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Abstract

The quantum Fourier transform (QFT) plays an important role in many known quantum algorithms such
as Shor’s algorithm for prime factorisation. In this paper we show that the QFT algorithm can, on a
restricted set of input states, be de-quantised into a classical algorithm which is both more efficient and
simpler than the quantum algorithm. By working directly with the algorithm instead of the circuit, we
develop a simple classical version of the quantum basis-state algorithm. We formulate conditions for a
separable state to remain separable after the QFT is performed, and use these conditions to extend the
de-quantised algorithm to work on all such states without loss of efficiency. Our technique highlights the
linearity of quantum mechanics as the fundamental feature accounting for the difference between quantum
and de-quantised algorithms, and that it is this linearity which makes the QFT such a useful tool in quantum
computation.

Keywords: quantum computing, quantum Fourier transform, de-quantisation, classical simulation

1. Introduction

The quantum Fourier transform (QFT) plays an important role in a large number of known algorithms
for quantum computers [1]. It plays a central role in Shor’s algorithm for prime factorisation [2] and is
often thought to be at the heart of many quantum algorithms which are faster than any known classical
counterpart. However, following on from recent results relating to classical features of the QFT algorithm [3–
6], we will argue that the QFT algorithm itself is classical in nature.

The process of de-quantising quantum algorithms into equivalent classical algorithms is a powerful tool
for investigating the nature of quantum algorithms and computation. Few general results are known about
when such de-quantisations are possible and the power of quantum computation compared to classical
computation. In this paper we show how the QFT algorithm can be de-quantised into a simpler, more
efficient, classical algorithm when operating on a range of input states. While the de-quantised algorithms
themselves are of interest, they also allow us to gain insight into the nature of the QFT. We will argue that
it is the linearity inherent in the unitary quantum computational model which makes the QFT such a useful
tool, rather than the nature of the QFT itself.

In Section 2 of this paper we overview the basic QFT theory and present the QFT algorithm in a compact
form which allows us to move away from the restrictions imposed by the circuit layout. In Section 3 we
overview the de-quantisation procedure and de-quantise the QFT algorithm acting on a basis-state input.
In Section 4 we explore the entangling power of the QFT and determine conditions for when a separable
input state remains unentangled by the QFT, before presenting a de-quantised algorithm that works on such
product-state inputs. In Section 5 we discuss why de-quantisation of the QFT is possible and note some
common misunderstandings about the QFT which contribute to this.

Email address: aabb009@aucklanduni.ac.nz (Alastair A. Abbott)
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2. Discrete and Quantum Fourier Transforms

The discrete Fourier transform (DFT) on which the QFT is based is a transformation on a q-dimensional

complex vector χ = (f(0), f(1), . . . , f(q−1)) into its Fourier representation χ̂ = (f̂(0), f̂(1), . . . , f̂(q−1)) [1]:

f̂(c) =
1
√
q

q−1�

a=0

e2πiac/qf(a), (1)

for c ∈ {0, 1, . . . , q − 1}. The QFT is similarly defined so that the transformation acts on a state vector in

q-dimensional Hilbert space, Hq. In quantum computation we work with a state vector defining a register

comprising of n two-state qubits, so we will only consider the case that q = 2
n
from this point onwards. We

will use the convention that n is the number of qubits while N = 2
n
is the dimension of Hilbert space the

n qubits are in. This means that the QFT, denoted Fq, acts on the N amplitudes of a particular n-qubit
state, i.e.

N−1�

a=0

f(a) |a�
FN
−−→

N−1�

c=0

f̂(c) |c� . (2)

The QFT hence transforms a state so as to perform a DFT on its state vector.

As a result of the linearity of quantum mechanics, in order to compute the QFT we only need to

design an algorithm to transform a single component of the state vector. This is because an arbitrary state

|ψN � =
�N−1

a=0 f(a) |a� transforms as:

FN |ψN � =

N−1�

a=0

f(a)FN |a� =
1

√
N

N−1�

a=0

N−1�

c=0

e2πiac/Nf(a) |c� =
N−1�

c=0

f̂(c) |c� .

