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Abstract
We develop a general, non-probabilistic model of prediction which is suitable for assessing the

(un)predictability of individual physical events. We use this model to provide, for the first time, a rigor-

ous proof of the unpredictability of a class of individual quantum measurement outcomes, a well-known

quantum attribute postulated or claimed for a long time.

We prove that quantum indeterminism—formally modelled as value indefiniteness—is incompatible with

the supposition of predictability: measurements of value indefinite observables are unpredictable. The proof

makes essential use of a strengthened form of the Kochen-Specker theorem proven previously to identify

value indefinite observables. This form of quantum unpredictability, like the Kochen-Specker theorem,

relies on three assumptions: compatibility with quantum mechanical predictions, non-contextuality, and the

value definiteness of observables corresponding to the preparation basis of a quantum state.

We explore the relation between unpredictability and incomputability and show that the unpredictability

of individual measurements of a value indefinite quantum observable complements, and is independent of,

the global strong incomputability of any sequence of outcomes of this particular quantum experiment.

Finally, we discuss a real model of hypercomputation whose computational power has yet to be deter-

mined, as well as further open problems.
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I. INTRODUCTION

The outcomes of measurements on a quantum systems are often regarded to be fundamentally

unpredictable [1]. However, such claims are based on intuition and experimental evidence, rather

than precise mathematical reasoning. In order to investigate this view more precisely, both the

notion of unpredictability and the status of quantum measurements relative to such a notion need

to be carefully studied.

Unpredictability is difficult to formalise not just in the setting of quantum mechanics, but that

of classical mechanics too. Various physical processes from classical chaotic systems to quantum

measurement outcomes are often considered unpredictable, and various definitions, both domain

specific [2] or more general [3], and of varying formality, have been proposed. For precise claims

to be made, the appropriate definitions need to be scrutinised and the results proven relative to

specific definitions.

Quantum indeterminism has been progressively formalised via the notion of value indefinite-

ness in the development of the theorems of Bell [4] and, particularly, Kochen and Specker [5].

These theorems, which have also been experimentally tested via the violation of various inequal-

ities [6], express the impossibility of certain classes of deterministic theories. The conclusion of

value indefiniteness from these no-go theorems rests on various assumptions, amounting to the

refusal to accept non-classical alternatives such as non-locality and contextual determinism. And

if value indefiniteness is, as often stated, related to unpredictability, any claims of unpredictability

need to be similarly evaluated with respect to, and seen to be contingent on such assumptions.

In this paper we address these issues in turn. We first discuss various existing notions of pre-

dictability and their applicability to physical events. We propose a new formal model of prediction

which is non-probabilistic and, we argue, captures the notion that an arbitrary single physical event

(be it classical, quantum, or otherwise) or sequence thereof is ‘in principle’ predictable. We review

the formalism of value indefiniteness and the assumptions of the Kochen-Specker theorems (classi-

cal and stronger forms), and show that the outcomes of measurements of value indefinite properties

are indeed unpredictable with respect to our model. Thus, in this framework unpredictability rests

on the same assumptions as quantum value indefiniteness. Finally, we discuss the relationship

between quantum randomness and unpredictability, and show that unpredictability does not, in

general, imply the incomputability of sequences generated by repeating the experiment ad infini-

tum. Thus, the strong incomputability of sequences of quantum measurement outcomes appears
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to rest independently on the assumption of value indefiniteness.

II. MODELS OF PREDICTION

To predict—in Latin præ-dicere, “to say before”—means to forecast what will happen under

specific conditions before the phenomenon happens. Various definitions of predictability pro-

posed by different authors will be discussed regarding their suitability for capturing the notion of

predictability of individual physical events or sequences thereof in the most general sense. While

some papers, particularly in physics and cryptographic fields, seem to adopt the view that probabil-

ities mean unpredictability [1, 7], this is insufficient to describe unpredictable physical processes.

Probabilities are a formal description given by a particular theory, but do not entail that a physical

process is fundamentally, that is, ontologically, indeterministic nor unpredictable, and can (often

very reasonably) represent simply an epistemic lack of knowledge or underdetermination of the

theory. Instead, a more robust way to formulate prediction seems to be in terms of a ‘predicting

agent’ of some form. This is indeed the approach taken by some definitions, and that we also will

follow.

In the theory of dynamical systems, unpredictability has long been linked to chaos and has often

been identified as the inability to calculate with any reasonable precision the state of a system given

a particular observable initial condition [2]. The observability is critical, since although a system

may presumably have a well-defined initial state (a point in phase-space), any observation yields

an interval of positive measure (a region of phase space). This certainly seems the correct path

to follow in formalising predictability, but more generality and formalism is needed to provide a

definition for arbitrary physical processes.

Popper, in arguing that unpredictability is indeterminism, defines prediction in terms of “phys-

ical predicting machines” [8]. He considers these as real machines that can take measurements

of the world around them, compute via physical means, and output (via some display or tape, for

example) predictions of the future state of the system. He then studies experiments which must be

predicted with a certain accuracy and considers these to be predictable if it is physically possible

to construct a predictor for them.

