0 0 0 0 0 0 8 16 0 0
y7,0 0 0 0 -4 0 -4 -4 -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 8
y7,1 0 0 0 -8 0 -8 -8 -8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 16

After solving for x∗ = minx F (x), we obtain four optimal solutions.

x1 = [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

x2 = [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

x3 = [0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

and
x4 = [0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

And we have D(x1) = {0, 7}, D(x2) = {1, 6}, D(x3) = {2, 5} and D(x4) = {3, 4}. It can be
verified quite easily that these four solutions (pairs of vertices of distance 3) are all minimum
dominating sets of Q3 with the same size.

2.3 Edge Cover

The QUBO formulation of the Edge Cover problem here is quite similar to the Dominating
Set problem in the previous subsection. The Edge Cover problem can be solved in polynomial
time by exploiting the relationship between an Edge Cover and a Maximum Matching [7, 17].
Given a graph G = (V,E) with n vertices and m edges, let V = {v1, v2, . . . , vn}, E = {ei,j |
vj ∈ N(vi)}. Since digraphs are not considered here, we will take ei,j and ej,i as the same

5

element and only one of them will appear in E for each edge in the graph. We will use ∆(v)
to denote the degree of the vertex v and I(v) to denote the set of edges incident to v.

The objective function that is to be minimized is of the form:

F (x) =
∑
ei,j∈E

xi,j + A
∑
vi∈V

Pi

where

Pi =

1−
∑

ei,j∈I(vi)

xi,j +

blg(∆(xi)−1)c∑
k=0

2kyi,k

2

(4)

At the end, we take C(x) = {ei,j | xi,j = 1} as the edge cover of G. Again, choosing
A > 1 is sufficient for this formulation to be correct.

The structure and purpose of each term in the objective function is almost identical to
the Dominating Set problem. One thing to note is that the number of redundant variable
required for each vertex is slightly smaller in some cases. As 1−

∑
ei,j∈I(i) xi,j ≤ −(∆(vi)−1),

only blg(∆(vi)−1)c+1 redundant variables are needed to counter balance in case more than
one edge incident to a vertex vi are chosen as the edge cover when ∆(vi) > 1, and if ∆(vi) = 1,
then no redundant variables are needed at all for vertex vi as the only edge incident to vi
has to be chosen in the edge cover set so 1 −

∑
ei,j∈I(i) xi,j has to be 0. The argument that

will be used here to show the correctness of this formulation is quite similar to the proof in
the previous subsection.

Theorem 2. The objective function (4) is correct.

Proof. First, we show that a solution from x∗ = minx F (x) will always be an edge cover.
Suppose we have x∗ = minx F (x) and C(x∗) is not an edge cover. Then there must exist
a set of vertices {u1, u2, . . . , ul} such that I(ui) ∩ C(x∗) = ∅ for all 1 ≤ i ≤ l. That is, for
each ui, none of the edges incident to ui is in C(x∗). Hence, for each ui, 1 ≤ i ≤ l, the
corresponding Pi is 1. If we change the variable xi,j corresponding to one of these edges to
1, then again, we reduce F (x) by at least A− 1.

Now since C(x∗) where x∗ = minx F (x) has to be an edge cover as shown in the previous
paragraph, it also has to be the smallest edge cover. When C(x) is an edge cover, each Pi in
F (x) has to be 0 and therefore the value of F (x) is the size of C(x). Hence by minimizing
F (x), we also minimize the size of the edge cover set C(x).

2.4 Edge Cover S15 Example

Similar to the Dominating Set problem, we will provide an example of the actual encoding
of the objective function (4) to QUBO here. The star graph Sn with n+ 1 vertices is defined
as follows. The vertices are V = {0, 1, 2, . . . , n} and the edges are E = {(0, i) | 1 ≤ i ≤ n}.
Once again, the objective function (4) can not be encoded straight away into QUBO, constant
and linear terms have to be replaced just like in the Dominating Set problem. Doing so would
give us

6

∑
ei,j∈E

x2
i,j + A

∑
vi∈V

−2
∑

ei,j∈I(vi)

x2
i,j + 2

blg(∆(xi)−1)c∑
k=0

2ky2
i,k +

∑
ei,j∈I(vi)

xi,j

∑
ei,j∈I(vi)

xi,j

−2
∑

ei,j∈I(vi)

xi,j

blg(∆(xi)−1)c∑
k=0

2kyi,k + (

blg(∆(xi)−1)c∑
k=0

2kyi,k)2

 (5)

The encoded QUBO matrix corresponds to objective function (5) is shown in Table 2. The
solution to the minimum Edge Cover problem is trivial for the family of star graph, since all
vertices labeled from 1 to n are all of degree 1 and is only connected to vertex 0, any edge
cover in star graphs would have to consists of all the edges in the graph. And by solving
x∗ = minx

∑
i≤j xiQ(i,j)xj, we obtain an unique solution in this case where

x = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1] and C(x) = {(0, i) | 1 ≤ i ≤ n}

which can be verified quite easily the only minimum edge cover for S15.

