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Abstract

In this short report we present a detailed analysis of long sequences of bits produced

by a Quantis quantum random number generator. We find that the output is slightly

biased, and nearby bits are partially correlated with a correlation length of 2 bits. We

briefly discuss possible physical origins for this, as well as possible normalisation techniques

that can help correct for this ‘on the fly’, as opposed to post-processing produced bits in

bulk. The non-uniformity found is small, but it is nonetheless important to understand

and characterise this given the recent growth in importance of quantum random number

generators.

1 Background

In recent years, there have been many proposals for quantum random number generators
(QRNGs) [13, 14, 10, 4, 15], as well as several commercial devices produced [5, 9, 11]. These
devices attempt to make use of quantum indeterminism to produce better quality random
numbers than possible with classical, generally pseudorandom, devices. Beyond the level of
unpredictability provided by indeterminism, it is important that QRNGs are also able to pro-
duce data with the correct statistical properties. In particular the output bits should be stable,
independent and uniformly distributed. While pseudorandom number generators are entirely
deterministic, they are carefully designed to give the correct statistics. QRNGs, on the other
hand, are by their very nature prone to experimental imperfections which can lead to non-
uniformly distributed bits. For this reason, normalisation and randomness extraction tech-
niques are important in QRN generation, and their use needs to be weighed against the need
to high bit-rate streams of random bits [1].

Previous studies have shown that statistical tests can be used to distinguish between classical
and quantum random number generators [3], but did not look in detail at the non-uniformity
of the quantum bit-sequences generated.
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In this short note we provide such an analysis, and present the results performed on bits
generated from a Quantis QRNG [5] which the data “fails”—i.e. appears non-uniformly dis-
tributed. Specifically, we identify bias and non-independence between bits that should not be
present in data sampled from a uniform distribution. While any physical device is bound to have
imperfections at some level, we believe a more effective normalisation technique could signifi-
cantly improve the quality of the output bits without the need for complicated post-processing
randomness extraction.

2 Technical details

We used a sample of 10! 232 (" 40! 109) bits generated with a Quantis-PCI-1 device (purchased
in 2004, bits generated in 2009).1 We verified that the device was not behaving erroneously
by running the NIST battery of statistical tests [12] on 1000 sequences of 1 ! 106 bits and the
DIEHARD tests [7] on a collection of 1! 109 bits as described in the Randomness Test Report
available online;2 in both cases all tests were passed.

3 Analysis

Rather than the batteries of statistical tests used by the NIST and DIEHARD suites on shorter
sequences, we ran some simple tests on the longer sequence of bits we obtained to see if we
could detect any deviation from the expected uniform distribution.

3.1 Frequency count

Initially we ran a simple frequency test on the collected data (with n = 10 ! 232). Here we count
the number of �s that the observed frequency count is from the n/2 expected for a uniform
distribution (� =

#
n/2), i.e.

f (0) $ n/2
�

,

where f (0) is the number of 0s in the sequence.

Table 1: Frequency counts in un-normalised sequence under assumption of uniform distribution.

Bit Count Num. �s from expected mean p-value
0 21473947676 -8.577407939 " 9.7 ! 10�18

1 21475725284

Performing a �

2 test, we see that the probability of such a deviation from uniformity is
p " 9.7 ! 10�18. It is clear from this that the device is slightly biased towards outputting 1.
This was confirmed by running some of the simple NIST tests on the full set of collected bits:
when blocks larger than 400 million bits were used the bits began to fail the tests.

1
This is the same data used in [3].
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3.2 Non-independence

If this non-uniformity were simply due to bias, applying von Neumann normalisation (replacing
01 and 10 with 0 and 1, respectively, and deleting blocks of 00 and 11; [17]) should unbias the
output. To test this we applied von Neumann normalisation and found, in the normalised output
sequence, that while the frequency of 0s and 1s were consistent with a uniform distribution,
the frequencies of 2-bit blocks (00, 01, 10, 11) were not—the probability that such a deviation
from the expected counts would be obtained from a uniform distribution is p ⇡ 0.00025. This
suggests the output is not independently distributed, although this could also be the result of
sampling from a non-identically distributed source.