Hence we arrive at the standard definition of the QFT as the mapping [7]

|a�
FN
−−→

1
√
N

N−1�

c=0

e2πiac/N |c� , (3)

with a ∈ {0, 1, . . . , N − 1}. Following the standard procedure [7], we proceed to decompose (3) into a

separable form. Keeping in mind that we are dealing with registers composed of qubits, we can decompose

a (and similarly c) into its binary representation so that a = 2
n−1a1 + 2

n−2a2 + · · · + 2
1an−1 + 2

0an and

|a� = |a1a2 · · · an�. By denoting a = a1a2 · · · an and a/2n = 0.a1a2 · · · an we observe that

e2πiac/2
n

= e2πia(2
n−1c1+2n−2c2+···+20cn)/2

n

= e2πi(a1a2···an)c1/2
1

e2πi(a1a2···an)c2/2
2

· · · e2πi(a1a2···an)cn/2
n

= e2πi(a1···an−1.an)c1e2πi(a1···an−2.an−1an)c2 · · · e2πi(0.a1a2···an)cn . (4)

Noting that for any decimal x.y we have e2πi(x.y) = (e2πi)xe2πi(0.y) = e2πi(0.y), we see that only the fractional

part of (a1 · · · an−j .an−j+1 · · · an)cj is of any significance in the exponent of (4).
1
Hence, we find

e2πiac/2
n

|c1 · · · cn� = e2πi(0.an)c1 |c1� · · · e
2πi(0.a1a2···an)cn |cn� .

Using this decomposition we can write (3) as a product state of individual qubits,

N−1�

c=0

e2πiac/2
n

|c� = (|0�+ e2πi(0.an) |1�) · · · (|0�+ e2πi(0.a1···an) |1�). (5)

1This technique of removing factors of (e2πi)k for k ∈ N will be commonly used throughout this paper to reduce formulae.
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|a1� H R2 · · · Rn−1 Rn |0�+ e2πi(0.a1a2···an) |1�

|a2� • H · · · Rn−1 Rn |0�+ e2πi(0.a2a3···an) |1�

.

.

.
. . .

.

.

.

|an−1� • • · · · H R2 |0�+ e2πi(0.an−1an) |1�

|an� • • · · · • H |0�+ e2πi(0.an) |1�

Figure 1: The standard quantum circuit for the QFT. The output normalisation factors of 1/
√
2 and swap gates to reverse

qubit order are omitted.

The quantum algorithm to implement the QFT follows directly from this factorisation. The circuit for the

algorithm is shown in Figure 1. The algorithm can be written explicitly as follows [7]:

Quantum Fourier Transform

Input: The state |a� = |a1� |a2� · · · |an�.
Output: The transformed state

1√
N
(|0�+ e2πi(0.an) |1�) · · · (|0�+ e2πi(0.a1···an) |1�).

1. For j = 1 to n, transform qubit |aj� as follows:

2. |aj�
H
−→

1√
2
(|0�+ e2πi(0.aj) |1�).

3. For k = j + 1 to n:

4.
1√
2
(|0�+ e2πi(0.aj ···ak−1) |1�)

Rk
−−→

1√
2
(|0�+ e2πi(0.aj ···ak−1ak) |1�) where Rk

is the unitary k-controlled phase shift:

Rk =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e2πi/2
k



 .

5. End For.

6. Reverse the order of the qubits.

7. End For.

Clearly this produces the state (5) and requires O(n2
) unitary Rk and H gates to run.

There are a few important notes about the QFT which should be made. While both the DFT and

the QFT act on vectors in a complex vector space, the DFT acts on an abstract, mathematical vector,

whereas the QFT acts on a physical state which we mathematically represent by a vector in HN . The

subtle difference here is that with the classical DFT, we can read the values of all 2
n
Fourier coefficients

f̂(c) by simple inspection of the transformed vector. With the QFT, the resulting state (2) embeds all 2
n

coefficients as amplitudes for the 2
n
states of an n-qubit system. However, the collapse of the superposition

upon measurement means that it is impossible to measure the amplitudes of a quantum state without

an ensemble of such states to make a statistical approximation of the amplitudes from [8]. Hence, the

quantum state (2) contains all the information of the classically transformed vector, but it is inaccessible to

measurement. The main use of the QFT is then as a tool to extract information embedded in the relative

amplitudes of states as opposed to determining the coefficients themselves.