3 Weighted Problems

The formulations provided in the previous section can be modified quite easily to adapt to
weighted graphs. The definitions of the input and output of the Dominating Set and Edge
Cover problems are slightly different in weighted graphs. For the Weighted Dominating Set
problem, each vertex vi in the graph is assigned a real positive weight wi and the goal is to
find a dominating set that has a minimum sum of the weights. Likewise, in the Weighted
Edge Cover problem, each edge ei,j in G is associated with a real positive weight wi,j and
the goal is to find an edge cover that minimizes the sum of the weights of the edges in the
edge cover set. Formally, we have the following definitions.

The input to the Weighted Dominating Set problem consists of a graph G = (V,E)
as well as a weight function W : V → R that maps each vertex in G to some real weights.
The weighted sum function S : 2V → R is defined as S(A) =

∑
v∈A W (v). The goal is to

find a dominating set D such that S(D) has the minimum value over all possible dominating
sets.

Similarly, the Weighted Edge Cover problem takes G = (V,E) and W : E → R+ as the
input. And this time the weighted sum function S : 2E → R+ is defined over a subset of
E and S(A) =

∑
e∈AW (e). Once again, the goal is to find an edge cover C of G such that

S(C) has the minimum value over all possible edge covers.

7

3.1 Weighted Dominating Set

For the Weighted Dominating Set problem. The objective function is almost identical to the
unweighted version. Let wi = W (vi), we have

F (x) =
∑
vi∈V

wixi + A
∑
vi∈V

Pi

where

Pi = (1− (xi +
∑

vj∈N(vi)

xj) +

blg(∆(xi))c∑
k=0

2kyi,k)2 (6)

Every term serves the same purpose here except that A has to be picked with the property
that A > max{wi | ∀vi ∈ V }. And once again, we take D(x) = {vi | xi = 1} as the solution
at the end. The following proof of correctness of the above formulation is very similar to the
proof of the unweighted version as well.

Theorem 3. The QUBO formulation in (6) is correct.

Proof. First, we show that it is always possible to transform a non-dominating set into a
dominating set which will have a smaller value in the objective function. Suppose we have
x∗ = minx F (x) and D(x∗) is not a dominating set. If this is case, then there must exist
some vertices such that these vertices themselves nor any of their neighbors are present in
D(x∗). Then the corresponding penalty Pi for each of these vertices will be 1. Therefore,
if we set the corresponding xi of these vertices to 1, then for each one of them, a penalty
of size wi will be added to the term

∑
vi∈V xi while the corresponding Pi will be reduced

to 0 and so F (x∗) will be reduced by A − wi > 0 by choice of A. Hence the solution from
x∗ = minx F (x) will always be a dominating set.

The second part of the proof is to show that an assignment of x that produces a smaller
dominating set will have a smallest value in the objective function. It is trivial as if D(x) is
a dominating set, then each Pi will have to be 0, so the value of the objective function solely
depend on the weights of vertices chosen to be in the dominating set.

3.2 Weighted S5 Example

Let us use the star graph again to demonstrate the difference for Weighted Dominating Set
problem. The weight function W is defined as follows:

W (v) =

{
5, if v = 0

1, otherwise

The encoded QUBO matrix is shown in Table 3. Solving x∗ = minx

∑
i≤j xiQ(i,j)xj

this time gives two different solutions with identical value objective function (6). The two
solutions are x1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] and x2 = [0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0].

