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Abstract

The space of one-sided infinite words plays a crucial role in several
parts of Theoretical Computer Science. Usually, it is convenient to regard
this space as a metric space, the Cantor-space. It turned out that for sev-
eral purposes topologies other than the one of the Cantor-space are use-
ful, e.g. for studying fragments of first-order logic over infinite words or
for a topological characterisation of random infinite words.

Continuing the work of | 1, here we consider two different refine-
ments of the Cantor-space, given by measuring common factors, and com-
mon factors occurring infinitely often. In particular we investigate the re-
lation of these topologies to the sets of infinite words definable by finite
automata, that is, to regular w-languages
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1 Introduction

The space of one-sided infinite words plays a crucial role in several parts of The-
oretical Computer Science (see the surveys [ , 1). Usually, it is conve-
nient to regard this space as a topological space provided with the CANTOR topol-
ogy. This topology can be also considered as the natural continuation of the left
topology of the prefix relation on the space of finite words (cf. [ D.

It turned out that for several purposes other topologies on the space of infi-
nite words are also useful [ , ], e.g. for investigations in first-order logic
[ ], to characterise the set of random infinite words | ] or the set of
disjunctive infinite words [ | and to describe the converging behaviour of
not necessarily hyperbolic iterative function systems [ , .

Most of these approaches use topologies on the space of infinite words which
are refinements of the CANTOR topology showing a certain kind of shift invari-
ance. In [ ] a unified treatment of those shift invariant topologies is given,
and here we built on this work, introducing two new topologies arising natu-
rally from the consideration of finite subwords occurring in infinite words.

2 Notation and Preliminaries

We introduce the notation used throughout the paper. By N = {0,1,2,...} we
denote the set of natural numbers. Let X be a finite alphabet of cardinality



|X| =2, and X* be the set (monoid) of words on X, including the empty word
e, and X“ be the set of infinite sequences (w-words) over X. For w € X* and
n e X*u X let w-n be their concatenation. This concatenation product ex-
tends in an obvious way to subsets W < X* and P € X* u X®“. For a language
W let W* := Ujeny W' be the submonoid of X* generated by W, and by W :=
{wy - w;---: w; € W~ {e}} we denote the set of infinite strings formed by con-
catenating words in W. Furthermore |w| is the length of the word w € X* and
pref(P) (infix(P)) is the set of all finite prefixes (infixes) of stringsin P € X*uX®.
We shall abbreviate w € pref(n) (n€ X* u X“) by wEn. If £ € X by infix™(¢)
infix(¢{) we denote the set of infixes occurring infinitely often in ¢.

Further we denote by P/w := {n: w-n € P} the left derivative or state of the
set P < X* U X“ generated by the word w. We refer to P as finite-state provided
the set of states {P/w: w € X*}is finite. It is well-known that alanguage W < X*
is finite state if and only if it is accepted by a finite automaton, that is, it is a
regular language.'

In the case of w-languages regular w-languages, that is, w-languages ac-
cepted by finite automata, are the finite unions of sets of the form W- V¢, where

W and V are regular languages (cf. e.g. [ 1). Every regular w-language is
finite-state, but, as it was observed in [ 1, not every finite-state w-language
is regular (cf. also [ D.

It is well-known that the families of regular or finite-state w-languages are
closed under Boolean operations (see | , , , ]or| D.

3 The CANTOR Topology and Regular w-languages

In this section we list some properties of the CANTOR topology on X“ and reg-
ular w-languages (see [ , D.

3.1 Basic properties of the CANTOR topology

We consider the space of infinite words (w-words) X as a metric space with
metric p defined as follows

0 if =n,and
Q(é,n)::{ ife=n,an (1)

sup{rH”’| : w e pref(¢) Apref(n)}  if¢ #n.

!Observe that the relation ~p defined by w ~p v iff P/w = P/v is the NERODE right congru-
ence of P.
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Here r > 1 is a real number?, A denotes the symmetric difference of sets and
we set sup @ := 0, thatis, p(¢,n) =0 ifand only if { = 7.

Since pref(¢) Apref(n) < (pref({) Apref(()) U (pref(() A pref(n)), the metric p
satisfies the ultra-metric inequality

o(&,n) =max{p(¢,(), ([, n}.

