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The Kochen-Specker theorem proves the inability to assign, simultaneously, non-contextual definite values to
all (of a finite set of) quantum mechanical observables prior to their measurement. If one assumes that definite
values behave non-contextually, one can nonetheless only conclude that some (of these) observables are value
indefinite. The theorem says very little, however, about the extent of this non-classicality.

In this paper, building on previous results, we prove a variant of the Kochen-Specker theorem showing that,
under the same assumption of non-contextuality, if a system is prepared in a state |yi, then every observable A is
value indefinite unless |yi is an eigenstate of A. In contrast to standard proofs of the Kochen-Specker theorem,
this stronger result requires a constructive method of reduction between Kochen-Specker sets. As a consequence
we show that: a) the set of value indefinite observables has measure one, that is, almost all observables are value
indefinite; and b) value indefiniteness can be localised, that is, we can indicate precisely which observables are
value indefinite.

The result of measuring a value indefinite observable is thus indeterministic, formalising a notion of quantum
randomness. As a consequence, the cause and quality of this type of quantum randomness can be described and
studied, thus going beyond the mere postulation that “quantum measurements are indeterministically random”
(which neither the Kochen-Specker theorem nor Bell’s theorem prove).
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I. THE KOCHEN-SPECKER THEOREM AND VALUE INDEFINITENESS

Bell’s theorem [4] and the Kochen-Specker theorem [14] are perhaps two of the results which have been most influential in
developing the modern understanding of quantum mechanics as an irreducibly non-classical theory [16, 18]. Moreover, these
two no-go theorems are seen as the strongest argument for quantum mechanics being a fundamentally indeterministic theory,
rather than one ruled by a deeper determinism below the level of the quantum mechanical description of reality.

Bell’s theorem, which shows that quantum mechanics predicts statistical correlations between separated particles greater than
what would be possible in any local, realistic, classical theory, was the focus of attention for several decades due to its relatively
clear ability to be tested experimentally [3]. The Kochen-Specker theorem was proved very shortly afterwards, but was largely
ignored due to a perceived lack of testability, and perhaps also a higher degree of mathematical obfuscation – particularly in
its original form and unwieldy proof – until it attracted renewed attention with the more recent boom of interest in quantum
information theory and foundations. In contrast to Bell’s theorem, the Kochen-Specker theorem shows that the Hilbert-space
structure of quantum mechanics makes it impossible to assign, prior to any measurement, ‘classical’ definite values predicting
measurement outcomes to all quantum observables in a consistent manner. More recent developments have significantly reduced
the size and difficulty of proofs of the Kochen-Specker theorem [8] and converted such proofs into testable inequalities [7].

However, in showing the impossibility of a classical ‘two-valued’ measure (i.e., value assignment) the Kochen-Specker the-
orem leaves open several possible conclusions. The Kochen-Specker theorem, more specifically, finds a contradiction between
the following three assumptions, which will be formalised more rigorously a little later:

(i) all observables have a predefined measurement outcome (a definite value);

(ii) this definite value should be non-contextual, that is, independent of what other compatible observables are measured;

(iii) the measurement outcomes (and hence definite values) for a set of compatible observables must be consistent with the
theoretical quantum predictions for the relations between them.

Condition (iii) is largely uncontroversial and hence one must generally conclude that either (or even both) (i) and (ii) must be
given up. Several alternative interpretations of quantum mechanics are contextual (e.g., [5]), and hence discard (ii). Perhaps the
more popular interpretation, however, is that one must abandon the idea that measurement outcomes are determined in advance at
all: that quantum mechanics represents a value indefinite reality. This interpretation is often referred to simply as ‘contextuality’
in the literature, however we reserve this term strictly for the contextual behaviour of definite values.

If we choose to require (ii) to hold, at least for any definite values that do exist, then there remains an oft-overlooked gap
between the formal result of the Kochen-Specker theorem and the general interpretation of it. Indeed, the negation of (i) is that
not all measurement outcomes are pre-determined: it does not prove that all measurements must result in the ex nihilo creation
of an outcome, nor does it allow one to know which observables in any set are value indefinite. We can, of course, postulate
that if there is some value indefiniteness, this should, by symmetry or uniformity considerations, be the case for all observables.
However, it is key to realise that this is not in any sense a formal consequence of the Kochen-Specker theorem, and constitutes
an additional, undesired, assumption.

In this paper we address precisely this issue: by using a modified, weakened set of assumptions, we show that no observable
can have a pre-determined measurement outcome except if the quantum system is in an eigenstate of the observable. This
self-contained, analytic proof extends and generalises the results of [1, 2].

Throughout the paper we will assume (ii) to hold, as is common in interpretations of the Kochen-Specker theorem, and our
strengthened results and interpretation of the Kochen-Specker theorem thus rely on this condition. We do not attempt to justify
this assumption here, as this is an interpretational choice and the subject of much debate (see [9, Chap. 4] for a good overview),
which is beyond the scope of this paper.

A. Definitions

As usual we denote by C the set of complex numbers and use the standard quantum mechanical bra-ket notion; that is, we
denote (unit) vectors in the Hilbert space Cn by |·i. We will focus primarily on projection observables, and denote by Py the
operator projecting onto the linear subspace spanned by |yi; that is, Py = |yihy|.

In the following we formalise hidden variables and value definiteness in a clear and unambiguous fashion. This framework is
based on that we developed in [1], and similar to standard approaches to the Kochen-Specker theorem [6]; we have made several
simplifications since we do not wish to explore contextual definite values in any detail here.

We fix a positive integer n � 2. Let O ✓ {Py | |yi 2 Cn} be a nonempty set of projection observables in the Hilbert space
Cn [12].

Definition 1. A set C ⇢ O is a context in O if C has n elements (i.e., |C|= n) and for all Py,Pf 2C with Py 6= Pf, hy|fi= 0.
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A context C in O is thus a maximal set of compatible (i.e., they can be simultaneous measured) projection observables.
Since there is a one-to-one correspondence between unit vectors and projection observables, a context is uniquely defined

by an orthonormal basis in Cn. Thus, in slight abuse of terminology, we sometimes refer to a context as an orthogonal set of
observables.

Recall that a partial function is one which may be undefined for some values in its domain. If it is defined everywhere, then it
is total.