8

Table 2: Edge Cover QUBO matrix for S15

variables x0,1 x0,2 x0,3 x0,4 x0,5 x0,6 x0,7 x0,8 x0,9 x0,10 x0,11 x0,12 x0,13 x0,14 x0,15 y0,0 y0,1 y0,2 y0,3
x0,1 -3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0
x0,2 2 -3 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0
x0,3 2 2 -3 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0
x0,4 2 2 2 -3 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0
x0,5 2 2 2 2 -3 2 2 2 2 2 2 2 2 2 2 0 0 0 0
x0,6 2 2 2 2 2 -3 2 2 2 2 2 2 2 2 2 0 0 0 0
x0,7 2 2 2 2 2 2 -3 2 2 2 2 2 2 2 2 0 0 0 0
x0,8 2 2 2 2 2 2 2 -3 2 2 2 2 2 2 2 0 0 0 0
x0,9 2 2 2 2 2 2 2 2 -3 2 2 2 2 2 2 0 0 0 0
x0,10 2 2 2 2 2 2 2 2 2 -3 2 2 2 2 2 0 0 0 0
x0,11 2 2 2 2 2 2 2 2 2 2 -3 2 2 2 2 0 0 0 0
x0,12 2 2 2 2 2 2 2 2 2 2 2 -3 2 2 2 0 0 0 0
x0,13 2 2 2 2 2 2 2 2 2 2 2 2 -3 2 2 0 0 0 0
x0,14 2 2 2 2 2 2 2 2 2 2 2 2 2 -3 2 0 0 0 0
x0,15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -3 0 0 0 0
y0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 4 8 16
y0,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 16 16 32
y0,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 16 48 64
y0,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 32 64 160

Table 3: Dominating Set QUBO matrix for weighted S5

variables x0 x1 x2 x3 x4 x5 y0,0 y0,1 y0,2 y1,0 y2,0 y3,0 y4,0 y5,0
x0 -115 80 80 80 80 80 -40 -80 -160 -40 -40 -40 -40 -40
x1 80 -39 40 40 40 40 -40 -80 -160 -40 0 0 0 0
x2 80 40 -39 40 40 40 -40 -80 -160 0 -40 0 0 0
x3 80 40 40 -39 40 40 -40 -80 -160 0 0 -40 0 0
x4 80 40 40 40 -39 40 -40 -80 -160 0 0 0 -40 0
x5 80 40 40 40 40 -39 -40 -80 -160 0 0 0 0 -40

y0,0 -40 -40 -40 -40 -40 -40 60 80 160 0 0 0 0 0
y0,1 -80 -80 -80 -80 -80 -80 80 160 320 0 0 0 0 0
y0,2 -160 -160 -160 -160 -160 -160 160 320 480 0 0 0 0 0
y1,0 -40 -40 0 0 0 0 0 0 0 60 0 0 0 0
y2,0 -40 0 -40 0 0 0 0 0 0 0 60 0 0 0
y3,0 -40 0 0 -40 0 0 0 0 0 0 0 60 0 0
y4,0 -40 0 0 0 -40 0 0 0 0 0 0 0 60 0
y5,0 -40 0 0 0 0 -40 0 0 0 0 0 0 0 60

9

The number of vertices in these two dominating sets is different, D(x1) has only one vertex
while D(x2) has five vertices.

The solution to the Dominating Set problem is trivial for the family of star graphs Sn in
the unweighted case, since all vertices labeled from 1 to n are all only connected to vertex 0,
choosing just vertex 0 as the dominating set is sufficient to cover all vertices in the graph. In
the weighted case however, if the sum of weights of vertices 1 to n is smaller than the weight
of vertex 0, then the minimum dominating set would actually consists of all vertices labeled
1 to n. In our case provided above, the weight function W is constructed in a way such that
the two cases would have the same weighted sum, and as a result, both are accepted as the
optimal solution.

3.3 Weighted Edge Cover

Similar to the Edge Cover problem, the Weighted Edge Cover problem can be reduced to
Weighted Perfect Matching problem which is solvable in time O(n3) [19, 14]1. Similar to
the weighted dominating set formulation in the previous subsection, we only need to do
some small modification to the Edge Cover problem to obtain a QUBO formulation for the
weighted version.

F (x) =
∑
ei,j∈E

wi,jxi,j + A
∑
vi∈V

Pi

where

Pi = (1−
∑

ei,j∈I(vi)

xi,j +

blg(∆(xi)−1)c∑
k=0

2kyi,k)2 (7)

Once again, we need to have A > max{wi,j | ∀ei,j ∈ E}. Although the argument may seem
almost identical to the unweighted version, for the sake of completeness, we will present the
theorem and proof formally below.

Theorem 4. The QUBO formulation in (7) is correct.