A subset E < X“ is open if for every ¢ € E there is an € > 0 such that 7 € E for
all n with p(¢,n) < e. Complements of open sets are called closed. The smallest
closed set containing a given set F < X, 6 (F), is referred to as the closure of F.

Gs-sets are countable intersections of open sets and F,-sets are countable
unions of closed sets. In a metric space every open set is an F;-set, and every
closed set is a Gs-set.

We list some further well-known properties of the metric space (X*, p).

Property 1 The following is true.

1. The non-empty sets w- X“ are open balls with radius r~'"! in the metric
space (X?,0).> These balls are simultaneously closed.

2. Open setsin (X%, p) are of the form W - X® where W < X*.

3. A subset E < X® is open and closed (clopen) in (X, p) if and only if E =
W - X“ where W < X™ is finite.

4. Asubset F < X“ is closed in (X“,p) ifand only if F = {¢ : pref({) < pref(F)}.

5. The closure of F satisfies € (F) := {{:{e€ X npref(¢) < pref(F)}
= N (pref(F)n X™)- X“.

neN

The space (X“,p) is a complete space, that is, every sequence4 (1) ien Where
(&) Sk < r~i whenever i < j, k converges to some ¢ € X“. Moreover, (X“, p) is
a compact space, that is, for every family of open sets (E;);e; such that U;e; E; =
X there is a finite sub-family (E;) ;¢ satisfying U;ey E; = X“.

21t is convenient to choose r = | X|. Then every ball of radius =" is partitioned into exactly r
balls of radius r~(*+V

30bserve that e ¢ pref(¢) Apref(n) and Eq. (1) imply p(&,n) = inf{r ™ wC EAw T ).

4Those sequences are usually referred to as CAUCHY sequences.



3.2 Regular w-languages

As a last part of this section we mention some facts on regular w-languages
known from the literature, e.g. |[ , , ]. Regular w-languages are
well-known for being the w-languages definable by finite automata. We will
not refer to this feature, instead we list some basic properties of this family of
w-languages.

The first one shows among other properties the importance of ultimately
periodic w-words. Denote by Ult := {w- v : w, v € X* ~{e}} the set of ultimately
periodic w-words.

Theorem 1 (Biichi [ 1) The family of regular w-languages is a Boolean al-
gebra, and if F < X® is regular, then u- F and F/ w are also regular.

Every non-empty regular w-language contains an ultimately periodic w-word,
and regular w-languages E, F < X“ coincide if and only if EnUlt = Fn Ult.

For regular w-languages we have the following topological characterisations
analogous to Property 1.

Property2 Let F < X® be regular and E < X“ be finite-state. Then in CAN-
TOR topology the following hold true.

1. Fisopenifandonlyif F =W - X“ where W < X* is a regular language.

2. F < XY is closed if and only if F = {¢ : pref({) < pref(F)} and pref(F) is
regular.

3. pref(E) is a regular language.
4. 6(E) is a regular w-language.
Finally, we provide an example of a regular w-language which is not a Gs-set

and a necessary and sufficient topological condition when finite-state w-lan-
guages are regular.

Example 1 (Landweber [ 1) For ue X* - {e} the w-language X* - u® is reg-
ular, an F,;-set but not a Gs-set. a

Theorem 2 (| 1) Every finite-state w-languagein the classF;NGs is a Boolean
combination of regular w-languages open in (X, p), thus, in particular, a regu-
lar w-language.
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4 Topologies Defined by Subword Metrics

It was shown that regular w-languages are closely related to the (asymptotic)
subword complexity of infinite words (cf. [ , Section 5] and [ ). There-
fore, as other refinements of the CANTOR topology we introduce two topologies
defined via metrics on X which are based on the sets of subwords occurring
or occurring infinitely often in the w-words, respectively.