Wolpert [9] formalised this notion much further in developing a general abstract model of

physical inference. Like Popper, Wolpert was interested in investigating the limits of inference,

including prediction, arising from the simple fact that any inference device must itself be a physical
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device, hence an object whose behaviour we can try to predict. While Wolpert’s aim was not so

focused on the predictability arising from the nature of specific physical theories, he identified and

formalised the need for an experimenter to develop prediction techniques and initialise them by

interacting with the environment via measurements.

A more modern and technical definition of unpredictability was given by Eagle [3] in defining

randomness as maximal unpredictability. While we will return to the issue of randomness later,

Eagle’s definition of unpredictability deserves further attention. He defined prediction relative to

a particular theory and for a particular predicting agent, and approach thus with some similarity

to that of Wolpert. Specifically, a prediction function is defined as a function mapping the state of

the system described by the theory and specified epistemically (and thus finitely) by the agent to a

probability distribution of states at some time. This definition formalises more clearly prediction

as the output of a function operating on information extracted about the physical system by an

agent.

Poppers and Wolperts notions of predictability perhaps lack generality by requiring the predic-

tor to be embedded, that is, physically present, in its environment [10], and are not so suited to

investigating the predictability of particular physical processes, but rather of the physical world as

a whole. Similarly, Eagle’s definition renders predictability relative to a particular physical theory.

In particular, in order to relate the intrinsic indeterminism of a system to unpredictability, it

would be more appropriate to have a definition of events as unpredictable in principle. Thus, the

predictor’s ignorance of a better theory might change their associated epistemic ability to know if

an event is predictable or not, but would not change the fact that an event may or may not be, in

principle, predictable.

Last but not least, it is important to restrict the class of prediction functions by imposing some

effectivity (i.e. computability) constraints. Indeed, we suggest that “to predict” is to say in advance

in some effective/constructive/computable way what physical event or outcome will happen. Thus,

motivated by the Church-Turing Thesis, we choose here Turing computability. Any predicting

agent operating with incomputable means—incomputable/infinite inputs or procedures that can

go beyond the the power of algorithms (for example, by executing infinitely many operations in a

finite amount of time)—seems to be physically highly speculative if not impossible. Technically,

“controlled incomputability” could be easily incorporated in the model, if necessary.

Taking these points into account, we propose a definition—similar in many aspects to Wolerpt’s

and Eagle’s definitions—based on the ability of some computably operating agent to correctly pre-
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dict using finite information extracted from the system of the specified experiment. For simplicity

we will consider experiments with binary observable values (0 or 1), but the extension to finitely or

countable many (i.e. finitely specified) output values is straightforward. Further, unlike Eagle [3],

we consider only prediction with certainty, rather than with probability. While it is not difficult nor

unreasonable to extend our definition to the more general scenario, this is not needed for our ap-

plication to quantum measurements; moreover, in doing so we avoid any potential pitfalls related

to probability 1 or 0 events [11].

Our main aim is to define the (correct) prediction of individual events [3], which can be easily

extended to an infinite sequence of events. An individual event can be correctly predicted simply

by chance, and a robust definition of predictability clearly has to avoid this possibility. Popper

succinctly summarises this predicament in Ref. [8, 117–118]: “If we assert of an observable event

that it is unpredictable we do not mean, of course, that it is logically or physically impossible

for anybody to give a correct description of the event in question before it has occurred; for it

is clearly not impossible that somebody may hit upon such a description accidentally. What is

asserted is that certain rational methods of prediction break down in certain cases—the methods

of prediction which are practised in physical science.”

One possibility is then to demand a proof that the prediction is correct, thus formalising the

“rational methods of prediction” that Popper refers to. However, this is notoriously difficult and

must be made relative to the physical theory considered, which generally is not well axiomatised

and can change over time. Instead we demand that such predictions be repeatable, and not merely

one-off events. This point of view is consistent with Popper’s own framework of empirical falsifi-

cation [12, 13]: an empirical theory (in our case, the prediction) can never be proven correct, but

it can be falsified through decisive experiments pointing to incorrect predictions. Specifically, we

require that the predictions remain correct in any arbitrarily long (but finite) set of repetitions of

the experiment.

III. A MODEL FOR PREDICTION OF INDIVIDUAL PHYSICAL EVENTS

In order to formalise our non-probabilistic model of prediction we consider a hypothetical

experiment E specified effectively by an experimenter. We formalise the notion of a predictor as an

effective (i.e. computational) method of uniformly producing the outcome of an experiment using

finite information extracted (again, uniformly) from the experimental conditions along with the
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specification of the experiment, but independent of the results of the experiments. An experiment

will be predictable if any potential sequence of repetitions (of unbounded, but finite, length) of it

can always be predicted correctly by such a predictor.

In detail, we consider a finitely specified physical experiment E producing a single bit x2 {0,1}

(which, as we previously noted, can readily be generalised). Such an experiment could, for exam-

ple, be the measurement of a photon’s polarisation after it has passed through a 50-50 polarising

beam splitter, or simply the toss of a physical coin with initial conditions and experimental pa-

rameters specified finitely. Further, with a particular instantiation or trial of E we associate the

parameter l which fully describes the trial. While l is not in its entirety an obtainable quantity,

it contains any information that may be pertinent to prediction and any predictor can have prac-

tical access to a finite amount of this information. In particular this information may be directly

associated with the particular trial of E (e.g. initial conditions or hidden variables) and/or relevant

external factors (e.g. the time, results of previous trials of E). We can view l as a resource that one

can extract finite information from in order to predict the outcome of the experiment E. Any such

external factors should, however, be local in the sense of special relativity, as (even if we admit

quantum non-locality) any other information cannot be utilised for the purpose of prediction [14].