Proof. First, we show that a solution from x∗ = minx F (x) will always be an edge cover.
Suppose we have x∗ = minx F (x) and C(x∗) is not an edge cover. Then there must exist a
set of vertices {u1, u2, . . . , ul} such that I(ui)∩C(x∗) = ∅ for 1 ≤ i ≤ l. That is, for each ui,
none of the edges incident to ui is in C(x∗). Hence, for each ui, 1 ≤ i ≤ l, the corresponding
Pi is 1. If we change the variable xi,j corresponding to one of these edges to 1, then again, we
reduce the value of the objective function F (x) by at least A−wi,j > 0 since A is larger than
all wi,j. Therefore the optimal solution to the minimization problem of F (x) will always be
an edge cover set.

Now since C(x∗) where x∗ = minx F (x) has to be an edge cover as shown in the previous
paragraph, it also has to be the smallest edge cover. When C(x) is an edge cover, each Pi

1We want to clarify that the justification of the reduction given in the references only applies to minimal
edge covers (not any edge cover).

10

in F (x) has to be 0 and therefore the value of F (x) is completely dependent on the weights
of the edges chosen to be in C(x).

3.4 Weighted W5 Example

A wheel graph Wn with order n + 1 is defined similar to a star graph. To be precise, a
star graph Sn with n + 1 vertices is always a subgraph of Wn, with extra edges joining
the outer vertices into a cycle of length n. Taking n = 5, we have V = {0, 1, 2, 3, 4, 5}
and E = {(0, i) | 1 ≤ i ≤ n} ∪ {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}. The weight function
W : E → R+ which assigns a weight to each edge is defined as follows:

W (e) =

6, if e = (0, i) where 1 ≤ i ≤ n

12, if e = (1, 2)

15, otherwise

Let A = 20, the QUBO matrix encoded from objective function (7) is shown in Table 4. Once
again, we get two optimal solutions which both have the same value in objective function
(7) in this case.

x1 = [0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
x2 = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

The number of edges we obtain in the edge cover are four and five respectively. Although
choosing the edge (1, 2) to cover vertex 1 and 2 may seem better initially, since it covers two
vertices with only one edge. Choosing (0, 1) and (0, 2) instead makes no difference in this
case as W ((1, 2)) = W ((0, 1)) + W ((0, 2)), so the weighted sum is identical.

4 Experimental Results and Discussion

Experiments were conducted on the D-Wave quantum computer. The chip had 424 active
qubits and could support problems with up to 424 variables in theory. In practice, before
the QUBO formulations could be executed on the D-Wave computer, an embedding on the
hardware must be first found. That is, we need to check if the QUBO instance, referred to
as the guest graph, is a graph minor2 of the actual physical qubit architecture which is a
(induced subgraph of) specific Chimera host graph. A Python scripts which generates the
QUBO instance of objective function for Dominating Set and Edge Cover are available from
the authors. We used the NetworkX graph package in both scripts [12] in addition to the
D-Wave library.

For the Dominating Set problem, with A = 2, we did two trials on a set of small graphs.
For the second trial, instead of encoding F (x) exactly as in (1), a constant multiplier of

2A graph G is a minor of a graph H if G is isomorphic to a graph obtained from H by repeatedly deleting
vertices, deleting edges or contracting edges.

11

Table 4: Edge Cover QUBO matrix for weighted W5

vars x0,1 x0,2 x0,3 x0,4 x0,5 x1,2 x1,5 x2,3 x3,4 x4,5 y0,0 y0,1 y0,2 y1,0 y1,1 y2,0 y2,1 y3,0 y3,1 y4,0 y4,1 y5,0 y5,1
x0,1 -34 20 20 20 20 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x0,2 20 -34 20 20 20 20 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x0,3 20 20 -34 20 20 0 0 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x0,4 20 20 20 -34 20 0 0 0 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0
x0,5 20 20 20 20 -34 0 20 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0
x1,2 20 20 0 0 0 -28 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x1,5 20 0 0 0 20 20 -25 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0
x2,3 0 20 20 0 0 20 0 -25 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x3,4 0 0 20 20 0 0 0 20 -25 20 0 0 0 0 0 0 0 0 0 0 0 0 0
x4,5 0 0 0 20 20 0 20 0 20 -25 0 0 0 0 0 0 0 0 0 0 0 0 0
y0,0 0 0 0 0 0 0 0 0 0 0 60 40 80 0 0 0 0 0 0 0 0 0 0
y0,1 0 0 0 0 0 0 0 0 0 0 40 160 160 0 0 0 0 0 0 0 0 0 0
y0,2 0 0 0 0 0 0 0 0 0 0 80 160 480 0 0 0 0 0 0 0 0 0 0
y1,0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 40 0 0 0 0 0 0 0 0
y1,1 0 0 0 0 0 0 0 0 0 0 0 0 0 40 160 0 0 0 0 0 0 0 0
y2,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 40 0 0 0 0 0 0
y2,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 160 0 0 0 0 0 0
y3,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 40 0 0 0 0
y3,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 160 0 0 0 0
y4,0 60 40 0 0
y4,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 160 0 0
y5,0 60 40
y5,1 0 40 160