Table 2: Frequency counts in normalised sequence under assumption of uniform distribution.

Bit Count p-value
0 5369535132 0.1847
1 5369397686
00 1342477466 0.00025
01 1342294455
10 1342285745
11 1342408742

Looking once more at the un-normalised output, we examined the conditional distributions
in order to confirm non-independence. These results are presented in Table 3, where we assume
the bits are produced by a Bernoulli distribution (i.e. independent and identically distributed)
with the bias calculated empirically from the frequency counts in Table 1. The statistic calcu-
lated (number of �s from the expected counts) is for the distribution of the last bit in the block
conditioned on the first bit. Thus, we consider four conditional distributions: p(xi|xi�1 = 0),
p(xi|xi�1 = 1), p(xi|xi�2 = 0), and p(xi|xi�2 = 1).

From these data we can examine directly the 1- and 2-bit condition distributions, i.e. p(a|0)
and p(a|1) for a 2 {0, 1, 00, 01, 10, 11}. One can see that after a 0, the device becomes much
more biased towards producing a 1, whereas after a 1 the bias shifts towards producing a
0. In other words, there is a preference to alternate outcomes on top of the underlying bias.
Further, from the 3-bit block data it appears that this non-independence extends for two-bits:
the counts are much closer to those expected, but the the probability of such a deviation is still
only p ⇡ 0.013.

To verify this hypothesis further, and to confirm the extent of the non-independence, we
shuffled the data as follows: the original sequence x0x1 . . . xn�1 (we assume n is a multiple of 3;
if not, the final 1 or 2 bits are ignored to make this the case) was transformed to the sequence
x0x3x6 . . . xn�3x1x4 . . . xn�2x2x5 . . . xn�1. If the non-independence is limited to 2 adjacent bits,
then adjacent bits in the shuffled sequence should be independent and applying von Neumann
normalisation to this sequence should give a sequence that appears normally distributed. In-
deed, looking again at the condition distributions it seems that this normalisation removes the
bias and non-independence:

A �

2 test showed the probability of a deviation at least as large as this is p = 0.34; for k-bit
blocks with k  5 the shuffled sequence thus appeared uniform under these tests.
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Table 3: Statistics for 2- and 3-bit blocks in un-normalised data under assumption of biased
Bernoulli distribution.

Distribution Bits Count Num. �s from expected mean
p(xi|xi�1 = 0) 00 5367507429 -15.28007247

01 5369535132
p(xi|xi�1 = 1) 10 5369397686 13.95313768

11 5368396233
p(xi|xi�2 = 0) 000 1788926275 2.47870286

010 1789995059
001 1789450366
011 1789557512

p(xi|xi�2 = 1) 100 1789504445 -1.965655696
110 1789578477
101 1790133116
111 1789412400

Table 4: Statistics for 2-bit blocks in shuffled, normalised data under assumption of uniform
distribution.

Distribution Bits Count Num. �s from expected mean
p(xi|xi�1 = 0) 00 1342241891 1.756225097

01 1342150899
p(xi|xi�1 = 1) 10 1342188938 0.304376517

11 1342173168

Performing the same analysis on the sequence x0x2 . . . xn�2x1x3 . . . xn�1 gave strong evi-
dence the dependency extends further than to adjacent bits: while there wasn’t evidence that
the normalised sequence was not uniformly distributed, a �

2 test under the assumption of a
Bernoulli source indicates adjacent bits in the un-normalised sequence were not independent
with a p value of p ⇡ 0.00156544. Thus, it appears the probability distribution for each bit
depends on the previous two bits in the sequence.