We formalise this in the following.

An extractor is a physical device selecting a finite amount of information included in l without

altering the experiment E. It can be used by a predicting agent to examine the experiment and make

predictions when the experiment is performed with parameter l. Mathematically, an extractor is

represented by a (deterministic) function l 7! x(l) 2 {0,1}⇤ where x(l) is a finite string of bits.

For example, x(l) may be an encoding of the result of the previous instantiation of E, or the time

of day the experiment is performed. As usual, the formal model is significantly weaker: here, an

extractor is a deterministic function which can be physically implemented without affecting the

experimental run of E.

A predictor for E is an algorithm (computable function) PE which halts on every input and

outputs either 0, 1 (cases in which PE has made a prediction), or “prediction withheld”. We

interpret the last form of output as a refrain from making a prediction. The predictor PE can

utilise as input the information x(l) selected by an extractor encoding relevant information for a

particular instantiation of E, but must not disturb or interact with E in any way; that is, it must be

passive.

As we noted earlier, a certain predictor may give the correct output for a trial of E simply by
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chance. This may be due not only to a lucky choice of predictor, but also to the input being chosen

by chance to produce the correct output. Thus, we rather consider the performance of a predictor

PE using, as input, information extracted by a particular fixed extractor. This way we ensure that

PE utilises in ernest information extracted from l, and we avoid the complication of deciding under

what input we should consider PE’s correctness.

A predictor PE provides a correct prediction using the extractor x for an instantiation of E with

parameter l if, when taking as input x(l), it outputs 0 or 1 (i.e. it does not refrain from making a

prediction) and this output is equal to x, the result of the experiment.

Let us fix an extractor x. The predictor PE is k-correct for x if there exists an n � k such

that when E is repeated n times with associated parameters l1, . . . ,ln producing the outputs

x1,x2, . . . ,xn, PE outputs the sequence PE(x(l1)),PE(x(l2)), . . . ,PE(x(ln)) with the following two

properties:

1. no prediction in the sequence is incorrect, and

2. in the sequence there are k correct predictions.

The repetition of E must follow an algorithmic procedure for resetting and repeating the experi-

ment; generally this will consist of a succession of events of the form “E is prepared, performed,

the result (if any) recorded, E is reset”.

If PE is k-correct for x we can bound the probability that PE is in fact operating by chance

and may not continue to give correct predictions, and thus give a measure of our confidence in

the predictions of PE . Specifically, the sequence of n predictions made by PE can be represented

as a string of length n over the alphabet {T,F,W}, where T represents a correct prediction, F an

incorrect prediction, and W a withheld prediction. Then, for a predictor that is k-correct for x there

exists an n � k such that the sequence of predictions contains k T ’s and (n� k) W ’s. There are
�n

k
�

such possible prediction sequences out of 3n possible strings of length n. Thus, the probability

that such a correct sequence would be produced by chance tends to zero when k goes to infinity

because �n
k
�

3n <
2n

3n 
✓

2
3

◆k
.

Clearly the confidence we have in a k-correct predictor increases as k ! •. If PE is k-correct

for x for all k, then PE never makes an incorrect prediction and the number of correct predictions

can be made arbitrarily large by repeating E enough times. In this case, we simply say that PE
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is correct for x. The infinity used in the above definition is potential not actual: its role is to

guarantee arbitrarily many correct predictions.

This definition of correctness allows PE to refrain from predicting when it is unable to. A

predictor PE which is correct for x is, when using the extracted information x(l), guaranteed to

always be capable of providing more correct predictions for E, so it will not output “prediction

withheld” indefinitely. Furthermore, although PE is technically used only a finite, but arbitrarily

large, number of times, the definition guarantees that, in the hypothetical scenario where it is

executed infinitely many times, PE will provide infinitely many correct predictions and not a single

incorrect one.

While a predictor’s correctness is based on its performance in repeated trials, we can use the

predictor to define the prediction of single bits produced by the experiment E. If PE is not correct

for x then we cannot exclude the possibility that any correct prediction PE makes is simply due to

chance. Hence, we propose the following definition:

the outcome x of a single trial of the experiment E performed with parameter l is

predictable (with certainty) if there exist an extractor x and a predictor PE which is

correct for x, and PE(x(l)) = x.

Accordingly, PE correctly predicts the outcome x, never makes an incorrect prediction, and can

produce arbitrarily many correct predictions.

IV. COMPUTABILITY THEORETIC NOTIONS OF UNPREDICTABILITY

The notion of unpredictability defined in the previous section has both physical components (in

extracting information from the system for prediction via x) and computability theoretic ones (in

predicting via an effective procedure, PE). Both these components are indispensable for a good

model of prediction for physical systems, but it is nonetheless important to discuss their relation to

pure computability theoretic notions of prediction, since these place unpredictability in a context

where the intuition is stripped to its abstract basics.

