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Abstract. We present a new variant of how catalytic P systems can sim-
ulate register machines, thus reducing again the number of rules needed
for simulating register machines. Moreover, we show that only 20 rules
are needed to generate a non-semilinear set of natural numbers by a
catalytic P system with two catalysts. Finally, we establish improved
versions of universal catalytic P systems.

1 Introduction

Membrane systems were introduced by Gheorghe Păun in [10] and therefore
called P systems since then. P systems are motivated by the biological function-
ing of molecules in cells. From a mathematical point of view a P system can be
viewed as a parallel multiset rewriting system. When using non-cooperative rules
without any additional control, it has the behavior of an E0L system; yet when
only taking the results when the system halts means that the objects evolve in
a context-free manner, generating a set in PsCF , which is known (by Parikh’s
theorem) to coincide with PsREG, i.e., with the family of semilinear sets.

We work out a slightly refined method to simulate register machines with
m decrementable registers by P systems with m catalysts, thereby improving
not only the result established in [14], but even the improved version based on
observations just found recently which allowed for reducing the number of rules
again in a considerable way, as done by Petr Sośık in 2015, see [16].

We also recall the concept of toxic objects which allows us to “kill” a com-
putation branch if we cannot find a multiset of rules covering all occurrences of
toxic objects which then somehow become “lethal” by killing such a computa-
tion. For all the proof techniques using a trap symbol # to “kill” a computation
by introducing the trap symbol # with a non-cooperative rule a ! #, the con-
cept of toxic objects allows us to save most of the trap rules or even all of them,
thus improving the descriptional complexity of the underlying P systems.

The rest of the paper is organized as follows: We first recall the basic defini-
tions from formal language theory as well as the definitions for (purely) catalytic
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P systems. Then we improve some general results for catalytic P systems with re-
spect to the number of rules needed for simulating register machines and give an
example of a catalytic P system with two catalysts generating a non-semilinear
set of natural numbers with only 20 rules, thus improving previous results estab-
lished in [14] and just recently obtained by Petr Sośık in 2015, see [16]. Finally,
we apply the new construction for simulating register machines by catalytic P
systems to the universal register machine URM22 of Korec (see [8]).

2 Definitions

In this section we first recall the basic notions from formal language theory
needed in this paper and then the definitions of the basic variants of P systems
considered in the following sections. For more details in formal language theory
we refer the reader to the standard monographs and textbooks as [13] and for
the area of regulated rewriting to [4]. All the main definitions and results for P
systems can be found in [11] and [12]; the model of P systems with toxic objects
was introduced in [2]. For actual informations and new developments in the area
of membrane computing we refer to the P systems webpage [17].

2.1 Prerequisites

The set of non-negative integers (natural numbers) is denoted by N. An alphabet

V is a finite non-empty set of abstract symbols. Given V , the free monoid gener-
ated by V under the operation of concatenation is denoted by V ⇤; the elements
of V ⇤ are called strings, and the empty string is denoted by �; V ⇤\{�} is denoted
by V +. Let {a1, · · · , an} be an arbitrary alphabet; the number of occurrences
of a symbol a

i

in a string x is denoted by |x|
ai
; the Parikh vector associated

with x with respect to a1, · · · , an is
�

|x|
a1

, · · · , |x|
an

�

. The Parikh image of a
language L over {a1, · · · , an} is the set of all Parikh vectors of strings in L,
and we denote it by Ps (L). For a family of languages FL, the family of Parikh
images of languages in FL is denoted by PsFL; for families of languages over a
one-letter alphabet, the corresponding sets of non-negative integers are denoted
by NFL; for an alphabet V containing exactly d objects, the corresponding sets
of Parikh vectors with d components is denoted by NdFL, i.e., we replace Ps
by Nd.

A (finite) multiset over the (finite) alphabet V , V = {a1, · · · , an}, is a map-
ping f : V �! N and represented by hf (a1) , a1i · · · hf (a

n

) , a
n

i or by any string
x the Parikh vector of which with respect to a1, · · · , an is (f (a1) , · · · , f (a

n

)).
In the following we will not distinguish between a vector (m1, · · · ,mn

) , its rep-
resentation by a multiset hm1, a1i · · · hmn

, a
n

i or its representation by a string x
having the Parikh vector

�

|x|
a1

, · · · , |x|
an

�

= (m1, · · · ,mn

). Fixing the sequence
of symbols a1, · · · , an in the alphabet V in advance, the representation of the
multiset hm1, a1i · · · hmn

, a
n

i by the string am1
1 · · · amn

n

is unique.
The family of regular, context-free, and recursively enumerable string lan-

guages is denoted by REG, CF , and RE, respectively.
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2.2 Register machines

A register machine is a tuple M = (d,B, l0, lh, P ), where d is the number of
registers, P is the set of instructions bijectively labeled by elements of B, l0 2 B
is the initial label, and l

h

2 B is the final label. The instructions of M can be of
the following forms:

– j : (ADD (r) , k, l), with j 2 B \ {l
h

}, k, l 2 B, 1  r  d.
Increase the value of register j by one, and non-deterministically jump to
instruction k or l. This instruction is usually called increment.

– j : (SUB (r) , k, l), with j 2 B \ {l
h

}, k, l 2 B, 1  r  d.
If the value of register j is zero then jump to instruction l, otherwise decrease
the value of register j by one and jump to instruction k. The two cases of
this instruction are usually called zero-test and decrement, respectively.

– l
h

: HALT . Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each
register and by the value of the current label, which indicates the next instruc-
tion to be executed. Computations start by executing the first instruction of P
(labeled with l0), and terminate with reaching the HALT -instruction.

Register machines provide a simple universal computational model, for ex-
ample, see [9]. In the following, we shall call a specific model of P systems
computationally complete or universal if and only if for any register machine M
we can e↵ectively construct an equivalent P system ⇧ of that type simulating
M and yielding the same results.

Non-semilinear sets of numbers and vectors of numbers In most of the
examples established in the literature, variants of the set of natural numbers

{2n | n � 0} = N
⇣n

a2
n

| n � 0
o⌘

are considered as the typical non-semilinear sets of natural numbers.

2.3 P Systems

The ingredients of the basic variants of (cell-like) P systems are the membrane
structure, the objects placed in the membrane regions, and the evolution rules.
Themembrane structure is a hierarchical arrangement of membranes. Each mem-
brane defines a region/compartment, the space between the membrane and the
immediately inner membranes; the outermost membrane is called the skin mem-

brane, the region outside is the environment, also indicated by (the label) 0.
Each membrane can be labeled, and the label (from a set Lab) will identify both
the membrane and its region. The membrane structure can be represented by
a rooted tree (with the label of a membrane in each node and the skin in the
root), but also by an expression of correctly nested labeled parentheses. The ob-

jects (multisets) are placed in the compartments of the membrane structure and
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usually represented by strings, with the multiplicity of a symbol corresponding
to the number of occurrences of that symbol in the string. The basic evolution

rules are multiset rewriting rules of the form u ! v, where u is a multiset of
objects from a given set O and v = (b1, tar1) . . . (bk, tark) with b

i

2 O and
tar

i

2 {here, out, in} or tar
i

2 {here, out} [ {in
j

| j 2 Lab}, 1  i  k. Using
such a rule means “consuming” the objects of u and “producing” the objects
b1, . . . , bk of v; the target indications here, out, and in mean that an object with
the target here remains in the same region where the rule is applied, an object
with the target out is sent out of the respective membrane (in this way, objects
can also be sent to the environment, when the rule is applied in the skin region),
while an object with the target in is sent to one of the immediately inner mem-
branes, non-deterministically chosen, whereas with in

j

this inner membrane can
be specified directly. In general, we may omit the target indication here.

Due to the possibility of flattening, see [7], in the following we will mostly
restrict ourselves to P systems with only one membrane.

Formally, a (cell-like) P system is a construct

⇧ = (O,µ,w1, . . . , wm

, R1, . . . , Rm

, f)

where O is the alphabet of objects, µ is the membrane structure (with m mem-
branes), w1, . . . , wm

are multisets of objects present in the m regions of µ at
the beginning of a computation, R1, . . . , Rm

are finite sets of evolution rules,
associated with the membrane regions of µ, and f is the label of the region from
which the outputs are taken (f = 0 indicates that the output is taken from the
environment).

If a rule u ! v has at least two objects in u, then it is called cooperative, oth-
erwise it is called non-cooperative. In catalytic P systems we use non-cooperative
as well as catalytic rules which are of the form ca ! cv, where c is a special
object which never evolves and never passes through a membrane (both these
restrictions can be relaxed), but it just assists object a to evolve to the multiset
v. In a purely catalytic P system we only allow catalytic rules. For a catalytic
as well as for a purely catalytic P system ⇧, in the description of ⇧ we replace
“O” by “O,C” in order to specify those objects from O which are the catalysts
in the set C.

All the rules defined so far can be used in di↵erent derivation modes: in the
sequential mode (sequ), we apply exactly one rule in every derivation step; in the
asynchronous mode (asyn), an arbitrary number of rules is applied in parallel; in
the maximally parallel (maxpar) derivation mode, in any computation step of ⇧
we choose a multiset of rules from the sets R1, . . . , Rm

in a non-deterministic way
such that no further rule can be added to it so that the obtained multiset would
still be applicable to the existing objects in the membrane regions 1, . . . ,m.

The membranes and the objects present in the compartments of a system at
a given time form a configuration; starting from a given initial configuration and
using the rules as explained above, we get transitions among configurations; a
sequence of transitions forms a computation (we often also say derivation). A
computation is halting if and only if it reaches a configuration where no rule can
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be applied any more. With a halting computation we associate a result generated

by this computation, in the form of the number of objects present in region f
in the halting configuration. The set of multisets obtained as results of halting
computations in ⇧ working in the derivation mode � 2 {sequ, asyn,maxpar} is
denoted by mL

gen,�

(⇧), the set of natural numbers obtained by just counting
the number of objects in the multisets of mL

gen,�

(⇧) by N
gen,�

(⇧), and the set
of (Parikh) vectors obtained from the multisets in mL

gen,�

(⇧) by Ps
gen,�

(⇧).
The families of sets Y

gen,�

(⇧), Y 2 {N,Ps}, computed by P systems with
at most m membranes working in the derivation mode � and with rules of type
X are denoted by Y

gen,�

OP
m

(X).
It is well known (for example, see [10]) that for any m � 1, for the types of

non-cooperative (ncoo) and cooperative (coo) rules we have

NREG = N
gen,maxpar

OP
m

(ncoo) ⇢ N
gen,maxpar

OP
m

(coo) = NRE.

For any of the families of (vectors of) natural numbers Y
gen,�

OP
m

(X) we
will add subscript l at the end to indicate that only systems with at most l rules
are considered, i.e., we write Y

gen,�

OP
m

(X)
l

. If any of the finite parameters like
m and l is unbounded, we replace it by ⇤ or even omit it.

2.4 P Systems with Catalysts

P systems with catalysts were already considered in the originating papers for
membrane systems, see [10]. In [5], two catalysts (three catalysts) were shown
to be su�cient for getting computational completeness with catalytic (purely
catalytic) P systems. Whether or not one catalyst (respectively two catalysts)
might already be enough to obtain computational completeness, is still one of
the most challenging open problems in the area of P systems. We only know
that purely catalytic P systems (working in the maximally parallel mode) with
only one catalyst simply correspond with sequential P systems with only one
membrane, hence, to multiset rewriting systems with context-free rules, and
therefore can only generate linear sets.

Using additional control mechanisms as, for example, priorities or promot-
ers/inhibitors, P systems with only one catalyst can be shown to be compu-
tationally complete, e.g., see Chapter 4 of [12]. On the other hand, additional
features for the catalyst may be taken into account; for example, we may use
bi-stable catalysts (catalysts switching between two di↵erent states).

For � 2 {sequ, asyn,maxpar}, the families of sets Y
gen,�

(⇧), Y 2 {N,Ps},
computed by catalytic and purely catalytic P systems with at mostmmembranes
and at most k catalysts are denoted by Y

gen,�

OP
m

(cat
k

) and Y
gen,�

OP
m

(pcat
k

),
respectively; from [5] we know that, with the results being sent to the environ-
ment (which means taking f = 0), we have

Y
gen,maxpar

OP1 (cat2) = Y
gen,maxpar

OP1 (pcat3) = Y RE.
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The task of generating a non-semilinear set by catalytic P systems is rather
complicated. Although catalytic P systems are known to be universal, a direct
translation of a register machine generating powers of 2 yields a rather big num-
ber of rules. Starting with the first example established in [14] using 54 rules,
the number of rules for a catalytic P system generating a non-semilinear set of
natural numbers was reduced to 32 in [15] and to 29 in [2]; finally, a construc-
tion for a catalytic P system generating a non-semilinear set of natural numbers
needing only 24 rules and a purely catalytic P system needing only 26 rules was
elaborated in [16]. At least for catalytic P systems, in this paper we again are
able to reduce the number of rules to 20.

2.5 P Systems with Toxic Objects

In many variants of (catalytic) P systems, for proving computational complete-
ness it is common to introduce a trap symbol # for the case that the derivation
goes the wrong way as well as the rule # ! # (or c# ! c# with a catalyst c)
guaranteeing that the derivation will never halt. Yet most of these rules can be
avoided if we use toxic objects as introduced in [2]:

We specify a specific subset of toxic objects O
tox

; the P system is only allowed
to continue a computation from a configuration C by using an applicable multiset
of rules covering all copies of objects from O

tox

occurring in C; moreover, if
there exists no multiset of applicable rules covering all toxic objects, the whole
computation having yielded the configuration C is abandoned, i.e., no results
can be obtained from this computation.

For any variant of P systems, we add the set of toxic objects O
tox

and in
the specification of the families of sets of (vectors of) numbers generated by P
systems with toxic objects using rules of type X we add the subscript tox to O,
thus obtaining the families Y

gen,�

O
tox

P
m

(X), for any � 2 {sequ, asyn,maxpar},
Y 2 {N,Ps}, and m � 1.

Looking closer into the computational completeness proofs for catalytic P
systems given in [5], we see that the only non-cooperative rules used in the proofs
given there are rules involving the trap symbol. When going to purely catalytic
P systems, we realize that all rules involving the trap symbol are assigned to the
additional catalyst; hence, to generate any recursively enumerable set of natural
numbers we only need two catalysts for both catalytic P systems and purely
catalytic P systems:

PsRE = Ps
gen,maxpar

O
tox

P1(cat2) = Ps
gen,maxpar

O
tox

P1(pcat2).

For more details concerning P systems with toxic objects we refer the reader
to [2].

3 Small Catalytic P Systems

We now establish a new construction for simulating a register machine M =
(d,B, l0, lh, R) by a catalytic P system ⇧, with m  d being the number of
decrementable registers.
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For all d registers, n
i

copies of the symbol o
i

are used to represent the value
n
i

in register i, 1  i  d. For each of the m decrementable registers, we take
a catalyst c

i

and two specific symbols d
i

, e
i

, 1  i  m, for simulating SUB-
instructions on these registers. For every l 2 B, we use p

l

, and also its variants
p̄
l

, p̂
l

, p̃
l

for l 2 BSUB, where BSUB denotes the set of labels of SUB-instructions.

⇧ = (O,C, µ = [ ]1, w1 = c1 . . . cmd1 . . . dmp1w0, R1, f = 1) where
O = C [D [ E [⌃ [ {#} [ {p

l

| l 2 B} [ {p̄
l

, p̂
l

, p̃
l

| l 2 BSUB},
C = {c

i

| 1  i  m},
D = {d

i

| 1  i  m},
E = {e

i

| 1  i  m},
⌃ = {o

i

| 1  i  d},
R1 = {p

j

! o
r

p
k

D
m

, p
j

! o
r

p
l

D
m

| j : (ADD(r), k, l) 2 R}
[ {p

j

! p̂
j

e
r

D
m,r

, p
j

! p̄
j

D
m,r

,
p̂
j

! p̃
j

D0
m,r

, p̄
j

! p
k

D
m

, p̃
j

! p
k

D
m

| j : (SUB(r), k, l) 2 R}
[ {c

r

o
r

! c
r

d
r

, c
r

d
r

! c
r

, c
r�m1er ! c

r�m1 | 1  r  m},
[ {d

r

! #, c
r

e
r

! c
r

# | 1  r  m}
[ {# ! #}.

Here r�
m

1 for r < m simply is r+1, whereas for r = m we define m�
m

1 = 1;
w0 stands for additional input present at the beginning, for example, for the given
input in case of accepting systems.

Usually, every catalyst c
i

, i 2 {1, . . . ,m}, is kept busy with the symbol d
i

using the rule c
i

d
i

! c
i

, as otherwise the symbols d
i

would have to be trapped
by the rule d

i

! #, and the trap rule # ! # then enforces an infinite non-
halting computation. Only during the simulation of SUB-instructions on register
r the corresponding catalyst c

r

is left free for decrementing or for zero-checking
in the second step of the simulation, and in the decrement case both c

r

and its
“coupled” catalyst c

r�m1 are needed to be free for specific actions in the third
step of the simulation.

For the simulation of instructions, we use the following shortcuts:

D
m

=
Q

i2[1..m] di,

D
m,r

=
Q

i2[1..m]\{r} di,

D0
m,r

=
Q

i2[1..m]\{r,r�m1} di.

The HALT-instruction labeled l
h

is simply simulated by not introducing the
corresponding state symbol p

lh , i.e., replacing it by �, in all rules defined in R1.
Each ADD-instruction j : (ADD(r), k, l), for r 2 {1, . . . , d}, can easily be sim-

ulated by the rules p
j

! o
r

p
k

D
m

and p
j

! o
r

p
l

D
m

; in parallel, the rules
c
i

d
i

! c
i

, 1  i  m, have to be carried out, as otherwise the symbols d
i

would
have to be trapped by the rules d

i

! #.
Each SUB-instruction j : (SUB(r), k, l), is simulated as shown in the table

listed below (the rules in brackets [ and ] are those to be carried out in case of
a wrong choice):
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Simulation of the SUB-instruction j : (SUB(r), k, l) if
register r is not empty register r is empty
p
j

! p̂
j

e
r

D
m,r

p
j

! p̄
j

D
m,r

c
r

o
r

! c
r

d
r

[c
r

e
r

! c
r

#] c
r

should stay idle
p̂
j

! p̃
j

D0
m,r

p̄
j

! p
k

D
m

c
r

d
r

! c
r

[d
r

! #] [d
r

! #]
p̃
j

! p
k

D
m

c
r�m1er ! c

r�m1

In the first step of the simulation of each instruction (ADD-instruction, SUB-
instruction, and even HALT-instruction) due to the introduction of D

m

in the
previous step (we also start with that in the initial configuration) every catalyst
c
r

is kept busy by the corresponding symbol d
r

, 1  r  m. Hence, this also
guarantees that the zero-check on register r works correctly enforcing d

r

! #
to be applied, as in the case of a wrong choice two symbols d

r

are present.
In sum we have obtained the following result:

Theorem 1. For any register machine M = (d,B, L0, lh, R), with m  d being

the number of decrementable registers, we can construct a catalytic P system

⇧ = (O,C, µ = [ ]1, w1, R1, f = 1)

simulating the computations of M such that

|R1|  ADD1(R) + 2⇥ ADD2(R) + 5⇥ SUB(R) + 5⇥m+ 1,

where ADD1(R) denotes the number of deterministic ADD-instructions in R,

ADD2(R) denotes the number of non-deterministic ADD-instructions in R, and

SUB(R) denotes the number of SUB-instructions in R.

For the purely catalytic case, one additional catalyst c
m+1 is needed to be

used with all the non-cooperative rules. Unfortunately, in this case a slightly
more complicated simulation of SUB-instructions is needed, see Sośık, 2015 ([16]),
where for catalytic P systems

|R1|  2⇥ ADD1(R) + 3⇥ ADD2(R) + 6⇥ SUB(R) + 5⇥m+ 1,

and for purely for catalytic P systems

|R1|  2⇥ ADD1(R) + 3⇥ ADD2(R) + 6⇥ SUB(R) + 6⇥m+ 1,

is shown.

Remark 1. On the other hand, exactly the same construction as elaborated
above can be used when allowing for m+ 2 catalysts, with catalyst c

m+1 being
used with the state symbols and catalyst c

m+2 being used with the trap rules.

Finally we mention that the simulation results established above hold true
for register machines and their corresponding (purely) catalytic P systems in
the case of generating or accepting systems and even for systems computing
functions or relation on natural numbers.
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4 Small Catalytic P Systems – an Example

For constructing specific examples, the construction elaborated above can even
be refined a little bit in order to more reduce the number of rules needed. We will
now show this by constructing a P system generating the set of natural numbers
{2n | n � 1}.

In fact, we are going to simulate a generalized register machine (a variant
of the model of generalized counter automata as described in [3]): a generalized

SUB-instruction in the generalized register machine M = (d,B, l0, lh, P ) is of
the form j : (SUB(r), {X1, · · · , Xk

}, {Y1, · · · , Yh

}), where each X
i

, 1  i  k,
and Y

i

0 , 1  i0  h, is of the form {ADD(r1)n1 , · · · , ADD(r
p

)np}l with l 2 B
and r

q

2 [1..d], n
q

� 1, 1  q  p, p � 0. For sake of conciseness, we omit
the empty set in these notations and write ADD(r1)n1 · · · ADD(r

p

)np instead of
{ADD(r1)n1 , · · · , ADD(r

p

)np}.
Starting with 1 in register 2, we use the following program (using the notions

of generalized SUB-instructions):

1 : (SUB(2), {ADD(1)2ADD(3)1}, {2, ADD(3)3})
2 : (SUB(1), {ADD(2)2}, {1})
3 : HALT

With using the generalized SUB-instruction 1, the contents of register 1 is
doubled in register 1 and copied to register 3, after which one may go to 3 and
halt after having added 1 to register 3 in this final step, or copy back the contents
of register 1 into register 2 using the generalized SUB-instruction 2. Then the
cycle starts again with using the generalized SUB-instruction 1. We observe that
this generalized register machine computes exactly the set of natural numbers
{2n | n � 1}; its computations can be simulated by the following P system ⇧.

⇧ = (O,C, µ = [ ]1, w1 = c1c2d1p̂2e2o2, R1, f = 1) where
O = C [ � [ {#} [ {p

l

, p̄
l

, p̂
l

, p̃
l

| 1  l  2},
C = {c

i

| 1  i  m},
� = {d

i

, e
i

| 1  i  2} [ {o
i

| 1  i  3},

and R1, besides the trap rule # ! #, contains the rules depicted in the following
two tables:

Simulation of the SUB-instruction
(SUB(2), {ADD(1)2ADD(3)1}, {2, ADD(3)3}) if

register 2 is not empty register 2 is empty
c2o2 ! c2d2 [c2e2 ! c2#] c2 should stay idle
p̂2 ! p̃2o12o3 p̄2 ! p̂1d2e1, p̄2 ! d1d2o3
c2d2 ! c2 [d2 ! #] [d2 ! #]
c1e2 ! c1
p̃2 ! p̂2d1e2, p̃2 ! p̄2d1
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Simulation of the SUB-instruction
(SUB(1), {ADD(2)2}, {1}) if

register 1 is not empty register 1 is empty
c1o1 ! c1d1 [c1e1 ! c1#] c1 should stay idle
p̂1 ! p̃1o2 p̄1 ! p̂2d1e2
c1d1 ! c1 [d1 ! #] [d1 ! #]
c2e1 ! c2
p̃1 ! p̂1d2e1, p̃1 ! p̄1d2

In contrast to the general construction, we here omit the first line of the table
of SUB-instructions, already generating the situation of the second line in the final
step of the simulation of the preceding instruction. It is important to mention
that at the beginning we know that we can start with decrementing register 2,
and moreover, each of the two registers is going to be emptied completely as soon
as we start to decrement it. Finally, we have to remark that after the execution
of the rule p̄2 ! d1d2o3 the simulation of the generalized register machine has
ended, but the P system still has to continue with applying the rules c2o2 ! c2d2
and c2d2 ! c2 in a cycle, thus emptying register 2, in order to halt correctly.

In sum, the total number of rules in R1 is 20, i.e.,

{2n | n � 1} 2 N
gen,maxpar

OP
m

(cat2)20 \N
gen,maxpar

O
tox

P
m

(cat2)17 ,

as in the toxic case, only the objects d1, d2,# are toxic, hence, only three rules
can be saved, again yielding 17 rules, the same number as already obtained with
the construction given in [2].

5 Small Catalytic Universal P Systems

In this section we establish various results for universal catalytic P systems,
thereby improving several results from [3].

5.1 Generalized Counter Automata

For the descriptional complexity results established in the following, we define
and use the concept of generalized counter automata (similar to the ones from
[1] and [3]).

We now consider an extended variant of register machines called generalized

counter automaton, written M = (d,B,Q, q
i

, q
h

, P ), where B is the set of labels,
Q is a set of states, q

i

is the initial state, q
h

is the final state, and P contains
the more general type of instructions j : (q,M�, N,M+, q0). Let R denote the
set of registers 1, · · · , d; then in the instruction j : (q,M�, N,M+, q0) q, q0 2 Q
are states, N ✓ R is a set of registers, and M+,M� are multisets over R. A
generalized counter automaton now applies such an instruction j as follows: first,
for all r 2 R with M�(r) > 0, M�(r) is subtracted from register r (if at least
one resulting value would be negative, the machine is blocked without producing
any result); second, every r in the subset N of registers is checked to be zero
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(if at least one of them is found to be non-zero, the machine is blocked without
producing any result); third, for each r 2 R, M+(r) is added to the contents of
register r; finally the state changes to q0.

Example 1. Consider the instruction j : (q, hri, {r}, hri, q0), which performs a 1-
test on register r, i.e., a transition from q to q0 if the value of register r is exactly
1, but leaving it unchanged: it decrements register r, then tests it for zero, and
finally increments it again.

In any derivation step, the generalized counter automaton,

M = (d,B,Q, q
i

, q
h

, P )

applies one instruction associated with the current state, chosen in a non-
deterministic way. The computation starts in the initial state q

i

, and we say
that it halts if the final state q

h

has been reached (which replaces the condition
of reaching the final HALT-instruction labeled by h).

In [6], Theorem 4, a universal sequential P system using 16 antiport rules
with forbidden context was described based on the universal register machine
U32 from [8], and based on this universal sequential P system with 16 antiport
rules with forbidden context a strongly universal generalized counter automaton
was given in [1]. In a similar way, we present the rules of a strongly universal
generalized counter automaton which is based on the universal register machine
U22 from [8] (see Figure 1) in Table 5.1. The inputs for U22 are given in register 1
for the machine to be simulated and in register 0 for the input to this machine.

However, for technical reasons, we have to make the following additional as-
sumptions, and we will call the corresponding systems weakly generalized counter

automata (or wGCA for short). Consider a coupling function f
c

, a bijective map-
ping from the set of registers to the same set. For each instruction, we require
that M� does not contain multiple copies of any register, and, moreover, the
sets supp(M�), fc(supp(M�)) and N are all disjoint. This requirement comes
from the fact that for the zerotest, we need the corresponding catalyst, while
for decrementing a register we need the corresponding catalyst and its coupled
catalyst, and our aim is to perform these simulations in parallel, which lets us
considerably reduce the number of rules. However, if this requirement is not
satisfied, then the generalized instruction can be split into simpler instructions
satisfying the requirement.

After having carefully inspected the Korec machines and the resulting GCA
from [3], we decided to use the following coupling function f

c

:

r : 0 1 2 3 4 5 6 7
f
c

(r) 6 5 7 4 3 1 0 2

Remark 2. For technical reasons, we have to produce the output in an additional
register 8 that only has increment instructions associated to it, but at the end
we need not worry about all other registers to be emptied in the end. For this
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Start:

q1

zR1ZM

R7P
q3

R6P
q6

q4 z

R5ZM

q7

z R6ZM

R5P
q9

R1P

q12

q10

z
R7ZM

q13

z R6ZM

R6P
q33q14

z
R4ZM

Instruction reader

q16

z R5ZM

q23

z
R2ZM

q25

z R0ZM

q18

z R5ZM
q27

z
R3ZM

R0P
q29

q20

z R5ZM

R4P
q22

Decoder

R2P
q30

R3P
q31

q32

zR4ZM Stop.

Simulation

block

Fig. 1. The strongly universal register machine U22.

purpose, the additional instructions 180 and 1800 are used, and � is the new
halting state.

Yet the rules 18, 180, and 1800 can even be replaced by the following rules 18
and 180 to reduce the complexity of the final output procedure:

18 : (q32, h0i, {4}, h8i, q32),
180 : (q32, hi, {0, 4}, hi,�)

This finally yields a total of 21 wGCA instructions. Notice, moreover, that
the instructions 2, 7, 11, 14, 16, and 180 are not decrementing; we will use this to
further decrease the number of rules. The goal of wGCA is to serve as a model
of easy and e�cient straightforward (i.e., without register encoding) simulation
of the strongly universal register machine URM22 established by Korec, also
taking advantage of parallel operations, but using the only one catalyst per
register and no additional catalysts. The approach is pretty similar to how a
very small strongly universal system was constructed in [3] using 21 catalysts,
yet there two catalysts were used per register (and three copies of these catalyst
for the fifth register); hence, here we are saving catalysts at the expense of having
more rules.
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Table 1. Universal generalized counter automaton simulating URM22 from [8].

1 : (q1, h1i, {}, h7i, q1), 11 : (q18, hi, {3, 5}, h0i, q1),
2 : (q1, hi, {1}, h6i, q4), 12 : (q16, h0i, {2, 5}, hi, q1),
3 : (q4, h5i, {}, h6i, q4), 13 : (q16, h2i, {5}, hi, q32),
4 : (q4, h6i, {5}, h5i, q10), 14 : (q16, hi, {0, 2, 5}, hi, q32)
5 : (q10, h6, 7i, {}, h1, 5i, q10), 15 : (q18, h3i, {5}, hi, q32),
6 : (q10, h7i, {6}, h1i, q4), 16 : (q20, hi, {5}, h2, 3i, q32),
7 : (q10, hi, {6, 7}, hi, q1), 17 : (q32, h4i, {}, hi, q1),
8 : (q10, h4, 6i, {7}, hi, q1), 18 : (q32, hi, {4}, hi, qh),
9 : (q10, h5, 6i, {4, 7}, hi, q18), 180 : (qh, h0i, {}, h8i, qh),
10 : (q18, h5i, {}, hi, q20), 1800 : (qh, hi, {0}, hi,�)
100 : (q20, h5i, {}, h4i, q16),
1000 : (q16, h5i, {}, hi, q18).

5.2 Computational Completeness for Catalytic P Systems with
Multiple Catalysts

As it was already described above, 5m + 1 rules are associated with m decre-
mentable registers: # ! # and the following 5 rules for every register r:

c
r

o
r

! c
r

d
r

, c
r

d
r

! c
r

, c
r

e
r

! c
r

#, c
fc(r)er ! c

fc(r), d
r

! #.

The rest of this section is dedicated to the discussion of the rule complexity of
simulating one wGCA instruction.

For an instruction j : (q
i

,M�, N,M+, qk) of a wGCA, we define

D
m,M�,N

=
Q

i2[1..m]\(supp(M�)[N) di,

D0
m,M�

=
Q

i2[1..m]\{r,c(r)|r2M�} di, and

E
M� =

Q

r2M�
e
r

.

We first consider the case when the instruction j of a wGCA is non-
decrementing, i.e., if M� is empty. An instruction j : (q

i

, hi, N,M+, qk) then
is simulated by the following two rules:

q
i

! p
j

D
m,;,N , p

j

! q
k

D
m

O
M+ ,

where D
m,;,N =

Q

i2{1,··· ,m}\N d
i

, and O
M+ is the multiset of objects o

i

for all
copies of i in M+.

For a general instruction j of a wGCA, j : (q
i

,M�, N,M+, qk), it su�ces to
have the following three rules:

q
i

! p
j

E
M�Dm,M�,N

, p
j

! p
j

D0
m,M� , p

j

! q
k

D
m

O
M+ .