5 was applied. That is, 5F (x) was used instead of F (x). This modification changes the
value of the objective function by a factor of 5 but does not affect the optimal solutions
of x∗ = minx F (x). The aim of this modification was to determine if there were any links
between the quality of the solutions found by the computer and the energy level set by the
objective function. Each QUBO instance corresponding to each graph was ran one hundred
times in both trials. However, nothing conclusive could be drawn from the result with respect
to the energy level and the solution quality, the solutions obtained from the two experiments
were indistinguishable from one another. In general, very small differences were observed
on the same graph. Therefore we decided to only list the better result in Table 5 for each
graph, that is, each row of the table is taken from the better trial. One trial is considered
better if the size of the smallest dominating set was smaller. One interesting thing to note
is that all solutions returned by D-Wave are dominating sets, not necessarily good ones in
terms of the number of vertices, but they do cover the graph correctly.

The first three columns of Table 5 contains standard information about the graphs; the
order and size are with respect to the input graphs rather than the QUBO formulations. The
next three columns contains information on the embeddings. Logical qubits is the number of
variables of the formulation and physical qubits is the number of hardware qubits required
after embedding the QUBO instance into the specific Chimera graph. As can be seen from
the table, the difference between the number of variables and the actual number of hardware
qubits needed varies quite a lot. The high scaling factor is mostly due to the high density
of the QUBO matrices. High density means the size (number of non-zero QUBO entries) of

12

the guest graph which the QUBO matrix represents is high, and since the Chimera graph
has a fixed architecture, it is harder to embed the guest graph with few edge contractions.
Hence more active physical qubits are needed. The embedding max chain column contains
the maximum number of physical qubits a single logical qubit is mapped to.

Note deciding minor containment is a well-known NP-complete problem, but since it is
not the focus of study here, we did not implement our own embedding algorithm here. The
algorithm used in the study is provided by the D-Wave software package; more details about
this particular embedding algorithm can be found in [5] and [3]. Another thing to note here
is that we did not try to minimize the number of variables nor the density of the QUBO
matrix when developing the objective functions given in Section 2. It is quite possible that
better formulations exist for there problems, that is, formulations with less number of logical
qubits and lower density that will make the minor containment problem on them easier to
solve.

Finally in Table 5, the best answer column is the best solution the D-Wave machine was
able to find and the optimal answer column is the true optimal solution of the particular
graph. The optimal solution was computed by first computing an Integer Programming
formulation of the Dominating Set problem and then Sage Maths [20] software was used to
compute the solution. As mentioned before, each QUBO instance was executed one hundred
times, the last column indicates the proportion in which the best answer (given by the D-
Wave machine), not necessarily optimal, was found out of the one hundred times. As can
be seen in the table, the overall result was not very satisfying. In a lot of the cases, the
D-Wave quantum computer was not able to find the true optimal solution. Furthermore,
even when it did, the probability of at successfully finding the optimal solution is very low
in most cases. We did do software simulations (e.g. conventional evolutionary search) on our
QUBO matrices to verify optimal dominating sets were possible.

Google has recently published a paper that had some experimental result on the new D-
Wave 2X [6] and had much more successful results. Namely, they were able to achieve a 99%
success rate in which the optimal solution was found. Although it is difficult to determine
what exactly is the cause in such a big difference, the authors did considered several factors
that could have lead to this observation. First of all, the size of the problems, as in the
number of physical qubits used, we tested here are relatively small compare to [6] which had
problems sizes vary from 200 to around 1000. Google had found the best suited annealing
time for each case, in terms of solution quality and problem size, while we used an annealing
time of 20 microseconds for all of our test cases as we did not have direct access to the
machine so it was difficult for us to run multiple fine-tuned tests. Secondly, the problem
that Google used in their benchmark paper is a hand crafted problem that fits directly on
the actual hardware they have, in other words, the underlying graph is a subgraph of the
Chimera graph, so the minor containment problem did not need to be considered. In general,
the bigger the mapping size is, the more extra constraints the objective function needs [5]
hence it might reduce the solution quality.