The algorithmic notions of bi-immunity (a strong form of incomputability) and Martin-Löf ran-

domness describe some forms of unpredictability for infinite sequences of bits [15]. A sequence is

bi-immune if it contains no infinite computable subsequence (i.e., both the bits of the subsequence

and their positions in the original sequence must be computable). A sequence is Martin-Löf ran-

dom if all prefixes of the sequence cannot be compressed by more than an additive constant by a
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universal prefix-free Turing machine (see [15, 16] for more details). Thus, for a bi-immune se-

quence, we cannot compute the value of any bit in advance, while a Martin-Löf random sequence

contains no “algorithmic” patterns than can be used to effectively compress it.

However, the notions of predictability presented by Tadaki [17] are perhaps the most relevant

for this discussion. An infinite sequence of bits x = x1x2 . . . is Tadaki totally predictable if there

exists a Turing machine F : {0,1}⇤ ! {0,1,W} that halts on every input, and satisfies the following

two conditions: (i) for every n, either F(x1 . . .xn) = xn+1 or F(x1 . . .xn) = W; and (ii) the set

{n 2 N+ | F(x1 . . .xn) 6=W} is infinite; F is called a total predictor for x.

A similar notion, called Tadaki predictability, requires only that F halts on all input x1 . . .xn,

and thus may be a partially computable function instead of a computable one. This emphasises

that, as we mentioned earlier, the notion of predictability can be strengthened or weakened by

endowing the predictor with varying computational powers.

Tadaki predictability can be related to various other algorithmic notions of randomness.

For example, no Martin-Löf random sequence is Tadaki (totally) predictable [17, Theorem 4],

while all non-bi-immune sequences are Tadaki totally predictable. This last fact can be read-

ily proven by noting that a non-bi-immune sequence x must contain a computable subsequence

(k1,xk1),(k2,xk2), . . . . Equivalently, there is an infinite computable set K ⇢ N and a computable

function f : K ! {0,1} such that for all k 2 K, f (k) = xk. Hence, for a string s 2 {0,1}⇤ the

function

F(s) =

8
><

>:

f (|s|+1), if |s|+1 2 K,

W, otherwise,

is a Tadaki total predictor for x (|s| is the length of s).

Furthermore, the notion of Tadaki total predictability is strictly stronger than bi-immunity, since

there exist bi-immune, totally predictable sequences. For example, let x = x1x2 . . . be a Martin-

Löf random sequence (and hence bi-immune [15]). It is not difficult to show that y = y1y2 · · · =

x1x1x2x2 . . . created by doubling the bits of x is bi-immune. However, y has a Tadaki total predictor

F defined as

F(s1 . . .sn) =

8
><

>:

sn, if n is odd,

W, if n is even,

since this correctly predicts the value of every bit at an even position in y.

This notion of predictability can be physically interpreted in the following way. Consider

a black-box B(x) with a button that, when pressed, gives the next digit of x; by repeating this
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operation one can slowly learn, in order, the bits of x. A sequence is Tadaki predictable if there is

a uniform way to compute infinitely often xn+1 having learnt the initial segment x1 . . .xn, with the

proviso that we must know in advance when—that is, the times at which—we will be able to do

so.

When viewed from the physical point of view described above, there is a clear relation to our

notion of predictability. In particular, we can consider a deterministic experiment Ex that consists

of generating a bit from the black-box B(x), and asking if Ex is predictable for the ‘prefix’ extractor

xp(li) = x1 . . .xi�1 for the trial of Ex producing xi—i.e. using just the results of the previous

repetitions of Ex. It is not too difficult to see that Ex is predictable if and only if x is Tadaki totally

predictable. Indeed, equate the function F from Tadaki’s definition and the predictor PE , as well

as the outputs ‘W ’ and “withheld”.

In general, algorithmic information theoretical properties of sequences could be explored using

our model of prediction via such an approach. However, the relation between these notions exists

only when one considers particular, abstract, extractors such as xp. The generality of our model

originates in the importance it affords to physical properties of systems, via extractors, which

are essential for prediction in real systems. Depending on the physical scenario investigated,

then, physical devices might allow us to extract information allowing to predict an experiment,

regardless of the algorithmic content of this information, as long as finite information suffices for

a single prediction.

V. QUANTUM UNPREDICTABILITY

We now apply the notion developed above to formally justify the well-known claim that quan-

tum events are completely unpredictable.

A. The intuition of quantum indeterminism and unpredictability

Intuitively, it would seem that quantum indeterminism corresponds to the absence of physical

reality; if no unique element of physical reality corresponding to a particular physical quantity

exists, this is reflected by the physical quantity being indeterminate. That is, for such an observable

none of the possible exclusive measurement outcomes are certain to occur and therefore we should

conclude that any kind of prediction of the outcome with certainty cannot exist, and the outcome
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of this individual measurement must thus be unpredictable. For example, an agent trying to predict

the outcome of a measurement of a projection observable in a basis unbiased with respect to the

preparation basis (i.e. if there is a “maximal mismatch” between preparation and measurement)

could do no better than blindly guess the outcome of the measurement.

However, such an argument is too informal. To apply our model of unpredictability the notion

of indeterminism needs to be specified much more rigorously: this implies developing a formalism

for quantum indeterminism, as well as a careful discussion of the assumptions which indetermin-

ism is reliant on.