Remark 3. Finally, for eventually saving some more rules it might remain to
check if we could skip the first step of the next instruction, for example by
producing p

j

0D
m,M

0
�,N

0O
M+ instead of q

k

D
m

O
M+ , where j0, M 0

� and N 0 stand
for the label, decrementing multiset and zerotesting set of the next generalized
instruction, and if this skip actually could save instructions.
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Remark 4. In case of toxic objects, only the m + 1 rules d
r

! # and # ! #
can be saved.

5.3 A Universal Catalytic P System with 8 Catalysts

We take the wGCA presented above, having in total 15 decrementing instruc-
tions and 6 non-decrementing ones. Consider the simulation from Subsection 5.2:
it uses 3 rules per decrementing wGCA instruction, 2 rules per non-decrementing
wGCA instruction, plus 5 rules for each of the 8 working registers 0 to 7 (regis-
ter 8 is not counted here) plus one rule. This yields a strongly universal catalytic
P system with 8 catalysts and 3⇥ 15 + 2⇥ 6 + 5⇥ 8 + 1 = 98 rules.

For conciseness, we now will denote the multiset of objects d
r

, 0  r  7,
r 62 M by d(M), and omit the braces denoting the set M :

⇧ = (O,⌃, C = {c
r

| 0  r  7}, µ = [ ]1, w1, R1, f = 1),

O = {o
r

, d
r

, e
r

| 0  r  7} [ {#, p100 , p1000 , p180 , o8} [ {p
j

| 1  j  18}
[ {p0

j

| j 2 {1, 3, 4, 5, 6, 8, 9, 10, 100, 1000, 12, 13, 15, 17, 180}}
[ {q1, q4, q10, q16, q18, q20, q32},

R1 = R [ {# ! #} [ {c
r

o
r

! c
r

d
r

, c
r

d
r

! c
r

, c
r

e
r

! c
r

#,

c
fc(r)er ! c

fc(r), d
r

! # | 0  r  7},
w1 = q1d(), and the rules from the set R are listed below:

q1 ! p1e1d(1), p1 ! p01d(1, 5), p01 ! q1d()o7,
q1 ! p2d(1), p2 ! q4d()o6,
q4 ! p3e5d(5), p3 ! p03d(1, 5), p03 ! q4d()o6,
q4 ! p4e6d(5, 6), p4 ! p04d(0, 6), p04 ! q10d()o5,
q10 ! p5e6e7d(6, 7), p5 ! p05d(0, 2, 6, 7), p05 ! q10d()o1o5,
q10 ! p6e7d(6, 7), p6 ! p06d(2, 7), p06 ! q4d()o1,
q10 ! p7d6,7, p7 ! q1d(),
q10 ! p8e4e6d(4, 6, 7), p8 ! p08d(0, 3, 4, 6), p08 ! q1d(),
q10 ! p9e5e6d(4, 5, 6, 7), p9 ! p09d(0, 1, 5, 6), p09 ! q18d(),
q18 ! p10e5d(5), p10 ! p010d(1, 5), p010 ! q20d(),
q20 ! p100e5d(5), p100 ! p0100d(1, 5), p0100 ! q16d(),
q16 ! p1000e5d(5), p1000 ! p01000d(1, 5), p01000 ! q18d(),
q18 ! p11d(3, 5), p11 ! q1d()o0,
q16 ! p12e0d(0, 2, 5), p12 ! p012d(0, 6), p012 ! q1d(),
q16 ! p13e2d(2, 5), p13 ! p013d(2, 7), p013 ! q32d(),
q16 ! p14d(0, 2, 5), p14 ! q32d(),
q18 ! p15e3d(3, 5), p15 ! p015d(3, 4), p015 ! q32d(),
q20 ! p16d(5), p16 ! q32d()o2o3,
q32 ! p17e4d(4), p17 ! p017d(3, 4), p017 ! q1d(),
q32 ! p18e0d(0, 4), p18 ! p018d(0, 6), p018 ! q32d()o8,
q32 ! p180d(0, 4), p180 ! d().
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In addition to w1, to the initial configuration we add the number of sym-
bols o1 corresponding with the code of the machine to be simulated and the
number of symbols o0 corresponding with the input number to this machine; the
result of the simulation is represented by the number of symbols o8 in the final
configuration.

This finally yields a catalytic P system with 8 catalysts and only 98 rules,
thus improving the previously known best result of 185 rules from [3].

According to Remark 4, when using toxic objects, this number of 98 rules
can be reduced by 9 to 89 rules, thus improving the previously known best result
of 120 rules from [3].

5.4 Purely Catalytic P Systems

As already explained in Remark 1 for the general case. it is not di�cult to
see from the construction in Subsection 5.2 that the rule complexity of the
constructions obtained there for cat

m

also holds for pcat
m+2, with catalyst c

m+1

being used with the state symbols and catalyst c
m+2 being used with the trap

rules. Hence, any generalized register machine with m decrementable registers
and s generalized SUB-instructions can be simulated by a purely catalytic P
system with m+ 2 catalysts and 5s+ 5m+ 1 rules.

It is possible to save one catalyst by using more rules, as it follows from
the construction given in [16] that any generalized register machine with m
decrementable registers and s generalized SUB-instructions can be simulated by
a purely catalytic P system withm+1 catalysts and 6s+6m+1 rules. In that way,
one catalyst can be saved at the cost of having more rules, i.e, we get a universal
purely catalytic P system with 9 catalysts and with 6 ⇥ 16 + 6 ⇥ 8 + 1 = 145
rules (thus improving the result of 185 rules from [3]).

6 Summary

In this paper we have again illustrated that a rather small number of rules is
needed for obtaining computational completeness and to get some specific non-
semilinear sets of natural numbers with catalytic P systems; as an example, we
have shown that only 20 rules are needed to generate the set of natural numbers
{2n | n � 1}, thus again improving the result from [16] where 24 rules were shown
to be su�cient for generating a similar non-semilinear set of natural numbers.

We also have improved the number of rules needed for a universal catalytic
P system simulating the universal register machine URM22 of Korec to 98 rules
and to 89 rules for the case of using toxic objects.
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4. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer,
1989.

5. R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally universal P systems
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ference, CMC 2013, Chişinău, Republic of Moldova, August 20–23, 2013, Revised
Selected Papers. Lecture Notes in Computer Science 8340, Springer, 2014, 173–188.

8. I. Korec: Small universal register machines. Theoretical Computer Science 168,
1996, 267–301.

9. M.L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cli↵s, New Jersey, USA, 1967.
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Abstract. We consider extended spiking neural P systems with the ad-
ditional possibility of so-called “white hole rules”, which send the com-
plete contents of a neuron to other neurons, and we prove that this exten-
sion of the original model can easily simulate register machines. Based
on this proof, we then define red-green variants of these extended spik-
ing neural P systems with white hole rules and show how to go beyond
Turing with these red-green systems.

1 Introduction

Based on the biological background of neurons sending electrical impulses along
axons to other neurons, several models were developed in the area of neural
computation, e.g., see [18], [19], and [11]. In the area of P systems, the model
of spiking neural P systems was introduced in [16]. Whereas the basic model
of membrane systems, see [22], reflects hierarchical membrane structures, the
model of tissue P systems considers cells to be placed in the nodes of a graph.
This variant was first considered in [24] and then further elaborated, for example,
in [10] and [20]. In spiking neural P systems, the cells are arranged as in tissue
P systems, but the contents of a cell (neuron) consists of a number of so-called
spikes, i.e., of a multiset over a single object. The rules assigned to a neuron allow
us to send information to other neurons in the form of electrical impulses (also
called spikes) which are summed up at the target neuron; the application of the
rules depends on the contents of the neuron and in the general case is described
by regular sets. As inspired from biology, the neuron sending out spikes may
be “closed” for a specific time period corresponding to the refraction period of
a neuron; during this refraction period, the neuron is closed for new input and
cannot get excited (“fire”) for spiking again.
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The length of the axon may cause a time delay before a spike arrives at
the target. Moreover, the spikes coming along di↵erent axons may cause e↵ects
of di↵erent magnitude. All these biologically motivated features were included
in the model of extended spiking neural P systems considered in [1], the most
important theoretical feature being that neurons can send spikes along the axons
with di↵erent magnitudes at di↵erent moments of time. In [30], spiking neural P
systems with weights on the axons and firing threshold were investigated, where
the values of these weights and firing thresholds as well as the potential consumed
by each rule could be natural numbers, integer numbers, rational numbers, and
even (computable) real numbers.

In this paper, we will further extend the model of extended spiking neural P
systems by using so-called “white hole rules”, which allow us to use the whole
contents of a neuron and send it to other neurons, yet eventually multiplied by
some constant rational number.

In the literature, several variants how to obtain results from the computa-
tions of a spiking neural P system have been investigated. For example, in [16]
the output of a spiking neural P system was considered to be the time between
two spikes in a designated output neuron. It was shown how spiking neural
P systems in that way can generate any recursively enumerable set of natural
numbers. Moreover, a characterization of semilinear sets was obtained by spiking
neural P system with a bounded number of spikes in the neurons. These results
can also be obtained with even more restricted forms of spiking neural P systems,
e.g., no time delay (refraction period) is needed, as it was shown in [15]. In [6],
the generation of strings (over the binary alphabet 0 and 1) by spiking neural P
systems was investigated; due to the restrictions of the original model of spiking
neural P systems, even specific finite languages cannot be generated, but on the
other hand, regular languages can be represented as inverse-morphic images of
languages generated by finite spiking neural P systems, and even recursively enu-
merable languages can be characterized as projections of inverse-morphic images
of languages generated by spiking neural P systems. The problems occurring in
the proofs are also caused by the quite restricted way the output is obtained
from the output neuron as sequence of symbols 0 and 1. The strings of a regular
or recursively enumerable language could be obtained directly by collecting the
spikes sent by specific output neurons for each symbol.

In the extended model considered in [1], a specific output neuron was used
for each symbol. Computational completeness could be obtained by simulating
register machines as in the proofs elaborated in the papers mentioned above, yet
in an easier way using only a bounded number of neurons. Moreover, regular
languages could be characterized by finite extended spiking neural P systems;
again, only a bounded number of neurons was needed.

In this paper, we now extend this model of extended spiking neural P systems
by also using so-called “white hole rules”, which may send the whole contents
of a neuron along its axons, eventually even multiplied by a (positive) rational
number. In that way, the whole contents of a neuron can be multiplied by a
rational number, in fact, multiplied with or divided by a natural number. Hence,
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even one single neuron is able to simulate the computations of an arbitrary
register machine.

The idea of consuming the whole contents of a neuron by white hole rules is
closely related with the concept of the exhaustive use of rules, i.e., an enabled
rule is applied in the maximal way possible in one step; P systems with the
exhaustive use of rules can be used in the usual maximally parallel way on the
level of the whole system or in the sequential way, for example, see [29] and [28].
Yet all the approaches of spiking neural P systems with the exhaustive use of
rules are mainly based on the classic definitions of spiking neural P systems,
whereas the spiking neural P systems with white hole rules as investigated in [2]
are based on the extended model as introduced in [1]. In this paper we now use
this new model of spiking neural P systems with white hole rules together the
idea of considering infinite computations on finite inputs, which will allow us to
“go beyond Turing”.

Variants of how to “go beyond Turing” are discussed in [17], for example, the
definitions and results for red-green Turing machines can be found there. In [3]
the notion of red-green automata for register machines with input strings given
on an input tape (often also called counter automata) was introduced and the
concept of red-green P automata for several specific models of membrane systems
was explained. Via red-green counter automata, the results for acceptance and
recognizability of finite strings by red-green Turing machines were carried over
to red-green P automata. The basic idea of red-green automata is to distinguish
between two di↵erent sets of states (red and green states) and to consider infinite
runs of the automaton on finite input objects (strings, multisets); allowed to
change between red and green states more than once, red-green automata can
recognize more than the recursively enumerable sets (of strings, multisets), i.e.,
in that way we can “go beyond Turing”. In the area of P systems, first attempts
to do that can be found in [5] and [27]. Computations with infinite words by P
automata were investigated in [8].

The rest of the paper is organized as follows: In the next section, we recall
some preliminary notions and definitions from formal language theory, especially
the definition and some well-known results for register machines. Then we de-
fine red-green Turing machines and red-green register machines and recall some
results from [3]. In Section 4 we recall the definitions of the extended model
of spiking neural P systems as considered in [1] as well as the most important
results established there.

In Section 5, we define the model of extended spiking neural P systems ex-
tended by the use of white hole rules as introduced in [2]. We prove that the
computations of an arbitrary register machine can be simulated by only one
single neuron equipped with the most powerful variant of white hole rules, i.e.,
extended spiking neural P systems equipped with white hole rules are even more
powerful than extended spiking neural P systems, which need (at least) two neu-
rons to be able to simulate the computations of an arbitrary register machine.
Based on this result, we define the red-green variant of spiking neural P systems
with white hole rules and show that their computational power is similar to the
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computational power of red-green register machines. A short summary of the
results we obtained concludes the paper.

2 Preliminaries

In this section we recall the basic elements of formal language theory and espe-
cially the definitions and results for register machines; we here mainly follow the
corresponding section from [1] and [2].

For the basic elements of formal language theory needed in the following,
we refer to any monograph in this area, in particular, to [26]. We just list a
few notions and notations: V ⇤ is the free monoid generated by the alphabet V
under the operation of concatenation and the empty string, denoted by �, as
unit element; for any w 2 V ⇤, |w| denotes the number of symbols in w (the
length of w). N+ denotes the set of positive integers (natural numbers), N is the
set of non-negative integers, i.e., N = N+ [ {0}, and Z is the set of integers, i.e.,
Z = N+ [ {0} [�N+. The interval of non-negative integers between k and m is
denoted by [k..m], and k ·N+ denotes the set of positive multiples of k. Observe
that there is a one-to-one correspondence between a set M ✓ N and the one-
letter language L (M) = {an | n 2 M}; e.g., M is a regular (semilinear) set of
non-negative integers if and only if L (M) is a regular language. By FIN

�
Nk

�
,

REG
�
Nk

�
, and RE

�
Nk

�
, for any k 2 N, we denote the sets of subsets of Nk

that are finite, regular, and recursively enumerable, respectively.
By REG (REG (V )) and RE (RE (V )) we denote the family of regular and

recursively enumerable languages (over the alphabet V , respectively). By  T (L)
we denote the Parikh image of the language L ✓ T ⇤, and by PsFL we denote
the set of Parikh images of languages from a given family FL. In that sense,
PsRE (V ) for a k-letter alphabet V corresponds with the family of recursively
enumerable sets of k-dimensional vectors of non-negative integers.

2.1 Register Machines

The proofs of the results establishing computational completeness in the area
of P systems often are based on the simulation of register machines; we refer to
[21] for original definitions, and to [7] for the definitions we use in this paper:

An n-register machine is a tuple M = (n,B, l0, lh, P ), where n is the number
of registers, B is a set of labels, l0 2 B is the initial label, lh 2 B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

• l1 : (ADD (r) , l2, l3), with l1 2 B\ {lh}, l2, l3 2 B, 1  j  n.
Increases the value of register r by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.

• l1 : (SUB (r) , l2, l3), with l1 2 B\ {lh}, l2, l3 2 B, 1  j  n.
If the value of register r is zero then jump to instruction l3; otherwise, the
value of register r is decreased by one, followed by a jump to instruction l2.
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The two cases of this instruction are usually called zero-test and decrement,
respectively.

– lh : halt (HALT instruction)
Stop the machine. The final label lh is only assigned to this instruction.

A (non-deterministic) register machine M is said to generate a vector
(s1, · · · , s�) of natural numbers if, starting with the instruction with label l0
and all registers containing the number 0, the machine stops (it reaches the in-
struction lh : halt) with the first � registers containing the numbers s1, · · · , s�
(and all other registers being empty).

Without loss of generality, in the succeeding proofs we will assume that in
each ADD instruction l1 : (ADD (r) , l2, l3) and in each SUB instruction l1 :
(SUB (r) , l2, l3) the labels l1, l2, l3 are mutually distinct (for a short proof see
[10]).

The register machines are known to be computationally complete, equal in
power to (non-deterministic) Turing machines: they generate exactly the sets
of vectors of non-negative integers which can be generated by Turing machines,
i.e., the family PsRE.

Based on the results established in [21], the results proved in [7] and [9]
immediately lead to the following result:

Proposition 1. For any recursively enumerable set L ✓ N� of vectors of non-
negative integers there exists a non-deterministic (� + 2)-register machine M
generating L in such a way that, when starting with all registers 1 to � + 2
being empty, M non-deterministically computes and halts with ni in registers i,
1  i  �, and registers �+1 and �+2 being empty if and only if (n1, ..., n�) 2 L.
Moreover, the registers 1 to � are never decremented.

When considering the generation of languages, we can use the model of a
register machine with output tape, which also uses a tape operation:

– l1 : (write (a) , l2)
Write symbol a on the output tape and go to instruction l2.

We then also specify the output alphabet T in the description of the register
machine with output tape, i.e., we write M = (m,B, l0, lh, P, T ).

The following result is folklore, too (e.g., see [21]):

Proposition 2. Let L ✓ T ⇤ be a recursively enumerable language. Then L can
be generated by a register machine with output tape with 2 registers. Moreover,
at the beginning and at the end of a successful computation generating a string
w 2 L both registers are empty, and finally, only successful computations halt.

2.2 The Arithmetical Hierarchy

The Arithmetical Hierarchy (e.g., see [4]) is usually developed with the univer-
sal (8) and existential (9) quantifiers restricted to the integers. Levels in the
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Arithmetical Hierarchy are labeled as ⌃n if they can be defined by expressions
beginning with a sequence of n alternating quantifiers starting with 9; levels
are labeled as ⇧n if they can be defined by such expressions of n alternating
quantifiers that start with 8. ⌃0 and ⇧0 are defined as having no quantifiers and
are equivalent. ⌃1 and ⇧1 only have the single quantifier 9 and 8, respectively.
We only need to consider alternating pairs of the quantifiers 8 and 9 because
two quantifiers of the same type occurring together are equivalent to a single
quantifier.

3 Red-Green Automata

The exposition of this section mainly follows the corresponding section in [2].
In general, a red-green automaton M is an automaton whose set of inter-

nal states Q is partitioned into two subsets, Qred and Qgreen, and M operates
without halting. Qred is called the set of “red states”, Qgreen the set of “green
states”. Moreover, we shall assume M to be deterministic, i.e., for each config-
uration there exists exactly one transition to the next one.

3.1 Red-Green Turing Machines

Red-green Turing machines, see [17], can be seen as a type of !-Turing machines
on finite inputs with a recognition criterion based on some property of the set(s)
of states visited (in)finitely often, in the tradition of !-automata (see [8]), i.e.,
we call an infinite run of the Turing machine M on input w recognizing if and
only if

– no red state is visited infinitely often and
– some green states (one or more) are visited infinitely often.

A set of strings L ⇢ ⌃⇤ is said to be accepted byM if and only if the following
two conditions are satisfied:

(a) L = {w | w is recognized by M}.
(b) For every string w /2 L, the computation of M on input w eventually stabi-

lizes in red; in this case w is said to be rejected.

The phrase “mind change” is used in the sense of changing the color, i.e.,
changing from red to green or vice versa.

The following results were established in [17]:

Theorem 1. A set of strings L is recognized by a red-green Turing machine
with one mind change if and only if L 2 ⌃1, i.e., if L is recursively enumerable.

Theorem 2. (Computational power of red-green Turing machines)

(a) Red-green Turing machines recognize exactly the ⌃2-sets of the Arithmetical
Hierarchy.

(b) Red-green Turing machines accept exactly those sets which simultaneously
are ⌃2- and ⇧2-sets of the Arithmetical Hierarchy.
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3.2 Red–Green Register Machines

In [3], similar results as for red-green Turing machines were shown for red-green
counter automata and register machines, respectively.

As it is well-known folklore, e.g., see [21], the computations of a Turing
machine can be simulated by a counter automaton with (only two) counters;
in this paper, we will rather speak of a register machine with (two) registers
and with string input. As for red-green Turing machines, we can also color the
“states”, i.e., the labels, of a register machine M = (m,B, l0, lh, P, Tin) by the
two colors red and green, i.e., partition its set of labels B into two disjoint
sets Bred (red “states”) and Bgreen (green “states”), and we then write RM =
(m,B,Bred, Bgreen, l0, P, Tin), as we can omit the halting label lh.

The following two lemmas were proved in [3]; the step from red-green Turing
machines to red-green register machines is important for the succeeding sections,
as usually register machines are simulated when proving a model of P systems
to be computationally complete. Therefore, in the following we always have in
mind this specific relation between red-green Turing machines and red-green
register machines when investigating the infinite behavior of specific models of
P automata, as we will only have to argue how red-green register machines can
be simulated.

Lemma 1. The computations of a red-green Turing machine TM can be simu-
lated by a red-green register machine RM with two registers and with string input
in such a way that during the simulation of a transition of TM leading from a
state p with color c to a state p0 with color c0 the simulating register machine
uses instructions with labels (“states”) of color c and only in the last step of the
simulation changes to a label (“state”) of color c0.

Lemma 2. The computations of a red-green register machine RM with an
arbitrary number of registers and with string input can be simulated by a red-green
Turing machine TM in such a way that during the simulation of a computation
step of RM leading from an instruction with label (“state”) p with color c to an
instruction with label (“state”) p0 with color c0 the simulating Turing machine
stays in states of color c and only in the last step of the simulation changes to a
state of color c0.

As an immediate consequence, the preceding two lemmas yield the charac-
terization of ⌃2 and ⌃2 \⇧2 by red-green register machines as Theorem 2 does
for red-green Turing machines, see [3]:

Theorem 3. (Computational power of red-green register machines)

(i) A set of strings L is recognized by a red-green register machine with one
mind change if and only if L 2 ⌃1, i.e., if L is recursively enumerable.

(ii) Red-green register machines recognize exactly the ⌃2-sets of the Arithmeti-
cal Hierarchy.

(iii) Red-green register machines accept exactly those sets which simultaneously
are ⌃2- and ⇧2-sets of the Arithmetical Hierarchy.
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4 Extended Spiking Neural P Systems

The reader is supposed to be familiar with basic elements of membrane com-
puting, e.g., from [23] and [25]; comprehensive information can be found on the
P systems web page [31]. Moreover, for the motivation and the biological back-
ground of spiking neural P systems we refer the reader to [16]. The definition of
an extended spiking neural P system is mainly taken from [1], with the number
of spikes k still be given in the “classical” way as ak; later on, we simple will use
the number k itself only instead of ak.

The definitions given in the following are taken from [1].

Definition 1. An extended spiking neural P system (of degree m � 1) (an
ESNP system for short) is a construct ⇧ = (m,S,R) where

– m is the number of cells (or neurons); the neurons are uniquely identified
by a number between 1 and m (obviously, we could instead use an alphabet
with m symbols to identify the neurons);

– S describes the initial configuration by assigning an initial value (of spikes)
to each neuron; for the sake of simplicity, we assume that at the beginning
of a computation we have no pending packages along the axons between the
neurons;

– R is a finite set of rules of the form
�
i, E/ak ! P ; d

�
such that i 2 [1..m]

(specifying that this rule is assigned to neuron i), E ✓ REG ({a}) is the
checking set (the current number of spikes in the neuron has to be from E
if this rule shall be executed), k 2 N is the “number of spikes” (the energy)
consumed by this rule, d is the delay (the “refraction time” when neuron i
performs this rule), and P is a (possibly empty) set of productions of the
form (l, w, t) where l 2 [1..m] (thus specifying the target neuron), w 2 {a}⇤
is the weight of the energy sent along the axon from neuron i to neuron l,
and t is the time needed before the information sent from neuron i arrives
at neuron l (i.e., the delay along the axon). If the checking sets in all rules
are finite, then ⇧ is called a finite ESNP system.

Definition 2. A configuration of the ESNP system is described as follows:

– for each neuron, the actual number of spikes in the neuron is specified;
– in each neuron i, we may find an “activated rule”

�
i, E/ak ! P ; d0

�
waiting

to be executed where d0 is the remaining time until the neuron spikes;
– in each axon to a neuron l, we may find pending packages of the form (l, w, t0)

where t0 is the remaining time until |w| spikes have to be added to neuron l
provided it is not closed for input at the time this package arrives.

A transition from one configuration to another one now works as follows:

– for each neuron i, we first check whether we find an “activated rule”�
i, E/ak ! P ; d0

�
waiting to be executed; if d0 = 0, then neuron i “spikes”,

i.e., for every production (l, w, t) occurring in the set P we put the corre-
sponding package (l, w, t) on the axon from neuron i to neuron l, and after
that, we eliminate this “activated rule”

�
i, E/ak ! P ; d0

�
;
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– for each neuron l, we now consider all packages (l, w, t0) on axons leading
to neuron l; provided the neuron is not closed, i.e., if it does not carry an
activated rule

�
i, E/ak ! P ; d0

�
with d0 > 0, we then sum up all weights w in

such packages where t0 = 0 and add this sum of spikes to the corresponding
number of spikes in neuron l; in any case, the packages with t0 = 0 are
eliminated from the axons, whereas for all packages with t0 > 0, we decrement
t0 by one;

– for each neuron i, we now again check whether we find an “activated rule”�
i, E/ak ! P ; d0

�
(with d0 > 0) or not; if we have not found an “activated

rule”, we now may apply any rule
�
i, E/ak ! P ; d

�
from R for which the

current number of spikes in the neuron is in E and then put a copy of this
rule as “activated rule” for this neuron into the description of the current
configuration; on the other hand, if there still has been an “activated rule”�
i, E/ak ! P ; d0

�
in the neuron with d0 > 0, then we replace d0 by d0 � 1

and keep
�
i, E/ak ! P ; d0 � 1

�
as the “activated rule” in neuron i in the

description of the configuration for the next step of the computation.

After having executed all the substeps described above in the correct sequence,
we obtain the description of the new configuration. A computation is a sequence
of configurations starting with the initial configuration given by S. A computation
is called successful if it halts, i.e., if no pending package can be found along any
axon, no neuron contains an activated rule, and for no neuron, a rule can be
activated.

In the original model introduced in [16], in the productions (l, w, t) of a rule�
i, E/ak ! {(l, w, t)} ; d

�
, only w = a (for spiking rules) or w = � (for forgetting

rules) as well as t = 0 was allowed (and for forgetting rules, the checking set E
had to be finite and disjoint from all other sets E in rules assigned to neuron
i). Moreover, reflexive axons, i.e., leading from neuron i to neuron i, were not
allowed, hence, for (l, w, t) being a production in a rule

�
i, E/ak ! P ; d

�
for

neuron i, l 6= i was required. Yet the most important extension is that di↵erent
rules for neuron i may a↵ect di↵erent axons leaving from it whereas in the
original model the structure of the axons (called synapses there) was fixed. In
[1], the sequence of substeps leading from one configuration to the next one
together with the interpretation of the rules from R was taken in such a way that
the original model can be interpreted in a consistent way within the extended
model introduced in that paper. As mentioned in [1], from a mathematical point
of view, another interpretation would have been even more suitable: whenever
a rule

�
i, E/ak ! P ; d

�
is activated, the packages induced by the productions

(l, w, t) in the set P of a rule
�
i, E/ak ! P ; d

�
activated in a computation step

are immediately put on the axon from neuron i to neuron l, whereas the delay
d only indicates the refraction time for neuron i itself, i.e., the time period this
neuron will be closed. The delay t in productions (l, w, t) can be used to replace
the delay in the neurons themselves in many of the constructions elaborated, for
example, in [16], [24], and [6]. Yet as in (the proofs of computational completeness
given in) [1], we shall not need any of the delay features in this paper, hence we
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need not go into the details of these variants of interpreting the delays in more
details.

Depending on the purpose the ESNP system is to be used, some more fea-
tures have to be specified: for generating k-dimensional vectors of non-negative
integers, we have to designate k neurons as output neurons ; the other neurons
then will also be called actor neurons. There are several possibilities to define
how the output values are computed; according to [16], we can take the dis-
tance between the first two spikes in an output neuron to define its value. As in
[1], also in this paper, we take the number of spikes at the end of a successful
computation in the neuron as the output value. For generating strings, we do
not interpret the spike train of a single output neuron as done, for example, in
[6], but instead consider the sequence of spikes in the output neurons each of
them corresponding to a specific terminal symbol; if more than one output neu-
ron spikes, we take any permutation of the corresponding symbols as the next
substring of the string to be generated.

Remark 1. As already mentioned, there is a one-to-one correspondence between
(sets of) strings ak over the one-letter alphabet {a} and the corresponding
non-negative integer k. Hence, in the following, we will consider the checking
sets E of a rule

�
i, E/ak ! P ; d

�
to be sets of non-negative integers and write

k instead of ak for any w = ak in a production (l, w, t) of P . Moreover, if
no delays d or t are needed, we simply omit them. For example, instead of�
2,
�
ai
 
/ai !

�
(1, a, 0) ,

�
2, aj , 0

� 
; 0
�
we write (2, {i} /i ! {(1, 1) , (2, j)}).

4.1 ESNP Systems as Generating Devices

The following results were already proved in [1]:

Lemma 3. For any ESNP system where during any computation only a bounded
number of spikes occurs in the actor neurons, the generated language is regular.

Theorem 4. Any regular language L with L ✓ T ⇤ for a terminal alphabet T
with card (T ) = n can be generated by a finite ESNP system with n+1 neurons.
On the other hand, every language generated by a finite ESNP system is regular.

Corollary 1. Any semilinear set of n-dimensional vectors can be generated by
a finite ESNP system with n + 1 neurons. On the other hand, every set of n-
dimensional vectors generated by a finite ESNP system is semilinear.

Theorem 5. Any recursively enumerable language L with L ✓ T ⇤ for a terminal
alphabet T with card (T ) = n can be generated by an ESNP system with n + 2
neurons.

Corollary 2. Any recursively enumerable set of n-dimensional vectors can be
generated by an ESNP system with n+ 2 neurons.



Going Beyond Turing with ESNP Systems with White Hole Rules 27

5 ESNP Systems with White Hole Rules

In this section, we recall the definition of extended spiking neural P systems with
white hole rules as introduced in [2]. We will show that with this new variant of
extended spiking neural P systems, computational completeness can already be
obtained with only one actor neuron, by proving that the computations of any
register machines can already be simulated in only one neuron equipped with
the most general variant of white hole rules. Using this single actor neuron to
also extract the final result of a computation, we even obtain weak universality
with only one neuron.

As already mentioned in Remark 1, we are going to describe the checking
sets and the number of spikes by non-negative integers. The following definition
is an extension of Definition 1:

Definition 3. An extended spiking neural P system with white hole rules (of
degree m � 1) (in the following we shall simply speak of an EESNP system) is
a construct ⇧ = (m,S,R) where

– m is the number of cells (or neurons); the neurons are uniquely identified
by a number between 1 and m;

– S describes the initial configuration by assigning an initial value (of spikes)
to each neuron;

– R is a finite set of rules either being a white hole rule or a rule of the form
as already described in Definition 3 (i, E/k ! P ; d) such that i 2 [1..m]
(specifying that this rule is assigned to neuron i), E ✓ REG (N) is the
checking set (the current number of spikes in the neuron has to be from E
if this rule shall be executed), k 2 N is the “number of spikes” (the energy)
consumed by this rule, d is the delay (the “refraction time” when neuron i
performs this rule), and P is a (possibly empty) set of productions of the
form (l, w, t) where l 2 [1..m] (thus specifying the target neuron), w 2 N
is the weight of the energy sent along the axon from neuron i to neuron l,
and t is the time needed before the information sent from neuron i arrives
at neuron l (i.e., the delay along the axon). A white hole rule is of the form
(i, E/all ! P ; d) where all means that the whole contents of the neuron is
taken out of the neuron; in the productions (l, w, t), either w 2 N as before
or else w = (all + p) · q + z with p, q, z 2 Q; provided (c+ p) · q + z, where c
denotes the contents of the neuron, is non-negative, then b(c+ p) · q + zc is
the number of spikes put on the axon to neuron l.
If the checking sets in all rules are finite, then ⇧ is called a finite EESNP
system.