Definition 1 (Subword metrics)
er(&,mn) ::sup{er| : w € (pref(¢) Apref(n)) U (infix($) Ainfix(n))}
oo (&,m) :=sup{r! 1%l : w e (pref(&) A pref(n)) U (infix™(&) Ainfix™ (1))}

These metrics respect except for the length of the shortest non-common prefix
of ¢ and 7 also the length of the shortest non-common subword (non-common
subword occurring infinitely often). Thus

e1¢,m) = p(&n) and P (S, 1) = (S, M), )
o1&, = max{p(&n),sup{r’": ueinfix(€) Ainfix(n)}}, and  (3)
Po(€,m) = max{p(&m),sup{r' ™ ueinfix® (&) Ainfixm)}}. 4)

Similar to the case of p one can verify that p; and p, satisfy the ultra-metric
inequality. Therefore, balls in the metric spaces (X%, ) are (X%, p,) are si-
multaneously open and closed. Moreover, Eq. (2) shows that both topologies
refine the CANTOR topology of X, that is, w-languages open (closed) in CAN-
TOR topology are likewise open (closed, respectively) in both spaces (X%, p;)
and (X%, 0co)-

4.1 Shift-invariance

We call a metric space (X, ') shift invariant if for every open set E < X* and
every word w € X* the sets w- E and E/w are also open. In this part we show
that the metric spaces (X“,p0) and (X“,pj) are shift-invariant. According to

Corollary 2 of [ ] this property guarantees that the closure of a finite-state w-
language is again finite-state (cf. the stronger Property 2.4 for the CANTOR topol-
ogy).

To this end we derive some simple properties of the metrics.

Lemmal Letue X* andv,we X™. Then

Ooo(U-S,u-1m) = Po(S,1m), (5)
P& = 1" po(w-§,v 1), (6)
or(u-§,u-m) < p;&mn), and 7
or&,m = r"-pr(w-&v-n. (8



Proof. All inequalities are trivially satisfied if ¢ = 1. So, in the following, we
may assume ¢ # 1).

As infix® (&) = infix®(u-¢&), Egs. (5) and (6) follow from Eq. (4) and the re-
spective properties of the metric p of the CANTOR topology p(u-¢,u-n) < p(¢,n)
andp(w-&v-n=pw-&w-n)=r"".o&mn).

Let p;(&,m) = r™", thatis, infix({)) N X" =infix(n) n X" and wC {and w C 7
for some w € X". Then, obviously, v C— u-¢ and v C u -7 for some v € X".
Moreover, infix(u - )N X" = (infix(u - w)N X"")U(infix()N X™) = infix(u - )N X".
This proves Eq. (7).

If w # v then in view of p(w - &, v-n) = r~"1 Eq. (8) is obvious. Let w = v
and p;(&,n) = r~" for some n € N. We have to show that p;(w-&, w-n) = =M,

Ifp(&,n) = r " then p(w-&, w-n) = r~ "™ and Eq. (3) proves p;(w-&, w-n) =
r—(n+m).

If o(¢,n) < r~" in view of p;(¢,n) = r~" we have (infix(¢) Ainfix(n)) N X+l 4
@, that is, u € (infix({) Ainfix(n)) N X "*1 for some u € infix(é), say. Now, it suf-
fices to show (infix(w¢) Ainfix(wn)) N XM+ £ @,

Assume v'u ¢ infix(wé) Ainfix(wn) for all v’ € X™. Then u € infix(¢) implies
v'u € infix(wé) ninfix(wn) for some v’ € X™. Since |w| = |V'| = m, we have
u € infix(n), a contradiction. |

As a consequence we obtain our result.

Corollary 1 The topologies (X, p1) and (X, pxo) are shift invariant.

Proof. We use the fact that, in view of Lemma 1, the mappings ®, and ®,,
defined by ®,(¢) := u-¢ and @, (w-¢) := ¢ for w € X" are continuous w.r.t. the
metrics p; and po., respectively.

Thus, if F € X“ is open in (X“,p1) or (X%, ps) then (D;l(F) = F/u and, for
m =|w]|, also w-F:CI),_nl(F)ﬂw-X‘” are open sets. 4

4.2 Ballsin (X“,p;) and (X, 0co)

Denote by K;(&, 77" and Ky (¢, 7~"™) the open balls® of radius =" around ¢ in
the spaces (X%, o) and (X“, poo), respectively. For w C ¢ with |w| = n+ 1 and
W := X" ninfix (&), V := X" 1 ninfix® (&), W := X" <infix(é) and V := X1~
infix>°(¢) we obtain the following description of balls via regular w-languages.