Another result of this is that the efficiency of the QFT (O(n2
) as opposed to the DFT which is O(n2n))

is in some sense due to the ability to perform the transformation and utilise the information in the phases

without measuring the state. Evidently, any algorithm requiring measurement needs exponential time

(there are 2
n
coefficients to measure), so even if quantum mechanics would allow us to measure the Fourier

coefficients in state (2), doing so would take O(n2n) time: 2
n
coefficients, n qubits each. Making use of

this embedded information while avoiding measurement is certainly an important part of the fine art of

developing algorithms in quantum computing.
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3. Initial De-quantisation Investigation

Having presented the QFT, there are some issues to be brought to light. The decomposition of the

transformed state (3) (shown in (5)) is evidently not entangled, and the separability of the state would lead

us to believe that the QFT algorithm producing it could be simulated efficiently in a classical manner [9, 10],

and there are certainly results towards this.

It was realised shortly after the discovery of Shor’s algorithm that the QFT could be computed in a

semiclassical manner [5]. By using classical signals resulting from quantum measurements, one can perform

the QFT on a state using classical logic and one-qubit gates (instead of the usual two-qubit controlled-

phase-shifts). This method gives the same resulting probability distribution as the quantum algorithm, but

destroys the state’s superposition as it relies on irreversible measurements. As a result, this is only useful in

an algorithm in which the QFT directly precedes measurement. Shor’s algorithm happens to be of exactly

this nature, but this is only an initial step towards true classical simulation.

Much more recently, classical simulations of the QFT have been studied from the viewpoint of simulating

the circuit in Figure 1 by exploiting the bubble-width of the quantum circuit [3] and the tensor contraction

model [6]. The bubble-width approach uses a slightly modified version of the QFT circuit which is of

logarithmic bubble-width and simulates this circuit. The tensor-contraction model also focuses on the

circuit topology, but relies on associating a tensor with each vertex in the circuit, then cleverly contracting

the tensors into a single rank-one tensor. Both these methods work on separable input states, but are

sampling-based forms of de-quantisation [11] in the sense that a final measurement is assumed and an

output is classically sampled from the correct (calculated) probability distribution. This makes these de-

quantisations less general than might be desired and difficult to apply when the QFT is used, as it often is,

as a part of a larger quantum algorithm. This is because in these cases measurement cannot be assumed

after the QFT, and the de-quantisation must be cleverly and non-trivially composed with a de-quantisation

of the rest of the algorithm to be applied.

Working with the circuit topology, while beneficial for some purposes, also seems to overcomplicate

matters and restrict generalisation when it comes to classical simulation. We will explore simulations of the

QFT in a different light, more along the lines of the de-quantisation explored previously by Abbott [9] and

Calude [12] which aim to provide stronger (not sampling-based) de-quantisations when possible.

3.1. De-quantisation Overview

The idea behind this de-quantisation procedure is that qubits which are separable exhibit only super-

position and interference. These properties are the result not of non-classical features of the qubits, but

rather of the two-dimensionality of the qubits. By using classical, deterministic two-dimensional bits in-

stead of qubits, the same behaviour can be exhibited without the difficulties imposed by measurement and

probabilities. Not all algorithms fit within this paradigm, but there are many which can be tackled with

this approach. Algorithms which use measurement as a fundamental part of their procedure are examples

of those which are not so well suited, and sampling-based techniques are more suitable in these situations.