Allowing the white hole rules having productions being of the form w =
(all + p) · q+ z with p, q, z 2 Q is a very general variant, which can be restricted
in many ways, for example, by taking z 2 Z or omitting any of the rational
numbers p, q, z 2 Q or demanding them to be in N etc.

Obviously, every ESNP system also is an EESNP system, but without white
hole rules, and a finite EESNP system also is a finite ESNP system, as in this
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case the e↵ect of white hole rules is also bounded, i.e., even with allowing the
use of white hole rules, the following lemma as a counterpart of Lemma 3 is still
valid:

Lemma 4. For any EESNP system where during any computation only a
bounded number of spikes occurs in the actor neurons, the generated language is
regular.

Hence, in the following our main interest is in EESNP systems which really
make use of the whole power of white hole rules.

EESNP systems can also be used for computing functions, not only for gen-
erating sets of (vectors of) integer numbers. As a simple example, we show how
the function n 7! 2n+1 can be computed by a deterministic EESPNS, which only
has exactly one rule in each of its two neurons; the output neuron 2 in this case
is not free of rules.

Example 1. Computing n 7! 2n+1

(1,N+/1 ! {(2, 1)})
1

(2, 2 · N+ + 1/all ! {(2, (all � 1) · 2)})
2

Initial value = n Initial value = 2

The rule (2, 2 · N+ + 1/all ! {(2, (all � 1) · 2)}) could also be written as
(2, 2 · N+ + 1/all ! {(2, (all) · 2� 2)}). In both cases, starting with the input
number n (of spikes) in neuron 1, with each decrement in neuron 1, the contents
of neuron 2 (not taking into account the enabling spike from neuron 1) is dou-
bled. The computation stops with 2n+1 in neuron 1, as with 0 in neuron 1 no
enabling spike is sent to neuron 2 any more, hence, the firing condition is not
fulfilled any more.

5.1 Computational Completeness of EESNP Systems

The following main result was already established in [2].

Lemma 5. The computation of any register machine can be simulated in only
one single actor neuron of an EESPN system.

Proof. Let M = (n,B, l0, lh, P ) be an n-register machine, where n is the number
of registers, P is a finite set of instructions injectively labeled with elements from
the set of labels B, l0 is the initial label, and lh is the final label.

Then we can e↵ectively construct an EESNP system ⇧ = (m,S,R) simu-
lating the computations of M by encoding the contents ni of each register i,
1  i  n, as pni

i for di↵erent prime numbers pi. Moreover, for each instruction
(label) j we take a prime number qj , of course, also each of them being di↵erent
from each other and from the pi.

The instructions are simulated as follows:
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– l1 : (ADD (r) , l2, l3) (ADD instruction)
This instruction can be simulated by the rules
{(1, ql1 · N+/all ! {(1, all · qlipr/ql1)}) | 2  i  3} in neuron 1.

– l1 : (SUB (r) , l2, l3) (SUB instruction)
This instruction can be simulated by the rules
(1, ql1pr · N+/all ! {(1, all · ql2/ (ql1pr))}) and
(1, ql1 · N+ \ ql1pr · N+/all ! {(1, all · ql2/ql1)}) in neuron 1;
the first rule simulates the decrement case, the second one the zero test.

– lh : halt (HALT instruction)
This instruction can be simulated by the rule
(1, qlh · N+/all ! {(1, all · 1/qlh)}) in neuron 1.
In fact, after the application of the last rule, we end up with pm1

1 · · · pmn
n in

neuron 1, where (m1, · · · ,mn) is the vector computed by M and now, in the
prime number encoding, by ⇧ as well.

All the checking sets we use are regular, and the productions in all the white
hole rules even again yield integer numbers. ut

Remark 2. As the productions in all the white hole rules of the EESNP system
constructed in the preceding proof even again yield integer numbers, we could
also interpret this EESNP system as an ESNP system with exhaustive use of
rules:

The white hole rules in the EESNP system constructed in the previous proof
are of the general form

(1, q · N+/all ! {(1, all · p/q)})
with p and q being natural numbers. Each of these rules can be simulated in a
one-to-one manner by the rule

(1, q · N+/q ! p)
used in an ESNP system with one neuron in the exhaustive way.

Based on the preceding main result, i.e., Lemma 5, the following theorems
were proved in [2].

Theorem 6. Any recursively enumerable set of n-dimensional vectors can be
generated by an EESNP system with n+ 1 neurons.

Theorem 7. Any recursively enumerable language L with L ✓ T ⇤ for a terminal
alphabet T with card (T ) = n can be generated by an EESNP system with n+ 1
neurons.

6 Red-Green EESNP Systems

For defining a suitable model of red-green EESNP systems we have to consider
several constraints.

First of all, the computations should be deterministic, i.e., for any configura-
tion of the EESNP system ⇧ there should be at most one rule applicable in each
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neuron. This condition can be fulfilled syntactically by requiring the checking
sets of all the rules in each neuron to be disjoint.

Whereas in the generating case we had one output neuron for each possible
input symbol, these specific neurons now have to act as input neurons. As we
only want deterministic behavior to be considered now, we assume that in every
derivation step at most one input neuron spikes until the whole input is “read”,
but this input has to be made “on demand”, i.e., we imagine that the EESNP
system ⇧ sends out an input request to the environment which is answered in
the next step by the spiking of exactly one input neuron as long as the string
has not been “read” completely.

“Reading” the spiking of an input neuron into the single actor neuron means
that we have to be able to distinguish the signals coming from di↵erent input
neurons. Hence, the simplest variant to do this is to multiply the spike coming
from input neuron number k by k. Yet then we have to take into account that the
minimum value in the actor neuron must be bigger than the maximal number k,
i.e., the smallest prime number used for the prime number encoding must fulfill
this condition, and our encoding of the number ni now is chosen to be pini+1.

Finally, we have to define red and green “states” of the red-green EESNP
system; yet as we only have a finite number of rules in each neuron, each of
the possible vectors of rules represents a color; hence, the color of the current
configuration, i.e., its “state”, can be defined via the (unique) vector of rules to
be applied.

Based on the proof Lemma 5, we now can easily establish the following
results, similar to the results obtained for red-green register machines, see Lem-
mas 1 and 2 as well as Theorem 3:

Lemma 6. The computations of a red-green register machine RM with an
arbitrary number of registers and with string input can be simulated by a red-green
EESNP system ⇧ in such a way that during the simulation of a computation
step of RM leading from an instruction with label (“state”) p with color c to an
instruction with label (“state”) p0 with color c0 the simulating EESNP system ⇧
in states of color c and only in the last step of the simulation changes to a state
of color c0.

Lemma 7. The computations of a red-green EESNP system ⇧ can be simulated
by a red-green register machine RM with two registers and with string input in
such a way that during the simulation of a derivation step of ⇧ leading from a
state p with color c to a state p0 with color c0 the simulating register machine
uses instructions with labels (“states”) of color c and only in the last step of the
simulation changes to a label (“state”) of color c0.

As an immediate consequence, the preceding two lemmas yield the charac-
terization of ⌃2 and ⌃2 \⇧2 by red-green EESNP systems:

Theorem 8. (Computational power of red-green EESNP systems)

(i) A set of strings L is recognized by a red-green EESNP systems with one
mind change if and only if L 2 ⌃1, i.e., if L is recursively enumerable.
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(ii) Red-green EESNP systems recognize exactly the ⌃2-sets of the Arithmetical
Hierarchy.

(iii) Red-green EESNP systems accept exactly those sets which simultaneously
are ⌃2- and ⇧2-sets of the Arithmetical Hierarchy.

7 Conclusion

In this paper, we have shown that the model of extended spiking neural P systems
with white hole rules as introduced in [2] is computationally complete, but also
allows for a red-green variant and thus to “go beyond Turing”. Computational
completeness can already be obtained with only one actor neuron, and with the
red-green variant of extended spiking neural P systems with white hole rules
exactly the ⌃2-sets of the Arithmetical Hierarchy can be recognized.
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Abstract. P colonies were introduced in 2004 as an abstract computing
device evolved from membrane systems – a biologically motivated com-
putational massive parallel model. P colony is composed of independent
single membrane agents, reactively acting and evolving in a shared en-
vironment. The computational power of such computing devices is the
theme of numerous papers. In this paper we summarize the results ob-
tained for P colonies with bounded number of agents and programs, we
improve and add new results for P colonies with capacity two.

1 Introduction

P colonies were introduced in [10] as formal models of a computing device in-
spired by membrane systems ([13]) and by grammar systems called colonies ([8]).
This model intends to structure and functioning of a community of living organ-
isms in a shared environment. The independent organisms living in a P colony are
called agents. Each agent is given by a collection of objects embedded in a mem-
brane. The number of objects inside the agent is the same for each one of them.
The environment contains several copies of a basic environmental object denoted
by e. The number of the copies of e placed in the environment is su�cient for
every computation.

A set of programs is associated with each agent. The program determines
the activity of the agent by rules. In every moment of computation all the objects
inside of the agent are being either evolved (by an evolution rule) or transported
(by a communication rule). Two such rules can also be combined into checking
rule which specifies two possible actions: if the first rule is not applicable then
the second one should be applied. So it sets the priority between two rules.

The computation starts in the initial configuration. Using their programs
the agents can change their objects and possibly objects in the environment.
This gives possibility to a↵ect the behaviour of the other agents in next steps
of computation. In each step of the computation, each agent with at least one
applicable program non-deterministically chooses one of them and executes it.
The computation halts when no agent can apply any of its programs. The result
of the computation is given by the number of some specific objects present at
the environment at the end of the computation.
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There are several di↵erent ways used how to define the initial state of the com-
putation. (1) At the beginning of computation the environment and all agents
contain only copies of object e. (2) All the agents can contain various objects
at the beginning of computation - the agents are in di↵erent initial states. The
environment contains only copies of object e. (3) Only environment can contain
objects di↵erent from the object e.

The P colonies were studied in conjunction with three parameters: (1) the
number of objects inside the agent – the capacity of the P colony – (2) the
number of agents in P colony – the degree of the P colony – (3) the maximal
number of programs associated with one agent – the height of the P colony. In
following results the number of necessary agents or the necessary programs stays
unbounded to reach computational completeness.

In [7, 9, 10] the authors study P colonies with two objects inside the agents.
In this case programs consist of two rules, one for each object. If the former
of these rules is an evolution and the latter is a communication or checking,
we speak about restricted P colonies. If also another combination of the types
of the rules is used, we obtain non-restricted P colonies. The restricted P colonies
with the checking rules are computationally complete [7].

In the paper [6] the authors use P colonies with the third type of initial
configuration to simulate small universal register machines introduced in [11] to
bound all parameters in computationally complete classes of P colonies. This
rises a question if the P colonies introduced in results with one “unbounded”
parameter cannot be optimized to bounded parameters.

We start with definitions in Section 2. In Section 3 we will deal with P colonies
using checking programs with two objects inside each agent. Homogeneous P col-
onies with capacity two without use of checking programs are studied in Section
4.

2 Definitions

Throughout the paper we assume the reader to be familiar with the basics
of the formal language theory. For more information on membrane computing,
we recommended [14]. We briefly summarize notations used in the present paper.

We use NRE to denote the family of the recursively enumerable sets of non-
negative integers and N to denote the set of non-negative integers.

Let ⌃ be the alphabet. Let ⌃⇤ be the set of all words over ⌃ (including
the empty word "). We denote the length of the word w 2 ⌃⇤ by |w| and
the number of occurrences of the symbol a 2 ⌃ in w by |w|

a

.
A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not

necessarily finite) set of objects and f is a mapping f : V ! N ; f assigns to each
object in V its multiplicity in M . The set of all finite multisets over the finite
set V is denoted by V ⇤. Any finite multiset M over V can be represented as
a string w over alphabet V with |w|

a

= f
M

(a) for all a 2 V . Obviously, all
words obtained from w by permuting the letters can also represent the same M ,
and " represents the empty multiset.
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2.1 P colonies

We briefly recall the notion of P colonies introduced in [10]. A P colony consists of
agents and environment. Both the agents and the environment contain objects.
With every agent the set of programs is associated. There are two types of rules
in the programs. The first type, called the evolution, is of the form a ! b. It
means that object a inside of the agent is rewritten (evolved) to the object b.
The second type of rules, called a communication, is in the form c $ d. When
this rule is performed, the object c inside the agent and the object d outside
of the agent change their positions, so, after execution of the rule object d
appears inside the agent and c is placed outside in the environment.

In [9] the ability of agents was extended by checking rule. This rule gives to
the agents an opportunity to opt between two possibilities. It has form r1/r2. If
the checking rule is performed, the rule r1 has higher priority to be executed as
the rule r2. It means that the agent checks the possibility to use rule r1. If it can
be executed, the agent has to use it. If the rule r1 cannot be applied, the agent
uses the rule r2.

Definition 1. The P colony of the capacity c is a construct
⇧ = (A, e, f, v

E

, B1, . . . , Bn

), where

– A is an alphabet of the colony, its elements are called objects,
– e is the basic object of the colony, e 2 A,
– f is the final object of the colony, f 2 A,
– v

E

is a multiset over A� {e},
– B

i

, 1  i  n, are agents, each agent is a construct B
i

= (o
i

, P
i

), where
• o

i

is a multiset over A, it determines the initial state (content) of agent
B

i

and |o
i

| = c,
• P

i

= {p
i,1, . . . , pi,ki} is a finite set of programs, where each program

contains exactly c rules, which are in one of the following forms each:
(1) a ! b, called an evolution rule, (2) c $ d, called a communication
rule and (3) r1/r2, called a checking rule; where r1, r2 are an evolution
or a communication rules.

The initial configuration of a P colony is an (n+1)-tuple of strings of objects
present in the P colony at the beginning of the computation. It is given by the
multiset O

i

for 1  i  n and by the set V
E

. Formally, the configuration of
the P colony ⇧ is given by (w1, . . . , wn

, w
E

), where |w
i

| = k, 1  i  n, w
i

represents all the objects placed inside the i-th agent, and w
E

2 (A � {e})⇤
represents all the objects in the environment di↵erent from the object e.

At each step of the computation, the contents of the environment and of
the agents change in the following manner: In the maximally parallel deriva-
tion mode, each agent which can use any of its programs should use one (non-
deterministically chosen), whereas in the sequential derivation mode, one agent
(non-deterministically chosen from the set of agents with at least one applicable
program) uses one of its programs at a time. If the number of applicable pro-
grams for chosen agent is higher than one, then the agent non-deterministically
chooses one of the programs.
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A sequence of transitions is called a computation. A computation is said to
be halting, if a configuration is reached where no program can be applied any
more. With a halting computation we associate a result which is given as the
number of copies of the objects f present in the environment in the halting
configuration.

Because of the non-determinism in choosing the programs, starting from the
initial configuration we obtain several computations, hence, with a P colony we
can associate a set of numbers, denoted by N(⇧), computed by all possible
halting computations of given P colony.

Given a P colony ⇧ = (A, e, f, v
E

, B1, . . . , B
n

) the maximal number
of programs associated with the agents in P colony ⇧ is called the height of
P colony ⇧. The degree of P colony ⇧ is the number of agents in P colony ⇧.
The third parameter characterizing a P colony is the capacity of P colony ⇧
describing the number of the objects inside each of the agents.

If the programs are composed of one rewriting and one communication (or
checking) rule in the case of P colony with capacity two, we call such P colony
restricted. Restricted program is in one of following forms: < a ! b, c $ d >
and < a ! b, c $ d/f $ g >.

Let us use the following notations:
NPCOL

par

(c, n, h) for the family of all sets of numbers computed by these
P colonies working in parallel, using no checking rules and with: the capacity at
most c, the degree at most n and the height at most h. If the checking rules are
allowed the family of all sets of numbers computed by P colonies is denoted by
NPCOL

par

K. If the P colonies are restricted, we use notation NPCOL
par

R
and NPCOL

par

KR, respectively.

2.2 Register machine

In the following we compare the families NPCOL
par

(c, n, h) with the recursively
enumerable sets of numbers. To achieve this aim we use the notion of a register
machine.

Definition 2. [12, 11] A register machine is the construct M = (m,H, l0, lh, P )
where: - m is the number of registers,

- H is the set of instruction labels,
- l0 is the start label, l

h

is the final label,
- P is a finite set of instructions injectively labeled with the elements

from the set H.

The instructions of the register machine are of the following forms:

– l1 : (ADD(r), l2, l3) – Add 1 to the content of the register r and proceed to
the instruction (labeled with) l2 or l3.

– l1 : (SUB(r), l2) – If the register r stores the value di↵erent from zero, then
subtract 1 from its content, otherwise leave it unchanged and go to the
instruction labelled l2.
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– l1 : (CHECK(r), l2, l3) – If the value stored in register r is zero, go to the
instruction labelled l2, otherwise go to instruction labelled l3.

– l1 : (CHECKSUB(r), l2, l3) – If register r is non-empty, then subtract 1 from
its content and go to the instruction labelled l2, otherwise go to instruction
labelled l3.

– l
h

: HALT– Halt the machine. The final label l
h

is only assigned to this
instruction.

The register machine M computes a set N(M) of numbers in the following
way: it starts with all registers empty (hence storing the number zero) with
the instruction labelled l0 and it proceeds to apply the instructions as indicated
by the labels (and made possible by the contents of registers). If it reaches
the halt instruction, then the number stored at that time in the register 1
is said to be computed by M and hence it is introduced in N(M). (Because of
the non-determinism in choosing the continuation of the computation in the case
of ADD-instructions, N(M) can be an infinite set.) It is known (see e.g.[12]) that
in this way register machines using ADD, CHECKSUB and HALT instructions
compute all Turing computable sets.

In [11] the several results on small universal register machines are presented.
In this framework the register machines are used to compute result of the func-
tion of non-negative integers by having this argument of the function stored in
one of the registers at the beginning of computation and the result can be found
in other register after halting computation. The universal machines have eight
registers and they can simulate computation of register machine M with the
information stored as a natural number code(M) coding the particular machine
M . The code(M) is placed in the second register.

Theorem 1. [11] Let M be the set of register machines. Then, there are register
machines U1, U2, U3 with eight registers and a recursive function g : M ! N such
that for each M 2 M, N(M) = N(U

i

(g(M))), where N(U
i

(g(M))) denotes the
set of numbers computed by U

i

, 1  i  3, with initially containing g(M) in the
second register. All these machines have one HALT instruction labelled by l

h

,
one instruction of the type ADD labelled l0, and:

– U1 has 8 + 11 + 13 = 32 instructions of the type ADD, SUB and CHECK,
respectively,

– U2 has 9 + 13 = 22 instructions of the type ADD and CHECKSUB, respec-
tively,

– U3 has 8 + 1 + 12 = 21 instructions of the type ADD,CHECK and
CHECKSUB, respectively.

Moreover, these machines either halt using HALT instruction and having the
result of the computation in the first register, or their computation on infinitely.

3 Using checking rules in P colonies with capacity two

We open this section with list of results for classes of P colonies with capacity
two that the reader can find in literature cited below.
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1. NPCOL
par

KR(2, ⇤, 5) = NRE in [5, 10],
2. NPCOL

par

R(2, ⇤, 5) = NRE in [7],
3. NPCOL

par

KR(2, 1, ⇤) = NRE in [7],
4. NPCOL

par

R(2, 2, ⇤) = NRE in [3],
5. NPCOL

par

KR(2, 23, 5) = NPCOL
par

KR(2, 22, 6) = NRE in [6],
6. NPCOL

par

K(2, 22, 5) = NRE in [6],
7. NPCOL

par

(2, 35, 8) = NPCOL
par

R(2, 57, 8) = NRE in [6].

If we sum the programs associated with one agent in the P colony defined in
the proof of the result 3. (we can omit the programs for initialization of simula-
tion generating label l0) we obtain: NPCOL

par

KR(2, 1, 93) = NRE The next
theorem determines computational power of P colonies working with checking
rules.

Theorem 2. NPCOL
par

K(2, 1, 66) = NRE.

Proof. Let us consider a register machine M with 8 registers. We construct
a P colony ⇧ = (A, e, f, v

E

, B) simulating the computations of register machine
M with:

- A = {l
i

, l0
i

| l
i

2 H} [ {a
m

| 1  m  8},
- v

E

= ag(M)
2 l0

- f = a1,
- B = (ee, P )

At the beginning of the computation the agent consumes the object l0 (the label
of starting instruction of M) and generates a

r

because the first instruction is of
the type ADD.

Then it starts to simulate instruction labelled l0 and it generates the label
of the next instruction. The set of programs is as follows:

(1) For the simulation of the initial instruction l0 = (ADD(r), l
j

, l
k

) there are
programs in P :

1 : he $ l0; e ! a
r

i , 2 : hl0 ! l
j

; a
r

$ ei , 3 : hl0 ! l
k

; a
r

$ ei
The initial configuration of ⇧ is (ee, ee, l0am2 ) ,m = g(M). After the first step of
computation (only the program 1 is applicable) the system enters configuration
(l0ar, ee, am2 ). Now the second or the third program is applicable and agent
uses one of them. After the second step the P colony is in the configuration
(ie, ee, a

r

am2 ) , i 2 {l
j

, l
k

}.

(2) For every ADD-instruction l
i

: (ADD(r), l
j

, l
k

) we add to P the programs:

4 : hl
i

! l0
i

; e ! a
r

i , 5 : hl0
i

! l
j

; a
r

$ ei , 6 : hl0
i

! l
k

; a
r

$ ei
When there is object l

i

inside the agent, it generates one copy of a
r

, puts it
to the environment and generates the label of the next instruction (it non-
deterministically chooses one of the last two programs 5 and 6)

B Env P
1. l

i

e ax
r

w 4
2. l0

i

a
r

ax
r

w 5 or 6
3. l

j

e ax+1
r

w
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(3) For every CHECKSUB-instruction l
i

: (CHECKSUB(r), l
j

, l
k

), the next pro-
grams are added to set P :

7 : hl
i

! l0
i

; e $ a
r

/e $ ei , 8 : hl0
i

! e; a
r

! l
j

i 9 : hl0
i

! e; e ! l
k

i
The simulation of the CHECKSUB instruction is done in two steps. In the first
step agent uses program no. 7 to check whether there is any copy of object a

r

in
the environment. In positive case it consumes one a

r

. The second step is done
in accordance to the content (state) of agent. If it contains a

r

agent generates
object - label l

j

, if there is no a
r

inside the agent it generate object - label l
k

.
Instruction l

i

: (CHECKSUB(r), l
j

, l
k

) is simulated by the following sequence
of steps.

If the register r stores nonzero value:

B Env P
1. l

i

e ax
r

w 7

2. l0
i

a
r

ax�1
r

w 8

3. l
j

e ax�1
r

w

If the register r stores value zero:

B Env P
1. l

i

e w 7

2. l0
i

e w 9

3. l
j

e w

(4) For CHECK instruction we construct three programs similar to previous
programs.

10 : hl
i

! l0
i

; e $ a
r

/e $ ei , 11 : hl0
i

! l
j

; a
r

$ ei 12 : hl0
i

! l
k

; e ! ei
Instruction l

i

: (CHECK(r), l
j

, l
k

) is simulated by the following sequence of steps.
If the register r stores nonzero value:

B Env P
1. l

i

e ax
r

w 10

2. l0
i

a
r

ax�1
r

w 11

3. l
j

e ax
r

w

If the register r stores value zero:

B Env P
1. l

i

e w 10

2. l0
i

e w 12

3. l
k

e w

(5) For halting instruction l
h

no program is added to the set P .
P colony ⇧ correctly simulates all computations of the register machine M

and the number contained on the first register of M corresponds to the number
of copies of the object a1 present in the environment of ⇧. If we count the
programs used for simulation of function of register machine we obtain:

h =

l0(ADD)
z}|{
3 +

ADDz}|{
8 · 3 +

CHECKSUBz }| {
12 · 3 +

CHECKz}|{
1 · 3 = 66

and the proof is complete. ut

Now we add result for restricted P colonies with checking programs.

Theorem 3. NPCOL
par

KR(2, 1, 74) = NRE.

Proof. Let us consider a register machine M with 8 registers. We construct
a P colony ⇧ = (A, e, f, v

E

, B) simulating the computations of register machine
M with:
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- A = {e} [ {l
i

, l0
i

| l
i

2 H} [ {a
m

| 1  m  8},
- v

E

= ag(M)
2 l0; f = a1,

- B = (ee, P )

The beginning of simulation is very similar to this one in previous theorem.
(1) For the simulation of the initial instruction l0 = (ADD(r), l

j

, l
k

) there are
programs in P :

1 : he ! a
r

; e $ l0i , 2 : hl0 ! l
j

; a
r

$ ei , 3 : hl0 ! l
k

; a
r

$ ei
At the beginning of the computation the agent consumes object l0 (the label of
starting instruction of M) and generates a

r

because the first instruction is of
the type ADD. Then it generates the label of the next instruction.

The initial configuration of ⇧ is (ee, ee, l0am2 ) ,m = g(M). After the first step
of computation (only the program 1 is applicable) the system enters configuration
(l0ar, ee, am2 ). Now the second or the third program is applicable and agent
uses one of them. After the second step the P colony is in the configuration
(ie, ee, a

r

am2 ) , i 2 {l
j

, l
k

}.

(2) For every ADD-instruction l
i

: (ADD(r), l
j

, l
k

) we add to P the programs:

4 : he ! e; l
i

$ ei , 5 : he ! a
r

; e $ l
i

i ,
6 : hl

i

! l
j

; a
r

$ ei 7 : hl
i

! l
k

; a
r

$ ei
When there is object l

i

inside the agent, it generates one copy of a
r

, puts it
to the environment and generates the label of the next instruction (it non-
deterministically chooses one of the last two programs 6 and 7)

B Env P
1. l

i

e ax
r

w 4
2. ee l

i

ax
r

w 5
3. a

r

l
i

ax
r

w 6 or 7
4. l

j

e ax+1
r

w
(3) For every CHECKSUB-instruction l

i

: (CHECKSUB(r), l
j

, l
j

), the next pro-
grams are added to set P :

8 : hl
i

! l0
i

; e $ a
r

/e $ ei , 9 : ha
r

! l
j

; l0
i

$ ei 10 : hl0
i

! l
k

; e $ ei
The simulation of the CHECKSUB instruction is done in two steps. In the first
step agent uses program no. 8 to check whether there is any copy of object a

r

in
the environment. In positive case it consumes one a

r

. The second step is done
in accordance to the content (state) of agent. If it contains a

r

agent generate
object - label l2, if there is no a

r

inside the agent it generate object - label l3.
Instruction l

i

: (CHECKSUB(r), l
j

, l
k

) is simulated by the following sequence
of steps. w 2 A⇤

If the register r stores nonzero value:

B Env P
1. l

i

e ax
r

w 8

2. l0
i

a
r

ax�1
r

w 9

3. l
j

e ax�1
r

l0
i

w

If the register r stores value zero:

B Env P
1. l

i

e w 8

2. l0
i

e w 10

3. l
k

e w
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(4) For CHECK instruction l
i

: (CHECK(r), l
j

, l
k

) we construct there programs
similar to previous programs.

10 : hl
i

! l0
i

; e $ a
r

/e $ ei , 11 : hl0
i

! l
j

; a
r

$ ei 12 : hl0
i

! l
k

; e $ ei
Instruction l

i

: (CHECK(r), l
j

, l
k

) is simulated by the following sequence
of steps.

If the register r stores nonzero value:

B Env P
1. l

i

e ax
r

w 10

2. l0
i

a
r

ax�1
r

w 11

3. l
j

e ax
r

w

If the register r stores value zero:

B Env P
1. l

i

e w 10

2. l0
i

e w 12

3. l
k

e w

(5) For halting instruction l
h

no program is added to the set P .

P colony ⇧ correctly simulates all computations of the register machine M
and the number contained on the first register of M corresponds to the number
of copies of the object a1 present in the environment of ⇧. If we count the
programs used for simulation of function of register machine we obtain:

h =

l0(ADD)
z}|{
3 +

ADDz}|{
8 · 4 +

CHECKSUBz }| {
12 · 3 +

CHECKz}|{
1 · 3 = 74

and the proof is complete. ut

4 Bounded classes of homogeneous P colonies

The program is said to be homogeneous if it is composed of rules of the same
type. P colony having only homogeneous programs is called homogeneous. Each
P colony with capacity one that does not use checking rules is homogeneous.
Let us summarize results found in papers cited below and add to them the third
parameter that we can count from proofs of the theorems:

– NPCOL
par

KH(1, ⇤, 6) = NPCOL
par

KH(1, 26, 6) = NRE in [4]
– NPCOL

par

KH(2, ⇤, 4) = NPCOL
par

KH(2, 25, 4) = NRE in [4]
– NPCOL

par

KH(2, 1, ⇤) = NPCOL
par

KH(2, 1, 176) = NRE in [4]
– NPCOL

par

KH(3, 2, ⇤) = NPCOL
par

KH(3, 2, 236) = NRE in [2]

It seems that no result is published related to homogeneous P colonies with
capacity two that do not use checking rules.

Theorem 4. NPCOL
par

H(2, 2, 163) = NRE.

Proof. Let us consider a register machine M with 8 registers. We construct
a P colony ⇧ = (A, e, f, v

E

, B1, B2) simulating the computations of register
machine M with:

- A = {e, e0} [ {l
i

, l0
i

, l000
i

, l
i

| l
i

2 H} [ {a
m

| 1  m  8},
- v

E

= ag(M)
2 l0, f = a1,

- B
i

= (ee, P
n

), n = {1, 2}
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At the beginning of the computation the agent B1 consumes the object l0
(the label of starting instruction of M).
(1) For the simulation of the initial instruction l0 = (ADD(r), l

j

, l
k

) there are
programs in P1:

1 : he $ l0; e $ ei , 2 : hl0 ! l00; e ! a
r

i , 3 : hl00 $ e; a
r

$ ei
4 : he $ l00; e $ ei , 5 : hl00 ! l

j

; e ! ei , 6 : hl00 ! l
k

; e ! ei

The initial configuration of ⇧ is (ee, ee, l0am2 ) ,m = g(M). Agent B1 consumes
object L0 and then it starts to simulate instruction labelled l0. It generates
the label of the next instruction. Because each program is homogeneous the
agent can only rewrite all its content or exchange both objects inside it for
another two objects from the environment. If the content of agent B1 is ee only
programs with communication rules are applicable.
(2) For every ADD-instruction l

i

: (ADD(r), l
j

, l
k

) we add to P1 the programs:

7 : hl
i

! l0
i

; e ! a
r

i , 8 : hl0
i

$ e; a
r

$ ei , 9 : he $ l0
i

; e $ ei
10 : hl0

i

! l
j

; e ! ei , 11 : hl0
i

! l
j

; e ! ei ,

When there is object l
i

inside the agent, it generates one copy of a
r

, puts it
to the environment and generates the label of the next instruction (it non-
deterministically chooses one of the last two programs 10 and 11).