Definition 2. A value assignment function (on O) is a partial two-valued function v : O ! {0,1}, assigning values to some
(possibly all) observables in O.

We note that we could, as in [1], allow v to be a function of both the observable P and the context C containing P, allowing
values to be assigned contextually. It would perhaps be more correct to call v, as defined above in Definition 2, a non-contextual
value assignment function; however, since we are interested only in the non-contextual case, we avoid this for compactness.

Definition 3. An observable P 2 O is value definite (under v) if v(P) is defined; otherwise it is value indefinite (under v).
Similarly, we call O value definite (under v) if every observable P 2 O is value definite.

B. The Kochen-Specker theorem

With this terminology, we can state the Kochen-Specker theorem formally. We present it in the following form deliberately in
order to draw the comparison to our above informal description, and to clarify the following discussion.

Theorem 4 (Kochen-Specker [14]). Let n � 3. Then there exists a (finite) set of projection observables O ⇢ Cn such that there
is no value assignment function v satisfying the following three conditions:

(i) O is value definite under v; that is, v is a total function.

(ii) The value v(P) of an observable P 2 O is independent of the context P is measured in.1

(iii) For every context C in O the following condition holds:2 ÂP2C v(P) = 1.

The third condition expresses the fact that only one projection observable in a context can take the value 1. As we mentioned
earlier, this is largely uncontroversial: one can simultaneously measure the observables in a context and quantum mechanics
predicts precisely that exactly one of these measurements should give the result ‘1’. Thus, if we assume (ii) to be true – at least
for observables that are value definite for which the statement makes clear sense – then the Kochen-Specker theorem requires us
to conclude the negation of (i): that O cannot be value definite, and hence at least one observable must be value indefinite.

Note that the third condition is not independent of the first: it is not clear how the sum ÂP2C should be evaluated if v(P) is
undefined. This is one of the key issues we will clarify in attempting to localise value indefiniteness.

II. A PATH TO LOCALISING VALUE INDEFINITENESS

While the Kochen-Specker theorem certainly succeeds, as was the original intention, in showing that quantum mechanics
must obey an entirely non-classical event structure, it does not, as we have pointed out, show that all measurement outcomes
must be indeterministic. As a consequence of the global nature of the hypothesis of the theorem – that all observables are value
definite – one can only draw a global conclusion: that not all observables are value definite. That is, the theorem, even under the
assumption of non-contextuality, cannot ‘locate’ value indefiniteness. This is an important point, not only for the foundational
understanding of quantum mechanics, but also in practical applications: quantum random number generators and cryptographic
schemes rely on the indeterminism of quantum mechanics providing ‘irreducible randomness’ [10]. To certify such claims, it is
important to be able to localise value indefiniteness to ensure it applies to the observables measured in such applications.

We proceed by providing more nuanced and less demanding, localised versions of the Kochen-Specker assumptions, and use
these to localise value indefiniteness (always under the assumption of non-contextuality for value definite observables).

1 This is implicit in the definition of v – see the discussion following Definition 2.
2 This condition means that v is a frame function with weight 1 [11].
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A. Localising the hypotheses

Our approach is a conservative one: rather than assuming complete value definiteness of the entire set of observables consid-
ered, we require observables to be value definite only when their indefiniteness would allow the possibility of measurements3

violating the quantum predictions specified in condition (iii) of the Kochen-Specker theorem (see the more detailed discussion
and example below).

In order for this approach to work, we need, as a premise, at least one observable to be value definite. We then show that the
assumption that any other observable is value definite leads to a contradiction.

Fortunately, there is a very reasonable justification for this premise: if a system is prepared in an arbitrary state |yi 2Cn, then
measurement of the observable Py should yield the outcome 1. Thus, it seems perfectly reasonable to require that, if Py 2 O,
v(Py) = 1. We call this the eigenstate assumption [1], which is similar to, although weaker than, the ‘eigenstate-eigenvalue link’
discussed in [19]. Furthermore, since the critical feature of a set O of observables is the orthogonality relations between these
observables rather than the specific form of these observables, we can hence choose our basis at will. It is thus not unreasonable
to consider that some observable in O has the value 1, and to fix the basis used to express O to that of the state |yi to make this
observable coincide with Py.

Let us finally discuss how assumption (iii) can be generalised for partial value assignment functions v, that is, the case where
some observables in O may be value indefinite.

Definition 5 (Admissibility). Let O be a set of observables in Cn and let v : O o�! {0,1} be a value assignment function. Then v
is admissible if the following two conditions hold for every context C in O:

(a) if there exists a P 2C with v(P) = 1, then v(P0) = 0 for all P0 2C \{P};

(b) if there exists a P 2C with v(P0) = 0 for all P0 2C \{P}, then v(P) = 1.

Admissibility requires that the quantum predictions of (iii) are never violated, while allowing value indefiniteness of an
observable P if both outcomes (0 and 1) of a measurement of P would be compatible with the definite values of other observables
sharing a context with P. For example, if v(P) = 1, then a measurement of all the observables in a context C containing P must
yield the outcome 1 for P, and hence to avoid contradiction the outcome 0 for the other observables in the context. On the other
hand, if v(P) = 0, even though measurement of P must yield the outcome 0, any of the other observables in C could yield the
value 1 or 0 (as long as only one yields 1), hence we should not conclude the value definiteness of these other observables.

1. An illustrated example

Let us illustrate the difference between our weakened assumptions, and in particular admissibility, with the hypotheses of the
Kochen-Specker theorem.

Consider the Greechie orthogonality digram shown in Fig. 1, in which vertices depict observables and smooth lines or curves
represent contexts. This well known diagram represents the ‘orthogonality’ relations between the observables used in a well
known proof of the Kochen-Specker theorem due to Cabello et al. [8], containing only 18 observables in C4.

The Kochen-Specker theorem implies that there is no way to assign every observable in this diagram a value such that the
admissibility requirements hold: exactly one observable in each context should have the value 1.