Finding when these stronger de-quantisations are possible also gives insight into the power of particular

quantum algorithms [11], as this reflects to some degree the amount by which the algorithm utilises the

possible advantages of quantum mechanics. In cases where entanglement is bounded [10], we can use this

de-quantisation procedure to produce classical algorithms which are as efficient as their quantum counter-

parts. This procedure was explicitly examined further [9, 12] when applied to the Deutsch-Jozsa problem

[13, 14], where complex numbers were used as classical two-dimensional bits. In this paper we will apply

this de-quantisation procedure to the QFT, but because the amplitudes we need to represent in the QFT

algorithm are complex-valued, we cannot use complex numbers as our two-dimensional bits. There is no

problem though with simply using two-valued vectors as our classical bits, so we will employ this procedure.
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3.2. Basis-state De-quantisation

The de-quantisation for a basis-state needs only to simulate the transformation defined in (3). As a

result of the decomposition in (5), the effect of the QFT on the jth qubit is easily seen to be

|aj�
F2n−−→ 1√

2
(|0�+ e

2πi(0.an−j+1···an) |1�). (6)

The difficulty in implementing this in a quantum computer is that the phase of a qubit needs to be altered

depending on the values of the other qubits without altering them and the circuit of controlled-phase-shifts

is required to implement this. The information is spread over the input qubits and must be obtained without

measurement. In the classical case there are no such restrictions on measurement, so de-quantisation should

only require directly implementing (6). However, evaluating the complex phase for each of the n qubits

takes O(n) time, leading to a O(n2
) procedure. This can be reduced to O(n) by calculating each phase

dependent on the previous one. To do so, let ωj be the jth phase factor and note the following:

ωj = e
2πi(0.an−j+1···an)

= e
2πi(0.an−j+1)e

2πi(0.an−j+2···an)/2

= (−1)
an−j+1

√
ωj−1,

and

ω1 = e
2πi(0.an) = (−1)

an ,

where by the square-root we mean the principal root. The square-root of a complex number such as ωj can

be calculated independently of n. Specifically, if we have s+ ti =
√
b+ di with the further requirement that

for a root of unity
√
b2 + d2 = 1, then [15]:

s =
1√
2

√
1 + b, t =

sgn(d)√
2

√
1− b,

where sgn(d) = d/|d| is the sign of d. The efficient de-quantised algorithm is then the following:

Basis-state De-quantised QFT

Input: The binary string a = a1a2 . . . an.

Output: The n transformed two-component complex vectors b1b2 . . . bn.

1. Let ω = 1

2. For j = 1 to n:

3. Set ω = (−1)
an−j+1

√
ω

4. Set bj =
1√
2
×
�
1

ω

�

5. End For

This algorithm produces vectors mathematically identical to the state-vectors in (3) and (5) produced by

the QFT, but is computed classically in O(n) time – more efficient than the quantum solution and simpler

too. This is primarily because the quantum circuit is constructed subject to the requirement of computing

the QFT without any intermediate measurements. As a result, the quantum algorithm corresponding to the

circuit must conform to this too, making it more complex than an equivalent classical algorithm need be.

A classical algorithm has the further advantage over the quantum algorithm acting on a basis-state

that measurement of the resulting state can be performed at will, and any required information is easily

accessible. In the quantum algorithm only a single state can be measured, and no information about the

amplitudes (and thus the Fourier coefficients) can be determined from a single QFT application. While

this classical algorithm is no faster than the well known fast Fourier transform (FFT) for calculating all the

coefficients, it may be advantageous if only some coefficients are required.
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The ability to de-quantise the QFT acting on a basis state is not particularly surprising. This is equivalent

to the classical DFT acting on a vector with only one non-zero component, producing a fairly trivial and

easily computed output. However, this highlights a little more deeply some common misconceptions about

the QFT. Because of the linear, unitary evolution of quantum mechanics, the action of the QFT on a basis

state shown in (3) is often taken as the definition of the QFT. While this suffices as the definition for the

purposes of the quantum algorithm, it is important not to forget that the actual definition of the QFT is

that given in (2). When considering classical simulations of the QFT this is even more important, as the

action of the QFT on a basis state and the corresponding circuit no longer immediately allow us to compute

the complete QFT; indeed it would take 2
n
iterations of a classical algorithm simulating the basis state

behaviour to compute the complete QFT.

4. Product-state De-quantisation

Here we consider the possibility of extending the de-quantisation to work on a wider range of input

states, resulting in a less trivial de-quantisation. If the input state is entangled then it is clear that the de-

quantisation is not easily extended, as the method used for the basis-state algorithm relied on the separability

of the input. In such a situation, any de-quantisation attempt would need to involve a different method and

work directly from the QFT definition, (2).