B1 B2 Env P1 P2

1. l
i

e ee w 7 �
2. l0

i

a
r

ee w 8 �
3. ee ee l0

i

a
r

w 9 �
4. l0

i

e ee a
r

w 10 or 11 �
6. l

j

e ee a
r

w � �

(3) For every CHECKSUB-instruction l
i

: (CHECKSUB(r), l
j

, l
k

), the next pro-
grams are added to sets P1 and P2:

P1 12 : hl
i

! l0
i

; e ! l00
i

i , 13 : hl0
i

$ e; l00
i

$ ei , 14 : he $ l0
i

; e $ a
r

i ,
15 :

⌦
l00
i

! l
i

; a
r

! e0
↵
, 16 :

⌦
l
i

$ e; e0 $ e
↵
, 17 :

⌦
e $ l

i

; e $ e
↵
,

18 :
⌦
l
i

! l
j

; e ! e
↵
, 19 : he $ l00

i

; e $ l000
i

i , 20 : hl00
i

! l
k

; l000
i

! ei
P2 21 : he $ l0

i

; e $ ei , 22 : hl0
i

! l000
i

; e ! ei , 23 : hl000
i

$ e; e $ ei ,
24 : he $ l000

i

; e $ e0i , 25 : hl000
i

! e; e0 ! ei

The simulation of the CHECKSUB instruction is following: Agent B1 puts to
object (l0

i

, l00
i

) corresponding to given instruction to the environment; object l0
i

is consumed by agent B2; in the next step object l00
i

can be consumed only
together with object a

r

. If there is no a
r

in the environment, agent B1 has
to wait until agent B2 puts object l000

i

to the environment. Now program 19
is applicable. The next step is done in accordance to the content (state) of
agent. If it contents a

r

agent generate object - label l2 and put object l0
i

to
the environment, if there is no a

r

inside the agent it generate object - label l3.
Instruction l

i

: (CHECKSUB(r), l
j

, l
k

) is simulated by the following sequence
of steps. Multiset w 2 {a

m

| 1  m  8}⇤ is placed in the environment.
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If the register r stores non-zero value:

B1 B2 Env P1 P2

1. l
i

e ee ax
r

w 12 �
2. l0

i

l00
i

ee ax
r

w 13 �
3. ee ee l0

i

l00
i

ax
r

w 14 21

4. l00
i

a
r

l0
i

e ax�1
r

w 15 22

5. l
i

e0 l000
i

e ax�1
r

w 16 23

6. ee ee l
i

e0l000
i

ax�1
r

w 17 24

7. l
i

e l000
i

e0 ax�1
r

w 18 25

8. l
j

e ee ax�1
r

w � �

If the register r stores value zero:

B
i

B2 Env P1 P2

1. l
i

e ee w 12 �
2. l0

i

l00
i

ee w 13 �
3. ee ee l0

i

l00
i

w � 21

4. ee l0
i

e l00
i

w � 22

5. ee l000
i

e l00
i

w � 23

6. ee ee l000
i

l00
i

w 19 �
7. l000

i

l00
i

ee w 20 �
8. l

k

e ee w � �

(4) For CHECK instruction we construct there programs similar to previous
programs for CHECKSUB instruction.

P1 26 : hl
i

! l0
i

; e ! l00
i

i , 27 : hl0
i

$ e; l00
i

$ ei , 28 : he $ l00
i

; e $ a
r

i ,
29 :

⌦
l00
i

! l
i

; a
r

! a
r

↵
, 30 :

⌦
l
i

$ e; a
r

$ e
↵
, 31 :

⌦
e $ l

i

; e $ l000
i

↵
,

32 :
⌦
l
i

! l
j

; l000
i

! e
↵
, 33 : he $ l00

i

; e $ l000
i

i , 34 : hl00
i

! l
k

; l000
i

! ei
P2 35 : he $ l0

i

; e $ ei , 36 : hl0
i

! l000
i

; e ! ei , 37 : hl000
i

$ e; e $ ei
Instruction l

i

: (CHECK(r), l2, l3) is simulated by the following sequence of steps.

If the register r stores non-zero value:

B1 B2 Env P1 P2

1. l
i

e ee ax
r

w 26 �
2. l0

i

l00
i

ee ax
r

w 27 �
3. ee ee l0

i

l00
i

ax
r

w 28 35

4. l00
i

a
r

l0
i

e ax�1
r

w 29 36

5. l2ar l000
i

e ax�1
r

w 30 37

6. ee ee l2l000
i

ax
r

w 31 �
7. l2l000

i

ee ax
r

w 32 �
8. l

j

e ee ax
r

w � �

If the register r stores value zero:

B1 B2 Env P1 P2

1. l
i

e ee w 26 �
2. l0

i

l00
i

ee w 27 �
3. ee ee l0

i

l00
i

w � 35

4. ee l0
i

e l00
i

w � 36

5. ee l000
i

e l00
i

w � 37

6. ee ee l000
i

l00
i

w 33 �
7. l000

i

l00
i

ee w 34 �
8. l

k

e ee w � �

(5) For halting instruction l
h

no program is added to the set P .
P colony ⇧ correctly simulates all computations of the register machine M

and the number contained on the first register of M corresponds to the number
of copies of the object a1 present in the environment of ⇧. If we count the
programs used for simulation of function of register machine we obtain:

h = max

8
>>><

>>>:

h1 =

l0(ADD)
z}|{
6 +

ADDz}|{
8 · 5 +

CHECKSUBz }| {
12 · 9 +

CHECKz}|{
1 · 9 ;

h2 =

l0(ADD)
z}|{
0 +

ADDz}|{
8 · 0 +

CHECKSUBz }| {
12 · 5 +

CHECKz}|{
1 · 3

9
>>>=

>>>;
= 163

and the proof is complete. ut
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In next result we minimize number of programs associated with agent.

Theorem 5. NPCOL
par

H(2, 92, 3) = NRE.

Proof. Let us consider a register machine M with 8 registers. We construct
a P colony ⇧ = (A, e, f, v

E

, B1, B2) simulating the computations of register
machine M with:

- A = {e, e0} [ {l
i

, l0
i

, l000
i

, l
i

| l
i

2 H} [ {a
m

| 1  m  8},
- v

E

= ag(M)
2 l0, f = a1,

- B
i

= (ee, P
i

), i = {1, . . . , 92}
Because we want to minimize the number of programs associated with each

agent we have to divide simulation of each instruction among more agents. To
set order among agents we use the following labelling: B

li,j implies that this is
j-th agent associated with instruction l

i

.
At the beginning of the computation the agent B1 consumes the object l0

(the label of starting instruction of M).
(1) For the simulation of the initial instruction l0 = (ADD(r), l

j

, l
k

) and every
ADD instruction l

i

= (ADD(r), l
j

, l
k

) there are programs in P
li,p, p = {1, 2, 3}.

To simulate the ADD instruction we need three agents : one agent to generate
object a

r

and two agents to generate object – label of the next instruction.
P
li,1 1 : he $ l

i

; e $ ei , 2 : hl
i

! l0
i

; e ! a
r

i , 3 : hl0
i

$ e; a
r

$ ei
P
i,2 4 : he $ l0

i

; e $ ei , 5 : hl0
i

! l2; e ! ei , 6 : hl2 $ e; e $ ei
P
i,3 7 : he $ l0

i

; e $ ei , 8 : hl0
i

! l3; e ! ei , 9 : hl3 $ e; e $ ei
In the following table the reader can find a part of computation – simulation of
execution of initial instruction l0 – sequence of configurations and the labels of
used programs.

B
i,1 B

i,2 B
i,3 Env P1,1 P

i,2 P
i,3

1. ee ee ee wl
i

1 � �
2. l

i

e ee ee w 2 �
3. l0

i

a
r

ee ee w 3 �
4. ee ee ee l0

i

a
r

w � 4 or 7
5. ee l0

i

e ee a
r

w � 5 �
6. ee l

j

e ee a
r

w � 6 �
7. ee ee ee l

j

a
r

w � � �
If the agent B

i,3 uses the program 7 in the configuration 4, the label l3 is gen-
erated instead of l2.
(2) For every CHECKSUB instruction l

i

: (CHECKSUB(r), l
j

, l
k

), the next pro-
grams are added to sets P

li,p, p 2 {1, . . . , 5}:
P
li,1 10 : he $ l

i

; e $ ei , 11 : hl
i

! l0
i

; e ! l00
i

i , 12 : hl0
i

$ e; l00
i

$ ei
P
i,2 13 : he $ l0

i

; e $ a
r

i , 14 :
⌦
l0
i

! l
j

; a
r

! l
i

↵
, 15 :

⌦
l
j

$ e; l
i

$ e
↵

P
i,3 16 : he $ l00

i

; e $ ei , 17 : hl0
i

! l000
i

; e ! ei , 18 : hl000
i

$ e; e $ ei
P
i,4 19 : he $ l0

i

; e $ l000
i

i , 20 : hl0
i

! l
k

; l000
i

! ei , 21 : hl
k

$ e; e $ ei
P
i,5 22 :

⌦
e $ l000

i

; e $ l
i

↵
, 23 :

⌦
l0000
i

! e; l
i

! e
↵
,
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The simulation of the CHECKSUB instruction is following: Agent B
li,1 puts

objects (l0
i

, l00
i

) corresponding to given instruction to the environment; object l0
i

is consumed by agent B
li,2 i↵ there is at least one copy of a

r

in the environment;
in positive case agent rewrites these objects to object corresponding to label of
the next instruction and one more object (l

i

) – the message for agent B
li,5 that

the unused object l000
i

must be erased from the environment. The agent B
li,3

consumes object l00
i

and in the next step agent rewrites it to object l000
i

and in
the following step agent puts this object to the environment. In the case that
register r stores value zero, agent B

l1,4 consumes objects l0
i

and l000
i

and finally it
generates object - label l

k

. Instruction l
i

: (CHECKSUB(r), l
j

, l
k

) is simulated
by the following sequence of steps. Multiset w 2 {a

m

| 1  m  8}⇤ is placed in
the environment.

If the register r stores non-zero value:
B

li,1 B
li,2 B

li,3 B
li,4 B

li,5 Env P
li,1 P

li,2 P
li,3 P

li,4 P
li,5

1. ee ee ee ee ee l
i

ax
r

w 10 � � � �
2. l

i

e ee ee ee ee ax
r

w 11 � � � �
3. l0

i

l00
i

ee ee ee ee ax
r

w 12 � � � �
4. ee ee ee ee ee l0

i

l00
i

ax
r

w � 13 16 � �
5. ee l0

i

a
r

l00
i

e ee ee ax�1
r

w � 14 17 � �
6. ee l

j

l
i

l000
i

e ee ee ax�1
r

w � 15 18 � �
7. ee ee ee ee ee l

j

l
i

l000
i

ax�1
r

w � � � � 22

8. ee ee ee ee l
i

l000
i

ax�1
r

w � � � � 23
9. ee ee ee ee ee ax�1

r

w � � � � �
If the register r stores value zero:

B
li,1 B

li,2 B
li,3 B

li,4 B
li,5 Env P

li,1 P
li,2 P

li,3 P
li,4 P

li,5

1. ee ee ee ee ee l
i

w 10 � � � �
2. l

i

e ee ee ee ee w 11 � � � �
3. l0

i

l00
i

ee ee ee ee w 12 � � � �
4. ee ee ee ee ee l0

i

l00
i

w � � 16 � �
5. ee ee l00

i

e ee ee l0
i

w � � 17 � �
6. ee ee l000

i

e ee ee l0
i

w � � 18 � �
7. ee ee ee ee ee l0

i

l000
i

w � � � 19 �
8. ee ee ee l0

i

l000
i

ee w � � � 20 �
9. ee ee ee l

k

e ee w � � � 21 �
10. ee ee ee ee ee l

k

w � � � � �

(3) For CHECK instruction we construct three programs similar to programs in
previous paragraph. The only change is in programs associated with agent B

li,5.

P
i,5 22 :

⌦
e $ l000

i

; e $ l
i

↵
, 23 :

⌦
l000
i

! e; l
i

! a
r

↵
, 24 : ha

r

$ e; e $ ei
(4) For halting instruction l

h

no program is added to the set P .

P colony ⇧ correctly simulates all computations of the register machine M
and the number contained on the first register of M corresponds to the number
of copies of the object a1 present in the environment of ⇧. If we count the
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programs used for simulation of function of register machine we obtain:

n =

ADD(+l0)z}|{
9 · 3 +

CHECKSUBz }| {
12 · 5 +

CHECKz}|{
1 · 5 = 92

and the proof is complete. ut

Theorem 6. NPCOL
par

H(2, 70, 5) = NRE.

It is very easy to see that we obtain the result by union of agents B
li,2 and B

li,3

constructed in previous proof for ADD-instructions.

5 Conclusions

In this paper we focused on P colonies with all bounded parameters with capacity
two. The first we improve results for P colonies with checking rules. In the second
part we focus on homogeneous P colonies without use of checking programs. We
can summarize our results in following list:

– NPCOL
par

K(2, 1, 66) = NRE
– NPCOL

par

KR(2, 1, 74) = NRE
– NPCOL

par

H(2, 2, 163) = NRE
– NPCOL

par

H(2, 92, 3) = NRE
– NPCOL

par

H(2, 70, 5) = NRE

For more information on membrane computing, see [14]; for more on compu-
tational machines and colonies in particular, see [12] and [8–10], respectively.
Activities carried out in the field of membrane computing are currently numer-
ous and they are available also at [15].

Remark 1. This work was partially supported by the European Regional De-
velopment Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/-
1.1.00/02.0070), by SGS/24/2013 and SGS/6/2014.
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Abstract. The set of NP-complete problems is divided into weakly and
strongly NP-complete ones. The di↵erence consists in the influence of
the encoding scheme of the input. In the case of weakly NP-complete
problems, the intractability depends on the encoding scheme, whereas in
the case of strongly NP-complete problems the problem is intractable
even if all data are encoded in a unary way. The reference for strongly
NP-complete problems is the Satisfiability Problem (the SAT problem).
In this paper, we provide a uniform family of P systems with active mem-
branes which solves SAT – without polarizations, without dissolution,
with division for elementary membranes and with matter/antimatter an-
nihilation. To the best of our knowledge, it is the first solution to a
strongly NP-complete problem in this P systems model.

1 Introduction

In [10], a solution of the Subset Sum problem in the polynomial complexity class
of recognizer P systems with active membranes without polarizations, without
dissolution and with division for elementary membranes endowed with antimat-
ter and matter/antimatter annihilation rules was provided. In this way, antimat-
ter was shown to be a frontier of tractability in membrane computing, since this
P systems class without antimatter and matter/antimatter annihilation rules is
exactly the complexity class P (see [13]).

The Subset Sum problem belongs to the so-called weakly NP-complete prob-
lems, since its intractability strongly depends on the fact that extremely large
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input numbers are allowed [11]. The reason for this weakness is based on the
encoding scheme of the input, since every integer in the input denoting a weight
wi should be encoded by a string of length only O(log wi).

On the other hand, strongly NP-complete problems are those which remain
NP-complete even if the data are encoded in a unary way. The best-known one
of these problems is the satisfiability problem (SAT for short). SAT was the first
problem shown to beNP-complete, as proved by Stephen Cook at the University
of Toronto in 1971 [7], and it has been widely used in membrane computing to
prove the ability of a P system model to solve NP-complete problems (e.g. [12,
14, 15, 17, 20, 21]).

In this paper, we provide a solution to the SAT problem in the polyno-
mial complexity class of recognizer P systems with active membranes without
polarizations, without dissolution and with division for elementary membranes
endowed with antimatter and matter/antimatter annihilation rules. To the best
of our knowledge, this is the first time that a strongly NP-complete problem is
solved in this P systems model. The details of the implementation can provide
new tools for a better understanding of the problem of searching new frontiers
of tractability in membrane computing.

The paper is organized as follows. In Section 2, we present a general discussion
about the relationship of model ingredients used in di↵erent solutions for solving
computationally di�cult problems by P systems with active membranes, and
the emerging computational power. In Section 3 we speak about the results in P
systems found in the literature on the power and the limitations of antimatter.
In Section 4, we recall the P systems model used in this paper. The main novelty
is the use of antimatter and matter/antimatter annihilation rules as well as their
semantics. In Section 5, some basics on recognizer P systems are recalled, and
in Section 6 our solution for the SAT problem is provided. The paper finishes
with some conclusions and hints for future work.

2 Computation Theory Remarks

A configuration consists of symbols (which, in the general sense, may include
instances of objects, instances of membranes, or any other entities bearing in-
formation). A computation consists of transformations of symbols. Clearly, the
computations without cooperation of symbols are quite limited in power (e.g., it
is known that E0L-behavior with standard halting yields PsREG, and accepting
P systems are considerably more degenerate).

In this sense, interaction of symbols is a fundamental part of membrane com-
puting, or of theoretical computer science in general. Various ways of interaction
of symbols have been studied in membrane computing. For the models with ac-
tive membranes, the most commonly studied ways are various rules changing
polarizations (or even sometimes labels), and membrane dissolution rules. One
object may engage such a rule, which would a↵ect the context (polarization or
label) of other objects in the same membrane, thus a↵ecting the behavior of
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the latter, e.g., in case of dissolution, such objects find themselves in the parent
membrane, which usually has a di↵erent label.

In the literature on P systems with active membranes, normally only the
rules with at most one object on the left side were studied. Since recently, the
model with matter/antimatter annihilation rules, e.g. see [1] and [3], attracted
the attention of researchers. It provides a form of direct object-object interaction,
albeit in a rather restricted way (i.e., by erasing a pair of objects that are in a
bijective relation). Although it is known that non-cooperative P systems with
antimatter are universal, studying their e�ciency turned out to be an interesting
line of research. So how does matter/antimatter annihilation compare to other
ways of organizing interaction of objects?

First, all known solutions of NP-complete (or more di�cult) problems in
membrane computing rely on the possibility of P systems to obtain exponential
space in polynomial time (note that object replication alone does not count as
building exponential space, since an exponential number can be written, e.g., in
binary, in polynomial space). Such possibility is provided by either of membrane
division rules, membrane separation rules, see [4], membrane creation rules, see
[19], (or string replication rules, but string-objects lie outside of the scope of the
current paper); in tissue P systems, one could apply a similar approach to cells
instead of membranes.

Note that in case of cell-like P systems, membrane creation alone (unlike the
other types of rules mentioned above) makes it also possible to construct a hier-
archy of membranes, let us refer to it as structured workspace, which is used to
solve PSPACE-complete problems. The structured workspace can be alterna-
tively created by elementary membrane division plus non-elementary membrane
division (plus membrane dissolution if we have no polarizations).

Besides creating workspace, to solve NP-complete problems we need to be
able to e↵ectively use that workspace by making objects interact. For instance, it
is known that, even with membrane division, without polarizations and without
dissolution only problems in P may be solved. However, already with two polar-
izations (the smallest non-degenerate value) P systems can solve NP-complete
problems. What can be done without polarizations?

One solution is to use the power of switching the context by membrane dis-
solution. Coupled with non-elementary division, a suitable membrane structure
can be constructed so that the needed interactions can be performed solvingNP-
complete or even PSPACE-complete problems [6]. It is not di�cult to realize
that elementary and non-elementary division rules can be replaced by membrane
creation rules, or elementary division rules can be replaced by separation rules.

Finally, an alternative way of interaction of objects considered in this paper
following [2] is matter/antimatter annihilation. What are the strengths and the
weaknesses of these possible ingredients (the weaker is a combination of ingre-
dients, the stronger is the result, while sometimes weaker ingredients do not let
us do what stronger ones can)?

The power of matter/antimatter annihilation makes it possible to carry out
multiple simultaneous interactions (for example, the checking phase is constant-
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time instead of linear with respect to the number of clauses), and it is a direct
object-object interaction.

The power of polarizations is the possibility of mass action (not critical
for studying computational e�ciency within PSPACE as all multiplicities are
bounded with respect to the problem size) by changing context.

The power of non-elementary division lets us build structured workspace
(probably necessary for PSPACE if membrane creation is not used instead
of membrane division, unless PPP=PSPACE, see [16]), and change non-local
context (e.g., the label of the parent membrane).

The power of dissolution provides mass action (not critical for studying com-
putational e�ciency within PSPACE as all multiplicities are bounded with
respect to the problem size) by changing context.

In the the present paper we focus on using matter/antimatter annihilation
rules.

3 Antimatter Overview

The idea of matter/antimatter annihilation rules in P systems initially appeared
in [2] as an adaptation of the idea of anti-spikes in spiking neural P systems, see
[?], to the model of transitional P systems and later to the model of P systems
with active membranes. It turned out that combining annihilation rules, which
are a specific form of cooperative erasing, with non-cooperative rules yields an
elegant computationally complete model. Note that immediate annihilation pre-
cisely corresponds to weak priority of annihilation. It has been shown that this
priority may be removed at the price of adding one catalyst. Then, it has also
been shown that P systems with non-cooperative rules and matter/antimatter
annihilation are computationally complete even in the deterministic case. A vari-
ant with annihilation generating energy was also considered in [2].

The work of [2] has been continued in [1]. In particular, the computational
completeness results were generalized to computing vectors over Z instead of N,
as well as to computing languages, or even subsets of groups (as languages over
symbols and anti-symbols).

A number of small universality results was obtained in [3], in particular, a
universal accepting P system with 53 rules, simulating a model called generalized
counter automata introduced there for that purpose.

Besides being studied for computational completeness and small universali-
ties, matter/antimatter annihilation rules have been considered in the model of
P systems with active membranes. While it has been recently shown in [9] that
without the weak priority of annihilation, only the complexity class P is charac-
terized within the framework of recognizer P systems, under the basic settings
(i.e., with this weak priority), uniform families of recognizer P systems with ac-
tive membranes solve Subset-Sum, a known NP-complete problem, and in the
current paper we present a solution to SAT, a known strongly NP-complete
problem.
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4 The P Systems Model

In this paper, we use the usual rules of evolution, communication and division of
elementary membranes which are common in P systems with active membranes.
The main novelty in the model is the use of antimatter and matter/antimatter
annihilation rules. The concept of antimatter was introduced in the framework
of membrane computing as a control tool for the flow of spikes in spiking neural
P systems [18, 22, 26, 27]. In this context, when one spike and one anti-spike
appear in the same neuron, the annihilation occurs and both, spike and anti-
spike, disappear. Antimatter and matter/antimatter annihilation rules later were
adapted to other contexts in membrane computing, and currently this is an active
research area [1, 3, 10].

Inspired by physics, we consider the annihilation of two objects a and b from
the alphabet O in a membrane with label h, with the annihilation rule for a and
b written as [ ab ! � ]h. The meaning of the rule follows the idea of annihilation:
If a and b occur simultaneously in the same membrane, then both are consumed
(disappear) and nothing is produced (denoted by the empty string �). The object
b is called the antiparticle of a and it is usually written a instead of b.

With respect to the semantics, let us recall that this rule must be applied as
many times as possible in each membrane, according to the maximal parallelism.
Following the intuition from physics, if a and a occur simultaneously in the same
membrane h and the annihilation rule [ aa ! � ]h is defined, then it has to be
applied, regardless any other option. In this sense, any annihilation rule has
(weak) priority over all rules of the other types of rules (see [10]).

A P system with active membranes without polarizations, without dissolution
and with division of elementary membranes and with annihilation rules is a cell-
like P system with rules of the following kinds (following [5], we use subscript 0
for the rule type to represent a restriction that such a rule does not depend on
the polarization and is not allowed to change it; if all rules have this subscript,
this is equivalent to saying that the P system is without polarizations):

(a0) [ a ! u ]h for h 2 H, a 2 O, u 2 O⇤. This is an object evolution rule,
associated with a membrane labeled by h: an object a 2 O belonging to that
membrane evolves to a multiset represented by the string u 2 O⇤.

(b0) a[ ]h ! [ b ]h for h 2 H, a, b 2 O. An object from the region immediately
outside a membrane labeled by h is taken into this membrane, possibly being
transformed into another object.

(c0) [ a ]h ! b[ ]h for h 2 H, a, b 2 O. An object is sent out from a membrane
labeled by h to the region immediately outside, possibly being transformed
into another object.

(e0) [ a ]h ! [ b ]h[ c ]h for h 2 H, a, b, c 2 O. An elementary membrane can be
divided into two membranes with the same label, possibly transforming one
original object into a di↵erent one in each of the new membranes.

(g0) [ aa ! � ]h for h 2 H, a, a 2 O. This is an annihilation rule, associated with
a membrane labeled by h: the pair of objects a, a 2 O belonging simultane-
ously to this membrane disappears.
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Let us remark that dissolution rules - type (d0) - and rules for non-elementary
division - type (f0) - are not considered in this model.

These rules are applied according to the following principles (with the special
restrictions for annihilation rules specified above):

– All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by at most one rule (chosen in a
non–deterministic way), and each membrane can be the subject of at most
one rule of types (b0), (c0) and (e0).

– If at the same time a membrane labeled with h is divided by a rule of type
(e0) triggered by some object a and there are other objects in this membrane
to which rules of type (a0) or (g0) can be applied, then we suppose that first
the rules of type (g0) and only then those of type (a0) are used, before finally
the division is executed. This process in total takes only one step.

– The rules associated with membranes labeled by h are used for all copies of
membranes with label h.

5 Recognizer P Systems

Recognizer P systems are a well-known model of P systems which are basic for
the study of complexity aspects in membrane computing. Next, we briefly recall
some basic ideas related to them. For a detailed description see, for example, [23,
24]. In recognizer P systems all computations halt; there are two distinguished
objects traditionally called yes and no (used to signal the result of the compu-
tation), and exactly one of these objects is sent out to the environment (only)
in the last computation step.

Let us recall that a decision problem X is a pair (IX , ✓X) where IX is a
language over a finite alphabet (the elements are called instances) and ✓X is
a predicate (a total Boolean function) over IX . Let X = (IX , ✓X) be a deci-
sion problem. A polynomial encoding of X is a pair (cod, s) of polynomial time
computable functions over IX such that for each instance w 2 IX , s(w) is a
natural number representing the size of the instance and cod(w) is a multiset
representing an encoding of the instance. Polynomial encodings are stable under
polynomial time reductions.

It is said that ⇧ is sound with regard to X if for each instance of the problem
w 2 IX , if there exists an accepting computation of ⇧(w), then ✓X(w) = 1, and
⇧ is complete with regard to X if for each instance of the problem w 2 IX ,
provided that ✓X(w) = 1, then every computation of ⇧(w) is an accepting
computation.

Let R be a class of recognizer P systems with input membrane. A decision
problem X = (IX , ✓X) is solvable in a uniform way and polynomial time by a
family ⇧ = (⇧(n))n2N of P systems from R – we denote this by X 2 PMCR
– if the family ⇧ is polynomially uniform by Turing machines, i.e., there ex-
ists a polynomial encoding (cod, s) from IX to ⇧ such that the family ⇧ is
polynomially bounded with regard to (X, cod, s); this means that there exists a
polynomial function p such that for each u 2 IX every computation of ⇧(s(u))
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with input cod(u) is halting and, moreover, it performs at most p(|u|) steps; the
family ⇧ is sound and complete with regard to (X, cod, s).

6 Solving SAT

Propositional Satisfiability is the problem of determining, for a formula of the
propositional calculus, if there is an assignment of truth values to its variables
for which that formula evaluates to true. By SAT we mean the problem of
propositional satisfiability for formulas in conjunctive normal form (CNF). In
this section we describe a uniform family of P systems which solves it. As usual,
we will address the resolution via a brute force algorithm, which consists of the
following stages (some of the ideas for the design are taken from [8] and [25]):

– Generation and Evaluation Stage: All possible assignments associated with
the formula are created and evaluated (in this paper we have subdivided this
group into Generation and Input processing groups of rules, which take place
in parallel).

– Checking Stage: In each membrane we check whether or not the formula
evaluates to true for the assignment associated with it.

– Output Stage: The system sends out the correct answer to the environment.

Let us consider the pairing function h , i defined by hn,mi = ((n+m)(n+m+
1)/2)+n. This function is polynomial-time computable (it is primitive recursive
and bijective from N2 onto N). For any given formula in CNF, ' = C1^ · · ·^Cm,
with m clauses and n variables V ar(') = {x1, . . . , xn} we construct a P system
⇧(hn,mi) solving it, where the multiset encoding the problem to be the input
of ⇧(hn,mi) (for the sake of simplicity, in the following we will omit m and n)
is

cod(') = {xi,j : xj 2 Ci} [ {yi,j : ¬xj 2 Ci}.
For solving SAT by a uniform family of deterministic recognizer P systems

with active membranes, without polarizations, without non-elementary mem-
brane division and without dissolution, yet with matter/antimatter annihilation
rules, we now construct the members of this family as follows:

⇧ = (O,⌃, H = {1, 2}, µ = [ [ ]2 ]1, w1, w2, R, iin = 2), where

⌃ = {xi,j , yi,j | 1  i  m, 1  j  n},
O = {d, t, f, F, F , T, non+5, Fn+5, yesn+6, yesn+6, non+6, yes, no}

[ {xi,j , yi,j | 1  i  m, �1  j  n} [ {xi,�1, yi,�1 | 1  i  m}
[ {ci, ci | 1  i  m} [ {ej | 1  j  n+ 3}
[ {yesj , noj , Fj | 0  j  n+ 5},

w1 = no0 yes0 F0, w2 = dn e1,

and the rules of the set R are given below, presented in the groups Generation,
Input Processing, Checking, and Output, together with explanations about how
the rules in the groups work.
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Generation
G1. [ d ]2 ! [ t ]2[ f ]2;
G2. [ t ! y1,�1 · · · ym,�1 ]2;
G3. [ f ! x1,�1 · · ·xm,�1 ]2;
G4. [ xi,�1 ! � ]2, 1  i  m;
G5. [ yi,�1 ! � ]2, 1  i  m.

In each step j, 1  j  n, every elementary membrane is divided, one new mem-
brane corresponding with assigning true to variable j and the other one with
assigning false to it. One step later, proper objects are produced to annihilate
the input objects associated to variable j: in the true case, we introduce the an-
timatter object for the negated variable, i.e., it will annihilate the corresponding
negated variable, and in the false case, we introduce the antimatter object for
the variable itself, i.e., it will annihilate the corresponding variable. Remaining
barred (antimatter) objects not having been annihilated with the input objects,
are erased in the next step.

Input Processing
I1. [ xi,j ! xi,j�1 ]2, 1  i  m, 0  j  n;
I2. [ yi,j ! yi,j�1 ]2, 1  i  m, 0  j  n;
I3. [ xi,�1 xi,�1 ! � ]2, 1  i  m;
I4. [ yi,�1 yi,�1 ! � ]2, 1  i  m;
I5. [ xi,�1 ! ci ]2, 1  i  m;
I6. [ yi,�1 ! ci ]2, 1  i  m.

Input objects associated with variable j decrement their second subscript during
j + 1 steps to �1. The variables not representing the desired truth value are
eliminated by the corresponding antimatter object generated by the rules G2
and G3, whereas any of the input variables not annihilated then, shows that the
associated clause i is satisfied, which situation is represented by the introduction
of the object ci.

Checking
C1. [ ej ! ej+1 ]2, 1  j  n+ 1;
C2. [ en+2 ! c1 · · · cmen+3 ]2;
C3. [ ci ci ! � ]2, 1  i  m;
C4. [ ci ! F ]2, 1  i  m;
C5. [ en+3 ! F ]2;
C6. [ F F ! � ]2, 1  i  m;
C7. [ F ]2 ! [ ]2T .

It takes n+2 steps to produce objects ci for every satisfied clause, possibly mul-
tiple times. Starting from object e1, we have obtained the object en+2 until then;
from this object en+2, at step n+ 2 one anti-object is produced for each clause.
Any of these clause anti-objects that is not annihilated, is transformed into F ,
showing that the chosen variable assignment did not satisfy the corresponding
clause. It remains to notice that object T is sent to the skin (at step n+4) if and
only if an object F did not get annihilated, i.e., no clause failed to be satisfied.
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Output

O1. [ yesj ! yesj+1 ]1, 0  j  n+ 5;

O2. [ noj ! noj+1 ]1, 0  j  n+ 5;

O3. [ Fj ! Fj+1 ]1, 0  j  n+ 4;

O4. [ T ! non+5Fn+5 ]1;

O5. [ non+5 non+5 ! � ]1;

O6. [ non+6 ]1 ! [ ]1no;

O7. [ Fn+5 Fn+5 ! � ]1;

O8. [ Fn+5 ! yesn+6 ]1;

O9. [ yesn+6 yesn+6 ! � ]1;

O10. [ yesn+6 ]1 ! [ ]1yes.

If no object T has been sent to the skin, then the initial no-object can count up
to n + 6 and then send out the negative answer no, while the initial object F
counts up to n + 5, generates the antimatter object for the yes-object at stage
n+ 6 and annihilates with the corresponding object yes at stage n+ 6. On the
other hand, if (at least one) object T arrives in the skin, then the object no is
annihilated at stage n+ 5 before it would be sent out in the next step, and the
object F is annihilated before it could annihilate with the object yes, so that
the positive answer yes can be sent out in step n+ 6.

Finally, we notice that the solution is uniform, deterministic, and uses only
rules of types (a0), (c0), (e0) as well as matter/antimatter annihilation rules.
The result is produced in n+ 6 steps.