The reason that the normalised sequence appeared uniform in this case is likely a com-
bination of two-factors: firstly, the normalisation sufficiently decreased the length of the se-
quence by discarding bits that the non-uniformity could no longer be detected; secondly, the
non-independence appears to affect the blocks 01 and 10 by roughly the same amount, so non-
uniformity shows only in the correlations in the normalised sequence, and more bits are needed
in order to detect this. However, with this non-independence present, normalisation necessarily
would not remain as effective for longer sequences.
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4 Interpretation and proposed normalisation

The output of the Quantis device has already been passed through an unbiasing procedure.
The technique apparently used [6] consists simply of switching the labelling of the detectors as
0 or 1 after each detection. This is equivalent to xor-ing the raw output of the device x1x2x3 . . .

with the sequence 010101 . . .
This technique does not increase the entropy nor the algorithmic complexity of bit-sequences

generated with the device. Rather, it simply changes bias for correlation, which does not
amount to an effective normalisation or randomness extraction method. While this process
should remove any global bias at the 1-bit level as long the probability of detection at one
of the two detectors is independent of its labelling as 0 or 1 (which seems very reasonable),
the bias should remain if one looked only at bits in odd (or even) positions in the generated
sequence.

It is curious to note that we did not find this to be the case at all. There is no difference in
distributions at odd and even positions in the generated data, and while this could be due to
the output not directly reflecting the raw output (e.g. occasional bits being missed), the clear
bias we found is more curious. One possibility is that the earlier model of the Quantis device
we used actually made use of an alternative normalisation procedure, such as von Neumann’s
technique or an iterated version thereof [8], instead.

Alongside the bias we observed, we also observed clear evidence of non-independence. The
most obvious possible cause of this is detector dead-time [13], resulting from a detector becoming
inactive for a short time period after detection and leading to correlations between nearby bits.
We observed such a correlation of length 2 bits, which would correspond to at least 8 bits of
correlation in the raw data if von Neumann normalisation was used (in which case bias itself
would indicate correlation in the un-normalised data).

However, this description of dead-time should lead to a slight tendency to observe ‘change’
in the raw output (a bias towards 01 and 10, i.e. changing detectors), which would in turn result
in a tendency to ‘stay the same’ (a bias towards 00 and 11) in the processed output, whether it
be via Quantis’ procedure of changing detector labelings, or von Neumann normalisation. We
observed exactly the opposite: a bias towards change in the processed output of the device.
Unfortunately we do not have a sufficiently detailed understanding of the operation of the
device to further speculate on the cause of this dependence, but it would be interesting to
understand this properly. There are several other possibilities beyond dead-time that could
affect the quality of the output of the Quantis device [1].

While the output can be unbiased by post-processing—either by shuffling and normalising
as discussed in the previous section, or by using seed-based randomness extractors as allowed for
in the most recent version of the Quantis software [16]—the anomalies described above should
also be able to be removed at the time of generation by using a better unbiasing technique. Of
course, one cannot hope to extract more uniform bits than the entropy of output sequence, and
this is what such post-processing approaches aim to do. However, in many applications there
can be benefit to unbiasing the data on the fly, improving the quality of the bit-stream without
post-processing.

With the length of the dependence known, one can use normalisation techniques which
are as efficient as von Neumann normalisation, but which will work even in the presence of
dependence. While this can be done with Markov-chain models [2], the ‘shuffling’ technique
described in the previous section is simpler yet and could easily be implemented on the fly by
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buffering 2k bits, where k is the length of the dependence, shuffling and then applying von
Neumann normalisation. Furthermore, by increasing the buffer length and using an iterated
version of the procedure, the entropy bound can be approached, improving the efficiency. This
would greatly increase the quality of the output with minimal effort and no significant loss in
efficiency, while lessening the need for more costly post-processing based randomness-extraction.

5 Conclusion

We analysed in detail long sequence of bits generated by a Quantis quantum random number
generator. We found that the sequence showed clear signs of bias and systematic correlation
between nearby bits, despite of normalisation applied by the QRNG. While this non-uniformity
was not large, it is important to understand well the statistical quality of bits produced by
such devices. Understanding this can help both to design of more robust QRNGs and better
normalisation techniques that can provide ‘on the fly’ normalisation to correct for systematic
non-uniformity of a physical origin. We briefly mentioned some such possibilities for improving
normalisation.
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