It is not immediately clear that the basis-state de-quantisation, which is based on (3), could not be

extended to work on arbitrary separable input states. This idea is strengthened by the fact that we used

the single-qubit formula (6) to perform the basis-state de-quantisation. However, this implicitly relies on

the other qubits in the input state having a definite value, but in the general separable input case this is

not necessarily the case. Indeed, the QFT is readily seen to entangle separable input states, e.g.:

|φ� =
1
√
2
|0� (|0�+ |1�)

F4
−→

1
√
2

�
|00�+

1 + i

2
|01�+

1− i

2
|11�

�
.

A de-quantisation for arbitrary separable input states is thus not possible in the same way as it was for basis

states. However, we will investigate the entangling power of the QFT in order to determine the set of states

which are not entangled by the QFT, and present a de-quantised algorithm which works for such states.

4.1. General Separability Conditions

As in the entanglement investigation of the Deutsch-Jozsa problem [9], we will make use of the separability

conditions for a qubit state presented in [16], although unlike the Deutsch-Jozsa problem our situation

permits the possibility of states with zero-valued amplitudes, complicating the conditions somewhat. The

key definitions and theorems we require to determine the separability of a state will be briefly presented,

while [16] should be consulted for proofs and discussion.

Definition 1. The amplitude abstraction function A : HN → {0, 1}N is a function which, when applied to

a state |ψN � =
�N−1

i=0 ci |i�, yields a bit string x = x0x1 . . . xN−1 such that for 0 ≤ i ≤ N − 1, xi = 0 if

ci = 0 and xi = 1 otherwise.

Definition 2. The set BN ⊂ {0, 1}N of well-formed bit strings of length N = 2
n
is defined recursively as

B2 = {01, 10, 11}, B2N = {0
Nx, x0N , xx | x ∈ BN}.

Definition 3. The set of well-formed states is the set

VN = {|ψN � ∈ HN | A (|ψN �) ∈ BN}.

Intuitively, a state is well-formed if the zero-valued amplitudes are distributed such that it is a candidate

to be separable; if a state is not well-formed it is guaranteed to be entangled. In order to determine if a

well-formed state is separable, we require two further definitions.
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Definition 4. For each set of well-formed states VN , there exists a family of zero deletion functions {DK :

VN → HK | K = 2k, 1 ≤ k ≤ n}, such that for a well-formed state |ψN � =
�N−1

i=0 ci |i� ∈ VN , DK(|ψN �) =

|ψ�
K� =

�K−1
j=0 c�j |j�, A (|ψ�

K�) = 1K , and c�j is the jth non-zero amplitude of |ψN �.

Definition 5. A state |ψN � =
�N−1

i=0 ci |i� is pair product invariant if and only if for all j ∈ {2, . . . , n} and
all m ∈ {0, . . . , J/2− 1} cmcJ−m−1 = dj , where each dj is a constant and J = 2j .

As a concrete example to help understand pair product invariance, consider the cases of n = 2 and n = 3.
For n = 2, |ψ4� =

�3
i=0 ci |i� is pair product invariant if the well known condition c0c3 = c1c2 holds. For

n = 3, |ψ8� =
�7

i=0 ci |i�, we require this same condition, c0c3 = c1c2, as well as the further condition that
c0c7 = c1c6 = c2c5 = c3c4, to hold.

The following theorem from [16] can be used to determine if an arbitrary n-qubit state is separable or
not by checking the non-zero amplitudes of the state vector are pair product invariant.

Theorem 1. Let |ψN � be an n-qubit state for which the bit string A (|ψN �) contains K ones. Then |ψN � is
separable if and only if |ψN � ∈ VN and DK (|ψN �) is pair product invariant.

In order to help grasp these concepts which will be critical in the rest of the paper, we present two
examples.

Example 1. Consider the state

|ψ8� =

�
2i
√
35

, −4
√
105

, 1
√
35

, 2i
√
105

,− 2

�
2

35
,− 4i

�
2

105
,i

�
2

35
,− 2

�
2

105

�T

.