Let us suppose for the sake of example that v(Pa) = v(Pb) = 1 and that v is admissible. Then, by working from Pa and Pb
and applying the admissibility rule (a) one deduces that all observables in a context with Pa or Pb must take the value 0. One
then notices that there are contexts containing 3 observables with the value 0, so can deduce from (b) that the fourth must
have the value 1. If we follow this line of reasoning, we can continue to assign values to observables with the admissibility
requirements, as depicted in Fig. 1.(a), where a black square represents the value 1, and a black circle the value 0. As we can
see, by considering the contexts C1 and C2 we can infer that Pc must take both the values 1 and 0 respectively: both possibilities
contradict the admissibility of v, as does the final possibility – that Pc is value indefinite. Note that, in Fig. 1(a), the contradiction
obtained at Pc marked by the cross is a consequence of a specific succession of applications of the admissibility rules (a) and (b)
in Definition 5. Buy applying these rules in a different order, one can obtain the contradiction also at Pd , Pe, or Pf .

The most important aspect of this reasoning in this context is that it is deterministic: we proceed only by deducing the value
definiteness of observables via (a) and (b).

Now let us see assume that v(Pa) = 1 and v(Pb) = 0, as depicted in Fig. 1.(b). We again apply (a) to observables commuting
with Pa; however, we then see that neither (a) nor (b) can be used again to deduce the value of another observable. Normally, in

3 If an observable is value indefinite, this must surely imply that both outcomes are possibilities.
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Pb

PfPd

Pc⇥

Pa

Pe

C1

C2
Pb

Pc

Pa

(a) (b)

FIG. 1. Greechie orthogonality diagram of a proof of the Kochen-Specker theorem [8]. The value of of v of each observable (node) P is
represented as follows: v(P) = 1 – black square; v(P) = 0 – filled circle; v(P) undefined (value indefinite) – hollow circle. (a) The contradiction
arising when v(Pa) = v(Pb) = 1: v cannot be admissible, since this would require that v(Pc) = 0 and v(Pc) = 1 simultaneously, as shown by
the cross in the diagram. (b) A possible admissible value assignment when v(Pa) = 1 and v(Pb) = 0.

proving that this diagram permits no consistent assignment of definite values, one would then proceed by assuming that one of
the uncoloured observables, e.g. Pc, must have either v(Pc) = 1 or v(Pc) = 0, and trying both possibilities. One can do this when
proving the Kochen-Specker theorem since one assumes (i): that every observable must have a definite value. However, in order
to localise value indefiniteness we do not make this assumption. Hence, the value assignment in Fig. 1.(b), with the observables
represented by unfilled circles being value indefinite (e.g., v(Pc) undefined) represents an admissible value assignment.

Thus, under the assumption that v(Pa) = 1, Fig. 1 does not suffice to prove that v(Pb) must be value indefinite, and hence
cannot be used to localised value indefiniteness. It is not difficult to see that we reach the same conclusion irrespective of our
choice of observables as Pa and Pb.

In this paper, in proving the main theorem, we give a set of observables for which this is the case. That is, there are observable
Pa and Pb such that if v(Pa) = 1 then both v(Pb) = 0 and v(Pb) = 1 lead, via admissibility, to contradictions.

III. THE LOCALISED VARIANT OF THE KOCHEN-SPECKER THEOREM

Let us now state the strengthened theorem which is the focus of this paper. As we mentioned, this generalises the results
of [1, 2] and uses a different proof technique allowing for a more symmetrised analytic approach. The result in [2], on the other
hand, relies on computational results and the interpretation of graphs.

Theorem 6. Let n� 3 and |yi , |fi 2Cn be unit vectors such that 0< |hy|fi|< 1. We can effectively find a finite set of projection
observables O containing Py and Pf for which there is no admissible value assignment function on O such that v(Py) = 1 and
Pf is value definite.

Before we proceed to prove Theorem 6, let us first discuss some important relevant issues.
This theorem has a slightly different form from the standard Kochen-Specker theorem because of the requirement that a

particular observable in the set O be assigned the value 1. However, since, as we will see, it is only the orthogonality relations
between the observables in O which is important, a change of basis can always ensure that the required observable Py be assigned
the value 1.

The interpretation of the theorem is clear if one takes into account the eigenstate assumption discussed in the previous section:
If a quantum system is prepared in the state |yi in n � 3 dimensional Hilbert space, then every projection observable that does
not commute with Py is value indefinite.
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A. Insufficiency of existing Kochen-Specker diagrams

The first question to address is whether existing Kochen-Specker diagrams (i.e., Greechie diagrams specifying the orthogo-
nality relations of O) could be used to provide a set O of observables proving Theorem 6; it is not a priori obvious that such
diagrams are unable to do so. In Section II A 1 we showed, as an example, that a particular simple and well-known Kochen-
Specker diagram is not sufficient for this purpose. A careful search through existing diagrams showed that this is the case in
general, and we were unable to find an existing Kochen-Specker diagram in which there are two observables Pa and Pb with the
required property that if v(Pa) = 1, both v(Pb) = 0 and v(Pb) = 1 lead to a contradiction.

A second conceptual problem with the use of fixed Kochen-Specker diagrams as in existing proofs is the following. Since, in
order to derive a contradiction, we need to assume that an observable Py in the given observable set has v(Py) = 1, this limits the
observables which can be shown to be value indefinite to, at best, the remaining ones in O \{Py}. However, we wish to prove
more: that every observable not commuting with Py is value indefinite.

As a result, we need not only a set of observables with the required properties discussed above, but furthermore an approach
to generalise this set of observables to arbitrary other observables. We overcome this apparent lack of generality via a method
of reductions, which we present in the next section and will return to discuss later on.

B. Proof of Theorem 6

We prove Theorem 6 in three main steps:

1. We first prove it for the special case that |hy|fi| = 1p
2
. A similar result (for |hy|fi| = 3p

14
) was shown in Ref. [1], but

this involved two separate diagrams applying to separate cases. Here we give a single diagram providing a much more
compact, clear proof.

2. We prove a simple reduction for 0 < |hy|fi|< 1p
2

to the first case.

3. The third and main part of the proof involves finding a reduction in the opposite sense, applying to the final 1 > |hy|fi|>
1p
2

case. It is this final reduction allowing the complete proof that is the most involved technical aspect of this paper.

As is standard in Kochen-Specker proofs [6], we will work directly in the three-dimensional case of C3 (in fact, only R3 is
needed), since the case for n > 3 can be simply reduced to this situation.