The authors plan to experiment with a newer D-Wave machine which has 1100 active
qubits and less noise issues. Hopefully bigger problems can now be solved because of a larger
host graph and better connectivity (e.g. embeddings with smaller chains). We anticipate the

13

solution quality will improve substantially. We are also in the process of testing our QUBO
formulations for the Edge Cover problem and the other weighted covering problems described
in this paper.

Acknowledgment

This work was supported in part by the Quantum Computing Research Initiatives at Lock-
heed Martin. We thank Cris Calude for useful comments on an earlier draft that help us
improve this report.

References

[1] Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded
Regev. Adiabatic quantum computation is equivalent to standard quantum computa-
tion. SIAM J. Comput., 37(1):166–194, 2007.

[2] Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data reduc-
tion for dominating set. J. ACM, 51(3):363–384, May 2004.

[3] Jun Cai, William G. Macready, and Aidan Roy. A practical heuristic for finding graph
minors. ArXiv e-prints, June 2014. 2014arXiv1406.2741C.

[4] Cristian S. Calude, Elena Calude, and Michael J. Dinneen. Guest column: Adiabatic
quantum computing challenges. SIGACT News, 46(1):40–61, March 2015.

[5] D-Wave. Programming with QUBOs. Technical Report 09-1002A-B, D-Wave Systems,
Inc., 2013. Python Release 1.5.1-beta4 (for Mac/Linux).

[6] Vasil S. Denchev, Sergio Boixo, Sergei V. Isakov, Nan Ding, Ryan Babbush, Vadim
Smelyanskiy, John Martinis, and Hartmut Neven. What is the computational value of
finite range tunneling?, 2015. arXive 1512.02206.

[7] S. Even and O. Kariv. An O(n2.5) algorithm for maximum matching in general graphs.
In Foundations of Computer Science, 1975., 16th Annual Symposium on, pages 100–112.
IEEE, 1975.

[8] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew Lundgren, and
Daniel Preda. A quantum adiabatic evolution algorithm applied to random instances
of an NP-complete problem. Science, 292(5516):472–475, 2001.

[9] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum com-
putation by adiabatic evolution. arXiv:quant-ph/0001106, January 2000.

[10] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach
for the analysis of exact algorithms. Journal of the ACM (JACM), 56(5):25, 2009.

14

[11] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[12] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,
dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science
Conference (SciPy2008), pages 11–15, Pasadena, CA USA, August 2008.

[13] Stephen T. Hedetniemi and R. C. Laskar. Bibliography on domination in graphs and
some basic definitions of domination parameters. Discrete Mathematics, 86(1-3):257–
277, 1990.

[14] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer, 2002.

[15] Eugene Lawler. Combinatorial Optimization: Networks and Matroids. Dover Publica-
tions, Inc., 1976.

[16] Andrew Lucas. Ising formulations of many NP problems. Frontiers in Physics, 2(5),
2014.

[17] Robert Z. Norman and Michael O. Rabin. An algorithm for a minimum cover of a
graph. Proceedings of the American Mathematical Society, 10(2):315–319, 1959.

[18] Geordie Rose and William G. Macready. An introduction to quantum annealing. Tech-
nical Report Document 0712, D-Wave Systems, Inc., 2007.

[19] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24.
Springer Science & Business Media, 2003.

[20] The Sage Developers. Sage Mathematics Software (Version 6.5), 2015.
http://www.sagemath.org.

15

Table 5: Results for some small graphs families for Dominating Set Hamiltonian.
Logical Physical Embedding Best Optimal % with