The state has no zero-valued amplitudes, so to check if it is separable we must simply check that it is pair
product invariant. It is easily seen that we have

2i
√
35

×−2

�
2

105
=

−4
√
105

× i

�
2

35
=

1
√
35

×−4i

�
2

105
=

2i
√
105

×−2

�
2

35
=

−4i

35

√
23,

and also
2i
√
35

×
2i

√
105

=
−4

√
105

×
1

√
35

=
−4

35
√
3
,

so |ψ8� is pair product invariant and thus separable. This procedure is powerful as it is by no means clear
a priori that the state is separable; indeed, small modifications to the amplitudes (e.g. swapping the -4 and
2 in the first two amplitudes) yield almost identical states, but which are not separable.

Example 2. Consider the state

|φ8� =

�
1− i

2
√
2
,0,1

2
,0, i

2
,0, i− 1

2
√
2
,0
�T

.

We have A(|φ8�) = 10101010 ∈ B8, so |φ8� ∈ V8. Since the state is well formed, the zero-deleted state is

D4(|φ8�) = |φ8� =

�
1− i

2
√
2
,1

2
, i

2
, i− 1

2
√
2
,
�T

.

A quick check verifies that
1− i

2
√
2
×

i− 1

2
√
2

=
1

2
×

i

2
=

i

4
,

and D4(|φ8�) is pair product invariant and thus |φ8� is separable.
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4.2. QFT Separability Conditions

We wish to consider the case that a separable n-qubit input state remains separable after the QFT has
been applied to it. In order to do so, first let us consider the action of the QFT on the separable input state

|ψN � =
�
α1

β1

�
⊗
�
α2

β2

�
⊗ · · ·⊗

�
αn

βn

�
= (f(0), f(1), . . . , f(N − 1))T .

Note that each f(c) can be written as a product of amplitudes as f(c) = a1a2 . . . an, where each ai ∈ {αi,βi}.
We will use the notation fj(c) to mean ajaj+1 . . . an, and thus f(c) = f1(c) = a1f2(c) etc. Because of the
structure of the tensor product, for 0 < j < n and c < 2n−j , fj(c) = αjfj+1(c) and fj(2n−j+c) = βjfj+1(c).

The amplitudes of the transformed state |ψ̂N � = (f̂(0), f̂(1), . . . , f̂(N − 1))T are given by (1), which can, for
a separable input, be rewritten in the more useful form

f̂(c) =
1√
N

N−1�

a=0

e2πiac/Nf1(a)

=
1√
N

α1

N/2−1�

a=0

e2πiac/Nf2(a) + β1

N/2−1�

a=0

e2πi(N/2+a)c/Nf2(a)

=
1√
N

(α1 + eπicβ1)

N/2−1�

a=0

e2πiac/Nf2(a)

=
1√
N

(α1 + eπicβ1)(α2 + eπic/2β2) · · · (αn + eπic/2
n−1

βn)

=
1√
N

n�

j=1

(αj + eπic/2
j−1

βj). (7)

This factorised form of the transformed Fourier coefficients allows us to determine conditions for when
the transformed state is well-formed by giving restrictions on the distribution of zeros amongst the ampli-
tudes, and is a significant step towards determining if a state is separable, and thus de-quantisable. More
specifically, we note that the products of the first k factors in (7) are equal for c = m2j + d where d < 2j ,
0 ≤ m ≤ 2n−j − 1. This introduces certain symmetries between amplitudes which we will exploit in the
proofs which follow. For example, since we have f̂(c) = 0 if and only if one of the factors in (7) is zero, if
f̂(c) = 0 for some c < 2j then we must also have f̂(m2j + c) = 0 for 0 ≤ m ≤ 2n−j − 1.