Lemma 7. Given any two unit vectors |ai , |bi 2 C3 with |ha|bi| = 1p
2

there exists a finite set of observables O such that if
v(Pa) = 1 then v(Pb) is value indefinite under every admissible assignment function v on O.

Proof. By choosing an appropriate basis we can assume, without loss of generality, that |ai= (1,0,0) and |bi= 1
2 (1,

p
2,1). Let

us consider the set O = {Pa,Pb,Pi; i = 1, . . . ,35} of projection observables where the vectors |ii for i = 1, . . . ,35 are defined in
Table I (with the normalisation factors emitted for simplicity). The orthogonality relations between these vectors gives the 26
contexts shown in Table II. Note that these observables are ‘tightly’ connected: the context-observable ratio is relatively high.
The Greechie diagram showing the orthogonality relations is shown in Fig. 2.

TABLE I. The 37 vectors specifying the observables used in the proof of Lemma 7, with normalisation factors omitted.

|ai= (1,0,0) |bi= (
p

2,1,1) |1i= (0,1,1) |2i= (0,1,�1) |3i= (
p

2,�1,�1)
|4i= (0,0,1) |5i= (0,1,0) |6i= (

p
2,1,�3) |7i= (1,�

p
2,0) |8i= (

p
2,�3,1)

|9i= (1,0,�
p

2) |10i= (
p

2,1,0) |11i= (
p

2,0,1) |12i= (
p

2,�2,�3) |13i= (1,�
p

2,
p

2)
|14i= (

p
2,�3,�2) |15i= (1,

p
2,�

p
2) |16i= (

p
8,1,�1) |17i= (

p
8,�1,1) |18i= (

p
2,�7,�3)

|19i= (
p

2,�1,3) |20i= (
p

2,�3,�7) |21i= (
p

2,3,�1) |22i= (1,
p

2,0) |23i= (1,0,
p

2)
|24i= (

p
2,�1,�3) |25i= (

p
2,�1,1) |26i= (

p
2,�3,�1) |27i= (

p
2,1,�1) |28i= (

p
2,�1,0)

|29i= (
p

2,0,�1) |30i= (
p

2,2,3) |31i= (
p

2,3,2) |32i= (
p

2,3,7) |33i= (
p

2,7,3)
|34i= (

p
2,1,3) |35i= (

p
2,3,1)

Let us assume, for the sake of contradiction, than an admissible v exists for O, with v(Pa) = 1 and v(Pb) defined (i.e., Pb value
definite). Then there are two cases: v(Pb) = 1 or v(Pb) = 0.

Case 1: v(Pb) = 1. Since Pa 2C1,C2 and v(Pa) = 1, admissibility requires that v(P1) = v(P2) = v(P4) = v(P5) = 0. Similarly,
since Pb 2 C3,C4,C5 we have v(P3) = v(P6) = v(P7) = v(P8) = v(P9) = 0. Since v(P4) = v(P7) = 0, admissibility in C6 means
that we must have v(P10) = 1; similarly v(P11) = 1 also. This chain of reasoning can be continued, applying the admissibility
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TABLE II. The 26 contexts used in the proof of Lemma 7.

C1 = {Pa,P1,P2}, C2 = {Pa,P4,P5}, C3 = {Pb,P2,P3}, C4 = {Pb,P6,P7}, C5 = {Pb,P8,P9},
C6 = {P4,P7,P10}, C7 = {P5,P9,P11}, C8 = {P10,P12,P13}, C9 = {P11,P14,P15}, C10 = {P1,P13,P16},
C11 = {P1,P15,P17}, C12 = {P16,P18,P19}, C13 = {P17,P20,P21}, C14 = {P3,P19,P22}, C15 = {P3,P21,P23},
C16 = {P22,P24,P25}, C17 = {P23,P26,P27}, C18 = {P4,P22,P28}, C19 = {P5,P23,P29}, C20 = {P15,P28,P30},
C21 = {P13,P29,P31}, C22 = {P8,P16,P32}, C23 = {P6,P17,P33}, C24 = {P7,P27,P34}, C25 = {P9,P25,P35},
C26 = {P1,P25,P27}.

Pb

P2
P3

P21

P23

P29

P5

PaP4

P10

P7

P6

P1

P11

P9

P8

P28

P22

P19

P24 P25

P35

P34

P27
P26

P12

P13

P31

P30

P15

P14
P17

P16

P18 P32

P33 P20

C26

FIG. 2. Greechie diagram showing the orthogonality relation between the observables in Table I. We have shown the deduction for v(Pa) =
v(Pb) = 1, where black squares represent the value 1, and circles the value 0. Observe that the context C26, shown dotted, contains three
observables with the value 0, and hence v is not admissible.

rules from Definition 5 one context at a time, as shown in Table III. In this table, where the leftmost column indicates the value
of v on the given observables, the values shown in bold in each column (context) are deduced from the admissibility rules based
on the values of the other observables in the context which have already been deduced in the preceding columns. Note that, at
each step, admissibility requires that certain observables take particular values; we never proceed by reasoning that v(Pi) must
be either 0 or 1 for some Pi as is common in proofs of the standard Kochen-Specker theorem (except for Pb, where this is exactly
the assumption that Pb is value definite), because this is not required by admissibility. Eventually, as we see, we deduce that
v(P1) = v(P25) = v(P27) = 0. But since C26 = {P1,P25,P27}, this contradicts the admissibility of v.

Case 2: v(Pb) = 0. By following a similar line of reasoning, shown in Table IV, we once again deduce that v(P1) = v(P25) =
v(P27) = 0, a contradiction.

Hence, we must conclude that Pb cannot be value definite if v is admissible on O.