B. A formal basis for quantum indeterminism

The phenomenon of quantum indeterminism cannot be deduced from the Hilbert space for-

malism of quantum mechanics alone, as this specifies only the probability distribution for a given

measurement which in itself need not indicate intrinsic indeterminism. Indeterminism has had

a role at the heart of quantum mechanics since Born postulated that the modulus-squared of the

wave function should be interpreted as a probability density that, unlike in classical statistical

physics [18], expresses fundamental, irreducible indeterminism [19]. In Born’s own words, “I

myself am inclined to give up determinism in the world of atoms.” The nature of individual mea-

surement outcomes in quantum mechanics was, for a period, a subject of much debate. Einstein

famously dissented, stating his belief that [20, p. 204] “He does not throw dice.” Nonetheless,

over time the conjecture that measurement outcomes are themselves fundamentally indeterminis-

tic became the quantum orthodoxy [1].

Beyond the blind belief originating with Born, the Kochen-Specker theorem, along with Bell’s

theorem, are among the primary reasons for the general acceptance of quantum indeterminism.

The belief in quantum indeterminism thus rests largely on the same assumptions as these theorems.

In the development of the Kochen-Specker theorem, quantum indeterminism has been formalised

as the notion of value indefiniteness [21], which allows us to discuss indeterminism in a more

general formal setting rather than restricting ourselves to any particular interpretation. Here we

will review this formalism, as well as a stronger form of the Kochen-Specker theorem and its

assumptions which are important for the discussion of unpredictability.

For a given quantum system in a particular state, we say that an observable is value definite if

the measurement of that observable is pre-determined to take a (potentially hidden) value. If no
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such pre-determined value exists, the observable is value indefinite. Formally, this notion can be

represented by a (partial) value assignment function (see [21] for the complete formalism).

In addressing the question of when we should conclude that a physical quantity is value definite,

Einstein, Podolsky and Rosen (EPR) define physical reality in terms of certainty and predictability

in [22, p. 777]. Based on this accepted notion of an element of physical reality, we allow ourselves

to be guided by the following “EPR principle”, which identifies their notion of an “element of

physical reality” with “value definiteness”:

EPR principle: If, without in any way disturbing a system, we can predict with cer-

tainty the value of a physical quantity, then there exists a definite value prior to obser-

vation corresponding to this physical quantity.

As we discussed earlier, the notion of prediction the EPR principle refers to needs to be ef-

fective; further, we note that the constraint that prediction acts “without in any way disturbing a

system” is perhaps non-trivial [14], but is equally required by our model of prediction.

The EPR principle justifies the subtle but often overlooked

Eigenstate principle: If a quantum system is prepared in a state |yi, then the projec-

tion observable P
y

= |yihy| is value definite.

This principle is necessary in order to use the strong Kochen-Specker theorem to single-out value

indefinite observables, and is similar to, although weaker, than the eigenstate-eigenvalue link (as

only one direction of the implication is asserted) [23].

A further requirement called admissibility is used to avoid outcomes impossible to obtain ac-

cording to quantum predictions. Formally, admissibility states that an observable in a context—i.e.

a set of mutually commuting (i.e. compatible) observables—cannot be value indefinite if all but

one of the possible measurement outcomes would contradict quantum mechanical identities given

the values of other, value definite observables in the same context. In such a case, the observable

must have the definite value of that sole ‘consistent’ measurement outcome.

Here is an example: given a context {P1, . . . ,Pn} of commuting projection observables, if P1

were to have the definite value 1, all other observables in this context must have the value 0. Were

this not the case, there would be a possibility to obtain the value 1 for more than one compatible

projection observable, a direct contradiction of the quantum prediction that one and only one

projector in a context give the value 1 on measurement. Note that we require this to hold only when
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any indeterminism (which implies multiple possible outcomes) would allow quantum mechanical

predictions to be broken: were P1 to have the value 0, admissibility would not require anything of

the other observables if the rest were value indefinite, as neither a measurement outcome of 0 or 1

for P2 . . .Pn would lead to a contradiction.

The Kochen-Specker theorem [5] shows that no value assignment function can consistently

make all observables value definite while maintaining the requirement that the values are assigned

non-contextually—that is, the value of an observable is the same in each context it is in. This is a

global property: non-contextuality is incompatible with all observables being value definite. How-

ever, it is possible to go deeper and localise value indefiniteness to prove that even the existence

of two non-compatible value definite observables is in contradiction with admissibility and the

requirement that any value definite observables behave non-contextually, without requiring that all

observables be value definite. Thus, any mismatch between preparation and measurement context

leads to the measurement of a value indefinite observable: this is stated formally in the following

strong version of the Kochen-Specker theorem.

Theorem 1 (From [21, 24]). Let there be a quantum system prepared in the state |yi in dimen-

sion n � 3 Hilbert space Cn, and let |fi be any state neither orthogonal nor parallel to |yi, i.e.

0 < |hy|fi| < 1. Then the projection observable P
f

= |fihf| is value indefinite under any non-

contextual, admissible value assignment.

Hence, accepting that definite values, should they exist for certain observables, behave non-

contextually is in fact enough to derive rather than postulate quantum value indefiniteness.