7 Conclusions

Although the ability for solving NP-complete problems with this kind of P
systems was proved in [10], to the best of our knowledge this is the first solution
for a strongly NP problem by using annihilation rules in membrane computing.
Let us remark the important role of the definition for recognizer P systems we
have used in this paper. This definition is quite restrictive, since only one object
yes or no is sent to the environment in any computation. In the literature one
can find other definitions of recognizer P systems and therefore other definitions
of what it means to solve a problem in the framework of membrane computing.
The study of the complexity classes in membrane computing deserves further
investigations under these specific definitions.
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Abstract. Broadcasting is the information distribution process in a
communication network, which aims to inform all network nodes with a
unique message, initially held by a subset of nodes called originators. This
paper considers a decision problem that asks if it is possible to inform
all nodes within t time units. This paper presents a non-deterministic
solution, implemented with a bio-inspired distributed and parallel com-
putational model called membrane systems, which decides in t+1 steps.
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1 Introduction

For a given communication network G = (V,E), broadcasting from node v 2 V
is the process of distributing information from v to every other node, under the
following constraints: (i) messages are exchanged between neighboring nodes,
(ii) each message exchange takes one time unit, (iii) each node can exchange
messages with up to f � 1 neighbors in one time unit. The problem is to design
a messaging protocol that informs all network nodes from a starting set of ver-
tices with the unique message within a deadline. This problem, a variant to the
Minimum Broadcast Time Problem [3, 2], is formulated next in Problem 1.

Problem 1. The Bounded Fanout Broadcast Problem
Instance: graph G = (V,E), subset V0 ✓ V called originators, a positive integer
f called fanout, a positive integer t called deadline.
Question: Is there a sequence of sets V0, E1, V1, . . . , Et

, V
t

, such that each V
i

✓
V , each E

i

✓ E, V
t

= V , and, for 1  i  t,

1. V
i

= V
i�1 [ {v | (u, v) 2 E

i

},
2. each edge in E

i

has an endpoint in both V
i�1 and V

i

\ V
i�1,

3. each vertex in V
i�1 is incident to at most f edges in E

i

,
4. each vertex in V

i

\ V
i�1 is incident to at most 1 edge in E

i

.

The set of edges E
i

, 1  i  t, satisying the constraints of Problem 1 is
considered to be a broadcast tree (protocol) of time t for a graph G. Usually the
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0 1

2 3

4 5

6 7

V0 = {0}

V1 = {0, 1, 4}

V2 = {0, 1, 2, 3, 4, 5, 6}

V3 = {0, 1, 2, 3, 4, 5, 6, 7}

E1 = {(0, 1), (0, 4)}

E2 = {(0, 2), (1, 3), (4, 5), (4, 6)}

E3 = {(5, 7)}

0 1

2 3

4 5

6 7

11

2

2 2 2 3

Fig. 1. Left: A connected graph. Center: A graph that shows the time step in which
nodes have been informed (indicated with edge labels) during broadcasting from node 0
with fanout f = 2. Right: The sequence of sets V0, E1, V1, E2, V2, E3, V3 corresponding
to the graph shown in the center.

set of originators is a single source vertex v 2 V . We say the fanout f broadcast

time of G originating at v, denoted BT
f

(G, v), is the smallest value t such that
there is corresponding broadcast tree of time t.

The main contribution in this paper is to present a non-deterministic1 solu-
tion to the bounded fanout broadcast problem using a computing model called
membrane system. Membrane systems [6, 7] (also known as P systems) are dis-
tributed and parallel computing model, inspired by the structure and function
of living cells. A membrane system consists of a network of (multiset process-
ing) computing units called membranes. Each membrane contains a multiset of
symbols and is associated with a set of multiset processing rules.

This paper is organized as follows. Section 2 recalls several key mathemati-
cal concepts that are used in this paper. Section 3 presents the definition of a
membrane system used in this paper. Section 4 presents the details of construct-
ing a membrane system that solves the bounded fanout broadcast problem for
a given instance. Finally, Section 5 summarizes this paper and provides some
open problems.

2 Preliminaries

This section covers several key mathematical concepts that are used in this
paper, such as sets, strings, multisets and graphs.

An alphabet is a finite non-empty set with elements called symbols. A string

over alphabet O is a finite sequence of symbols from O. The set of all strings
over O is denoted by O⇤. The length of a string x 2 O⇤, denoted by |x|, is the
number of symbols in x. The number of occurrences of a symbol o 2 O in a
string x over O is denoted by |x|

o

. The empty string is denoted by �.
A multiset is a set with multiplicities associated with its elements. A set

that contains the distinct elements of a multiset v is denoted by distinct(v).
The empty string or multiset is represented by �. The size of a multiset v is

1 each informed node non-deterministically selects uninformed neighbors
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denoted by |v|. The multiplicity of an element x in a multiset v is denoted by
|v|

x

. We say that a multiset v is included in a multiset w, denoted by w ✓ v, if,
for all o 2 O, |w|

o

 |v|
o

. The union of multisets v and w, denoted by v [ w,
is a multiset x, such that, for all o 2 O, |x|

o

= |v|
o

+ |w|
o

. The di↵erence of
multisets v and w, denoted by v � w, is a multiset x, such that, for all o 2 O,
|x|

o

= max(|v|
o

� |w|
o

, 0).
A (binary) relation R over two sets X and Y is a subset of their Cartesian

product, R ✓ X ⇥ Y . For A ✓ X and B ✓ Y , we set R(A) = {y 2 Y | 9x 2
A, (x, y) 2 R}, R�1(B) = {x 2 X | 9y 2 B, (x, y) 2 R}.

A graph is an ordered pair (V,E), where V is a finite set of elements called
nodes and E is a set of unordered pairs of V called edges. A path of length n�1
is a sequence of n nodes, v1, v2, . . . , vn, such that {(v1, v2), . . . , (vn�1, vn)} ✓ E.
The diameter of G, denoted by dia(G), is the maximum of the lengths of shortest
paths between every pair of nodes of G.

A directed graph (digraph) is a pair (V,A), where V is a finite set of elements
called nodes and A is a set of an ordered pair of V called arcs. Given a digraph
D = (V,A), for v 2 V , the parents of v are A�1(v) = A�1({v}) and the children

of v are A(v) = A({v}).

3 Membrane systems

Membrane systems (also known as P systems) are distributed and parallel com-
puting models. A membrane system consists of a network of (multiset processing)
computing units called membranes. Each membrane contains a multiset of sym-
bols and is associated with a set of multiset processing rules. Several P system
models [5, 4, 1] have been introduced, inspired from various features of living
cells, that provide new ways to process information and solve the computational
problems of interest. A membrane system model used in this paper has the form
⇧ = (O,Q,K,R,�), where

1. O is a finite non-empty alphabet of symbols.
2. Q is a finite set of states.
3. K = {µ1, µ2, . . . , µn

| n 2 N+} is a finite set of membranes. Each membrane
µ
i

2 K is of the form µ
i

= (s
i

, w
i

), where
• s

i

2 Q denotes the current state of µ
i

,
• w

i

2 O⇤ denotes the current content of µ
i

.
4. R is a set of evolution rules, where an evolution rule r 2 R has the form:

j s u !
↵

s0 v w x

• ↵ 2 {min, max} is a rewriting operator of r,
• j 2 N is the priority of r, where the lower value j indicates higher

priority,
• s, s0 2 Q, where s = source(r) is the start state and s0 = target(r) is
the target state of r,

• u 2 O+ are the rule symbols on the “left hand side”, denoted LHS(r),
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• v 2 (O ⇥ ⌧)⇤, where ⌧ 2 {�, ", #, l} is a target indicator. Note that,
(o,�) 2 v, o 2 O, is abbreviated to o,

5. � is an irreflexive and asymmetric relation on K, representing a set of arcs
between membranes with bidirectional communication capabilities.

A configuration of system ⇧ of order n is (s1, w1, s2, w2, . . . , sn, wn

), where,
for 1  i  n, s

i

and w
i

correspond to the current state and content of membrane
�
i

, respectively. Consider two configurations of system ⇧, C 0 and C 00. A transi-

tion in system ⇧ is a transformation from C 0 to C 00 in one time unit, denoted by
C 0 ) C 00, such that C 00 is obtained from C 0. A transition C 0 ) C 00 consists of
two substeps (substep 1 and substep 2). All membranes simultaneously perform
substep 2, after every membrane has finished substep 1.

• Substep 1: Each membrane µ
i

, 1  i  n, finds a maximal multiset of
evolution rules, M

i

, as described in Definitions 2 and 3.
• Substep 2: Each membrane µ

i

, 1  i  n, executes a multiset of evolution
rules found in substep 1, M

i

, as described in Definition 4.

System ⇧ halts, if it reaches a configuration (called the halting configura-
tion), where no evolution rule can be applied to the existing symbols inside all
membranes. The computational results of a halted system are the multiplicities
of symbols present in the membranes of the system.

Definition 2. Given a multiset w 2 O⇤ and an evolution rule r 2 R, where
LHS(r) ✓ w, the number of applications of r over w is

apply(r, w) =

⇢
1 if rewrite(r) = min,

|w|LHS(r) if rewrite(r) = max.

Definition 3. For membrane µ
i

, in state s
i

with content w
i

and a set of evolution
rules R

i

, a maximal multiset of rules, M
i

, is obtained by the procedure below.

Input: a set of evolution rules R
i

and a multiset w := w
i

.
Output: a maximal multiset M

i

.
M

i

:= ;
for each r

j

2 R
i

with source(r
j

) = s
i

, 1  j  |R
i

| (by priority order)
if (M

i

= ; || 8r
k

2 M
i

(target(r
j

) = target(r
k

))) then
if (LHS(r

j

) ✓ w then
m := apply(r

j

, w)
M

i

:= M
i

[ {rm
j

}
w := w � LHS(r

j

)m

endif
endif

endfor

Definition 4. For each membrane µ
i

, 1  i  n, consider a maximal multiset of
evolution rules, M

i

, found according to Definition 3. For membrane µ
i

with the
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current content w
i

, multisets U
i

, V
i

, V #
i

, V "
i

and V
l
i

, for each µ
k

2 �(i)[��1(i),
are defined as follow:

• U
i

=
S

rj2Mi
LHS(r

j

), denotes the multiset that will be consumed from w
i

.

• V
i

=
S

rj2Mi

S
(o,�)2RHS(rj){o}, denotes the multiset that will be produced

and added to w
i

.
• V #

i

=
S

rj2Mi

S
(o,#)2RHS(rj){o}, denotes the multiset that will be sent to each

µ
k

2 �(i).

• V "
i

=
S

rj2Mi

S
(o,")2RHS(rj){o}, denotes the multiset that will be sent to each

µ
k

2 ��1(i).

• V
l
i

=
S

rj2Mi

S
(o,l)2RHS(rj){o}, denotes the multiset that will be sent to each

µ
k

2 �(i) [��1(i).

For each membrane µ
i

in state s
i

with content w
i

:

• If M
i

= ;, then µ
i

remains in state s
i

with content w
i

.
• Otherwise, µ

i

transforms:

� its current state to s
i

= target(r
f

), where r
f

2 M
i

.
� its current content w

i

to w0
i

, where

w0
i

= w
i

� U
i

[ V
i

[
[

f2�

�1(i)

V #
f

[
[

g2�(i)

V "
g

[
[

h2�(i)[�

�1(i)

V
l
h

4 Non-deterministic P systems solutions

This section presents P system⇧ that correspond to a non-deterministic solution
to the bounded fanout broadcast problem of Problem 1. A trace of system ⇧
for the example of Figure 1 is given in Section 4.4.

4.1 Overview of system ⇧

System ⇧ consists of one membrane, labeled µ, that determines if every node
can be informed within t steps from nodes of V0, using the procedure illustrated
in Figure 2. Activities and decisions indicated inside boxes of the procedure are
accompanied by the corresponding evolution rules specified in Section 4.2.

As illustrated in Figure 2, µ produces one copy of symbol o if every node can
be informed within t steps. The final configuration of a halted system ⇧ can be
interpreted, with respect to Problem 1, as follows:

• If µ ends with one copy of symbol o, then the answer is “Yes”.
• Otherwise, the answer is “No”.
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Have all nodes been informed?

Produce one copy
of symbol o

Halt

Is counter � 1?

For each informed node i:
non-deterministically
select up to f uninformed
neighbors of i.

No

Yes No

YesDecrement counter by 1

(LHS of rule 1)

(LHS rules 2 & 3)

(Rule 4)

(RHS of rule 2)

(RHS of rule 1)

Fig. 2. Procedure for µ to determine if all nodes can be informed within t steps from
nodes of V0. Initially, nodes of V0 are marked as “informed” and every other node is
marked as “uninformed”. Variable counter has an initial value of input parameter t.

4.2 Specification of system ⇧

Specification of system ⇧ described earlier is (O,Q,R,K,�), where

1. O = {v
i

, u
i

, e
i,j

, h, o | i, j 2 {1, 2, . . . , n}}.
• Symbols e

i,j

and e
j,i

represent edge (i, j) 2 E.
• Symbols v

i

and u
i

represent the “informed” and “uninformed” status of
node i 2 V , respectively.

• Multiplicity of symbol v
i

represents the fanout parameter f .
• Recall variable counter of Figure 2, which has an initial value of input

parameter t. Multiplicity of symbol h corresponds to value counter + 1.
• Symbol o represents “Yes-output”, i.e. every node can be informed within

in t steps.
2. Q = {s0, s1, s2}, where

• s0 represents an active state where informed nodes non-deterministically
select up to f uninformed nodes.

• s1 represents a halt state where all nodes could not be informed within
t steps.

• s2 represents a halt state where every node is informed within t steps.
3. R corresponds to the following rules. The task each rule undertakes is indi-

cated in Figure 2.
1. s0 vf1 vf2 . . . vf

n

!min s2 o
2. s0 h h !min s0 h
3. s0 h !min s1 h
4. s0 v

i

e
i,j

e
j,i

u
j

!min s0 v
i

vf
j

4. K = {µ}, where µ has the initial form of (s0, VK

[ U
K

[E
K

[ ht+1), where
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• V
K

= {v
j

f | j 2 {V0}},
• U

K

= {u
j

| j 2 {1, 2, . . . , n} \ {V0}},
• E

K

= {e
i,j

, e
j,i

| (i, j) 2 E}.
5. � = ;.

4.3 Analysis of system ⇧

Propositions 5 and 6 demonstrate the correctness of construction of system ⇧
for solving the Problem 1. The run-time complexity of system ⇧ is indicated in
Proposition 7.

Proposition 5. Using rule 4, each informed node non-deterministically selects
f uninformed neighbors repeatedly, if any, and marks them as “informed”.

Proof. Each copy of symbol v
i

is used to find one uninformed neighbor, if any, as
follows. If symbols v

i

, u
j

, e
i,j

and e
j,i

are available (i.e. node i is visited, node j
is unvisited and nodes i and j are neighbors), then rule 4 rewrites symbol u

j

into
f copies of symbol v

j

(i.e. transforms the status of node j from “uninformed” to
“informed”). Every copy of symbol v

i

is preserved, such that node i can select
up to f uninformed neighbors in the future repeatedly, if necessary. ut

Proposition 6. Membrane µ replicates the the procedure of Figure 2.

Proof. We show that the evolution rules of R, which govern the behavior of µ
resemble the procedure of Figure 2. Membrane µ starts from state s0. Membrane
µ in state s0 finds and executes rules in each step as follows:

• Due to the rule priority, rule 1 is the first rule checked by µ. Rule 1 inspects
whether every node is informed by requiring multiset {vf

i

| 1  i  n}. If µ
meets this requirement, rule 1 is executed, which prompts µ to produce one
copy of symbol o and halt by entering state s2.

• Rule 2 is the next rule checked by µ, given that µ does not contain multiset
{vf

i

| 1  i  n} (i.e. not every node is informed). Rule 2 inspects the condi-
tion “counter � 1?” by requiring multiset {hh}. If µ contains {hh}, rule 2 is
executed, which prompts µ to consume one copy of symbol h (i.e. decrement
counter by 1) and remain in state s0 such that µ can check through rules of
R in the next step.

• Rule 3 is the rule executed by µ, given that µ does not satisfy the require-
ments of rules 1 and 2, i.e. not every node is informed and counter = 0.
Executing rule 3 prompts µ to halt by entering state s1.

• Rule 4 can be executed in parallel with rule 2 in one step, since these rules
have the same target state of s0. As described in Proposition 5, rule 4 en-
ables each informed node to non-deterministically select up to f uninformed
neighbors.
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The manner in which rules 1, 2, 3 and 4 are selected, and the results these rules
produce resemble the procedure of Figure 2. Thus, µ replicates the procedure of
Figure 2. ut

Proposition 7. System ⇧ takes at most t+ 1 steps.

Proof. In each step, µ executes (i) rule 1, (ii) rules 2 and 4, or (iii) rule 3. The
maximum number of steps rules 2 and 4 can be executed is t. If all nodes have
been informed in t0  t steps, then µ halts at step t0 + 1 by executing rule 1.
Otherwise, µ halts at step t0 + 1 by executing rule 3. ut

4.4 Example - an evolution trace of system ⇧

The table below illustrates an evolution trace of system ⇧ for the instance:
G is the graph shown in Figure 1 (Left), initiators V0 = {0}, fanout f = 2
and deadline t = 3. The order in which nodes are informed in the trace below
corresponds to the sequence given in Figure 1 (Right). The table indicates the
state and content of membrane µ in each step. The content column is divided
into five sub-columns that respectively indicate (i) “edge” symbols, (ii) “counter”
symbol, (iii) “unvisited node” symbols, (iv) “visited node” symbols and (v) “Yes-
output” symbol.

Step State Content

0 s0 e0,1 e0,2 e0,4 e1,0 e1,3 e1,5 e2,0 e2,3
e2,6 e3,1 e3,2 e3,7 e4,0 e4,5 e4,6 e5,1
e5,4 e5,7 e6,2 e6,4 e6,7 e7,3 e7,5 e7,6

h4 u1 u2 u3 u4

u5 u6 u7

v20

1 s0 e0,2 e1,3 e1,5 e2,0 e2,3 e2,6 e3,1 e3,2
e3,7 e4,5 e4,6 e5,1 e5,4 e5,7 e6,2 e6,4
e6,7 e7,3 e7,5 e7,6

h3 u2 u3 u5 u6

u7

v20 v21 v24

2 s0 e1,5 e2,3 e2,6 e3,2 e3,7 e5,1 e5,7 e6,2
e6,7 e7,3 e7,5 e7,6

h2 u7 v20 v21 v22 v23
v24 v25 v26

3 s0 e1,5 e2,3 e2,6 e3,2 e3,7 e5,1 e6,2 e6,7
e7,3 e7,6

h v20 v21 v22 v23
v24 v25 v26 v27

4 s2 e1,5 e2,3 e2,6 e3,2 e3,7 e5,1 e6,2 e6,7
e7,3 e7,6

h o

4.5 Remark

There are several variants to this bounded fanout broadcast problem. One of
the variants is to compute the fanout f broadcast time of a graph G = (V,E),
defined BT

f

(G) = max
v2V

BT
f

(G, v), where the broadcast time of an originator,
BT (G, f, v), was defined just after Problem 1.
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An overview of P system ⇧ 0 that can solve this global broadcast problem is
as follows. Assume that for the input graph G, V = {v1, v2, . . . , vn}. System ⇧ 0

consists of n+1 membranes, labeled µ
skin

, µ
v1 , µv2 , . . . , µvn , which are arranged

in a rooted tree structure of Figure 3.

. . .

µ
skin

µ
v1 µ

v2 µ
vn

Fig. 3. The membrane structure of system ⇧

0.

Membrane µ
vi , 1  i  n, covers the instance V0 = {v

i

} by determining if
node v

i

can inform every node within t steps. Membrane µ
vi uses the procedure

illustrated in Figure 2 with the following di↵erence: instead of producing one
copy of symbol o locally, µ

vi sends up one copy of symbol o to membrane µ
skin

,
i.e. replace rule s0 vf1 vf2 . . . vf

n

!min s2 o with s0 vf1 vf2 . . . vf
n

!min s2 (o, ").
The final configuration of a halted system ⇧ 0 can be interpreted as follows:

• If µ
skin

ends with n copies of symbol o, then the answer is “Yes”.
• Otherwise, the answer is “No”.

5 Conclusions

In this paper, we studied a communication networks problem, called the bounded
fanout broadcast problem, that asks: is it possible to inform all network nodes
within a specified deadline, under a communication constraint that limits the
number of neighbors each node can communicate simultaneously?

We designed our solution to this decision problem using membrane systems
that decides within t+1 steps, where t denotes the deadline. Future work include
two natural optimization problems: (i) find smallest fanout f when deadline t is
fixed, and (ii) find smallest t when f is fixed.
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Abstract. In this paper, we investigate simulations of Transition P sys-
tems (TP systems) in Evolution-Communication P systems with Energy
(ECPe systems). We only focus on TP systems where an object that
triggers a cooperative rule also triggers a non-cooperative rule. In this
way, the presence of a rule trigger always implies that a rule will be ap-
plied. In our constructed ECPe systems, a transition in the TP system
is simulated by a k-step computation where k is a factor of the cardi-
nality of the alphabet in the original system. Also, the maximum energy
needed for communication rules are dependent on the number of copies
of a trigger in a cooperative rule.

Keywords: Membrane computing, Evolution-Communication P systems with
energy, Transition P systems

1 Introduction

One of the models proposed for analyzing communication complexity in mem-
brane computing [6, 8] is the so-called Evolution-Communication P system with
energy (ECPe system) introduced in [2]. ECPe system is an extension of Evolution-
Communication P system (ECP system)[3]. Both models use separate forms of
rules for evolution and communication. However, in ECPe system, communica-
tion requires a cost. The cost comes in the form of special objects called ‘energy’,
produced during evolution and required during communication.

In this work, we contribute to the study of ECPe systems by investigating
how this model can be used to simulate a basic membrane computing model
called Transition P system [5]. Although both are cell-like models, TP and ECPe
systems di↵er in how rules are formed. (These distinctions on the rules used
becomes more apparent when we look at their definitions in Section 2). Through
this work, we also contribute to a research topic given in [7] on simulating a class
of P systems with another class. Simulations of TP systems may also give us an
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idea on how other class of cell-like P systems (e.g. ECP systems which is a more
similar variant) can be simulated in ECPe system.

In a previous work [4], we are able to show an ECPe system simulator for non-
cooperative TP systems. A transition can be simulated by a 3-step computation
in the constructed system. This work is a continuation of the e↵ort in [4]; this
time, we focus on extending the constructed simulator in [4] to handle coopera-
tive rules. One of the di�culties in handling cooperative rules is validating that
the required multiset in the left-hand side of a rewriting rule exists in the region
where the rule is defined. In this work, we only focus on a restricted cooperative
TP system. In such model, a cooperative rule trigger can also be consumed by a
non-cooperative rule trigger. Thus, in the presence of triggers, we are sure that
the system continues to move to a next configuration. The resulting Transition
P system is called Transition P systems with independent triggers (or TP-ind
systems).

2 Preliminaries

Let V be an alphabet, V ⇤ is the free monoid over V with respect to concatenation
and the identity element � (empty string). The set of all non-empty strings over
V is denoted as V + so V + = V ⇤ � {�}. The length of a string w 2 V ⇤ is
denoted by |w|. For a 2 V , |w|a represents the number of a in string w. Let U
be an arbitrary set. A multiset (over U) is a mapping M : U ! N. The value
M(a), for a 2 U , is the multiplicity of a in the multiset M. The support of a
multiset M is the set supp(M) = {a 2 U | M(a) > 0}. A multiset M can also

be represented by a string: w = aM(a1)
1 aM(a2)

2 . . . aM(an)
n where ai 2 supp(M),

1  i  n. In string w and all its permutation, |w|ai = M(ai). Thus, string
w and all its permutations precisely identify and refer to the same multiset M .
We use the phrase “multiset w”, where w is a string, to refer to the multiset
represented by the string w.

We define a Transition P (TP) system without dissolution, similar to [1] as
follows:

Definition 1. (TP systems) A Transition P (TP) system without dissolution
is a construct of the form ⇧ = (O,µ,w1, . . . , wm, R1, . . . , Rm, houtput) where m
is the total number of membranes; O is the alphabet of objects; µ is a hierarchical
membrane structure (a rooted tree) of degree m, bijectively labelled from 1 to m,
and the interior of each membrane defines a region; the environment is referred
as region 0; wh is the initial multiset in region h (1  h  m); Rh is the set of
rules in region h (1  h  m); Each rule has the form u ! v where multiset
u 2 O+, v 2 (O ⇥ Tarh)⇤ and Tarh = {here, out} [ {inj | j 2 children(h)},
1  h  m; houtput 2 {0, 1, . . . ,m} is the output region. When the system is a
language generator, houtput = 0;

As in usual P systems, µ is a hierarchical membrane structure denoted by a string
of matching square brackets with labels. If membrane j is immediately contained
in membrane h, i.e. [. . . [ ]j ]h, h is referred as parent of j (denoted by parent(j)).
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Consequently, j is a child membrane of h. This is denoted by j 2 children(h)
where children(h) is the set of all child membranes of h. Aside from possibly
containing other membranes, a membrane has a multiset of objects. We use the
term ‘copy of a’ to refer to an instance of object a present in a multiset w. The
multiset in a region h is evolved and transported through the set Rh of rules.
To describe how each rule is executed, we refer to Definition 1 to recall the form
followed by each rule in Rh. When rule r is applied, the multiset u is removed
from region h and multisets in v is produced in the next time step. Symbols
here, out and inj indicate the destination of the objects produced (target here
is typically omitted). A rule u ! v labelled r is denoted by r : u ! v. The
left-hand side of rule r (that is, u) is denoted by LHS(r). A rule with |u| = 1 is
said to be non-cooperative; otherwise, the rule is cooperative.

Starting from the initial multiset in each region, a TP system computes
by applying rules in a non-deterministic and maximally parallel manner. Non-
determinism implies that at a certain step, if there are more than two rules
that can be applied to a copy of an object, the system non-deterministically
chooses the rule to be applied for each copy. Maximally parallel means that
there are no further rules applicable to copies that are not used in any rule. A
configuration of a P system describes the membrane structure and the content
of regions at a certain time. The process of applying all applicable rules in a
current configuration, thus obtaining a new configuration is called a transition.
A computation is a (finite or infinite) sequence of configurations such that: (a)
the first term is the initial configuration of the system; (b) for each n � 2, the
n-th configuration of the sequence is obtained from the previous configuration
in one transition step; and (c) if the sequence is finite then the last term is a
halting configuration (a configuration where no rule of the system is applicable
to it). Computation succeeds when the system halts. If the computation doesn’t
halt, computation fails because the system did not produce any output.

We only consider models that generate languages. In this case, we follow [1]
wherein the result of a successful computation is the sequence of objects sent to
the environment, i.e. houtput = 0. The order of how copies of objects are sent
to the environment dictates their position in the output string. When multiple
objects are sent at a given time, the output string is formed from any of their
permutations. The language generated by TP system ⇧ is denoted by L(⇧).

In our study, we only focus on a specific type of TP system called TP-ind
system. First, we introduce the notion of rule triggers. Given a TP system, a
trigger corresponds to an object that exists on the left-hand side of a rule.

Definition 2. (Trigger, Independent Trigger) Given a TP system ⇧, an
object o 2 O is a trigger in a region h if there exists a rule r 2 Rh where
o 2 supp(LHS(r)). Object o is an independent trigger in region h if there
exists a rule r0 2 Rh that is a non-cooperative rule and o 2 supp(LHS(r0)).
When the region is clear, we simply say that a trigger is independent.

Definition 3. (coop-ind rule) Let ⇧ be a TP system. A cooperative rule
having independent triggers only (coop-ind rule) is a cooperative rule r 2 Rh

(1  h  m) where for all trigger o 2 supp(LHS(r)), o is independent.
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Definition 4. (TP-ind system) A TP system with independent triggers only
(TP-ind system) is a TP system ⇧ where all triggers in all regions are indepen-
dent triggers. This implies that if ⇧ contains cooperative rules, then these rules
are all coop-ind rules.

Notice that independent triggers are always consumed (in a computation step)
when some copies of these triggers occur in a configuration; this means, TP-
ind system continues evolving as long as a trigger exists since all triggers are
independent. Also, the halting configuration of a TP-ind system doesn’t have
triggers.

We use the definition for Evolution-Communication P system with energy
(ECPe system) from [2].

Definition 5. (ECPe system) An Evolution-Communication P system with

energy (ECPe system) is a construct of the form ⇧† = (O†, e, µ†, w†
1, . . . , w

†
m̄, R†

1,

R0†
1, . . . , R

†
m̄, R0†

m̄, h†
output) where m̄ pertains to the total number of membranes;

O† is the alphabet of objects; e /2 O† is a special object; µ† is a hierarchical
membrane structure; w†

h is the initial multiset over (O†)
⇤
in region h (1  h 

m̄); R†
h is set of evolution rules in region h; Each rule has the form a ! v where

a 2 O†, v 2 (O† [ {e})⇤. R0†
h are sets of communication rules in membrane h;

There are two types of communication rules: symport and antiport. A symport
rule takes one of the following form: (aei, in) or (aei, out), where a 2 O†, i � 1.
An antiport rule takes the form (aei, out; bej , in) where a, b 2 O† and i, j � 1.
h†
output 2 {0, 1, . . . , m̄} is the output region. As in TP systems, h†

output = 0 when
the system is a language generator.

Notice that since e is not part of O†, any copy of e cannot be in the initial
configuration. A set of evolution rules Rh is associated with each region h. To
describe how each evolution rule is executed, we refer to Definition 5 to recall
the form followed by each rule in Rh. When applying a rule of this type, a
copy of a transforms into a multiset v in the next time step. This is similar to
the multiset-rewriting rule for TP systems. However, evolution rules are non-
cooperative; also, the multiset produced stays in the same region.

Each membrane h (1  h  m̄) has a set of communication rules. A commu-
nication rule can either be a symport or an antiport rule. A symport rule can
be of the form (aei, in) or (aei, out), where a 2 O†, i � 1. By using this rule,
i copies of e are consumed to transport a copy of a inside (denoted by in) or
outside (denoted by out) the membrane where the rule is defined. The copies
of e cannot pass through membranes, thus, they disappear (or said to be lost)
after the communication. An antiport rule is of the form (aei, out; bej , in) where
a, b 2 O† and i, j � 1. By using this rule, a copy of a in the region immediately
outside the membrane where the rule is declared, and a copy of b inside the
region bounded by the membrane should exist. When such rule is applied, copy
of a and copy of b are swapped using i and j copies of e in the di↵erent regions,
respectively. As in symport rules, the copies of e disappears after the swap. The
language generated by ECPe system ⇧† is denoted by L(⇧†).
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We are interested in constructing simulations of di↵erent TP system vari-
ants in ECPe system where for every transition in the TP system, there is a
corresponding computation in ECPe system:

Definition 6. Given a TP system ⇧ and an ECPe system ⇧†, we say that ⇧
simulates ⇧† when we can establish a correspondence between configurations in
⇧ and ⇧†. Suppose a configuration C1 in ⇧ corresponds to a configuration C†

1

in ⇧† and a configuration C2 in ⇧ corresponds to a configuration C†
2 in ⇧†:

There is a transition from C1 to C2 in ⇧ if and only if there is a computation
in ⇧† that reaches C†

2 from C†
1.

3 Main Results

Definition 7. (Categories for coop-ind rules) Given a TP-ind system ⇧, a
coop-ind rule in a region h (1  h  m) can be classified as one of the following:

cat 1: coop-dis rule A cooperative rule r 2 Rh has |LHS(r)|a = 1 for all
a 2 supp(LHS(r)). This type requires only one copy of each distinct trigger.

cat 2: coop-one rule A cooperative rule r 2 Rh has |u| > 1 and |supp(u)| = 1
where LHS(r) = u. This type requires many copies of only one trigger.

cat 3: coop-mul rule A cooperative rule r 2 Rh has |supp(u)| > 1 and at least
one trigger a has |u|a > 1 where LHS(r) = u. This type requires more than
one trigger, and at least one trigger requires more than one copy.