We next show a ‘contraction’ lemma that constitutes a simple ‘forcing’ of value definiteness: given Pa and Pb with v(Pa) =
v(Pb) = 1, there is a |ci which is ‘closer’ (i.e., at a smaller angle of our choosing; contracted) to both |ai and |bi, for which
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TABLE III. The values that must be taken for the shown observables under any admissible assignment function v satisfying v(Pa) = v(Pb) = 1.
The value (shown in the leftmost column) for observables in bold is deduced from the admissibility rules and observables appearing in columns
to the left of that observable in the table.

v C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

1 Pa Pa Pb Pb Pb P10 P11 P10 P11 P16 P17 P16 P17 P22 P23 P22 P23

0 P1 P4 P2 P6 P8 P4 P5 P12 P14 P1 P1 P18 P20 P3 P3 P24 P26
0 P2 P5 P3 P7 P9 P7 P9 P13 P15 P13 P15 P19 P21 P19 P21 P25 P27

TABLE IV. The values that must be taken for the shown observables under any admissible assignment function v satisfying v(Pa) = 1 and
v(Pb) = 0.

v C1 C2 C3 C14 C15 C18 C19 C20 C21 C10 C11 C22 C23 C4 C5 C24 C25

1 Pa Pa P3 P3 P3 P28 P29 P28 P29 P16 P17 P16 P17 P7 P9 P7 P9

0 P1 P4 Pb P19 P21 P4 P5 P15 P13 P1 P1 P8 P6 Pb Pb P27 P25
0 P2 P5 P2 P22 P23 P22 P23 P30 P31 P13 P15 P32 P33 P6 P8 P34 P35

v(Pc) = 1 also. This result was proved in [1], but we reproduce the short proof here for completeness. The form of the vectors
|c±i specified in the lemma will be used several times in the rest of the paper.

Lemma 8 (Contraction Lemma, [1]). Given any two unit vectors |ai , |bi 2 C3 with 0 < |ha|bi| < 1 and a z 2 C such that
|ha|bi| < |z| < 1, we can effectively find a unit vector |ci with ha|ci = z, and a finite set of observables O containing Pa, Pb, Pc
such that if v(Pa) = v(Pb) = 1, then v(Pc) = 1, for every admissible assignment function v on O.

Furthermore, if we choose our basis such that |ai = (0,0,1) and |bi = (
p

1� |p|2,0, p), where p = ha|bi, then |ci can only
be one of the following two vectors: |c±i= (x,±y,z), where z = ha|ci, x = p(1� z2)/(z

p
1� p2) and y =

p
1� x2 � z2.

Proof. Without loss of generality, we assume the ha|bi 2 R and choose a basis so that |ai = (0,0,1) and |bi = (q,0, p) where
p = ha|bi and q =

p
1� p2.

Note that, since p < |z| and thus p2 < z2 we have

p2(1� z2)

q2z2 =
p2 � p2z2

q2z2 <
z2 � p2z2

q2z2 =
(1� p2)z2

q2z2 = 1.

If we let x = p(1�z2)
qz we thus have

x2 =
p2(1� z2)

q2z2 (1� z2)< 1� z2.

We can then set y =
p

1� x2 � z2 2 R, making |ci= (x,y,z) a unit vector such that ha|ci= z.
Let |ai = |ai ⇥ |ci = (�y,x,0), |bi = |bi ⇥ |ci = (�py, px� qz,qy) and note that ha|bi = 0 also. Thus, if we let |a0i =

|ai⇥ |ai and |b0i= |bi⇥ |b0i, then {|ai , |ai , |a0i}, {|bi , |bi , |b0i} and {|ai , |bi , |ci} are all orthonormal bases for R3 and thus
C1 = {Pa,Pb,Pc}, C2 = {Pa,Pa,Pa0} and C3 = {Pb,Pb,Pb0} are all contexts in O =C1 [C2 [C3. This construction is illustrated
in Fig. 3.

If v is an admissible assignment function on O with v(Pa) = v(Pb) = 1 then we must have v(Pa) = v(Pb) = 0 and hence
v(Pc) = 1, as required.

We now present a proof for the reduction in the opposite direction: finding (from |ai , |bi) two vectors |ci , |di specifying
observables Pc,Pd for which v(Pc) = v(Pd) = 1, and which are further apart from each other than |ai is from |bi. This is made
easier by noting that it is not necessary to find a vector |ci ‘further’ from |ai than |bi, but rather just two vectors further from
each other than |ai is from |bi.

This process is broken into two steps. We first prove an ‘Expansion Lemma’ which, unlike the Contraction Lemma, does
not find two vectors arbitrarily far apart satisfying the required criteria. Rather, we then show a further lemma, the ‘Iteration
Lemma’, proving that this expansion can be iterated to meet the required conditions.

Lemma 9 (Expansion Lemma). Given any two unit vectors |ai , |bi 2C3 with 1
3 < |ha|bi|< 1, we can effectively find unit vectors

|ci , |di with 0 < |hc|di| < |ha|bi| and a finite set of observables O containing Pa,Pb,Pc,Pd such that if v(Pa) = v(Pb) = 1, then
v(Pc) = v(Pd) = 1, for every admissible assignment function v on O.
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Pb

C3

Pb

Pc C2
Pa

C1

Pa

FIG. 3. Greechie orthogonality diagram with an overlaid value assignment that illustrates the reduction in Lemma 8. Once again, the circles
and squares represent observables that have the values 0 and 1 respectively.

Proof. Let ha|bi=a. Without loss of generality, we will consider only the positive, real case of 1
3 <a< 1. We fix an orthonormal

basis such that, written in this basis, |ai and |bi lie in the xz-plane bisected by the z-axis. In this basis we thus have

|ai=
✓q

1�b2,0,b
◆
, |bi=

✓
�
q

1�b2,0,b
◆
,

where

b =

r
a+1

2
· (1)

It is readily confirmed that

ha|bi= b2 � (1�b2) = 2b2 �1 = a

as desired. Note that we thus have
r

2
3
< b < 1. (2)

Figure 4 shows the contour representing all the possible vectors specifying observables which can be forced to take the value
1 from the construction in Lemma 8. We use two applications of Lemma 8 applied to |ai , |bi to give two such vectors |ci , |di
lying in the yz-plane.

We can also see, at least for the chosen values of |ai , |bi that are shown in Fig. 4, that ha|bi > hc|di. Indeed it appears that
the vectors ‘|ci’, ‘|di’ shown in the yz-plane provide the maximum separation, and the symmetry under exchange of |ai and |bi
of Lemma 8 seems to support this. However, it is not necessary to prove this is the case. Rather, we will show directly that the
vectors |ci , |di provide the required expansion. To do so, we derive a simple explicit form for |ci , |di and thus hc|di. We focus
first on finding |ci; the form of |di follows immediately.

Rather than use basis-transformations to attempt to apply Lemma 8 to find the form of |ci , |di in this specific case, we will
re-derive the result explicitly making use of our symmetrised basis choice.