C. Contextual alternatives

It is worth keeping in mind that, while indeterminism is often treated as an assumption or

aspect of the orthodox viewpoint [1, 19], this usually rests implicitly on the deeper assumptions

(mentioned in Section V B) that the Kochen-Specker theorem relies on. If these assumptions are

violated, deterministic theories could not be excluded, and the status of value indefiniteness and

unpredictability would need to be carefully revisited.

If this were the case, perhaps the simplest alternative would be the explicit assumption of

(albeit non-local) context dependant predetermined values. Many attempts to interpret quantum

mechanics deterministically, such as Bohmian mechanics [25], can be expressed in this framework.
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Since such a theory would no longer be indeterministic, the intuitive argument for unpredictability

would break down, and the theory could in fact be totally predictable. However, predictability is

still not an immediate consequence, as such hidden variables could potentially be “assigned” by a

demon operating beyond the limits of any predicting agent (e.g. incomputably).

Another possibility would be to consider the case that any predetermined outcomes may in

fact not be determined by the observable alone, but rather by “the complete disposition of the

apparatus” [4, Sec. 5]. In this viewpoint, even when the macroscopic measurement apparatuses

are still idealised as being perfect, their many degrees of freedom (which may by far exceed

Avogadro’s or Loschmidt’s constants) contribute to any measurement of the single quantum. Most

of these degrees of freedom might be totally uncontrollable by the experimenter, and may result

in an epistemic unpredictability which is dominated by the combined complexities of interactions

between the single quantum measured and the (macroscopic) measurement device producing the

outcome.

In such a measurement, the pure single quantum and the apparatus would become entangled.

In the absence of one-to-one uniqueness between the macroscopic states of the measurement ap-

paratus and the quantum, any measurement would amount to a partial trace resulting in a mixed

state of the apparatus, and thus to uncertainty and unpredictability of the readout. In this case, just

as for irreversibility in classical statistical mechanics [18], the unpredictability of single quantum

measurements might not be irreducible at all, but an expression of, and relative to, the limited

means available to analyse the situation.

D. Unpredictability of individual quantum measurements

With the notion of value indefiniteness presented, let us now turn our attention to applying

our formalism of unpredictability to quantum measurement outcomes of the type discussed in

Section V B.

Throughout this section we will consider an experiment E performed in dimension n� 3 Hilbert

space in which a quantum system is prepared in a state |yi and a value indefinite observable P
f

is measured producing a single bit x. By Theorem 1 such an observable is guaranteed to exist,

and to identify one we need only a mismatch between preparation and observation contexts. The

nature of the physical system in which this state is prepared and the experiment performed is not

important, whether it be photons passing through generalised beam splitters [26], ions in an atomic
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trap, or any other quantum system in dimension n � 3 Hilbert space.

We first show that experiments utilising quantum value indefinite observers cannot have a pre-

dictor which is correct for some x. More precisely:

Theorem 2. If E is an experiment measuring a quantum value indefinite observable, then for every

predictor PE using any extractor x, PE is not correct for x.

Let us fix an extractor x, and assume for the sake of contradiction that there exists a predictor

PE for E which is correct for x. Consider the hypothetical situation where the experiment E is

repeatedly initialised, performed and reset ad infinitum in an algorithmic “ritual” generating an

infinite sequence of bits x = x1x2 . . .

Since PE never makes an incorrect prediction, each of its predictions is correct with certainty.

Then, according to the EPR principle we must conclude that each such prediction corresponds to a

value definite property of the system measured in E. However, we chose E such that this is not the

case: each xi is the result of the measurement of a value indefinite observable, and thus we obtain

a contradiction and conclude no such predictor PE can exist.

Moreover, since there does not exist a predictor PE which is correct for some x, for such a

quantum experiment E, no single outcome is predictable with certainty.

Theorem 3. In an infinite repetition of E generating the infinite sequence x= x1x2 . . . as described

above, no single bit xi can be predicted with certainty.

VI. INCOMPUTABILITY, UNPREDICTABILITY, AND QUANTUM RANDOMNESS

While there is a clear intuitive link between unpredictability and randomness, it is an important

point that the unpredictability of quantum measurement outcomes should not be understood to

mean that that quantum randomness is “truly random”. Indeed, the subject of randomness is a del-

icate one: randomness can come in many flavours [16], from statistical properties to computability

theoretic properties of outcome sequences. For physical systems, the randomness of a process also

needs to be differentiated from that of its outcome.

As mentioned earlier, Eagle has argued that a physical process is random if it is “maximally

unpredictable” [3]. In this light it may be reasonable to consider quantum measurements as ran-

dom events, giving a more formal meaning to the notion of “quantum randomness”. However,

given the intricacies of randomness, it should be clear that this refers to the measurement process,
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and does not entail that quantum measurement outcomes are maximally random. In fact, maxi-

mal randomness in the sense that no correlations exist between successive measurement results is

mathematically impossible [15, 27]: there exist only degrees of randomness with no upper limit.

As a result, any claims regarding the quality of quantum randomness need to be analysed carefully.

Indeed, in many applications of quantum randomness stronger computability theoretic notions

of randomness, such as Martin-Löf randomness [15], which apply to sequences of outcomes would

be desirable. It is not known if quantum outcomes are indeed random in this respect. However,

it was shown previously [21, 28] that a sequence x produced by repeated outcomes of a value

indefinite observable must be bi-immune.1 This result was proved using using a further physical

assumption, related to and motivated by the EPR principle, called the e.p.r. assumption.2 This

assumption states that, if a repetition of measurements of an observable generates a computable

sequence, then this implies these observables were value definite prior to measurement. In other

words, it specifies a particular sufficient condition for value definiteness.