We give additional notations for TP systems before we give our main result.
These notations will be used in the suceeding subsections. Given a TP system
⇧ = (O,µ,w1, . . . , wm, R1, . . . , Rm, houtput), we impose a total order on al-
phabet O so that we can label every element in O as ok (1  k  |O|). Let rule
r 2 Rh where r : u ! v (u and v are as specified for multiset-rewriting rules in
TP systems in Section 2). Multisets in v are divided according to their receiving
region. We define xr, yr,j (j 2 children(h)) and zr as part of multiset v where:

– xr is the multiset of objects produced by r and stays in the region h.
– yr,j is the multiset of objects produced by r and is communicated inside an

inner membrane j.
– zr is the multiset of objects produced by r and is communicated outside h.

We use the total mapping on alphabet O to fix an order on the left-hand side of
a TP-ind system rule. Specifically, given a rule r : u ! v:

– first(r) = ok where ok 2 supp(u) and 8ok0 , k0 < k, ok0 /2 supp(u).
– last(r) = ok where ok 2 supp(u) and 8ok0 , k0 > k, ok0 /2 supp(u).
– prev(r, ok0) = ok where ok, ok0 2 supp(u), k0 > k and 8ok00 , k < k00 < k0,

ok00 /2 supp(u). The object prev(r, ok0) is the object in the sequence O that
triggers rule r before object ok0 .

– next(r, ok0) = ok where ok, ok0 2 supp(u), k0 < k and 8ok00 , k0 < k00 < k,
ok00 /2 supp(u). The object next(r, ok0) is the object in the sequence O that
triggers rule r after object ok0
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Suppose a TP system ⇧ has an alphabet O = {a, b, c, d, e} and a rule r : a2c3 !
ab(c, in2)(a, out).We can impose a total order on O based on the position of
the symbols in the set (i.e. a is labelled o1 and e is labelled o5). Based on this
labelling, r : o21o

3
3 ! o1o2(o3, in2)(o1, out). Thus, xr = o1o2, yr,2 = o3, and

zr = o1. Also, first(r) = o1, last(r) = o3, next(r, o1) = o3 and prev(r, o3) = o1.

3.1 Simulating TP-ind system where cooperative rules are coop-dis

Consider a TP-ind system of degree m � 1, ⇧1 = (O,µ,w1, . . . , wm, R1, . . . , Rm,
0) where all cooperative rules are coop-dis.

We construct the simulator ECPe system of degree m̄ � 2, ⇧1
† = (O†, e, µ†,

w†
1, . . . , w

†
m̄, R†

1, R
0†
1, . . . , R

†
m̄, R0†

m̄, 0). The number m̄ = m+n+1 where n is the
total number of coop-dis rules in ⇧1. Membrane structure µ† is obtained in the
following way: 1) µ† initially adapts membrane structure µ. To avoid confusion,
we let every membrane h of ⇧1 (1  h  m) be represented by a membrane
labelled (h) in ⇧†

1 . 2) For every coop-dis rule r 2 Rh, a membrane labelled (h, r)
is introduced as a child membrane of (h). 3) An additional membrane labelled
(0) is introduced as the parent membrane of (1).

For every copy of object ok 2 O, consider new objects ok,p where the second
index of the subscript functions as a timer. Also, for every rule trigger ok, consider
new objects ok,p,r where rule r is triggered by ok in ⇧1. The third index of
the subscript indicates that a copy of object ok will be consumed by applying
rule r. For every rule r 2 Rh, we also consider new objects {r,{•

r , &r, 'r,j

(j 2 children(h)). These objects are used when producing the multisets in the
right-hand side of rule r. Taking these into account, alphabet O† is defined by:

O† = {ok,p, ok,p,r | 1  k  |O|, 0  p  2|O|+ 2, ok 2 supp(LHS(r))}
[ {{r,{•

r , &r,'r,j | 1  j  m, r 2 Rh, 1  h  m}
The initial multiset w†

(h) is obtained by replacing every copy ok in wh by ok,0.

All other membranes in ⇧†
1 is initially empty. The sets of rules for the ECPe

system are obtained in the following way:
For every trigger ok that is present in the LHS of a rule r 2 Rh (i.e. ok 2

supp(LHS(r))), we add the following rules:

[a] ok,p ! ok,p+1 2 R†
(h) for 1  k  |O|, 0  p < 2k � 2

[b] ok,2k�2 ! ok,2k�1,r 2 R†
(h) for a non-cooperative rule r

[c] ok,2k�2 ! ok,2k,re 2 R†
(h) for a cooperative rule r

Rule [a] increments the timer of a copy ok,p until p reaches a value of 2k � 2.
In the next step, one of rules [b] or [c] will be applied on a copy ok,2k�2. When
rule [b] is used, copy ok,2k�2 evolves; incrementing the value of the timer by
one and appending another index in the subscript to remember the rule which
will consume ok. When rule [c] is used, copy ok,2k�2 becomes ok,2k,r while also
producing a copy of the special object e. Through rule [c], the involved timer
is incremented by two. The ‘plus one’ in such increment is used to account the
communication in the next step, wherein the produced copy e will be utilized.
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Rules [a], [b] and [c] indicates that in the simulator ⇧†
1 , the timer is used

to impose a specific time by which a copy of a trigger ok decides the rule that
consumes it. If the said rule is non-cooperative, then simulating the rule only
involves production of its RHS in the succeeding steps. However, if the involved
rule is cooperative, there is a need to make sure that the LHS of the rule is
satisfied. This implies making sure that other triggers exist and are consumed
via the same rule. We shall call this LHS validation.

The following rules are added to simulate a coop-dis rule r 2 Rh:

[d] (ok,2k,re, in) 2 R0†
(h,r) for first(r) = ok

[e] (ok2,2k2,re, in; ok1,2k2,re, out) 2 R0†
(h,r)

for ok1 , ok2 2 supp(LHS(r)), last(r) 6= ok1 , next(r, ok1) = ok2

[f] (ok,2k+2,re, out) 2 R0†
(h,r) for last(r) = ok

Rule [d] involves transferring a copy ok,2k,r in region (h, r) where first(r) = ok.
This rule is used to signal the start of the LHS validation for a single application
of a cooperative rule r in the simulated ⇧1. Afterwards, LHS validation is mainly
executed by application of rule [e] to consecutive triggers of rule r (recall that
determining consecutive triggers depends on a total order imposed on O). Sup-
pose copies ok1 , ok2 both trigger rule r and next(r, ok1) = ok2 . The copy in region
(h, r), i.e. representing ok1 , acts as a validator that a copy of the next trigger
(ok2) exists in region (h) and shall be consumed via rule r. Rule [e] requires that
a copy of both ok1,2k2,r and e be present in region (h, r). Similarly, a copy of
both ok2,2k2,r and e must be present in region (h). Upon application of rule r, the
involved triggers swap places so that a representation of ok2 is present in region
(h, r). This trigger will then be used for the next pairwise validation. Notice that
both triggers must have the same timer value (equal to 2k2). The following rules
in region (h, r) are employed to synchronize the timer of the involved triggers and
to dissolve the validator once rule [e] is used, respectively. Rules [g],[h] and [i] be-
low are added for all ok2 , ok1 2 supp(LHS(r)), last(r) 6= ok1 , next(r, ok1) = ok2 :

[g] ok1,p,r ! ok1,p+1,r 2 R†
(h,r) where 2k1  p < 2k2 � 2

[h] ok1,2k2�2,r ! ok1,2k2,re 2 R†
(h,r) where 2k1  p < 2k2 � 2

[i] ok1,2k2,r ! � 2 R†
(h)

In case the pairwise validation fails, i.e. there is no copy ok2,2k2,r in region (h),
we use the next rules to produce a trap symbol and lead the simulator to a
non-halting state so that no output can be produced. Rules [j] and [k] below are
added for all ok2 , ok1 2 supp(LHS(r)), last(r) 6= ok1 , next(r, ok1) = ok2 :

[j] ok1,2k2,r ! # 2 R†
(h,r) [k] # ! # 2 R†

(h,r)

To signal completion of the LHS validation for an application of rule r, rule [f]
must be utilized. Rule [f] transfers last trigger from region (h, r) to region (h).
The next rule is an additional rule in region (h, r) needed to produce a special
object e and update the timer for rule [f]:
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[l] ok,2k,r ! ok,2k+2,re 2 R†
(h,r) where last(r) = ok

(An example illustrating LHS validation for an application of a coop-dis rule is
given in Appendix A. )

When a coop-dis rule in ⇧1 involves an object o|O|, then the LHS validation

in ⇧†
1 for the said rule takes 2|O|+2 steps. LHS validation for this rule takes the

longest time. The next phase in simulating a rule is simulating the production of
multisets in the right-hand side of the rules applied in a transition in⇧1. We shall
call this phase RHS production. Before we proceed with RHS production, we
make sure that all rule applications in a transition in ⇧1 have accomplished LHS
validation in ⇧†

1 . For this purpose, the following rules are added in simulating a
coop-dis rule r 2 Rh:

[m] ok,p,r ! ok,p+1,r 2 R†
(h) for last(r) = ok, 2k + 2  p < 2|O|+ 2

Similarly, in simulating a non-cooperative rule r 2 Rh, the following rules (for
updating timers after applying rule [b]) are added:

[n] ok,p,r ! ok,p+1,r 2 R†
(h) for last(r) = ok, 2k � 1  p < 2|O|+ 2

When the timer of all remaining copies in a region (h) reaches 2|O|+2, we proceed
with RHS production. For this purpose, the next set of rules are adapted and
slightly modified from [4]. For the next set of rules, we need to recall that for
every rule r 2 Rh, we declared multisets xr, yr and zr,j for every j 2 children(h)
to represent the multisets produced by rule r in region h and its neighboring
regions. The rules below are added in simulating a rule r 2 Rh:

[o] ok,2|O|+2,r ! ṽ 2 R†
(h)

for last(r) = ok and ṽ is a multiset formed from adding {r, adding &r and
e, and for every j 2 children(h), adding both 'r,j and e.

[p] {r ! {•
r 2 R†

(h)

[q] {•
r ! ṽ 2 R†

(h)

where ṽ is formed from adding ok,0 for every ok in the multiset xr.

[r] ('r,je, in) 2 R0†
(j) for j 2 children(h)

[s] 'r,j ! ṽ 2 R†
(j)

where j 2 children(h) and ṽ is formed from adding ok,0 for every ok in the
multiset zr,j .

[t] (&re, out) 2 R0†
(h1)

for parent(h) = h1

[u] &r ! ṽ 2 R†
(h1)

where h1 2 parent(h), h1 6= (0) and ṽ is formed from adding ok,0 for every
ok in the multiset yr.

[v] &r ! ṽ 2 R†
(h1)

where h1 2 parent(h), h1 = (0) and ṽ is formed from adding both ok,0 and
e for every ok in the multiset yr.

[w] (ok,0e, out) 2 R0†
(0) for every ok,0 2 O†.
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As in [4], using the rules above, it takes three steps to accomplish RHS production
for a rule r 2 Rh. The first step uses rule [o] and produces the symbols {r, "r
and 'r,j . The next step involves the use of rules [p], [r] and [t]. Rule [p] will be
used to evolve {r to {•

r while rules [r] and [t] are used to transfer symbols "r and
'r,j to their respective regions, respectively. Finally, rules [q], [s], [u] and [v] are
used to produce the multisets representing the multisets in the RHS of rule r.
The timer in the subscript of the produced multiset will be reset to 0 indicating
that the next transition in ⇧1 is ready to be simulated.

Note that rule [v] is used in the case where region h is the skin (i.e. h = 0).
In this case, the multiset zr for rule r is communicated to the environment. In
⇧†

1 , this is simulated by applying rule [v] and then, applying rule [w]. The extra
step of applying rule [w] can cause an overlap on the simulation of the current
and the next transition. However, since the first step in the simulation of the
next transition doesn’t involve region (0), the extra step in the simulation of the
current transition doesn’t e↵ect the simulation of the next transition.

Lemma 1. For each TP-ind system ⇧1 where cooperative rules are coop-dis, we
can construct an ECPe system ⇧†

1 such that each computation of length ⌧ in ⇧1

is simulated by an equivalent computation of length at most ((2|O|+ 5)⌧) + 1 in

⇧†
1 where O is the alphabet of ⇧1 and L(⇧1) = L(⇧†

1).

Proof. The ECPe system simulator ⇧†
1 is as constructed above. We note that

the initial multiset w†
h in ⇧†

1 is an exact representation of the initial multiset
wh in ⇧1. The choice of applicable rules by trigger ok in ⇧1 is also exactly
represented by rules [b] and [c] for the corresponding object ok,2k�2 in ⇧†

1 . From
our construction, we have shown that applicable rules are simulated in at most
2|O|+ 6 steps. These can be broken down to the following phases:

(a) Exactly 2|O| + 2 steps are needed to assign applicable rules to every copy
of a trigger (via any one of rule [b] or [c]) and perform LHS validation (via
rules [d] to [n]).

(b) Three steps are needed to perform RHS production on the applicable rules
(c) If a rule applied in ⇧1 sends a multiset to the environment, an extra step is

performed in ⇧†
1 to send the corresponding multiset to the environment.

The e↵ect of simulating all applicable rules will be reflected in at most 2|O|+ 6
steps. Note that the optional last step (c) overlaps the simulation of the next
transition. The description above shows that the non-deterministic and maximal
parallelism property of a transition in ⇧1 is respected in the corresponding
computation of the transition in⇧†

1 . Also, all strings generated by a computation

⌧ in ⇧1 is also generated in ⇧†
1 in at most ((2|O|+ 5)⌧) + 1 steps.

While all rules in ⇧1 are represented in ⇧†
1 , there are additional computation

paths in ⇧†
1 due to wrong guesses for item (a) above. However, rules [j] and [k]

employed for LHS validation of a candidate applicable rule makes sure that the
computation leads to a non-halting state and thus, produces no extra strings.
This implies that all strings in ⇧†

1 is also generated in ⇧1.
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3.2 Simulating TP-ind system where cooperative rules are either

coop-dis or coop-one only

Lemma 2. Given a TP-ind system ⇧2 where cooperative rules are either coop-
dis or coop-one, we can construct an ECPe system ⇧?

2 such that each compu-
tation of length ⌧ in ⇧2 is simulated by an equivalent computation of length at
most ((2|O|+5)⌧)+1 in ⇧?

2 where O is the alphabet of ⇧2 and L(⇧2) = L(⇧?
2 ).

Proof. We now consider a TP-ind system ⇧2 where cooperative rules are re-
stricted to either coop-dis or coop-one. Our ECPe system simulator ⇧†

2 to sim-

ulate ⇧2 will be an extension of the simulator ⇧†
1 defined in Section 3.1. Specif-

ically, we construct our ECPe system simulator ⇧†
2 by starting with copying

the definition of our simulator in Section 3.1. This means, simulation of non-
cooperative rules and coop-dis rules are the same as in the previous subsection.

In order to simulate coop-one rules, there are several elements we add in our
current ⇧†

2 simulator. First, as in simulating coop-dis rules, we add additional
membrane (h, r) for every coop-one rule r 2 Rh. The membrane (h, r) is also a
child membrane of membrane (h). The set of symbols {#(h) | 1  h  m} are
also added to the alphabet O†. We add the symbol #(h) to the initial multiset of
region (h). The role of these additional symbols will be discussed when we give
the rules to simulate a coop-one rule.

Rules [c01] and [c02] below are added for every trigger ok 2 supp(LHS(r))
where r 2 Rh is a coop-one rule:

[c01] ok,2k�2 ! ok,2k,re 2 R†
(h) [c02] ok,2k�2 ! e 2 R†

(h)

The simulation of a coop-one rule is similar to that of a coop-dis rule. Specifi-
cally, when a copy ok,0 (for a coop-one trigger ok) reaches ok,2k�2, the timer is
added by two while producing a copy of the special object e as well (i.e. rule [c01]
and rule [c] in Section 3.1 are the same). The added one step accounts for trans-
ferring the produced ok,2k,r to the region (h, r). The object ok,2k,r symbolizes
one application of rule r. However, since several copies of ok is needed to trigger
a coop-one rule r, we create another rule [c02] which only produces a copy e upon
consuming a copy ok,2k�2. Suppose we simulate a transition in ⇧2. If there are

f copies of ok in a configuration, then in ⇧†
2 , there are also f copies of ok,2k�2.

If all copies of ok,2k�2 are evolved to any of rules [c01] and [c02], then the total

number of e’s is equal to f . The next set of rules are added in the rules of ⇧†
2

for simulating a coop-one rule r 2 Rh: Rules [d0], [l0] and [f0] are added for every
trigger ok 2 supp(LHS(r)) where r 2 Rh is a coop-one rule:

[d0] (ok,2k,ref , in) 2 R0†
(h,r) where |LHS(r)|ok = f .

[l0 ] ok,2k,r ! ok,2k+2,re

[f0 ] (ok,2k+2,re, out) 2 R0†
(h,r)

These set of rules are used to carry out the LHS validation of one application
of rule r. Rule [d0] implies that there are f copies of e for copy ok,2k,r to move
to region (h, r). If there is enough ok’s in a configuration in ⇧2, rule [d0] can be
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applied in⇧†
2 . The next two rules have the same e↵ect as rule [l] and [f] in Section

3.1 since for a coop-one rule r having a trigger ok, first(r) = last(r) = ok.
When the timer associated for an object ok is 2k�2, it can be observed that

the copies of e in the next step is solely dependent on the number of copies of
ok,2k�2. (This is caused only by the application of rules [c] (for coop-dis rules),
[c01] or [c02] (for coop-one rules) for rules triggered by ok). We now look at the
scenario where there are two coop-one rules that require the same object ok. Let
these be rules r1 and r2 where |LHS(r1)|ok = f1 and |LHS(r2)|ok = f2. The
(f1 + f2) copies of ok in ⇧2 implies that there are (f1 + f2) copies of ok,2k�2

in ⇧†
2 . Suppose all these copies use rules of the form [c01] and [c02], there will be

(f1 + f2) copies of e that can be used to transfer a copy of both ok,2k,r1 and
ok,2k,r2 in their respective regions. However, in the case where both ok,2k,r1 and
ok,2k,r2 are produced and the number of copies of e is not equal to f1 + f2, then
either of the following cases (indicating failure of LHS validation for a coop-one
rule) holds: (i) at least one of the objects ok,2k,r1 and ok,2k,r2 will remain in
region h (ii)some extra copies of e occur in region h since they cannot be used
to apply a rule [d0]. The same can be said when more than two rules require the
same trigger. The following rules are used to force a non-halting computational
path when LHS validation fails: (Recall that in the initial multiset of region (h),
1  h  m, in ⇧†

2 , we added a copy of the symbol #(h).) For every region h and
parent((h)) = (j), rules [x] to [ź] are added:

[x] (#(h)e, out) 2 R0†
(j) [y] #(h) ! #(h) 2 R†

(j)

[z] ok,2k,r ! # 2 R†
(h) [ź] # ! # 2 R†

(h)

In order to sync with how other type of rules are simulated, the next phase in
simulating a coop-one rule r involves evolving the copy ok,2k+2,r in region (h)
to copy ok,2|O|+2,r and then, carrying out RHS production phase. The rules are
then the same as the rules in Section 3.1. Thus, for each coop-one rule r 2 Rh,
we further add rules [m], and rule [o] to rule [w].

In simulating coop-one rules, there are also cases where the system may guess
incorrectly, e.g. although rule [d0] can be used, any of rules [x], [y], [z] and [ź]
are chosen by the system instead. This results to additional non-halting compu-
tational paths. However, as in Lemma 1, since no extra strings are produced in
the additional branches, the language of ⇧2 and ⇧†

2 are the same.

3.3 Simulating TP-ind system where cooperative rules are either

coop-dis, coop-one or coop-mul

The technique used for handling coop-dis and coop-one rules can both be used
to handle coop-mul rules. Specifically:

Lemma 3. Given a TP-ind system ⇧3 where cooperative rules are either coop-
dis, coop-one, or coop-mul, we can construct an ECPe system ⇧†

3 such that
each computation of length ⌧ in ⇧3 is simulated by an equivalent computation
of length at most ((2|O| + 5)⌧) + 1 in ⇧†

3 where O is the alphabet of ⇧3 and

L(⇧3) = L(⇧†
3).
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Proof. The ECPe system simulator ⇧†
3 for a TP-ind system ⇧3 is an extension

of ⇧†
2 . Coop-dis and coop-mul rules are handled the same way as the previously

constructed simulators. We only describe the additional membranes and rules
for handling coop-mul rules. The same reasoning as in the previous lemmas can
be said about the constructed ⇧†

3 .
For coop-mul rules, as in handling other types of coop-ind rules, we also

allocate a membrane for a coop-mul rule r 2 Rh. We label it as (h, r) and let
(h, r) 2 children(h). The following rules are added to simulate a coop-mul rule:

– For every trigger ok 2 supp(LHS(r)) where r 2 Rh is a coop-mul rule:
[c001 ] ok,2k�2 ! ok,2k,re 2 R†

(h) [c002 ] ok,2k�2 ! e 2 R†
(h)

– For every coop-mul rule r 2 Rh:
[d00] (ok,2k,ref , in) 2 R0†

(h,r) for first(r) = ok, |LHS(r)|ok = f

[e00] (ok2,2k2,re
f , in; ok1,2k2,re, out) 2 R0†

(h,r)

for ok1 , ok2 2 supp(LHS(r)), last(r) 6= ok1 ,
next(r, ok1) = ok2 , |LHS(r)|ok2

= f

[f00] (ok,2k+2,re, out) 2 R0†
(h,r) for last(r) = ok

– Similarly, we also add rules of the form [g] to [ź] to complete the simulation
of one application of a coop-mul rule, considering both LHS validation and
RHS production.

From the lemmas we have provided, the following theorem can be derived:

Theorem 1. For each TP-ind system ⇧, we can construct an ECPe system
⇧† such that each computation of length ⌧ in ⇧ is simulated by an equivalent
computation of length at most ((2|O| + 5)⌧) + 1 in ⇧† where O is the alphabet
of ⇧ and L(⇧) = L(⇧†).

4 Conclusion

We are able to provide a simulation of TP-ind systems in ECPe systems. The
cooperative rules in such systems are first categorized into three forms: coop-dis,
coop-one and coop-mul. In our simulators, we maintain the hierarchical relations
of membranes in the simulated system and added membranes for every coopera-
tive rule. We also take note of the role of energy in our simulations. For coop-dis
rule, the maximum energy needed for any communication rule is minimal (one
for symport rules and two, one for each involved region, for antiport rules). How-
ever, for both coop-one and coop-mul rules, the maximum energy depends on
the number of copies of a trigger that a certain rule requires. The number of
communication steps depends on several factors: first, each rule application re-
quires communication steps (during RHS production) dependent on the number
of neighbors of a certain membrane. Also, for every application of a cooperative
rule, there are additional communication steps (during LHS validation) depen-
dent on the number of triggers required in the left-hand side of a cooperative
rule. Finally, in our simulation, a TP-system that computes a string in ⌧ steps
is simulated by a computation with ((2|O|+ 5)⌧) + 1 steps.
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We end our conclusion with several open problems for future work. First, it
can be observed that in the design of our rules, we let the system decide the
rule to be used when a copy of a trigger exists. Afterwards, the system validates
whether the chosen rule can actually be applied. This manner of simulation leads
to additional (non-halting) computational paths in the event of wrong guesses.
We leave as an open problem the construction of simulators where such addi-
tional (non-halting) paths are eliminated. Also, we ask the following questions:
can we construct ECPe system simulators for TP systems where antiports are
eliminated? What about simulators for TP systems with dependent triggers?
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APPENDIX A

Example 1. Let ⇧1 be a TP-ind system having a coop-dis rule r in region h. Let
the multiset required to trigger rule r be multiset acd, i.e. LHS(r) = acd. Also,
suppose ⇧1 has the alphabet O = {a, b, c, d, e}. We can let a total order on O
be based on how the symbols are positioned in the set (i.e. a is labelled o1 and e
is labelled o5). Based on this labelling, the left-hand side of rule r becomes the
multiset o1o3o4. The next rules in ⇧†

1 simulates LHS validation for rule r:

R†
(h)

a.1 : o3,0 ! o3,1 c.1 : o1,0 ! o1,2,re
a.2 : o3,1 ! o3,2 c.2 : o3,2 ! o3,4,re
a.3 : o3,2 ! o3,3 c.3 : o4,6 ! o4,8,re
a.4 : o3,3 ! o3,4 i.1 : o1,6,r ! �
a.5 : o4,0 ! o4,1 i.2 : o3,8,r ! �
a.6 : o4,1 ! o4,2 a.9 : o4,4 ! o4,5
a.7 : o4,2 ! o4,3 a.10 : o4,5 ! o4,6
a.8 : o4,3 ! o4,4

R0†
(h,r) R†

(h,r)

d.1 : (o1,2,re, in) g.1 : o1,2,r ! o1,3,r
e.1 : (o3,6,re, in; o1,6,re, out) g.2 : o1,3,r ! o1,4,r
e.2 : (o4,8,re, in; o3,8,re, out) h.1 : o1,4,r ! o1,6,re

f.1 : (o4,10,re, out) h.2 : o3,6,r ! o3,8,re
j.1 : o1,4,r ! #
j.2 : o3,8,r ! #
k.1 : # ! #

l.1 : o4,8,r ! o4,10,re

Suppose the multiset o1o3o4 exists in region h of ⇧1. Then, the corresponding
multiset in region (h) of ⇧†

1 is o1,0o3,0o4,0. The sequence of transitions showing
LHS validation for a single application of rule r are as follows:
[o1,0 o3,0 o4,0[ ](h,r)](h) ) [o1,2,r e o3,1 o4,1[ ](h,r)](h) via rules c.1, a.1 and a.5;
[o1,2,r e o3,1 o4,1[ ](h,r)](h) ) [o3,2 o4,2[o1,2,r](h,r)](h) via rules d.1, a.2 and a.6;
[o3,2 o4,2[o1,2,r](h,r)](h) ) [o3,3 o4,3[o1,3,r](h,r)](h) via rules g.1, a.3 and a.7;
[o3,3 o4,3[o1,3,r](h,r)](h) ) [o3,4 o4,4[o1,4,r](h,r)](h) via rules g.2, a.4 and a.8;
[o3,4 o4,4[o1,4,r](h,r)](h) ) [o3,6,r e o4,5[o1,6,r e](h,r)](h) via rules c.2, h.1 and a.9;
[o3,6,r e o4,5[ o1,6,r e](h,r)](h) ) [o1,6,r o4,6[ o3,6,r](h,r)](h) via rules e.1 and a.10;
[o1,6,r o4,6[o3,6,r](h,r)](h) ) [o4,8,r e[o3,8,r e](h,r)](h) via rules c.3, h.2 and i.1;
[o4,8,r e[o3,8,r e](h,r)](h) ) [o3,8,r[o4,8,r](h,r)](h) via rule e.3;
[o3,8,r[o4,8,r](h,r)](h) ) [[o4,10,r e](h,r)](h) via rules i.2 and l.1;
[[o4,10,r e](h,r)](h) ) [o4,10,r[ ](h,r)](h) via rule f.1.
The computation above doesn’t make use of rules j.1 and j.2 although they may
be used in the presence of copies o1,6,r and o3,8,r. Upon use of any of these rules,
a trap symbol # will be produced. A LHS validation that makes use of any of
rules j.1 and j.2 is not successful since a trap symbol # enables rule k.1 leading
the system to a non-halting state.
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Suppose only the multiset o1,0o3,0 exists in region (h), then rule j.1 is in-
evitably used. Similarly, rule j.2 will be used when the multiset in region h is
o1,0o4,0. Both indicates that LHS validation for a single rule application of rule
r fails.
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Abstract. This paper presents the details for constructing register ma-
chines that simulate deterministic transition P systems with rule prior-
ities. Our conversion preserves the run-time complexity (the number of
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1 Introduction

In theoretical computer science, there are many computational models that are
equivalent to the computation power of a Turing machine. Two such models
are register machines and, more recently, membrane systems. Register machines
have been proposed in many flavors (mainly by theoreticians). These machines
have a common theme of having a finite set of registers that can represent arbi-
trarily large non-negative integers. Also these machines are presented as a finite
sequence taken from a small set of basic instructions (e.g. to do arithmetic, data
handling and flow control). P systems [10, 12] (also called membrane systems)
are distributed and parallel computing models, inspired by the structure and
function of living cells. Several variants of P systems [9, 8] have been introduced,
inspired from various features of living cells, that provide new ways to process
information and solve computational problems of interest. Essentially, all P sys-
tem models have a structure consisting of connected cells and a set of evolution
rules that govern their evolution over time.

Several studies have investigated the relationship between P systems and
register machines [7, 4] and presented universality results by proving that P sys-
tems can simulate a universal register machine [5]. Previously, in a companion
paper [5], we presented the details for constructing an e�cient P system from
an arbitrary register machine [2]. In this paper we address the opposite direc-
tion of mapping deterministic P systems to register machines. Our motivation is
based on the fact that it is easier to design parallel algorithms using P systems
instead of sequential-based classical (i.e. von Neumann architecture) computer
models. Thus, we want to automate the conversion of a P system framework
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to the existing computers, which today have multi-core CPUs and many-core
GPUs available. We want to make the argument that today’s computers are
closely modeled as “parallel” register machines (but with memory constraints of
size and communication latency).

This paper is organized as follows. Section 2 recalls several key mathematical
concepts that are used in this paper. Section 3 provides the definition of a tran-
sition P system model. Section 4 presents the definition of a register machine
model. Section 5 presents the construction details for building a register ma-
chine that simulates a transition P system. Section 6 gives a non-trivial concrete
mapping of a P system to a register machine. Finally, Section 7 summarizes this
paper and provides some future areas of study.

2 Preliminaries

This section covers several key mathematical concepts that are used in this
paper, such as sets, strings, multisets and graphs.

An alphabet is a finite non-empty set with elements called symbols. A string

over alphabet O is a finite sequence of symbols from O. The set of all strings
over O is denoted by O⇤. The length of a string x 2 O⇤, denoted by |x|, is the
number of symbols in x. The number of occurrences of a symbol o 2 O in a
string x over O is denoted by |x|

o

. The empty string is denoted by �.
A multiset over an alphabet O is represented as strings over O, such as

on1
1 . . . onk

k

, where o
i

2 O and n
i

� 0, for 1  i  k. The multiplicity of an
element x in a multiset v is denoted by |v|

x

. We say that a multiset v is included
in a multiset w, denoted by w ✓ v, if, for all o 2 O, |w|

o

 |v|
o

. The union of
multisets v and w, denoted by v [ w, is a multiset x, such that, for all o 2 O,
|x|

o

= |v|
o

+ |w|
o

. The di↵erence of multisets v and w, denoted by v � w, is a
multiset x, such that, for all o 2 O, |x|

o

= max(|v|
o

�|w|
o

, 0). The empty multiset
is represented by �. A set that contains the distinct elements of a multiset v is
denoted by distinct(v).

A (binary) relation R over two sets X and Y is a subset of their Cartesian
product, R ✓ X ⇥ Y . For A ✓ X and B ✓ Y , we set R(A) = {y 2 Y | 9x 2
A, (x, y) 2 R}, R�1(B) = {x 2 X | 9y 2 B, (x, y) 2 R}.

A directed graph (digraph) is a pair (V,A), where V is a finite set of elements
called nodes (or vertices), and A is a set of ordered pairs of V called arcs. Given
a digraph D = (V,A), for v 2 V , the parents of v are A�1(v) = A�1({v}) and
the children of v are A(v) = A({v}).
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3 Transition P Systems

Definition 1 (Transition P systems). A deterministic transition P system
(of order n � 1) is a construct of the form:

⇧ = (O,K,�,W,R)

where:

1. O is the finite and non-empty alphabet of symbols.
2. K = {�

i

| 1  i  n} is the set of cells, where i represents the cell ID of �
i

.
3. � is an irreflexive and asymmetric relation on K, representing a set of arcs

between cells with bidirectional communication capabilities, (i.e. parents can
communicate to their children and vice versa).