Ki&,r™ = w-X’n N X" u-X’~ U X" u-X and 9)
uew uew
Kooé,r™ = w-XnX*" (1 X" w*~ U X" u-X%. (10)
ueV uev

>Since p; and o, satisfy the ultra-metric inequality, they are also closed balls of radius
po(n+)
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In Eq.(10) the order of the words u € V can be arbitrarily chosen. In partic-
ular, Egs. (9) and (10) show that balls in (X“,p;) and (X%, p) are regular w-
languages. Thus every non-empty open subset in each of the spaces contains
an ultimately periodic w-word.

An immediate consequence of the representations in Egs. (9) and (10) is the
following relation between the space (X, o) and the CANTOR space (X%, 0).

Lemma 2 1. Every ball K;(&,r™™) is a Boolean combination of regular w-
languages open in (X, p), therefore, simultaneously an F; - and a Gg-set
in the CANTOR topology.

2. Everyopen setin (X“,p;) is an F;-set in CANTOR topology.

Proof. 1. It is well-known know that open sets in a metric space are simul-
taneously F,- and Gs-sets. Then, according to Property 1, the set K;(¢,r™") is
simultaneously an F;- and Gs-set in the CANTOR topology.

2. is a consequence of 1 and the fact that there are only countably many
open balls in (X%, o). J

Egs. (9) and (10) and Lemma 2 show a connection between certain regular w-
languages and the open sets in (X“,p;). It would be interesting if we could
characterise some regular w-languages open in (X%, o) using CANTOR topol-
ogy. The next example considering the simple case of closed sets, however,
shows that not every regular w-language closed in CANTOR topology is open
in (X%, 0p).

Example 2 ([ 1) Consider the regular w-language F = {1,00}“ < {0, 1}* which
is closed in the CANTOR topology. Assume F to be open in (X“,p;). Then
N =Ilien 10% € F and, therefore, Ki(n,r~")c FforsomeneN, n=1.
Consider ¢ = [17L,10* - [I,,,,10" ¢ F. Then we have [T\ 10* C 7,
? ,10% C & and, moreover,
infix() N {0,1)*" = (infix([T}L,10°) U0*-1-0* U0*) N {0, 1}*"

= infix(n) N {0, 1}?".
It follows p; (&, 1) < r=2" thatis, ¢ € Ki(n,r~") < {1,00}*, a contradiction. 1

Using the Morse-Hedlund Theorem (cf. also the proof of Theorem 1.3.13 of
[ ]) one obtains special representations of small balls containing ultimately
periodic w-words. To this end we derive the following lemma.

Lemma3 Letw,uc X*, u#eand&ecX®. Then w-uC & and infix(&) n X'l =
infix(w- u®) N X" imply & = w- u®.



Proof. First observe that |infix(w - u®) N X'W¥| = [infix(w - u®) n X!w#+1),
Thus, for every v € infix(w - u®) N Xwul there is a unique v’ € infix(w - u®) N
X!wul guch that v C a- v’ for some a € X. Consequently, the w-word ¢ € X¢
with w- u C € and infix(&) N X' = infix(w - u®) n X'*"“ is uniquely specified.

Lemma4 Letw-u® € X® where|w| < |u| andletm > |w|+|u| and n > |u|. Then

™M = {w-u®}, and (11)
Kow-u®,r™ = w- X" u” wherew' C w-uand|w'| = n. (12)

w
Ki(w-u*,r

Proof. Every ¢ € Kj(w - u®,r™™) satisfies w- u C ¢ and infix({) n X =
infix(w - u®”) N X, and the assertion of Eq. (11) follows from Lemma 3.

If ¢ € Koo (w-u®, r~") then there is a tail ¢’ of ¢ such that u C ¢’ and infix* (&) N
X" =infix({') n X" = infix(u”) N X" whence, again by Lemma 3, ¢’ = u®. Q

This allows us to state the following property concerning isolated points® in
the spaces (X“,p;) and (X%, p.). The additional Item 3 in connection with
Lemma 2.2 shows a further difference between both spaces.

Corollary2 1. The set of isolated points of the space (X“, o) is Ult.