Given the relation between unpredictability and Tadaki total unpredictability (which implies

bi-immunity) discussed in Sec. IV, it is natural to ask whether the bi-immunity of sequences gen-

erated by measuring repeatedly a value indefinite observable is a general consequence of its un-

predictability, or if it is an independent consequence of value indefiniteness.

The links between unpredictability and Tadaki total unpredictability we explored earlier are

relative to the use of specific extractors—such as xp—and, as we discussed, need not hold when

other more physically relevant extractors are considered. Furthermore, for the unpredictability of

an experiment E to guarantee that any outcome of an infinite repetition of E be incomputable—a

much weaker statement than bi-immunity—it would have to be the case that (taking the contra-

positive) if even a single infinite repetition l1,l2, . . . of E could generate a computable sequence

this would imply that E is predictable. However, the definition of a predictor PE for E requires

that PE gives correct predictions for all repetitions. Hence, we will elaborate a simple example

of an unpredictable experiment E that can produce both computable and incomputable sequences,

showing that unpredictability does not imply incomputability (let alone bi-immunity).

Let d be the dyadic map, i.e. the operation on infinite sequences of bits defined by

d(x1x2x3 . . .) = x2x3 . . . This operation is well known to be chaotic and equivalent (more precisely,

topologically conjugate) to many others, e.g. the logistic map with r = 4 [29]. Let us consider an

1 See Sec. IV for definitions.
2 Here, e.p.r. stands for ‘elements of physical reality, not ‘Einstein, Podolsky and Rosen’ as in the EPR principle.’
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experiment Ed which involves iterating the dyadic map k � 2 times on a ‘seed’ x = 0x2x3 . . . until

xk+1 = 0. In other words, given x we look for the smallest integer k � 2 such that xk+1 = 0, hence

dk(x) = 0xk+2xk+3 . . . . If such a k exists, then the outcome of the experiment is xk+2 2 {0,1}.

We assume that such an Ed (ideally) is physically implementable. We have chosen this example

for simplicity; a more ‘physically natural’ example might be the evolution of a chaotic double

pendulum from some set initial condition (up to finite accuracy) for which the outcome is read off

once the pendulum returns sufficiently close to its initial conditions.

This experiment can, of course, be repeated in many different ways to generate an infinite

sequence, but it suffices to consider the simplest case where the transformed seed x(1) = dk(x)

after one iteration is taken as the seed for the next step; note that this, by design, satisfies the

requirement that the first bit of x(1) is 0 (i.e., x(1)1 = 0), provided k exists. Let us assume further

that any sequence x = x1x2 . . . such that x1 = 0 is a valid physical seed. For the case of a double

pendulum this is akin to assuming that the position of a pendulum can take any value in the

continuum—not an unreasonable, if nonetheless important, assumption.

Let y = y1y2 . . . be an arbitrary infinite sequence, and consider the sequence x =

010y10y20y3 . . . . For any such sequence x of this form, d2(x) = 0y10y2 . . . , so the outcome of

Ed with seed x is precisely y1, and the new seed x(1) = d2(x) = 0y10y2 . . . . Similarly, for all i,

starting with the seed x(0) = x, the outcome of the ith repetition is precisely yi, since a minimum

number of k = 2 applications of d suffices for the first bit of d2(x(i�1)) to be 0, and the seed after

this repetition is precisely x(i) = 0yi0yi+1 . . . . Hence, starting with the seed x one obtains the infi-

nite sequence y by repeating Ed to infinity. In particular, since y can be any sequence at all, one

can obtain both computable and incomputable sequences by repeating Ed .

Let us show also that Ed is unpredictable. Let us assume, for the sake of contradiction, that

there exists a predictor PEd and extractor xd such that PEd is correct for xd . Then PEd must give

infinitely many correct predictions using xd for any two runs l1l2 . . . and l

0
1l

0
2 . . . which differ

only in their seeds x and x0. In particular, this is true if x,x0 are sequences of the form 0a1a2 . . .

where ai 2 {1t00,1t01} for all i, and t � 1 is fixed, since these are possible seeds for Ed . For such

seeds x,x0 the minimum k � 2 such that the first bit of dk(x) is 0 is precisely k = t+1. Furthermore,

if we let x(0) = x and x(i) = dki
⇣

x(i�1)
⌘

be the seed for the ith repetition of Ed , then ki = t +1 for

all i; i.e., each iteration of Ed shifts the seed precisely t + 1 bits. Thus, to make infinitely many

predictions for Ed starting with seeds x and x0 correctly, PE must have access, via xd , to more than

t+3 bits of the current seed, since the first t+2 bits of x(i) and x0(i) are the same for all i. However,
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since t is arbitrary, and the same extractor xd must be used for all repetitions regardless of the seed,

this implies that xd is arbitrarily accurate, which it is, again, not unreasonable to assume to be

physically impossible. Consequently, Ed must be unpredictable.

The construction of Ed may be slightly artificial and its unpredictability relies, of course, on

certain physical assumptions about the possibility of certain extractors. However, this concrete

example shows that there is no mathematical obstacle to an unpredictable experiment producing

both computable and incomputable outcomes when repeated, and is, at the very least, physically

conceivable.