4. W = {w
i

| 1  i  n}, where w
i

2 O⇤ is a multiset of symbols, called the
content, currently present in cell �

i

.
5. R = {R

i

| 1  i  n}, where R
i

is a finite set of evolution rules that
are associated with cell �

i

. An evolution rule r 2 R
i

is a linearly ordered

transition multiset rewriting rule of the form:

r : j u ! v

where:

• j 2 {1, 2, . . . , |R
i

|} indicates the priority order of r, where the lower
value j indicates higher priority.

• u 2 O+.
• v 2 (O ⇥ ⌧)⇤, where ⌧ 2 {�, ", #} is a set of target indicators. Note that

(o,�) 2 v, o 2 O, is abbreviated to o. Moreover, we denote:
� multiset v� = {o | (o,�) 2 v},
� multiset v" = {o | (o, ") 2 v} and
� multiset v# = {o | (o, #) 2 v}.

Thanks to the unique priority assigned to each rule in the item 5 above, this
transition P system is a deterministic model.

A cell evolves by applying one or more rules, which can change its content
and can send multisets to its parent and child cells. For a cell �

i

2 K, a rule
j u ! v 2 R

i

is applicable, if u ✓ w
i

. The rules are applied in the weak priority

order [11], i.e. higher priority applicable rules are applied, as many times as
possible, before lower priority applicable rules. All applicable rules of all cells
are applied simultaneously in one step. A computation halts, if none of the cells
can evolve. The output of a halted transition P system computation is defined
by the multiset of symbols present inside each cell �

i

2 K.
Applying an applicable rule j u ! v in cell �

i

at step k � 1: (i) consumes
multiset u at step k, i.e. w

i

= w
i

� u, (ii) produces multiset v�, which will
become available to �

i

at step k + 1, (iii) sends multiset v" to every parent cell
�
p

2 ��1(i) and sends multiset v# to every child cell �
c

2 �(i), which will



Deterministic Transition P Systems Modeled as Register Machines 87

become available to �
p

and �
c

at step k + 1. We denote the multiset produced
in cell �

i

in the current step by w
i

, i.e. w
i

= {v� | j u ! v 2 R
i

}+ {v" | j u !
v 2 R

c

,�
c

2 �(i)} + {v# | j u ! v 2 R
p

,�
p

2 ��1(i)}. At the end of step k,
�
i

updates its content as w
i

= w
i

+ w
i

. The following pseudocode describes the
behavior of the transition P system ⇧ of Definition 1 at each step k � 1. This
pseudocode terminates when it reaches line 19.

1 bool evolve := false
2 for �

i

, i = 1, 2, . . . |K|
3 for j = 1, 2, . . . , |R

i

|
4 r := (j u ! v) 2 R

i

5 while (u ✓ w
i

)
6 evolve := true
7 w

i

:= w
i

� u
8 w

i

:= w
i

+ v�
9 foreach �

p

2 ��1(i)
10 w

p

:= w
p

+ v"
11 endfor
12 foreach �

c

2 �(i)
13 w

c

:= w
c

+ v#
14 endfor
15 endwhile
16 endfor
17 endfor
18 if (evolve = false) then
19 system ⇧ halts
20 endif
20 foreach �

i

2 K
21 w

i

:= w
i

+ w
i

22 w
i

:= ;
23 endfor
24 goto line 1

4 Register Machines

The register machine model used in this paper extends the register machine
of [2] by adding an instruction that performs subtraction. A register machine
has n > 1 instructions and m > 0 registers, where each register may hold an
arbitrarily large non-negative integer.

A register machine program consists of a finite list of instructions, EQ, SET,
ADD, SUB, READ and HALT, followed by an optional input data, denoted as a
sequence of bits, with the restriction that the HALT instruction appears only
once as the last instruction of the list. The first instruction of a program is
indexed at address (i.e. line number) 0, and any value greater than or equal
to n denotes the illegal branch error. In general, a register machine program is
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presented in: (i) symbolic instruction form or (ii) machine instruction (i.e. raw
binary) form. In this paper we adopt the symbolic instruction form, where labels
of the form “L

x

:” are added to make the presentation more readable.
A set of instructions of a register machine M , denoted in Chaitin’s style [3],

is described below. In the instructions below, variables z1, z2 and z3 denote
registers and k denotes a non-negative binary integer constant. The content of
register z

i

, 1  i  3, is denoted by value(z
i

).

Instruction Description

(EQ, z1, z2, z3)
or
(EQ, z1, k, z3)

If value(z1) = value(z2) or value(z1) = k, then the execu-
tion of M continues at the value(z3)-th instruction in the
sequence. Otherwise, the execution of M continues at the
next instruction.

(SET, z1, z2) or
(SET, z1, k)

value(z2) or the constant k is assigned to register z1.

(ADD, z1, z2) or
(ADD, z1, k)

value(z1)+value(z2) or value(z1)+k is assigned to register
z1.

(SUB, z1, z2) or
(SUB, z1, k)

max{value(z1)�value(z2), 0} or max{value(z1)�k, 0} is
assigned to register z1.

(READ, z1) One bit is read into r1, so the numerical value of z1 becomes
either 0 or 1. Any attempt to read past the last data-bit
results in a run-time error.

(HALT) This is the last instruction of the register machine program.

In the following, we will not use the READ instruction in our translation from
P systems to register machines.

5 Translating P Systems into Register Machines

This section presents the details for building a register machine program I
M⇧

for a register machine M
⇧

that simulates a deterministic transition P system
⇧ = (O,K,�,W,R) of Definition 1. The instructions of I

M⇧ are in the symbolic
instruction form, separated by white space.

We present two pseudocodes, side by side, with corresponding lines, where:

• Left: describes evolution of a transition P system⇧ (according to Section 3).
• Right: gives the details for building I

M⇧ . The methods used in this pseu-
docode, such as INITIALIZE, CONSUME, PRODUCE, APPLICABLE and EXECUTE,
are described in Sections 5.1, 5.2, 5.3, 5.4 and 5.5, respectively.
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In a translated register machine, multisets are represented as follows. Register
o
i

stores the multiplicity of symbol o 2 O in cell �
i

2 K, i.e. multiset {ooi | o 2
O} equals w

i

. Register o
i

gives the multiplicity of symbol o 2 O to be stored
into cell �

i

2 K in the next step, i.e. multiset {ooi | o 2 O} equals w
i

.

1
2 bool evolve := false
3 for �

i

, i = 1, 2, . . . |K|
4 for j = 1, 2, . . . , |R

i

|
5 r := (j u ! v) 2 R

i

6 while (u ✓ w
i

)
7 evolve := true
8 w

i

:= w
i

� u
9 w

i

:= w
i

+ v�
10 foreach �

p

2 ��1(i)
11 w

p

:= w
p

+ v"
12 endfor
13 foreach �

c

2 �(i)
14 w

c

:= w
c

+ v#
15 endfor
16 endwhile
17 endfor
18 endfor
19 if (evolve = false) then
20 HALT
21 endif
22 foreach �

i

2 K
23 w

i

:= w
i

+ w
i

24 w
i

:= ;
25 endfor
26 goto line 2

1 INITIALIZE()
2 append LSTEP: (SET, evolve, 0)
3 for �

i

, i = 1, 2, . . . , |K|
4 for j = 1, 2, . . . , |R

i

|
5 r := (j u ! v) 2 R

i

6 APPLICABLE(i, r, |R
i

|)
7 append (SET, evolve, 1)
8 CONSUME(i, r)
9 PRODUCE(i, r,�)
10 foreach �

p

2 ��1(i)
11 PRODUCE(p, r, ")
12 endfor
13 foreach �

c

2 �(i)
14 PRODUCE(c, r, #)
15 endfor
16 append (EQ, a, a, LR(i,j))
17 endfor
18 endfor
19
20 append LR(|K|+1,1): (EQ, evolve, 0, LHALT)
21
22 foreach �

i

2 K
23 EXECUTE(i)
24 endfor
25
26 append (EQ, a, a, LSTEP)
27 append LHALT:(HALT)

5.1 INITIALIZE method

This method sets register o
i

with the multiplicity of symbol o 2 O in cell �
i

2 K.
For example, for cell �

i

with content w
i

= aabc 2 O⇤, the values of registers a
i

,
b
i

and c
i

are 2, 1 and 1, respectively.

1 INITIALIZE()
2 foreach �

i

2 K
3 foreach o 2 O
4 append (SET, o

i

, |w
i

|
o

)
5 endfor
6 endfor

Proposition 2. INITIALIZE appends |K| · |O| instructions.
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5.2 CONSUME method

This method implements w
i

:= w
i

� u of line 8, which corresponds to a cell
consuming the multiset u.

1 CONSUME(cell ID i, rule r = j u ! v)
2 foreach o 2 distinct(u)
3 append (SUB, o

i

, |u|
o

)
4 endfor

A di↵erence of multisets operation w
i

:= w
i

�u transforms w
i

, such that |w
i

|
o

=
|w

i

|
o

� |u|
o

for each o 2 O. An instruction (SUB, o
i

, |u|
o

), appended for each
o 2 O, subtracts the value |u|

o

to register o
i

.

Proposition 3. For a rule r = j u ! v, CONSUME appends |distinct(u)| in-
structions.

5.3 PRODUCE method

This method implements w
i

:= w
i

+ v
⌧

, ⌧ 2 {�, ", #}, of lines 9, 11 and 14,
which determines a multiset to be produced and stored in �

i

2 K.

1 PRODUCE(cell ID i, rule r = j u ! v, target ⌧)
2 foreach o 2 distinct(v

⌧

)
3 append (ADD, o

i

, |v
⌧

|
o

)
4 endfor

A union of multisets operation w
i

:= w
i

+ v
⌧

transforms w
i

, such that |w
i

|
o

=
|w

i

|
o

+ |v
⌧

|
o

for each o 2 O. An instruction (ADD, o
i

, |v
⌧

|
o

), appended for each
o 2 O, adds the value |v

⌧

|
o

to register o
i

.

Proposition 4. For a rule r = u ! v, with target indicator ⌧ 2 {�, ", #},
PRODUCE appends |distinct(v

⌧

)| instructions.

5.4 APPLICABLE method

This method, together with “append (EQ, a, a, LR(i,j))” of line 16, implements the
while statement of line 6, which involves a cell to check if its content contains
the multiset specified on the left-hand side of a rule.

1 APPLICABLE(cell ID i, rule r = j u ! v, rulesetSize n)
2 append LR(i,j):
3 foreach o 2 distinct(u)
4 for m = 0, 1, . . . , |u|

o

� 1
5 if (j < n) then
6 append (EQ, o

i

, m, LR(i,j+1))
7 else
8 append (EQ, o

i

, m, LR(i+1,1))
10 endif
11 endfor
12 endfor
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Condition u ✓ w
i

is false, if there is a o 2 O, such that |u|
o

> |w
i

|
o

. For each
o 2 distinct(u), APPLICABLE generates |u|

o

instructions below:

LR(i,j): (EQ, o
i

, 0, L)
(EQ, o

i

, 1, L)
(EQ, o

i

, 2, L)
...
(EQ, o

i

, |u|
o

� 1, L0)

which check the condition value(o
i

) � |u|
o

. If value(o
i

)  |u|
o

� 1, then, by
one of these instructions, the execution continues to the line specified by the
label L or L0, which indicates the line number k + 1, where line k contains
instruction (EQ, a, a, LR(i,j)). If value(oi) � |u|

o

� 1 for all o 2 distinct(u),
then the execution continues to the next instruction, and eventually, reaches
instruction (EQ, a, a, LR(i,j)) that prompts an unconditional jump back to the
line with the label LR(i,j).

We note that a slight optimization in number of steps is possible if |u|
o

> 5,
where we can replace the sequence of (EQ, o

i

, . . . ) with a direct test of register
machine instructions that check value(o

i

) < |u|
o

. However, in practice we believe
rules have small |u|

o

.

1 APPLICABLE(cell ID i, rule r = j u ! v, rulesetSize n)
2 append LR(i,j): (SET, t1, |u|

o

)
3 append (SUB, t1, 1)
4 append (SET, t2, |w

i

|
o

)
5 append (SUB, t2, t1)
6 if (j < n) then
7 append (EQ, t2, 0, LR(i,j+1))
8 else
9 append (EQ, t2, 0, LR(i+1,1))
10 endif

Proposition 5. For a rule r = j u ! v, APPLICABLE will append at most

min(|u|, 5 · |distinct(u)|) instructions.

5.5 EXECUTE method

This method implements w
i

:= w
i

+ w
i

of line 23 and w
i

:= ; of line 24, which
represent cells updating their current content with the multiset produced from
the execution of the rules.

1 EXECUTE(cell ID i)
2 foreach o 2 O
3 append (ADD, o

i

, o
i

)
4 append (SET, o

i

, 0)
5 endfor
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A union of multiset operation w
i

:= w
i

+ w
i

transforms w
i

, such that |w
i

|
o

=
|w

i

|
o

+|w
i

|
o

for each o 2 O. An instruction (ADD, o
i

, o
i

), appended for each o 2 O,
adds the value of register o

i

to register o
i

. A multiset assignment operation
w

i

:= ; transforms w
i

, such that |w
i

|
o

= 0 for each o 2 O. An instruction
(SET, o

i

, 0), appended for each o 2 O, sets the value of register o
i

to 0.

Proposition 6. EXECUTE appends 2 · |O| instructions.

6 Translation Example

We illustrate a non-trivial example for the following (deterministic) transition
P system ⇧BFS = (O,K,�,W,R). The system ⇧BFS, starting with cell �1 2 K,
visits all cells in breadth-first search (BFS) manner.

• O = {a, b}.
• K = {�1,�2, . . . ,�5}, where �1 represents the initiator.
• � = {(�1,�2), (�1,�3), (�2,�4), (�2,�5), (�3,�2), (�3,�5), (�4,�1), (�4,�5),

(�5,�4)}. Figure 1 (left) shows the membrane structure of the system ⇧BFS.
• w1 = {aab} and w

j

= {aa}, for 2  j  5.
• Each R

i

, 1  i  5, consists of the following two evolutions rules.
1 a a b ! (b, #)
2 b ! �

Initially, only �1 contains one copy of symbol b. By rule 1, when a cell contains
symbol b, it sends one copy of symbol b to all its children. By rule 2, cells consume
any additional copies of symbol b received from their parents. Note that these
algorithmic rules work for alternative � structures.

Figure 1 (right) shows evolution trace, i.e. content of each cell at each step,
of the system ⇧BFS. Starting from cell �1, at each step k � 0, cells in level k
with respect to �1 are visited (i.e. receive symbol b), e.g. cells �2 and �3 receive
symbol b at step 1.

�1

�2 �3

�4 �5

Step �1 �2 �3 �4 �5

0 a2b a2 a2 a2 a2

1 a2b a2b a2 a2

2 b a2b a2b2

3 b b b

4

Fig. 1. Left: the membrane structure of the system ⇧BFS. Right: evolution traces of
the system ⇧BFS.

The following table contains the register machine program I
⇧BFS , which sim-

ulates the transition P system ⇧BFS. I⇧BFS is generated by translating ⇧BFS

according to the pseudocode given in Section 5.
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Line Instruction
0 (SET, a1, 2)
1 (SET, b1, 1)
2 (SET, a2, 2)
3 (SET, b2, 0)
4 (SET, a3, 2)
5 (SET, b3, 0)
6 (SET, a4, 2)
7 (SET, b4, 0)
8 (SET, a5, 2)
9 (SET, b5, 0)
10 LSTEP: (SET, evolve, 0)
11 LR(1,1): (EQ, a1, 0, LR(1,2))
12 (EQ, a1, 1, LR(1,2))
13 (EQ, b1, 0, LR(1,2))
14 (SET, evolve, 1)
15 (SUB, a1, 2)
16 (SUB, b1, 1)
17 (ADD, b2, 1)
18 (ADD, b3, 1)
19 (EQ, a, a, LR(1,1))
20 LR(1,2): (EQ, b1, 0, LR(2,1))
21 (SET, evolve, 1)
22 (SUB, b1, 1)
23 (EQ, a, a, LR(1,2))
24 LR(2,1): (EQ, a2, 0, LR(2,2))
25 (EQ, a2, 1, LR(2,2))
26 (EQ, b2, 0, LR(2,2))
27 (SET, evolve, 1)
28 (SUB, a2, 2)
29 (SUB, b2, 1)
30 (ADD, b4, 1)
31 (ADD, b5, 1)
32 (EQ, a, a, LR(2,1))
33 LR(2,2): (EQ, b2, 0, LR(3,1))
34 (SET, evolve, 1)
35 (SUB, b2, 1)
36 (EQ, a, a, LR(2,2))
37 LR(3,1): (EQ, a3, 0, LR(3,2))
38 (EQ, a3, 1, LR(3,2))
39 (EQ, b3, 0, LR(3,2))
40 (SET, evolve, 1)
41 (SUB, a3, 2)
42 (SUB, b3, 1)
43 (ADD, b2, 1)
44 (ADD, b5, 1)
45 (EQ, a, a, LR(3,1))
46 LR(3,2): (EQ, b3, 0, LR(4,1))
47 (SET, evolve, 1)
48 (SUB, b3, 1)
49 (EQ, a, a, LR(3,2))

Line Instruction
50 LR(4,1): (EQ, a4, 0, LR(4,2))
51 (EQ, a4, 1, LR(4,2))
52 (EQ, b4, 0, LR(4,2))
53 (SET, evolve, 1)
54 (SUB, a4, 2)
55 (SUB, b4, 1)
56 (ADD, b1, 1)
57 (ADD, b5, 1)
58 (EQ, a, a, LR(4,1))
59 LR(4,2): (EQ, b4, 0, LR(5,1))
60 (SET, evolve, 1)
61 (SUB, b4, 1)
62 (EQ, a, a, LR(4,2))
63 LR(5,1): (EQ, a5, 0, LR(5,2))
64 (EQ, a5, 1, LR(5,2))
65 (EQ, b5, 0, LR(5,2))
66 (SET, evolve, 1)
67 (SUB, a5, 2)
68 (SUB, b5, 1)
69 (ADD, b4, 1)
70 (EQ, a, a, LR(5,1))
71 LR(5,2): (EQ, b5, 0, LR(6,1))
72 (SET, evolve, 1)
73 (SUB, b5, 1)
74 (EQ, a, a, LR(5,2))
75 LR(6,1): (EQ, evolve, 0, LHALT)
76 (ADD, a1, a1)
77 (SET, a1, 0)
78 (ADD, b1, b1)
79 (SET, b1, 0)
80 (ADD, a2, a2)
81 (SET, a2, 0)
82 (ADD, b2, b2)
83 (SET, b2, 0)
84 (ADD, a3, a3)
85 (SET, a3, 0)
86 (ADD, b3, b3)
87 (SET, b3, 0)
88 (ADD, a4, a4)
89 (SET, a4, 0)
90 (ADD, b4, b4)
91 (SET, b4, 0)
92 (ADD, a5, a5)
93 (SET, a5, 0)
94 (ADD, b5, b5)
95 (SET, b5, 0)
96 (EQ, a, a, LSTEP)
97 LHALT: (HALT)



94 Y.-B. Kim and M. J. Dinneen

7 Conclusions

The main result of this paper is a procedure that takes a transition P system and
converts it to an equivalent register machine with the same run-time complexity.
We hope to exploit the register machine model on conventional parallel comput-
ers, where registers are mapped to dynamic memory and few synchronization
issues are needed.

As possible future work, we are interested in extending our preliminary results
of [5] and the results of this paper by using more practical register machines and
P systems, e.g. [9, 6, 1]. P systems with active membranes [11] extends transition
P systems by incorporating membrane handling rules that support membrane

creation operation (which adds new cells to the system) and membrane dissolu-

tion operation (which removes existing cells from the system).
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Abstract. The N-queens problem has attracted growing attention be-
cause of its potential application in di↵erent areas, including parallel
memory storage, image processing, and chemical studies. Previous ap-
proaches using active membrane systems to solve the N-queens problem
defined many membranes with just one rule inside of each membrane and
many communication rules between membranes. Execution of communi-
cation rules between cores and threads is time consuming and decreases
processing speed. The proposed approach reduces unnecessary membrane
and communication rules by defining two membranes with many objects
and rules inside of each membrane. With this structure, objects and rules
can evolve in parallel, making the model suitable for implementation on
a graphics processing unit (GPU). This study uses the GPU to exploit
the parallelism of membrane systems for the N-queens problem. Tiling
techniques and shared memory are used to accelerate the GPU for the
proposed membrane computing model to solve the N-queens problem.
The improved simulation on the GPU is 33-fold faster relative to the
sequential approach.

Keywords: membrane computing, graphics processing unit, N-queens
problem, parallel processing.

1 Introduction

Membrane computing, whose models are called membrane systems or P systems,
is a branch of molecular computing inspired from cell biology [1]. It is a general
computing architecture wherein various types of objects can be processed by
various operations. A membrane system includes a membrane structure where
each membrane surrounds a region that includes objects, rules, or possibly other
membranes. Rules govern the processing of objects and membranes [2]. There
are variants of membrane systems, such as cell-like, tissue-like, and spike-like
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[3–5]. Several simulators have been proposed for implementing membrane com-
puting [6–8]. Software applications for membrane computing normally imple-
ment sequential algorithm simulations adapted to common central processing
unit (CPU) architectures [7, 8]. These kinds of algorithms do not perform well
when the problem size increases. To take advantage of the parallelism available
in membrane computing, e↵orts have been undertaken to implement membrane
computing on parallel tools. For example, membrane computing has been imple-
mented on computer clusters [9], reconfigurable hardware, e.g., field program-
ming gateways, [10], and graphics processing units (GPUs) [11–13]. Membrane
computing is used to simulate biological processes [14–16]. For example, it has
been applied to simulate molecular interactions [17, 18] and predict the evolu-
tion of the bearded vulture [19]. Although it is biologically inspired, membrane
computing has also been applied to problems outside biology, including mod-
elling, economics, databases, networks, and other complex problems. Membrane
systems display high levels of parallelism [20–22] and are used for solving opti-
mization and combination problems [23–25]. Further information about active
membrane systems has been provided by Paun [26]. The N-queens problem is
encountered in various fields of study, including parallel memory storage ap-
proaches, image processing, physical and chemical studies, and networks [27].
The N-queens problem is classified as a nondeterministic polynomial problem,
which is intractable for large N values. The goal when solving the N-queens
problem is to place N queens on an N ⇥ N board so that no queen threatens
other queens using standard chess queen moves and no more than one queen
sits in the same column, row, ascending diagonal, or descending diagonal. The
N-queens problem has been modelled into the membrane system framework us-
ing active membranes. The first study of the N-queens problem using membrane
computing was published by Gutierrez-Naranjo et al., who applied it to a 4-
queens problem that included 65,536 elementary membranes [28]. Depth-first
search was later introduced into membrane computing by Gutierrez-Naranjo et
al. [29], who used it to solve the N-queens problem. Gutierrez-Naranjo et al. [30]
improved the speed of solving the N-queens problem using membrane computing
as a local search strategy. Previous membrane systems using active membrane
models to address the N-queens problem involved several membranes, but with
few objects within each membrane. These membranes needed to communicate
with each other, which reduced execution speed. Here, a proposed membrane
system with active membranes from [31] is used for solving the N-queens prob-
lem. The proposed active membrane system improves upon previous approaches
by decreasing the number of unnecessary communication rules and membranes.
The number of rules that can be evolved simultaneously during each step is also
increased in the proposed model, making this active membrane model suitable
for parallel implementation. Previous studies simulated membrane systems for
solving the N-queens problem using a sequential approach; however, this research
uses a GPU to exploit membrane system parallelism. Techniques, such as tiling
and shared memory, have been used to improve GPU performance.
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2 Complete and partial solutions of the N-queens

problem

2.1 Partial solutions of the N-queens problem by active membrane

systems and their applications

There are many solutions for the N-queens problem that qualify as complete. In
some applications, partial solutions are desirable for large N, e.g., N = 256 in
[32]. In addition to trivial solutions [33] for the N-queens problem, other subsets
(partial solutions) of the N-queens problem may also be desirable. Partial solu-
tions of the N-queens problem obtained by placing one of the queens in a special
position (x, y) are used in [34–36]. Such solutions can be used to construct max-
imum partial spreads of many sizes in the three-dimensional projective space
over the finite field, Fq(PG(3; q)). Because this solution should include the spe-
cial position, a non-trivial solution of N-queens may be needed. Using [32, 37],
partial solutions of N-queens are needed to construct the sparse parity-check
matrices and to generate low-density parity-check codes. As another example,
consider a narrow-band directional communication system. To achieve high com-
munication bandwidth, an array of N transmitters/receivers must be placed to
freely communicate with the outside world in eight directions, i.e., two horizontal
directions, two vertical directions, and four diagonal directions, without being
obscured by other transmitters/receivers. Assuming that the positions of one
or more of the transmitters/receivers is known and predetermined, finding the
location of other transmitters/receivers constitutes a solution to the N-queens
problem. Because the positions of some queens have been predetermined, a triv-
ial solution of N-queens may not constitute a solution for this problem and,
therefore, a nontrivial solution of the N-queens problem is needed. In Fig. 1, the
position of one of the transmitters/receivers is known and the position of another
six transmitters/receivers should be determined so that they are not obscured
by other transmitters/receivers. This involves solving the 7-queens problem. In
the proposed active membrane from [31], in the initial state, membrane 2 ([]2)
will be initialized by string R6.C2 (see Fig. 1; this means that one queen is al-
located to row 6 and column 2), which will remain unchanged until the end of
processing. Therefore, the proposed active membrane model can e�ciently find
one or more solutions for the N-queens problem.

2.2 Complete solutions by the proposed active membrane system

on a GPU

GPU architecture Single-instruction multiple-data architectures enable GPUs
to process and run several threads simultaneously [38]. The smallest parts of a
GPU are cores, with a group of cores referred to as a streaming multiproces-
sor (SMP). Cores inside of each SMP are synchronized to execute the same
instructions and each SMP works asynchronously with other SMPs. Each core
has a small amount of memory, referred to as local memory, and each thread
has access to a certain number of 32-bit registers. A small amount of shared
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Fig. 1. Solution using the proposed active membrane model for seven transmit-
ters/receivers, given that the position of one of the transmitters/receivers is prede-
termined (shaded square).

memory is dedicated to each SMP and all SMPs can access a large amount of
global memory (Fig. 2). Access to register memory is faster relative to shared
memory and access to shared memory is faster relative to global memory [38,
39]. Instead of cores, SMPs, and groups of SMPs, a programmer uses threads,
blocks, and the kernel. A program contains one or several kernels, with each con-
taining one or more blocks. Each block is run on a single SMP and all threads
within a block can use the same shared memory, as well as barrier synchroniza-
tion. Synchronization and shared-memory sharing are impossible across blocks.
The programmer creates a program called a kernel that includes one or several
blocks. Execution of blocks in the kernel maps to SMPs in the GPU.

Complete solutions of N-queens using an active membrane model on

a GPU Active membrane models are naturally nondeterministic and initialized
randomly. Therefore, it is possible to find more or all solutions by running the
proposed model in [31] independently a number of times or by running it concur-
rently on di↵erent cores or computer clusters. Consequently, the proposed active
membrane model in [31] can run on several cores or computer clusters without
the need for synchronization or communication between cores or computer clus-
ters. Subset solutions generated by copies of one active membrane model running
independently on di↵erent cores will be collected to produce a complete list of
solutions after removing repeated solutions.

To generate partial or complete solutions on a GPU, first assign m copies
of the active membrane model to m thread blocks. Each model on each thread
block then runs L times. L ⇥ m possible solutions from the m thread blocks
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Fig. 2. Memory and CUDA architecture for GPU.

are gathered and sent to another kernel where repeat solutions are removed (see
Fig. 3). The steps of this procedure can be described as follows:

Step1: Assign an active membrane system model to each thread block.
Step2: (Random Ini Kernel) Initialize a random number generator with dif-

ferent seeds to generate a di↵erent random number for each active membrane
system. Because this step occurs only once, using a separate kernel enables the
release of used registers and shared memory for the rest of the simulation. Note
that the proposed active membrane system in [31] finds solutions using a non-
deterministic approach, and, therefore, needs an independent random number
generator for each thread to find di↵erent solutions when run independently on
di↵erent thread blocks.

Step3: (Run ActiveMem Kernel) Run each active membrane model L times
on each thread block to find at most L solutions. Note that some runs do not lead
to a solution and, according to rule (f) of the proposed active membrane model
in [31], the model should then be restarted. In this kernel, shared memory is also
used to improve GPU performance. In each step, thread i�1; i = 1, . . . , N is re-
sponsible for computations related to the ith row on the board (object Ri) in each
thread block (see Fig. 3). For example, in rule (a) from [31], thread i� 1 should
choose one object, Cj , randomly to react with object Ri in order to generate
multiset Ri.Cj . In rule (c) in [31], each thread i� 1 and thread k� 1 is respon-
sible for checking and changing the number of objects related to the i

th and k

th

rows, e.g., Ri.Cj , ui�j , di+j , Rk.Cs, , uk�s, and dk+s. Variables and arrays for
objects are stored in shared memory for fast access. For fast random number
generation, initial seeds and states produced previously (Random Ini Kernel)
are loaded from global memory to shared memory. After the random number is
generated, updated states are stored in global memory in order to release shared
memory. When a solution (Ri.Cj , having no conflicts on the board) has been
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Fig. 3. Procedure for generating solutions and removing repeated solutions in order to
find all or partial solutions for the N-queens problem using an active membrane model.
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Fig. 4. Using tiling (subdivision) and shared memory to remove repeated solutions
from a GPU.



102 A. Maroosi and R. C. Munyandi

found and checked against rule (d) in [31], it is stored in an array in global mem-
ory. This array is allocated in global memory to store at most L solutions from
each thread block and to have at most L ⇥m solutions from all thread blocks.
Solutions collected (at most L ⇥m ) from all thread blocks will go to the next
kernel for removal of repeat solutions.

Step4: (Remove Repeated Kernel) At most, L⇥m solutions were generated
in the previous step. These solutions were generated using the nondeterministic
rules of the active membrane system and, therefore, some solutions may be
repeated. In the proposed approach, repeat solutions are discarded in the GPU.

Global memory is slow and, therefore, using shared memory instead of global
memory improves performance, given that the latency associated with accessing
global memory is 400-800 cycles, while that for shared memory is 8-22 cycles
[38]. A limited amount of shared memory can be accessed by thread blocks
within each SMP. Therefore, tiling and shared memory can be used to improve
performance. Solutions stored in global memory are divided into di↵erent parts,
with each part having q solutions. First, p parts are assigned to p thread blocks,
with p and q determined according to available shared memory and other GPU
resources. Each solution is then compared with other solutions stored in adjacent
memory locations. Each solution is considered unique when it is not repeated in
memory locations subsequent to its own (see Fig. 4).

3 Simulations and results

Simulations of active membrane systems on a GPU in order to find complete
or partial solutions to the N-queens problem were executed using an NVIDIA
GeForce GTX680 graphics card with the specifications listed in Table 1. Shared
memory and data tiling (subdivision) were used to improve simulation of the
active membrane system on a GPU. Several active membrane systems with dif-
ferent initializations using random number generators were assigned to di↵erent
thread blocks in order to generate subsections of solutions. These subsections
were collected from di↵erent thread blocks and repeat solutions removed in or-
der to form a list of complete solutions. Algorithm details are provided in Section
4.2.

Simulations for various sizes of N-queens problems on a CPU and a GPU
were performed. As the size of the N-queens problem increases, occupancy of the
GPU increases, leading to increased GPU performance. The increased processing
speed associated with using the tiling and shared-memory approaches on a GPU
relative to the sequential approach on a CPU was 15-fold for N = 5 and 33-fold
for N = 9 (Table 2). This study used tiling and shared memory instead of global
memory to improve GPU performance. Additionally, the speed increase from
using tiling and shared memory on the GPU was better relative to a normal GPU
implementation. Relative to the sequential approach using a CPU, the speed
increased 10.6-fold using a normal GPU implementation as compared to 33-fold
using the tiling and shared memory-based GPU implementation (Table 2).
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Table 1. Technical specifications of an NVIDIA GeForce GTX680 graphics card with
computing capability 3.