Graph Order Size Qubits Qubits Max Chain Answer Answer Best

BidiakisCube 12 18 36 217 13 8 4 1

Bull 5 5 13 38 5 3 2 4

Butterfly 5 6 16 62 8 2 1 1

C4 4 4 12 48 6 2 2 8

C5 5 5 15 50 6 2 2 1

C6 6 6 18 62 6 3 2 9

C7 7 7 21 88 7 5 3 5

C8 8 8 24 90 9 4 3 1

C9 9 9 27 94 7 5 3 4

C10 10 10 30 100 7 6 4 1

C11 11 11 33 125 9 7 4 1

C12 12 12 36 157 11 8 4 2

Diamond 4 5 12 48 6 2 1 26

Dinneen 9 21 36 297 25 6 2 2

Durer 12 18 36 270 22 8 4 1

Frucht 12 18 36 196 14 8 3 1

Grid2x3 6 7 18 88 9 4 2 2

Grid3x3 9 12 28 172 15 6 3 1

Grid3x4 12 17 38 250 16 7 4 2

Grid4x4 16 24 52 309 20 10 4 1

Grotzsch 11 20 39 301 30 8 3 1

Heawood 14 21 42 293 25 9 4 4

Herschel 11 18 36 260 18 8 3 3

Hexahedral 8 12 24 130 12 4 2 7

House 5 6 15 55 6 2 2 2

K2 2 1 4 5 2 1 1 91

K3 3 3 9 23 4 1 1 3

K4 4 6 12 42 5 2 1 10

K5 5 10 20 127 15 4 1 5

K6 6 15 24 199 17 4 1 2

K7 7 21 28 307 25 4 1 1

K8 8 28 32 333 29 4 1 1

K2,3 5 6 15 54 8 2 2 1

K3,3 6 9 18 87 8 3 2 1

K3,4 7 12 24 151 15 5 2 2

K4,4 8 16 32 197 13 6 2 5

K4,5 9 20 36 278 20 7 2 2

K5,5 10 25 40 338 22 7 2 1

Krackhardt 10 18 34 237 22 7 2 1

Octahedral 6 12 24 152 15 4 2 1

Petersen 10 15 30 227 20 7 3 1

Q3 8 12 24 153 10 4 2 2

S2 3 2 7 13 2 1 1 50

S3 4 3 9 22 4 1 1 3

S4 5 4 12 44 6 1 1 1

S5 6 5 14 42 5 3 1 12

S6 7 6 16 50 6 3 1 2

S7 8 7 18 65 6 4 1 5

S8 9 8 21 102 11 4 1 1

S9 10 9 23 108 9 5 1 2

S10 11 10 25 153 13 8 1 1

Tietze 12 18 36 230 16 8 3 3

Wagner 8 12 24 133 9 4 3 1

16

A Python Program to Generate QUBO Formulation

of the Dominating Set Problem

import networkx as nx

import sys , math

def read_graph ():

n=int(sys.stdin.readline ().strip ())

G=nx.empty_graph(n,create_using=nx.Graph ())

for u in range(n):

neighbors=sys.stdin.readline ().split ()

for v in neighbors:

G.add_edge(u,int(v))

return G

def generateQUBO(G):

Q = {}

numOfRedVars = 0

stores the number of redundant variables each vertex has

redVarsDict = {}

order = G.order ()

for v in G:

redVars = int(math.log(nx.degree(G,v) ,2))+1

numOfRedVars += redVars

redVarsDict[v] = redVars

numOfRedVars = int(numOfRedVars)

totalNumOfVars = G.order() + numOfRedVars

redVarsIndexDict = {}

compute index of y_i ,k in Q

for v in G:

temp = 0

for i in range(v):

temp += redVarsDict[i]

redVarsIndexDict[v] = order + temp

initialize Q

for i in range(totalNumOfVars):

for j in range(totalNumOfVars):

Q[i,j] = 0

pick constant A > 1

A = 2

for v in G:

(1-A)x_i

Q[v, v] -= 1

-2A sum x_j

for u in G.neighbors(v):

17

Q[u,u] -= 2*A

starting index of redundant variables of vertex v in Q

index = redVarsIndexDict[v]

num is the number of redundant variables vertex v has

num = redVarsDict[v]

2A sum 2^ky_i ,k

for i in range(num):

temp = int (2*A*math.pow(2,i))

Q[index+i,index+i] += temp

2A x_i sum x_j

for u in G.neighbors(v):

Q[v, u] += 2*A

-2A x_i sum 2^ky_i ,k

for i in range(num):

Q[v,index+i] -= int(2*A*math.pow(2,i))

A sum x_j sum x_j

for u in G.neighbors(v):

for w in G.neighbors(v):

Q[u, w] += A

-2A sum x_j sum 2^ky_i ,k

for u in G.neighbors(v):

for i in range(num):

Q[u, index+i] -= int(2*A*math.pow(2,i))

A sum 2^ky_i ,k sum 2^ky_i ,k

for i in range(num):

for j in range(num):

Q[index+i,index+j] += int(A*math.pow(2,i)*math.pow(2,j))

move all entries to the upper triangle of the matrix

for i in range(totalNumOfVars):

for j in range(totalNumOfVars):

if j > i:

Q[i,j] += Q[j,i]