The vectors |ai , |bi , |ci need to follow the orthogonality relations shown in Fig. 3 in order to conclude that v(Pc) = 1. That is,
we need vectors |ei , | f i such that {|ei , | f i , |ci} is an orthonormal set, and further that ha|ei= hb| f i= 0.

Since we choose |ci to be in the yz-plane, we can write it in the parameterised form |ci=
⇣

0,
p

1� g2,g
⌘

, where g> 0 remains
to be found. Since |ei should be orthogonal to both |ai and |ci, we have

|ei= |ai⇥ |ci=
✓
�b

q
1� g2,�g

q
1�b2,

q
(1�b2)(1� g2)

◆
.

Similarly, we have

| f i= |bi⇥ |ci=
✓
�b

q
1� g2,g

q
1�b2,�

q
(1�b2)(1� g2)

◆
.
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FIG. 4. A plot of the possible vectors |ci that Lemma 8 can force to take the value 1. The bold (red; colour online) curve represents the position
on the unit sphere of such vectors for given |ai , |bi. Note the |ci and |di are further apart from each other than |ai and |bi.

Further, the orthogonality of |ei and | f i gives us

he| f i= b2(1� g2)� g2(1�b2)� (1�b2)(1� g2)

= b2 �b2g2 � g2 +b2g2 �1+ g2 +b2 �b2g2

= 2b2 �b2g2 �1
= 0

and hence b2(2� g2) = 1. Thus,

g =

s

2� 1
b2 · (3)

Further, it is readily verified that 1p
2
< g < 1 for

q
2
3 < b < 1, and hence for all 1

3 < a < 1 (recall Eqn. 2).

Similarly, we find |di = (0,�
p

1� g2,g) using a further two auxiliary vectors |gi , |hi forming the orthonormal set
{|di , |gi , |hi} where ha|gi= hb|hi= 0.

Thus, if we take O = {Pa,Pb,Pc,Pd ,Pe,Pf ,Pg,Ph}, as a result of the orthogonality relationships expressed in Fig. 3, v(Pc) =
v(Pd) = 1 for any admissible v on O with v(Pa) = v(Pb) = 1.

It remains then just to show that

hc|di= 2g2 �1 < ha|bi= a = 2b2 �1. (4)

We note that hc|di> 0 for g > 1p
2
.

We finish the proof by showing proving (4), that is, that hc|di< a, or, equivalently, g2 < b2. But since we can write
✓

b� 1
b

◆2
= b2 � 1

b2 �2
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we have from Eqn. 3

g2 = 2� 1
b2 = b2 �

✓
b� 1

b

◆2
< b2,

concluding the proof.
We note for completeness that we can write hc|di directly in terms of a from Eqns. 1, 3 and 4 as

hc|di= 3� 4
a+1

· (5)

We now prove that iterating this procedure we can find a pair of vectors arbitrarily far apart from each other.

Lemma 10 (Iteration Lemma). Given any two unit vectors |ai , |bi 2C3 with 1
3 < |ha|bi|< 1, we can effectively find unit vectors

|ci , |di with 0 < |hc|di|  1
3 and a finite set of observables O containing Pa,Pb,Pc,Pd such that if v(Pa) = v(Pb) = 1, then

v(Pc) = v(Pd) = 1, for every admissible assignment function v on O.

Proof. We prove by iterating Lemma 9, and use the notation |c0i ⌘ |ai and |d0i ⌘ |bi, indicating the 0th iteration. We start
with |c0i , |d0i and for each i � 0, as long as |cii , |dii satisfy hci|dii > 1

3
, apply the construction used in the proof of Lemma 9

to generate |ci+1i , |di+1i for the next iteration. In particular, |ci+1i , |di+1i satisfy the equality (5) for ai = hci|dii (in particular,
a0 = hc0|d0i= ha|bi).

By Lemma 9, we know that hci|dii> hci+1|di+1i for each iteration i. We now prove that the process cannot produce an infinite
sequence |c0i , |d0i ; |c1i , |d1i ; · · · , with hci|dii> 1

3 for all i, that is, for some i we have hci|dii  1
3
. (The sequence must stop here,

since Lemma 9 cannot be applied for hci|dii  1
3
.)

From Eqn. 5 we define the function s :
� 1

3 ,1
�
! (0,1) such that

s(u) = 3� 4
u+1

,

giving the inner product of the next pair in the iteration. We thus have s(a0) = a1 and, more generally, ai = si(a0). We can thus
rephrase the problem: does there exist a k such that sk(a0) 1

3 ?
Let us, for the sake of contradiction, assume the contrary. Then (ai)i = (si(a0))i is an infinite strictly decreasing sequence of

reals with ai >
1
3 for all i. For any finite i we thus have

si(a0) = ai = a0 � |a1 �a0|� · · ·� |ai �ai�1|
= a0 � (a0 �a1)� · · ·� (ai�1 �ai)

= a0 �
i�1

Â
k=0

(ak �ak+1).

Let us define the function D :
� 1

3
,1
�
!

�
0, 1

3
�

such that

D(u) = u� s(u) = u�
✓

3� 4
u+1

◆

so that

ai = a0 �
i�1

Â
k=0

D(ak).

We can show that dD
du < 0 for u 2

� 1
3
,1
�
: calculating the derivative we have

dD
du

= 1� 4
(u+1)2 < 1� 4

(1+1)2 = 0.

Since D is thus a strictly decreasing function on
� 1

3
,1
�

and ak < a0 for all k > 0, we have D(a0)< D(ak) for all k > 0. Hence
we set

ai = a0 �
i�1

Â
k=0

D(ak)< a0 � iD(a0).
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Since D(a0) = a0 �a1 > 0 is a positive constant, it is not possible that si(a0) = ai >
1
3
, for all i > 0, because in this case we

would have 1
3 < a0 � iD(a0), for all i > 0, a contradiction.

In fact, if k is the smallest positive integer greater than a0� 1
3

D(a0)
, then ak  1

3
, as required. We note that sk+1(a0) is not defined.