2. The space (X“,p00) has no isolated points and all sets of the form X* - u®
are simultaneously closed and open.

3. In the space (X“, pxo) there are open sets which are not F -sets in CANTOR
topology.

Proof. Since every non-empty open subset of (X“,p;) and also (X“,px0)
contains an ultimately periodic w-word, every isolated point has to be ulti-
mately periodic. Now Eq. (11) shows that every w - u® is an isolated point in
(X“,p1), and Eq. (12) proves that (X, p»,) has no isolated points. The remain-
ing part of Item 2 follows from Eq. (12) and X* - u® =Uyexn w- X* - u®.

Finally, it is known that X“ ~ X* - u® is not an F,-set in CANTOR topology (cf.
Example 1). Q

4.3 Non-preservation of regular w-languages

In this section we investigate whether similar to the CANTOR topology the clo-
sure of a finite-state w-language is always regular in the spaces (X“,p;) and
(X%, 0c0)-

6A point ¢ is referred to as isolated if o' (£,1) = g¢ for all n # ¢. Here the distance £; > 0 may
depend on ¢.
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In contrast to the CANTOR topology it is, however, not true that the closure
of finite-state w-languages are regular. We can even show that in both spaces
(X, p1) and (X“, poo) there are regular w-languages with non-regular closures.

Since we do not have a characterisation like the Property 1.5 for the closures
%1 and 6, in the spaces (X“,p) and (X%, poo), respectivly, we circumvent this
obstacle by presenting examples where the closure €;(F) or 6 (F) of a regular
w-language F is shown to be larger than F but does not contain more ultimately
periodic w-words than F. In view of Theorem 1 this implies that the closures
cannot be regular w-languages.

For the closure 6} we use that, according to Example 1 the w-language
{0,1}* -0 is no Gs-set in the CANTOR topology, thus in view of Lemma 2.2 not
closed in (X%, o).

Example 3 We show that €;({0,1}*-0“)nUIt = {0,1}*-0“. Let w-u® ¢ {0,1}*-0%.
Then u ¢ {0}* and 0“"* ¢ infix(w- u®). Now Eq. (9) yields K(w - u®, plwuly A
X*.olwul. x0 = @ Thus or(w-u®,v-0v) = r-lwul for all v e X* whence w-u® ¢
€61({0,1}* - 0°). The other inclusion being trivial.

Assume 67(({0,1}* -0“) were a regular w-language. Then Theorem 1 implies
€4({10,1}*-09) = {0,1}*-0“, thatis, {0,1}*-0“ is closed in (X“, p1), a contradiction
to Lemma 2.2. |

Since {0,1}* - 0¢ is closed in (X“,px), We cannot use this w-language in that
case.

Example 4 &;n X" =infix*°({) N X" for n < 2i + 1. This implies poo (£;,¢) < 1%,
that is, lim;_.o, &; = { € oo (F) in (X, o). a

5 Completeness and Compactness

Here we show that the spaces (X, p;) and (X%, o) are neither complete nor
compact.

To show that they are not complete we consider the sequence (¢;);en Where
&i= H?‘;i 0/1. This sequence converges in CANTOR topology to the limit point
0“. Since (X“,p;) and (X“,p) refine (X%, p), the limit points, if they exist,
should be the same. But infix(¢;) and infix®*°(¢;) both contain the word 1 which
is not in infix(0“) = infix>*(0“). Thus p;(¢;,0%) = Pxo(&,0¢) = 1.

It remains to show that the sequence (¢;);en fulfils the CAUCHY property.
To this end we observe that for j = i we have 0 C ¢; and infix(¢ ;) N Xl =
infixoo(fj) N XL = {01 u{0™10"™"1 .0 < m < i}. Thus 01, ¢k) < r~i and also
0oo(&j,Ex) < 7t for j k= .
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In general it holds that no topology refining the CANTOR topology is com-
pact. A proof uses Corollary 3.1.14 in [ ]. Here we provide the more illustra-
tive and seemingly stronger examples of partitions of the whole space X into
infinitely many open subsets.

Example5 Let X = {0,1}. Then the sets 0°1- X“ for i € N are open in the CAN-
TOR topology, hence open in (X%, p;) and according to Corollary 2.1 the set {0“}
is also open (X%, ).

Then {{0“}} U{071- X : i € N} is a partition of X“ into sets open in (X%, ;).