Q[j,i] = 0

print a symmetric form of Q

for i in range(totalNumOfVars):

for j in range(totalNumOfVars):

if i<= j:

print Q[i,j],

else:

print Q[j,i],

print

main program

G=read_graph ()

generateQUBO(G)

listings/DS generate QUBO.py

18

B Python Program to Generate QUBO Formulation

of the Edge Cover Problem

import networkx as nx

import sys , math

from dwave_sapi import solve_qubo , local_connection

def read_graph ():

n=int(sys.stdin.readline ().strip ())

G=nx.empty_graph(n,create_using=nx.Graph ())

for u in range(n):

neighbors=sys.stdin.readline ().split ()

for v in neighbors:

G.add_edge(u,int(v))

return G

def generateQUBO(G):

Q = {}

map each edge of G to some index in Q

edgeDict = {}

index = 0

for (u,v) in G.edges():

if (u,v) in edgeDict:

edgeDict [(v,u)] = edgeDict [(u,v)]

elif (v,u) in edgeDict:

edgeDict [(u,v)] = edgeDict [(v,u)]

else:

edgeDict [(u,v)] = index

edgeDict [(v,u)] = index

index +=1

compute the index of redundant variables in Q

size = G.size()

numOfRedVars = 0

redVarsDict = {}

for v in G:

if nx.degree(G,v) != 1:

redVars = int(math.log(nx.degree(G,v) -1,2))+1

else:

redVars = 0

numOfRedVars += redVars

redVarsDict[v] = redVars

numOfRedVars = int(numOfRedVars)

totalNumOfVars = G.size() + numOfRedVars

redVarsIndexDict = {}

for v in G:

temp = 0

for i in range(v):

temp += redVarsDict[i]

19

redVarsIndexDict[v] = size + temp

initializing Q

for i in range(totalNumOfVars):

for j in range(totalNumOfVars):

Q[i,j] = 0

pick constant A > 1

A = 2

sum x_i ,j

for e in G.edges():

Q[edgeDict[e],edgeDict[e]] = 1

sum P_i

for v in G.nodes():

I is the set of edges incident to v

I = G.edges(v)

-2A sum x_i ,j

for e in I:

Q[edgeDict[e],edgeDict[e]] -= 2*A

index is the starting index of redundant variable corresoponding

to v in Q

index = redVarsIndexDict[v]

num is the number of redundant variables vertex v has

num = redVarsDict[v]

2A sum 2^k y_i ,k

for k in range(num):

Q[index+k, index+k] += int(2*A*math.pow(2,k))

A sum x_i ,j sum x_i ,j

for e1 in I:

for e2 in I:

Q[edgeDict[e1],edgeDict[e2]] += A

-2A sum x_i ,j sum 2^k y_i ,k

for e in I:

for k in range(num):

Q[edgeDict[e],index+k] -= int(2*A*math.pow(2,k))

A sum 2^k y_i ,k sum 2^k y_i ,k

for k1 in range(num):

for k2 in range(num):

Q[index+k1 , index+k2] += A*int(math.pow(2,k1)*math.pow(2,

k2))

move all entries to the upper triangle of the matrix

for i in range(totalNumOfVars):

for j in range(totalNumOfVars):

if j > i:

Q[i,j] += Q[j,i]

Q[j,i] = 0

20

print a symmetric form of Q

for i in range(totalNumOfVars):

for j in range(totalNumOfVars):

if i<= j:

print Q[i,j],

else:

print Q[j,i],

print

main program

G=read_graph ()

result = generateQUBO(G)

listings/EC generate QUBO.py

C Sage Math Program to Compute the Exact Solution

to the Dominating Set Problem

import sys , networkx as nx

def read_graph ():

n=int(sys.stdin.readline ().strip ())

G=nx.empty_graph(n,create_using=nx.Graph ())

for u in range(n):

neighbors=sys.stdin.readline ().split ()

for v in neighbors: G.add_edge(u,int(v))

return G

G=read_graph ()

n=G.order ()

p=MixedIntegerLinearProgram(solver="GLPK", maximization=False)

x=p.new_variable(binary=True)

for v in G.nodes():

c = x[v]

for u in G.neighbors(v):

c = c + x[u]

p.add_constraint(c >= 1)

p.set_objective(sum(x[j] for j in range(n)))

try:

sz=p.solve ()

except sage.numerical.mip.MIPSolverException as e:

pass

else:

pass

print "Minimum dominating set is", int(sz)

for i in p.get_values(x).items():

print i

listings/DS sage.py

21