By Lemma 9, for each i = 0, . . . ,k � 1 there exists a set Oi of observables such that v(Pci+1) = v(Pdi+1) = 1 under any v
admissible on Oi satisfying v(Pci) = v(Pdi) = 1. Hence, if we take the set O = [k�1

i=0 Oi we must have v(Pck) = v(Pdk) = 1 under
any admissible v on O satisfying v(Pa) = v(Pb) = 1, and hck|dki  1

3
, as required.

With these lemmata proved, we are in a position to combine them to prove Theorem 6.

Proof of Theorem 6. If we have |hy|fi|= 1p
2

then, by Lemma 7, there exists a finite set O for which there is no admissible v on
O satisfying the requirements, so we are done.

Otherwise, we proceed directly to prove that if O is a set of observables containing Py,Pf then no admissible assignment
function v on O with v(Py) = 1 can have Pf value definite. We show this in two cases: first that v(Pf) 6= 1 and then that
v(Pf) 6= 0. Let us first show that there is a set O1 for which v(Pf) 6= 1 if v is admissible on O1.

There are two cases: either 0 < |hy|fi|< 1p
2

or 1 > |hy|fi|> 1p
2
.

If 0 < |hy|fi|< 1p
2
, then by Lemma 8 there exists a vector |f0i such that hy|f0i= 1p

2
and a set O2 of observables containing

Py,Pf,Pf0 such that if v is admissible on O2, v(Pf0) = 1 also. But, by Lemma 7, there exists a set O3 of observables containing
Py,Pf0 such that if v is admissible on O3 and v(Py) = 1, Pf0 must be value indefinite. Thus, if we take O1 = O2 [O3 we cannot
have v(Pf) = 1 as required.

If 1> |hy|fi|> 1p
2
, then by Lemma 10 there exist two vectors |y0i , |f0i such that 0< |hy0|f0i| 1

3 and a set O4 of observables
containing Py,Pf,Py0 ,Pf0 such that if v is admissible on O4 then v(Py0) = v(Pf0) = 1 also. But, by Lemma 8, there exists a vector
|f00i such that hy0|f00i = 1p

2
and a set O5 of observables containing Py0 ,Pf00 ,Pf0 such that if v is admissible, v(Pf00) = 1 also.

Finally, once more by Lemma 7, there exists a set O6 for which v there is no admissible v on O5 satisfying v(Py0) = v(Pf00) = 1.
Hence, there is no admissible v on the set O1 = O4 [O5 [O6 such that v(Pf) = 1 as required.

This shows that there exists a set O1 of observables containing Py,Pf such that we cannot have v(Pf) = 1 if v(Py) = 1 if v is
admissible O1. It remains to show that there exists a set O0 such that we cannot have v(Pf) = 0 if v is admissible on O0.

Let us assume, without loss of generality, that |yi = (1,0,0) and |fi = (p,
p

1� p2,0) where p = |hy|fi|. Then let |ai =
(0,1,0), |bi = (0,0,1) and |f0i = (

p
1� p2, p,0). Then {|yi , |ai , |bi} and {|fi , |f0i , |bi} are orthonormal bases for C3 and

hence C1 = {Py,Pa,Pb} and C2 = {Pf,Pf0 ,Pb} are contexts in O7 = C1 [C2. But if v is admissible on O7 and v(Py) = 1,
v(Pf) = 0, admissibility implies that v(Pf) = 1.

As we have shown just before, there exists a set O8 of observables containing Py,Pf0 such that there is no admissible assign-
ment function v on O8 with v(Py) = v(Pf0) = 1, and hence there is no admissible v on O0 = O7 [O8 such that v(Py) = 1 and
v(Pf) = 0.

Having covered all cases, we are forced to conclude that there is a set O = O0 [O1 of containing Py and Pf such that if
v(Py) = 1, Pf cannot be value definite if v is admissible on O.

IV. DISCUSSION

The important difference between Theorem 6 and the Kochen-Specker theorem lies in what physical conclusions can be
drawn from the theorems which, of course, are purely mathematical results. The Kochen-Specker theorem shows that, given a
quantum state |yi in dimension 3 or higher Hilbert space, the results of all possible measurements on the state |yi cannot be
predetermined (non-contextually) as they would in a classical theory. It says nothing, however, about whether all, or simply
a few, outcomes are not predetermined. Theorem 6, on the other hand, shows that no observable A can have a predetermined
measurement outcome unless |yi is an eigenstate of A. This interpretation relies on the eigenstate assumption discussed earlier
in the paper, stating that the observable Py has a predetermined measurement outcome – a very weak assumption.

Conceptually, this means that Theorem 6 goes significantly further than the Kochen-Specker theorem in showing the extent of
non-classicality that the quantum logic event-structure implies.

A. Proof size

Since the first appearance of the Kochen-Specker theorem [14], much attention has been given to reducing the number of
observables and contexts needed to obtain a contradiction and prove the theorem. The original result used a set of 117 observ-
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ables, but more recent results have, to quote some notable examples, shown sets containing 31 observables (in three-dimensional
Hilbert space) [17] and 18 observables (in four-dimensional Hilbert space) [8].

While such results do not affect the interpretation of the theorem, they have merit in showing the depth of the contradiction
between the classical and quantum logical structures. More recently, smaller proofs have been of particular interest since
these have been used to derive non-contextuality inequalities that can be experimentally tested [7] in the same vein as Bell-
inequalities [4]; smaller sets of observables lead to smaller and more readily testable inequalities.

Conceptually, however, the key point is probably that the theorem can be proved using a finite set of observables; if a contra-
diction only arose when an infinity of observables were considered, this would potentially raise questions about the physicality
of the theorem and its use of counterfactuals, and its interpretation would be more questionable [18].

The localised nature of Theorem 6 immediately means that a single finite set O of observables will never suffice to prove
the value indefiniteness of all observables Pf not commuting with Py for a given state |yi. There are infinitely many such
observables, and one must, by definition, include Pf in O to localise value indefiniteness to Pf. Rather, the nature of Theorem 6
means we must look for constructive methods to obtain a set Of for a given Pf, which is precisely what we have done in our
proof of the result.

Of course, a given set of orthogonality relations (i.e., a Greechie diagram) may be realisable for an infinity of different sets O,
as is the case with the diagram depicted in Fig. 3. Thus, it would be preferable to find a given set of orthogonality relations for
which a set Of of observables realising these relations and containing both Py and Pf for any Pf. Since we were unable to give
such a set of relations, we had to iterate Lemma 9 a number of times times depending on Py, with no upper bound (but only ever
finitely many times).