Number of SMPs 8
Maximum number of resident warps per SMP 64
Maximum number of resident thread blocks per SMP 16
Maximum number of resident threads per SMP 2048
Maximum number of resident threads per warp 32
Maximum number of resident threads per thread Block 1024
Maximum shared memory per SMP 48k
Maximum resident 32-bit registers per SMP 64k

Table 2. Finding complete solutions with active membrane systems on the GPU.

size No. success No. No. Execu- Execu- Execu- speed speed
of of rate thread of tion tion tion up up

board all perce- blocks iter time time time usual tilling
(N) sol. ntage in in on the usual by way an

in GPU each CPU way shared on the shared
finding thread (sec) on the and GPU on the
all block GPU tilling vs. GPU
sol. (sec) on a CPU vs.

GPU CPU
(sec)

5 10 99 32 4 0.152 0.030 0.010 5.06 15

6 4 99 32 4 0.283 0.046 0.015 6.15 19

7 40 99 32 8 2.13 0.264 0.085 8.06 25

8 92 99 32 32 3.40 0.376 0.121 9.04 28

9 352 99 64 64 7.62 0.714 0.231 10.6 33

10 724 99 64 128 30.2 2.83 0.913 10.6 33
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When the size of the problem (N) increases, use of available computational
resources on the GPU also increases as a result of increased processing speed.
However, GPU computational resources are limited and for larger problem sizes,
increases in processing speed remain constant (results indicate similar speeds
associated with N=9 and N=10) (Table. 2).

4 Conclusions and future work

In this paper, a GPU was used to increase the speed of membrane system ap-
plications toward finding solutions to the N-queens problem. Tiling and shared
memory were used to improve GPU performance. The increased speed associated
with implementing a GPU using global memory for N=10 was 10.6-fold, while
using tiling and shared memory resulted in a 33-fold increase. This study used
many GPU cores to extract parallelism in the membrane system model. Shared
memory can be accessed substantially faster relative to global memory and was,
therefore, used to enhance improvement. Given that the amount of GPU shared
memory is small, a tiling strategy was considered in order to improve shared-
memory utilization. Our future work will use the isomorphic characteristics of
the N-queens problem to improve the speed of the N-queens membrane model,
given that some solutions can be obtained from rotation or reflection of other
solutions on a GPU. Additionally, we want to increase implementation speed by
extracting instruction-level parallelism within the GPU and applying it to our
proposed model.
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Abstract. This paper focuses on application of membrane systems to
solve classification problems. Decision tree technique has been widely
used to construct classification models because such models can closely
resemble human reasoning and are easy to understand. In this paper,
an extended tissue membrane system with tree-like objects is developed
as the computing framework of the presented decision tree induction
algorithm. Each object in cells expresses a feasible decision tree and the
transformation-communication mechanism is used to tackle the tree-like
objects. The proposed decision tree induction algorithm is evaluated on
some data sets and compared with two classical methods.

Keywords: Membrane computing; Tissue membrane systems; Data clas-
sification; Decision tree

1 Introduction

Membrane computing, as a class of distributed parallel computing models, is
inspired from the structure and functioning of living cells as well as the coop-
eration of cell populations in tissues and organs [1, 2], also known as membrane
systems and P systems. Over the past years, a variety of membrane systems and
variants have been proposed [3], and most of them have been proven to be uni-
versal and e↵ective [4–7]. Usually, a membrane system can be characterized by
several components: membrane structure, objects, operations with objects, ways
to control the operations. In recent years, membrane systems have been used to
solve a lot of real-world problems, for example, optimization problems [8], fuzzy
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reasoning [9, 10], fault diagnosis [11], image processing [12, 13], robot control
[14] and ecology [15]. Particularly, the object’s transformation-communication
mechanism has been developed to process di↵erent real-world problems.

Machine learning algorithms have two main categories: unsupervised learning
(clustering) and supervised learning (classification). In recent years, application
of membrane computing in data clustering has received a lot of attention. Clus-
tering is such a process that partitions a data set into several clusters such that
patterns within the same cluster are more similar than those from di↵erent clus-
ters [16]. K-means algorithm is one of most popular clustering algorithms. How-
ever, there are some shortcomings: it easily falls into local minima and severely
depends on the initial solutions [17]. To overcome the shortcomings, the ob-
ject’s transformation-communication mechanism in membrane systems has been
developed to determine the global optimal cluster centers for data clustering
problem. Huang et al. [18] proposed a clustering algorithm based on membrane
computing to solve the clustering problem, called PSO-MC, which introduced
the velocity-position model in particle swarm optimization (PSO) as the object’s
transformation mechanism. In Jiang [19], genetic operations and simulated an-
nealing were combined into the object’s transformation mechanism of the pre-
sented clustering algorithm. Similarly, a transformation mechanism based on
genetic operations was developed according to the used membrane structure for
data clustering [20]. Combined with di↵erential evolution (DE) and the object’s
communication mechanism, a clustering algorithm has been present, called DE-
MC [21]. Peng et al. [22] used an evolution-communication membrane system to
solve fuzzy clustering problem. In addition, a clustering algorithm with hybrid
evolutionary mechanisms has been reported in Peng [23].

This paper focuses on another machine learning problem, that is, classifica-
tion problem. Decision tree technique has been widely used to build the clas-
sification models. In comparison to “block-box” model such as artificial neural
network, decision tree has high comprehensibility. In each node, a test that uses
a or more variables is finished. Thus, the tree can be traversed from left subtree
to right subtree according to the test results. In the past, a lot of decision tree
algorithms have been proposed, for example, ID3, CRAT and C4.5 [24]. The
algorithms are greedy local search algorithms, which construct decision trees in
a top-down way. The motivation behind this work is to apply membrane systems
to generate a decision tree for a data set. For this, classical membrane system
is extended with tree-like objects, and transformation rules with the complex
objects are developed to find the global optimal decision tree.

The rest of this paper is arranged as follows. An extended tissue membrane
system that can tackle tree-like objects is discussed in detail in Section 2. Section
3 describes the proposed decision tree induction algorithm. In Section 4, exper-
imental results carried out on some real-life data sets are presented. Finally,
conclusions are drawn in Section 5.
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2 Tissue Membrane Systems with Tree-like Objects

The goal of this paper is to apply membrane systems to generate a decision
tree from a data set, It is well-known that classical decision tree algorithms,
such as ID3, CRAT and C4.5, use the top-down approach to build the decision
tree by test variables on each node. Di↵erent from these methods, our idea is
that a tissue membrane system is used to search the optimal decision tree form
feasible solution space. Thus, this requires that the tissue membrane system
can express and process the data with tree-like structure. However, the existing
tissue membrane systems are based on multisets of strings, so they are not
able to express and process the tree-like objects. Therefore, the classical tissue
membrane systems will be extended to propose a tissue membrane system with
tree-like objects.

The tissue membrane system with tree-like objects is defined as a construct

⇧ = (w1, . . . , wq, R1, . . . , Rq, R
0, i0) (1)

where

(1) wi is finite set of tree-like objects in cell i, 1  i  q;
(2) Ri is finite set of transformation rules of tree-like objects in cell i, 1  i  q;
(3) R0 is finite set of communication rules of the q cells;
(4) i0 indicates the output region of the system.

The extended tissue membrane system consists of q cells labeled by 1, 2, . . . , q
respectively. Figure 1 shows the membrane structure of the tissue membrane
system, in which the region labeled by 0 is the environment. Each cell contains
a or more objects, and each object expresses a tree. The tree-like objects in
cells will be changed by transformation rules during computation. Moreover,
communication rules provides a mechanism to achieve the sharing of objects
between the q cells. As usual in membrane systems, the q cells as computing
units work in parallel. When the system halts, the final result is stored in the
output region.

……

1 2 q

0

Fig. 1. The membrane structure of the used tissue membrane system.
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Fig. 2. An example of tree-like objects.

2.1 Tree-like objects

The tissue membrane system is designed to generate a decision tree, so each
object in the system is used to express a candidate tree. Figure 2 illustrates an
example, which represents a tree in Pima data set.

Initially, the membrane system will randomly generate some initial objects,
that is, some initial trees. When an object (tree) is generated, a subset is selected
randomly from a data set, and then a subtree is generated by C4.5 as the object.
It is important that objects in the cells should have enough diversity.

2.2 Transformation rules

In the tissue membrane system, three classical genetic operations are introduced
as transformation rules of objects, including selection, crossover and mutation
operations. However, the three genetic operations are extended in this work in
order to make them suitable to process the tree-like objects.

The selection operation reflects the principle of the survival of the fittest.
In the membrane system, classical roulette method is used to select the objects
(trees) that can be processed by crossover and mutation operations. To apply
the roulette method, a criterion is required to evaluate each object in the cells,
so it is regarded as the object’s fitness function. The object’s evaluation criterion
will be discussed below. The crossover and mutation operations of objects are
used to achieve the improvement of objects (trees) in cells. To process the tree-
like objects, however, classical crossover and mutation operations need to be
extended.

Figure 3 illustrates the crossover operation of two tree-like objects. The
crossover operation is similar to classical crossover operation, but it is achieved
based on subtree exchange rather than string. Parent 1 and parent 2 are two
objects and two cross points are chosen in the two tree respectively, and then
two subtrees that are associated with the two cross points are exchanged.

The extended mutation operation based on tree-like objects are shown in
Figure 4. Di↵erent from classical mutation operation, the extended mutation
operation is also achieved by subtree exchange: two subtrees are chosen randomly
in the parent object (tree), and then the two subtrees are exchanged.
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Parent 1

Parent 2

Child 1

Child 2

Crossover

Fig. 3. An example of the crossover operation for two tree-like objects.

Parent Child

Mutation

Fig. 4. An example of mutation operation for a tree-like object.

T1 T2

Cell i Cell  j

(a)

T
Cell i

(b)

…………

0

Fig. 5. The object’s communiction mechanisms (a) between two cells and (b) between
a cell and the environment.
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2.3 Communication rules

The communication rules are used to achieve the sharing of objects. As usual,
the tissue membrane system has the communication rules of two types:

– Rule (i, T1/T2, j), where T1 and T2 are the objets in cell i and cell j respec-
tively, i, j = 1, 2, . . . . . . , q.
The rule indicates communication rule between cell i and cell j, shown in
Figure 5(a). Object T1 in cell i is transmitted into cell j, and at the same
time object T2 in cell j is transmitted into cell i.

– Rule (i, T/�, 0), where T is the objet in cell i and � is the empty object,
i = 1, 2, . . . . . . , q.
The rule indicates communication rule between cell i and the environment,
shown in Figure 5(b). Object T in cell i is transmitted into the environment.

3 Proposed Decision Tree Induction Algorithm

Decision tree induction algorithm is designed to generate a decision tree from a
data set. In this paper, only single variable is considered on each node. Di↵erent
from classical top-down approaches such as ID3, CRAT and C4.5, the proposed
method will use a tissue membrane system to search a global optimal decision
tree in solution space. Therefore, the tissue membrane system described above is
used as its computing framework, in which each object in cells expresses a can-
didate decision tree. Starting from initial objects (trees), the system constantly
uses the transformation-communication mechanism to improve the objects in
the cells until it halts.

During computation, objects (trees) in cells are improved constantly. The
object’s improvement mechanism usually requires a criterion to evaluate each
object in the system. In this work, classification accuracy and tree’s complexity
are combined together as the object’s evaluation criterion. which can be defined
by

J(T ) = C(T )� v · (S(T )� 1) (2)

where T is an object (tree) in cells; C(T ) is classification accuracy of the object
(tree), and S(T ) is the size of the tree; v is a factor to control the tree’s complexity
(default value is 0.001).

Based on the tissue membrane system, the proposed decision tree induction
algorithm can be described as follows.

program Decision_tree_induced_by_membrane_systems

input

Data set, D;

the number of cells, q;

the number of objects in each cell, n;

crossover and mutation probabilities, Pc and Pm;

the factor, v;

output
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the optimal decision tree, T;

begin

Initialize objects in cells;

Iter := 1;

repeat

Transform objects in cells by transformation rules;

Communicate objects by communication rules;

Evaluate objects in cells by the criterion (2)

Update T in the output region;

Iter := Iter + 1;

until Iter > MaxIter

Export the optimal decision tree, T;

end

end.

4 Experimental Results and Analysis

In order to evaluate the availability of the proposed decision tree induction algo-
rithm, ten real-life data sets from UCI repository [26] have been selected in the
experiment: Blance-Scale, Bupa, Cars, German, Glass, Heart, Pima, Sat, Vehi-
cle and Vote. The input parameters of the proposed algorithm are chosen: the
number of cells is q = 5, the number of objects in each cell is n = 20, crossover
and mutation probabilities are pc = 0.8 and pm = 0.01, and control factor is
v = 0.001. The computing step number in the tissue membrane system is set to
1000.

The proposed algorithm was compared with two existing decision tree induc-
tion algorithms: a classical decision tree algorithm C4.5 [25] and an evolutionary
technique-based decision tree induction algorithm GDT-MA [27]. The compar-
ison includes two metrics: classification accuracy and tree size. Classification
accuracy is often used to indicate the quality of a classifier: usually, the higher
the accuracy, the better the quality. On the other hand, it is hoped that the
complexity of decision tree should be as small as possible when the classification
performance cab be guaranteed. Considered some random factors in these algo-
rithms, the average values obtained by them on 10 runs are computed in terms
of classification accuracy and tree size.

Table 1 provides the comparison results of the three algorithms over ten
data sets, which are average accuracies and sizes of the 10 runs. The comparison
results are illustrated as follows:

– Blance-Scale. The proposed algorithm has the best classification accuracy
and the smallest size, 79.9 and 19.5. C4.5 has the worst classification perfor-
mance. GDT-MA is close to membrane systems in term of accuracy, but its
size is greater than that of C4.5.

– Bupa. The proposed algorithm attains the highest classification accuracy
and the smallest size, 64.8 and 31.7. So it is the best in the three algorithms
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– Cars. The proposed algorithm and GDT-MA have the same accuracy and
size, 97.9 and 3, while the accuracy and size of C4.5 are 97.7 and 31 respec-
tively.

– German. GDT-MA has the best accuracy and the smallest size. The proposed
algorithm is close to GDT-MA. C4.5 is worse than other two algorithms.

– Glass. The accuracy and size of the proposed algorithm are 66.5 and 34.9
respectively, so it is the best in the three algorithms.

– Heart. The accuracy and size of C4.5 are 77.1 and 22 respectively, so it
attains the best classification performance. The accuracy of the proposed al-
gorithm is slightly better than than of GDT-MA, but the size of the proposed
algorithm is smaller than that of GDT-MA.

– Pima. The accuracy of the proposed algorithm is slightly better than than
of GDT-MA and C4.5, but GDT-MA has the smallest size.

– Sat. The accuracy of the proposed algorithm is 86.2, so it is the best in the
three algorithms. However, GDT-MA attains the smallest size, 18.9.

– Vehicle. C4.5 has the best classification accuracy because of its accuracy 72.7,
but it has the worst size, 138.6. The accuracy of the proposed algorithm is
close to that of C4.5. GDT-MA has the smallest size, 43.2.

– Vote. C4.5 attains the best classification accuracy and smallest size. The
accuracy of the proposed algorithm is better than that of GDT-MA, and the
size of the proposed algorithm is smaller than that of GDT-MA.

Table 1. Comparison results of the proposed algorithm with two decision tree induction
algorithms.

Data sets C4.5 GDT-MA Membrane systems

Accuracy Size Accuracy Size Accuracy Size

Blance-Scale 77.5 57 79.8 20.8 79.9 19.5

Bupa 64.7 44.6 63.7 33.6 64.8 31.7

Cars 97.7 31 97.9 3 97.9 3

German 73.7 77 74.2 18.4 74.1 18.6

Glass 62.5 39 66.2 35.3 66.5 34.9

Heart 77.1 22 76.5 29 76.9 24.8

Pima 74.6 40.6 74.2 14.8 74.8 17.3

Sat 85.5 435 83.8 18.9 86.2 22.5

Vehicle 72.7 138.6 71.1 43.2 72.5 45.9

Vote 97 5 96.2 10.9 96.8 7.4
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5 Conclusions

This paper discussed an application of membrane systems in classification prob-
lem: tissue membrane system was considered to induce a decision tree for data
set. A tissue membrane system with tree-like objects was developed, where three
genetic operations were extended as transformation mechanism of the tree-like
objects. Based on tissue membrane system with tree-like objects, a decision tree
induction algorithm has been proposed to generate the optimal decision tree
from data set. The proposed algorithm was tested on ten real-life data sets and
compared with two existing algorithms. The comparison results demonstrate the
availability of the proposed algorithm.
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Abstract. An optimization spiking neural P system (OSNPS) provides a novel
way to directly use a P system to solve optimization problems. This paper dis-
cusses the practical application of OSNPS for the first time and uses it to solve
the power system fault section estimation problem formulated by an optimization
problem. When the status information of protective relays and circuit breakers
read from a supervisory control and data acquisition system is input, OSNPS can
automatically search and output fault sections. Case studies show that OSNPS is
effective in fault sections estimation of power systems in different types of fault
cases, including single fault, multiple faults and multiple faults with incomplete
and uncertain information.

Keywords: Membrane computing, optimization spiking neural P system, fault
section estimation, power systems, fault diagnosis

1 Introduction

Membrane computing is an attractive branch of natural computing, initiated by Gh.
Păun in [1], aiming at abstracting innovative computing models or computing ideas
from functioning and structures of living cells, as well as from the way the cells are
organized in tissues or other higher order structures. The obtained models, called mem-
brane systems or P systems, are distributed and parallel computing models. Currently,
there are three basic types of P systems: cell-like P systems, tissue-like P systems and
neural-like P systems.

In recent years, the research on neural-like P systems mainly focused on spiking
neural P systems (SN P systems), which were introduced in [2]. An SN P system is a
class of distributed and parallel computing devices which are inspired by the way neu-
rons communicate by means of electrical impulses (spikes). Since then, SN P systems
? Corresponding author.
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have become a hot topic in membrane computing [3]-[13] and an overview of this field
can be found in [14], with up-to-date information available at the membrane computing
website (http://ppage.psystems.eu).

In [12], an extended spiking neural P system (ESNPS) was proposed by introducing
the probabilistic selection of evolution rules and multi-neurons output and correspond-
ingly a novel way to design a P system for directly obtaining the approximate solutions
of combinatorial optimization problems without the aid of evolutionary operators was
introduced. Besides, a family of ESNPS, called optimization spiking neural P system
(OSNPS), were further designed by introducing a guider to adaptively adjust rule prob-
abilities to approximately solve combinatorial optimization problems. This is the first
time that a strategy to design SN P systems capable of solving optimization problems is
proposed. Experimental results on knapsack problems in [12] proved the viability and
effectiveness of OSNPS. Moreover, the future work in [12] pointed out that OSNPS can
be used to solve various application problems, such as fault diagnosis of electric power
systems.

Strictly speaking, fault diagnosis of power systems includes fault detection, fault
section estimation, fault type identification, failure isolation and recovery [13], [23].
Among the five processes, fault section estimation is especially important [13], [18].
Fault section estimation (FSE) identifies the fault section in power systems by using the
status information of protective relays and circuit breakers (CBs) obtained from super-
visory control and data acquisition (SCADA) systems [16]. So far, various approaches
have been proposed to solve this problem, such as expert systems (ES) [17], fuzzy logic
(FL) [15], fuzzy Petri nets (FPN)[18], artificial neural networks (ANN) [19], multi agent
systems (MAS) [20], optimization methods (OM) [16], [21]-[23]. Each method has its
own pros and cons [13]. Therefore, improving the aforementioned methods and devel-
oping new ones to solve fault section estimation problems is a hot topic in the research
field of electrical power systems.

The power system fault section estimation problem can be effectively solved by
formulating it into a 0-1 integer programming problem. In [12], only the widely used
benchmark problems, knapsack problems, were applied to verify the OSNPS effec-
tiveness and the authors pointed out that OSNPS can be used to solve various appli-
cation problems. However, until now there is not any work about the real application
of OSNPS. This paper discusses the application of OSNPS to fault section estimation
of power systems. This is the first time to use OSNPS to solve real application prob-
lems. When the status information of protective relays and circuit breakers read from
a supervisory control and data acquisition system is input, OSNPS can automatically
search and output fault sections. Case studies show that OSNPS is effective in fault
sections estimation of power systems in different types of fault cases including single
fault, multiple faults and multiple faults with incomplete and uncertain information.

This paper is structured as follows. Section 2 states the problem to solve. Section 3
presents the fault section estimation method based on OSNPS. Subsequently, three case
studies are provided in Section 4. Conclusions are finally drawn in section 5.
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2 Problem Description

The aim of fault section estimation (FSE, for short) problem in power systems based on
optimization methods (OM) is to obtain a fault hypothesis which can explain warning
signals (status information) in the maximum degree. Specifically, fault section estima-
tion can be abstracted as a 0-1 programming problem with an objective function (error
function), as shown in (1), which is obtained according to the causality between a fault
and the statuses of protection devices including protective relays and circuit breakers
(CBs) [21]. Then, one optimization method is used to find the fault hypothesis, i.e. the
minimal value of E(S) in (1).

E(S) =
ncX

j=1

��cj � c⇤j (S,R)
��+

nrX

k=1

|rk � r⇤k(S)|, (1)

where:
(1) nc represents the number of circuit breakers (CBs), nr represents the number of

protective relays;
(2) E(S) represents a status function of all the sections in a power system;
(3) S is an n-vector representing the status of sections in a power system and n repre-

sents the number of sections: if section i is faulty, then Si = 1, otherwise, Si = 0,
i = 1, . . . , n;

(4) c is an nc-vector representing the real status of CBs in a protection system: if CB j
trips, then cj = 1, otherwise, cj = 0, j = 1, . . . , nc;

(5) c⇤(S,R) is an nc-vector representing the expected status of CBs in a protection
system and nc represents the number of CBs: if CB j should trip, then c⇤j = 1,
otherwise, c⇤j = 0, j = 1, . . . , nc;

(6) r is an nr-vector representing the real status of protective relays in a protection
system and nr represents the number of protective relays: if a protective relays
operates, then rk = 1, otherwise, rk = 0, k = 1, . . . , nr;

(7) r⇤(S) is an nr-vector representing the expected status of protective relays in a
protection system: if protective relay k should operate, then r⇤k = 1, otherwise,
r⇤k = 0, k = 1, . . . , nr.

In this study, OSNPS is used to fulfill fault section estimation in power systems by
minimizing E(S) in (1). Specifically, the expected status of protective relays and CBs
can be obtained according to their operation principles and the protection structure of
a power system. The real status of protective relays and CBs are normally read from
a power SCADA system. When all the expected status and real status of protections
are obtained, we can use an OSNPS to find the minimal value of E(S) in (1). The aim
of fault section estimation is to obtain vector elements of S corresponding to the the
minimum value of (1).

3 Fault Section Estimation Based on OSNPS

3.1 Optimization Spiking Neural P System

First, let us recall the concept of extended spiking neural P systems introduced in [12]
(it is depicted in Fig. 1).
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Fig. 1. The ESNPS structure

Definition 1. An extended spiking neural P system (ESNPS, for short) of degree m � 1,
is a tuple ⇧ = (O,�1, . . . ,�m+2, syn, I0), where:

(1) O = {a} is the singleton alphabet (a is called spike);
(2) �i, 1  i  m, are neurons �i = (1, Ri, Pi), where Ri = {r1i , r2i } being r1i =

{a ! a}, r2i = {a ! �}, and Pi = {p1i , p2i } is a finite set of probabilities (pji is
associated with rule rji , 1  j  2) such that p1i +p2i =1;

(3) �m+1 = �m+2 = (1, {a ! a});
(4) syn = {(i, j) | (i = m+ 2 ^ 1  j  m+ 1) _ (i = m+ 1 ^ j = m+ 2)};
(5) I0 = {�1,�2, . . . ,�m} is a finite set of output neurons, i.e., the output is a spike

train formed by concatenating the outputs of �1, �2, . . . , �m.

This system contains the subsystem consisting of neurons �m+1 and �m+2, and this
subsystem is used as a as a step by step supplier of spikes to neurons �1, . . . ,�m. In the
subsystem, there are two identical neurons, each of which fires at each moment of time
and sends a spike to each of neurons �1, . . . ,�m, and reloads each other continuously.
At each time unit, each of neurons �1, . . . ,�m performs the firing rule r1i by probability
p1i and the forgetting rule r2i by probability p2i , i = 1, 2, . . . ,m. If the ith neuron spikes,
we obtain its output 1, i.e., we obtain 1 by probability p1i , otherwise, we obtain its output
0, i.e., we obtain 0 by probability p2i , i = 1, 2, . . . ,m. Thus, this system outputs a spike
train consisting of 0 and 1 at each moment of time. If we can adjust the probabilities p11,
. . . , p1m, we can control the output spike train. So, a method to adjust the probabilities
p1i , . . . , p1m by introducing a family of ESNPS is presented and described as follows.

A certain number of ESNPS can be organized into a family of ESNPS (called OS-
NPS) by introducing a guider to adjust the selection probabilities of rules inside each
neuron of each ESNPS. The structure of OSNPS is shown in Fig. 2, where OSNPS
consists of H ESNPS, ESNPS1, ESNPS2, . . . , ESNPSH . Each ESNPS is identical with
the one in Fig. 1 and the pseudocode algorithm of the guider algorithm is illustrated in
Fig. 3. For details about the guider and more information about ESNPS and OSNPS,
please see [12].
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Fig. 2. OSNPS

3.2 Fault Section Estimation Based on OSNPS

The process of OSNPS applied to the FSE problem can be illustrated by the sketch map
in Fig. 4, which depicts how to estimate fault sections using OSNPS. To clearly present
the process in Fig. 4, a detailed description is given as follows.

Step 1: Input data
To start the method, SCADA data, parameters of OSNPS and initial value of the

fitness function are required. Thus, the input data block/process consist of three parts
which are described as follows.

1) Read SCADA data. The status information including the status of protective re-
lays and CBs, the topological connection of a given power system and its protection
system structure information are read from an SCADA system;

2) Set parameters of OSNPS. The parameters refer to the number of ESNPS (H),
the dimension of each ESNPS (m), the learning probabilities, the learning rate, the rule
probability matrix, maximum iterations and so on;

3) Initial fitness function. Above mentioned data are used to initial fitness function
of the FSE problem according to (1).

Step 2: Fault section estimation with OSNPS
Perform OSNPS to produce and update spike trains to find the minimum value of

(1). As mentioned in Subsection 3.1, each ESNPS can produce a spike train, which
stores the needed result in binary encoding. H ESNPS are organized into an OSNPS by
a guider to adjust the selection probabilities of rules inside each neuron of each ESNPS.
The guider algorithm, as shown in Fig. 3 and described in [12] in detail, is used to help
OSNPS getting the spike train which brings the minimum value of (1).

Step 3: Stopping condition
The optimization process is terminated when either reaching the maximum itera-

tions or concluding that no better solution would appear in the following iterations.
Step 4: Output fault section estimation results
The spike train corresponding to the minimum value of (1) is output in an n-vector

S and Si = 1 is the ith faulty section, i = 1, . . . , n.

4 Case studies

Fig. 5 shows a typical 4-substation system including 28 system sections, 40 CBs and 84
protective relays [13], [23]. Normally, the protective relays consist of main protective
relays (MPRs), first backup protective relays (FBPRs) and second backup protective
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Input: Spike train T
s

, pa
j

, �, H and m
1: Rearrange T

s

as matrix P
R

2: i = 1
3: while (i  H) do
4: j=1
5: while (j  m) do
6: if (rand < pa

j

) then
7: k1, k2 = ceil(rand ⇤H), k1 6= k2 6= i
8: if (f(C

k1) > f(C
k2)) then

9: b
j

= b
k1

10: else
11: b

j

= b
k2

12: end if
13: if (b

j

> 0.5) then
14: p1

ij

= p1
ij

+�
15: else
16: p1

ij

= p1
ij

��
17: end if
18: else
19: if (bmax

j

> 0.5) then
20: p1

ij

= p1
ij

+�
21: else
22: p1

ij

= p1
ij

��
23: end if
24: end if
25: if (p1

ij

> 1) then
26: p1

ij

= p1
ij

��
27: else
28: if (p1

ij

< 0) then
29: p1

ij

= p1
ij

+�
30: end if
31: end if
32: j = j + 1
33: end while
34: i = i+ 1
35: end while
Output: Rule probability matrix P

R

Fig. 3. Guider Algorithm

relays (SBPRs) in power systems. The detailed operational rules of protective relays for
main sections in a power system can be found in [13], [23].

To test the effectiveness and superiority of OSNPS in fault section estimation, three
cases of the local power system in Fig. 5 are considered. The status information about
protective relays and CBs of these cases is shown in Table 1, where Case 1 has a single
fault, Case 2 has multiple faults and Case 3 has multiple faults with incompleteness and
uncertainty. OSNPS is used to estimate fault sections for the three cases, the estimation
results are shown in Table 2 with a comparison with three other fault section estimation
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Fig. 4. The sketch map of fault section estimation based on OSNPS

methods, where “ � ” means that this case was not considered in the corresponding
reference.

From Table 2, we can see that the estimation results of OSNPS, in Cases 1-2, are
the same as those of fuzzy logic [FL], genetic algorithm (GA) and FDSNP in [15], [23]
and [13], respectively. In other words, OSNPS is effective in fault section estimation
of power systems for single and multiple faults. In Case 3, the estimation result of
OSNPS is different from those in [15] and [23]. According to the results in [13] and
[21], we know that the result of OSNPS is correct. Therefore, from the three typical
cases, OSNPS is effective in fault section estimation of power systems for single fault,
multiple faults and multiple faults with incomplete and uncertain alarm information.

5 Conclusions

In this study, an optimization spiking neural P system (OSNPS) is applied to fault sec-
tion estimation of power systems. When status information of protection devices (pro-
tective relays and CBs) are obtained from the SCADA system, OSNPS can automati-
cally get the minimal value of the objective function of the FSE problem and accord-
ingly determine fault sections. Three typical case studies show that OSNPS is effective
in fault section estimation of power systems. On the one hand, this study provides an al-
ternative method for solving the fault section estimation problem in power systems. On
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Fig. 5. A local sketch map of the protection system of an EPS.

Table 1. Status information about protective relays and CBs

Cases Status information
Operated relays Tripped CBs

1 B1m, L2Rs

, L4Rs

CB4, CB5, CB7

CB9, CB12, CB27

2
B1m, L1Sm

, L1Rp

CB4, CB5, CB6

B2m, L2Sp

, L2Rm

CB7, CB8, CB9

CB10, CB11, CB12

3
T7m, T8P , B7m CB19, CB20, CB29, CB30

B8m, L5Sm

, L5Rp

CB32, CB33, CB34, CB35

L6Ss

, L7Sp

, L7Rm

, L8Ss

CB36, CB37, CB39

the other hand, this study advances the work in [12] forward and is of great significance
in extending the application of P systems and variant SN P systems.

This works focuses on the effectiveness of OSNPS in fault section estimation of
power systems. In the future, we will pay attention to explore superiority of OSNPS
in fault diagnosis of power systems and its availability in large-scale power grid and
complex power systems.
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Table 2. Comparisons between OSNPS and three fault diagnosis methods

Cases
Diagnosis results

OSNPS FL [15] GA [23] FDSNP [13] GATS [21]

1 B1 B1 B1 B1 -

2
B1, B2 B1, B2 B1, B2 B1, B2 -

L1, L2 L1, L2 L1, L2 L1, L2

3

L5, L7 L5, L7 (1)L5, L7, B7, B8 L5, L7 L5, L7

B7, B8 B8, T7 T7, T8 B7, B8 B7, B8

T7, T8 T8 (2)L5, L7, T7, B8 T7, T8 T7, T8
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7. T. Song, L. Q. Pan and Gh. Pǎun, “Asynchronous spiking neural P systems with local syn-
chronization,” Inform. Sciences, 219, 197-207 (2013)
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spiking neural P systems to fault diagnosis,” Int. J Comput. Commun. Control, 9(6), 786-799
(2014)

12. G. X. Zhang, H. N. Rong, F. Neri and Mario J. Pérez-Jiménez, “An optimization spiking neu-
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