Any link between the unpredictability of an experiment and computability theoretic properties

of its output thus relies critically on physical properties—and assumptions—of the particular ex-

periment. Indeed, this careful dependance on the particular physical description of E is one of

the strengths of this general model. This gives the model more physical relevance as a notion of

(un)predictability than purely algorithmic proposals.

The bi-immunity of quantum randomness is a crucial illustration of this fact. Using a slightly a

stronger additional hypothesis on the nature of value (in)definiteness, bi-immunity can be guaran-

teed for every sequence of quantum random bits obtained by measuring a value indefinite observ-

able [21]. For this particular quantum experiment bi-immunity complements, and is independent

of, unpredictability.3

VII. SUMMARY

In this paper, we addressed two specific points relating to physical unpredictability. Firstly, we

developed a generalised model of prediction for both individual physical events, and (by extension)

infinite repetitions thereof. This model formalises the notion of an effective prediction agent being

able to predict ‘in principle’ the outcome of an effectively specified physical experiment. This

model can be applied to classical or quantum systems of any kind to assess their (un)predictability,

and doing so to various systems, particularly classical, could be an interesting direction of research

for the future.

Secondly, we applied this model to quantum measurement events. Our goal was to formally

deduce the unpredictability of single quantum measurement events, via the strong Kochen-Specker

theorem and value indefiniteness, rather than rely on the ad hoc postulation of these properties.

3 Recall that bi-immunity need not imply unpredictability either.
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More specifically, suppose that we prepare a quantum in a pure state corresponding to a unit

vector in Hilbert space of dimension at least three. Then any complementary observable property

of this quantum—corresponding to some projector whose respective linear subspace is neither

collinear nor orthogonal with respect to the pure state vector—is value indefinite. Furthermore,

the outcome of a measurement of such a property is unpredictable with respect to our model of

prediction.

Quantum value indefiniteness is key for the proof of unpredictability. In this framework, the bit

resulting from the measurement of such an observable property is “created from nowhere” (creatio

ex nihilo), and cannot be causally connected to any physical entity, whether it be knowable in

practice or hidden. While quantum indeterminism is often informally treated as an assumption in

and of itself, it is better seen as a formal consequence of Kochen-Specker theorems in the form of

value indefiniteness. (Indeed, without these theorems such an assumption would appear weakly

grounded.) Yet this derivation of value indefiniteness rests on the three assumptions: admissibility,

non-contextuality, and the eigenstate principle. As we discussed in Section V C, models in which

some of these assumptions are not satisfied exist.

The single-bit unpredictability of the output obtained by measuring a value indefinite quantum

observable complements the fact—proven in [21] with an additional hypothesis—that such an

experiment generates, in the limit, a strongly incomputable sequence. We show that this additional

hypothesis is necessary in the sense that unpredictable experiments are, in general, capable of

generating both incomputable and computable infinite sequences.

The unpredictability and strong incomputability of these quantum measurements “certify” the

use of the corresponding quantum random number generator for various computational tasks in

cryptography and elsewhere [30–32]. As a consequence, this quantum random number generator

can be seen and used as an incomputable oracle, thus justifying a form of hypercomputation. In-

deed, no universal Turing machine can ever produce in the limit an output that is identical with

the sequence of bits generated by this quantum oracle [33]. More than that—no single bit of

such sequences can ever be predicted. Evaluating the computational power of a (universal) Tur-

ing machine provided with a quantum random oracle certified by maximum unpredictability is a

challenging, both theoretical and practical, open problem.

In this context incomputability appears maximally in two forms: individualised—no single bit

can be predicted with certainty (Theorem 3), i.e. an algorithmic computation of a single bit, even if

correct, cannot be formally certified; and, relative to slightly stronger hypotheses, asymptotic via
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bi-immunity—only finitely many bits can be correctly predicted via an algorithmic computation.

Finally, we emphasise that the indeterminism and unpredictability of quantum measurement

outcomes proved in this paper are based on the strong form of the Kochen-Specker theorem, and

hence require at minimum three-dimensional Hilbert space. The question of whether this result

can also proven for two-dimensional Hilbert space without simply assuming value indefiniteness

is an open problem; this question is important not only theoretically, but also practically, because

many current quantum random generators are based on two-dimensional measurements.
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[31] André Stefanov, Nicolas Gisin, Olivier Guinnard, Laurent Guinnard, and Hugo Zbinden, “Optical

quantum random number generator,” Journal of Modern Optics 47, 595–598 (2000).

[32] S. Pironio, A. Acı́n, S. Massar, A. Boyer de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk,

D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,”

Nature 464, 1021–1024 (2010).

[33] Alastair A. Abbott, Cristian S. Calude, and Karl Svozil, “A quantum random oracle,” in Alan Turing:

His Work and Impact, edited by S. Barry Cooper and J. van Leeuwen (Elsevier Science, 2013) pp.

206–209.

22

http://arxiv.org/abs/arXiv:1309.7188
http://dx.doi.org/10.1103/PhysRevLett.73.58
http://dx.doi.org/10.2307/2275058
http://arxiv.org/abs/arXiv:quant-ph/0611029