Furthermore, it seems that it is difficult, if not impossible, to succeed in giving a fixed set of orthogonality relations that
works in all cases. In order to show an observable Pa has v(Pa) = 1 using the admissibility requirements, one must give a
context {Pa,Pb,Pc} ⇢ O for which it is already known that v(Pb) = v(Pc) = 0. This implies two observable Pd and Pe such
that v(Pd) = v(Pe) = 1 and hb|di = hc|ei = 0. But this is precisely the case described in Lemma 8. However, in Lemma 9 we
showed the limitations of this process in ‘widening the angle’ between vectors whose projectors both take the value 1 – hence
the necessity of iterating Lemma 9.

As a result it seems that, in contrast to the Kochen-Specker theorem, arbitrarily large sets of observables are needed to show
that a given observable Pf is value indefinite. Nonetheless, the critical point is once again that for any given Pf, we can show that
Pf is value indefinite with a finite set of observables, and hence that the counterfactual reasoning used is no more problematic
than in the Kochen-Specker theorem.

B. State-independence and testability

One of the strengths of the Kochen-Specker theorem that has been repeatedly emphasised is the fact that the contradiction
between its hypotheses is derived independently of the state a quantum system is prepared in; this is commonly referred to as
state-independence. This is in contrast to violation of Bell-type inequalities (which occur only for particular entangled states)
and shows that the non-classicality results from the structure of quantum mechanics itself, rather than features of particular
states, such as entanglement [13, 21]. Consequently, various experimental inequalities based on the Kochen-Specker theorem
that, although often simpler, are state-dependent have been criticised, and much effort has been expended to find simple, state-
independent inequalities to test [7].

In contrast to the Kochen-Specker theorem, the form of Theorem 6 and, in particular, the interpretation that for a given
state |yi, any observable Pf not commuting with Py is value indefinite, may suggest that Theorem 6 does not share this state-
independence. As a result, this issue deserves a little discussion.

The state-independence of the Kochen-Specker theorem ensures that no quantum state in n � 3 dimensional Hilbert space
admits a classical assignment of definite values to all observables within certain finite sets. This is true also with Theorem 6: for
any quantum state |yi, all observables not contained within the ‘star’ of observables commuting with Py (see Fig. 5) are value
indefinite. Of course, this set of observables will differ for different states |yi, but never on more than a set of measure zero [2].

Rather, it is not Theorem 6 that is state-dependent, but the proof we have given: to show that a given observable Pf is value
indefinite, we need a set O particular to this |fi. However, as we discussed in the preceding section, this is perfectly reasonable
given the form of the theorem.

One can emphasise further the state-independence of Theorem 6 by restating the theorem in the following form: “Only a single
observable in the Hilbert space Cn can be assigned the value 1 by an admissible, non-contextual value assignment function”.
In this form the state-independence is clear; the illusion of state-dependence enters because of the connection, via the eigenstate
assumption, between the “one observable assigned the value 1” and the particular state |yi (and corresponding observable Py
with v(Py) = 1) which is necessary for the physical interpretation of the theorem.

The importance of the state-independence of the Kochen-Specker theorem arises, in part, in the use of Kochen-Specker sets
of observables in testable inequalities. It is important to note that, even though these inequalities are sometimes referred to as
“Kochen-Specker inequalities” [15], they are better seen simply as non-contextuality inequalities. These inequalities are derived
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C1
C2

C3

C5
C6

C7

C4
Py

FIG. 5. Greechie diagram showing an observable Py with v(Py) = 1 and the (infinite) set of compatible observables Pf for which v(Pf) = 0.
This is the maximal extent of value definiteness for a system in state |yi – no other observables in C3 can be value definite.

under the assumption only of non-contextuality, ignoring the admissibility requirements, and bounds on quantities are calculated
over all possible non-contextual value assignments. A key result shows that one can derive such an inequality from any Kochen-
Specker set [20]. It is clear that these value assignments cannot obey the admissibility requirements, since the Kochen-Specker
theorem shows precisely that no classical value assignment can do so.

The strength of Theorem 6, on the other hand, relies precisely on the use of the admissibility requirements to determine when
definite values should be assigned. Hence, while one can use the methods of [20] to derive inequalities from the constructions
in the proof of Theorem 6, these bounds would be calculated over all non-contextual value assignments (subject to v(Py) = 1),
without paying heed to admissibility, and hence would offer no conceptual advantage over existing inequalities. Furthermore,
since our construction in Lemma 7, for example, contains 37 observables, these would pose no experimental benefit to existing,
simpler, inequalities either [13].

Nonetheless, the state-independence of the result shows that the value indefiniteness of almost all observables in quantum
mechanics is indeed a deep feature of the theory – of the logical structure of Hilbert space – rather than a property of particular
states.

V. CONCLUSIONS

In summary, we proved a strengthened variant of the Kochen-Specker theorem showing that the non-classicality implied by
the Kochen-Specker theorem is, in a specific sense, maximal. Specifically, under the assumptions that (1) any value definite
observables behave non-contextually, and (2) contexts obey weak ‘admissibility’ rules on any value definite observables they
contain, we show that only one projection observable in the Hilbert space Cn (for n � 3) can have the definite value 1.

This theorem can be interpreted as saying that the measurement of any observable on a quantum state |yi not aligned with, or
orthogonal to, the prepared state must be value indefinite – that is, indeterministic. The set of such value indefinite observables
forms a set of measure one, and thus this result shows that almost all quantum measurements are indeterministic [2]. This is in
contrast to the Kochen-Specker theorem which shows only that not all observables can be value definite.

This result justifies further the general belief that quantum mechanics is entirely indeterministic, eliminating the need to
assume that the non-classicality of the Kochen-Specker theorem should apply uniformly, but by deriving it. As with the Kochen-
Specker theorem, this result relies on the assumption that classical values, should they exist, must behave non-contextually.

Finally, these results add more theoretical ‘certification’ to quantum random number generators, value indefinite observables
must be localised in order to ensure the indeterministic origin of the bits generated. We emphasise that these results do not hold
for two-dimensional systems – a class into which many current quantum random number generators unfortunately fall.
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