Example 6 Let X = {0,1}. Then the sets 0'1- X for i € N are open in the CAN-
TOR topology, hence open in (X%, p~) and according to Corollary 2.2 the set
X*-0% is open and closed in (X“, 0oo)-

Then {X*-0“} U{0’1- X?~ X*-0%: i € N} is a partition of X* into sets open
in (X%, 0c0)-

6 Subword Complexity

In Section 4 we mentioned that regular w-languages are closely related to the
(asymptotic) subword complexity of infinite words. Adapting the metrics p;
and p, to subwords we may draw some connections to the level sets Ff) of the
asymptotic subword complexity (see [ , D).

First we introduce the concept of asymptotic subword complexity.

Definition 2 (Asymptotic subword complexity)

.ol infix(§)n X"
7(&) := lim —Og'X'lmn 90 X7
n—oo

Using the inequality |infix(&) N X™*™| < |infix(&) N X" |- [infix(£) N X'| it is easy

to see that the limit in Definition 2 exists and

10g|X| linfix(&) N X"

n

r(f):inf{ :neN/\nzl}. (13)

Eq. (5.2) of | ] shows that in Definition 2 and Eq. (13) one can replace the
term infix(¢) by infix*({).

Let, for0 <y <1, F}(,T) ={{:¢& e XYA1() <y} be the lower level sets of
the asymptotic subword complexity. For y = 0 we set Fé” := Ult (instead of
Fé” = @). We want to show that these sets are open in (X%, ;) and (X%, poo). AS
a preparatory result we derive the subsequent Lemma 5.
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Let E, (&) := {n : infix(n) n X" < infix(¢)} and E} (&) := {n : infix° () n X" <
infix> (&)} be the sets of w-words having only infixes or infixes occurring in-
finitely often of length n of ¢, respectively. These sets can be equivalently de-
scribed as

E (&) = XY~X*-(X"~infix(¢))- X and

E () = X" (XY~X" - (X"~infix*() - X*), respectively
which resembles in some sense the characterisation of open balls in Egs. (9)
and (10). In fact, it appears that the sets E,(¢) and E),(¢) are open in the respec-
tive spaces (X%, p7) and (X%, 0co)-

Lemma5 Leté € X“. Then ¢ € E, (&) N E (&), the set E, (&) is open in (X“,01)
and the set E}, (&) is open in (X%, 0oo)-

Proof. The first assertion is obvious. For a proof of the second one we show
that n € E,({) implies that the ball K;(n, 7~") is contained in Ej(¢).

Letn € E,(§) and { € K;(n,r™ ™). Then, p;(n,{) < r™", that is, in particular,
infix(n) N X" = infix({) n X", whence { € E,(£)

The proof for E},(¢) is similar. a

This much preparation enables us to show that the level sets are open sets.

Theorem 3 Let0 <y < 1. Then the sets Fy) are open in (X“,p1) and (X%, 0x0).

Proof. For y = 0 we have F)(,T) = Ult which is, according to Corollary 2, open
as well in (X“, py) asin (X%, 0o).
Let y > 0 and 7(¢) < y. We show that then E,(¢) € F\” and E},(¢) € F\"” for

some n € N. Together with Lemma 5 this shows that F}T) contains, with every ¢,

open sets containing this ¢.
) 1 infix(&)N X"
If 7(¢) <y then in view of Eq. (13) for some n € N'we have M <
log, y, linfix(§)N X"
n

Then for every n € E,(¢) it holds 7(n) < <y and, consequently,

E (O < Fy.
The proof for (X?, ps) is similar using infix® instead of infix and the re-
spective modification of Eq. (13) whose validity was mentioned above. |

The proof shows also that ¢ € F;T) implies that X“ ~ X* - (X" ~infix(¢))- X* < Fﬁ”
for some n > 0. Thus Ff) is a countable union of regular w-languages closed
in CANTOR topology, hence an F;-set in CANTOR topology. The sets F{,” are

finite-state’ non-regular w-languages because their complement X® ~ F)(,T) is
non-empty and does not contain any ultimately periodic w-word. Thus, in view
of Theorem 2, they are not Gs-sets in CANTOR-space and they are examples of

’In particular, they satisfy FJ(,” Jw= Fj(,” for we X*.
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sets open in (X%, o) and (X“, po) Which are non-regular F;-sets in CANTOR-

space.
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