In Lemma 1 we determine the conditions for the transformed state to be well-formed. To do so, we
first formulate an equivalent but more intuitive requirement, which is condition (ii) in the Lemma. It says
that for each j ≥ 1 there must be a value of c such that f̂(c) = 0 with the jth term in (7) equal to zero
and the first j − 1 terms non-zero (in fact, by symmetry there must be 2n−j such values). If for some k
there is no c satisfying this condition, then there must not be any c satisfying it for j > k either, or the
state will not be well-formed. In condition (iii) we translate this notion into formal requirements about the
relationships between the components of the untransformed input state components αi,βi which will ensure
the transformed state will satisfy condition (ii) and thus be well-formed. Specifically, this requires each of
the first k input qubit to be (up to an arbitrary phase) in one of two superpositions which depend on the
previous qubits, and excludes the remaining n− k qubits from a similar set of possible states.

Lemma 1. Let |ψN � be a separable input state and |ψ̂N � = FN |ψN � be the transformed state. Then the
following three conditions are equivalent:

(i) |ψ̂N � ∈ VN , i.e. the transformed state is well-formed.
(ii) There exists a k ≤ n such that the set

Cj =
�
c | ∀l ≤ j

�
αl + eπic/2

l−1

βl = 0 ⇐⇒ l = j
��

is non-empty for all 1 ≤ j ≤ k and empty for k < j ≤ n.
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(iii) (∃0 ≤ k ≤ n)(∃a1 . . . ak ∈ {0, 1}k)
�
∀1 ≤ j ≤ k

�
αj = eπi

�j
l=1 al/2

j−l
βj

�

∧(∀ak+1 . . . an ∈ {0, 1}n−k
)(∀n ≥ j > k)

�
αj �= eπi

�j
l=1 al/2

j−l
βj

��
.

Proof. (i) =⇒ (ii): For any x ∈ BN , Definition 2 ensures that the number of ones in x, #1(x) = 2
m

for some m ≤ n, and hence the number of zeros, #0(x) = 2
n − 2

m
=

�n−m
l=1 2

n−l
. If |Cj | �= 0 then there

exists a c� ∈ Cj such that c� < 2
j
and f̂(c�) = 0. But by symmetry we must also have f̂(m2

j
+ c�) = 0

for 0 ≤ m ≤ 2
n−j − 1 and hence |Cj | = 2

n−j
. Also note that each Cj is disjoint by construction, and

f̂(c) = 0 =⇒ c ∈ Cj for some j. Hence, by construction, for a well-formed state we must have

#0

�
A(|ψ̂N �)

�
≡

n�

j=1

|Cj | =
�

j:|Cj | �=0

|Cj |.

It follows that that for some m
n−m�

l=1

2
n−l

=

�

j:|Cj | �=0

2
n−j ,

which is satisfied if C1 . . . Ck are non-empty and Ck+1 . . . Cn are empty, with k = n−m.

(ii) =⇒ (i): In the first K = 2
k
amplitudes, 2

k−n
�

j≤k |Cj | =
�k

j=1 2
k−j

= K − 1 of them are

zero. Let f̂(c�) be the single one of these non-zero amplitudes. Then, by symmetry, f̂(dK + c�) �= 0 for

0 ≤ d ≤ 2
n−k − 1. Thus, A(|ψ̂N �) = x2n−k

, where x ∈ {0, 1}K and #1(x) = 1. Any such x is clearly

well-formed, and thus the state |ψ̂N � is also well-formed.

(ii) ⇐⇒ (iii): Note that
�j

l=1 al/2
j−l

=
1

2j−1

�j
l=1 al2

l−1
, and we will proceed by induction for j ≤ k.

Since α1 = eπia1β1 ⇐⇒ α1 + eπi(1+a1)β1 = 0, such an a1 ∈ {0, 1} exists if and only if |C1| �= 0. Now,

assume that for all 1 ≤ m < j ≤ k, αm = e
πi

2m−1

�m
l=1 al2

l−1

βm and |Cm| �= 0. Then

αj = e
πi

2j−1

�j
l=1 al2

l−1

βj ⇐⇒ αj + e
πi

2j−1 (2j−1+
�j

l=1 al2
l−1)βj = 0,

so such a bit string a1 . . . aj exists if and only if there is a c such that αj + eπic/2
j−1

βj = 0 (in fact

c = (2
j−1

+
�j

l=1 al2
l−1

)mod 2
j
). Further, the inductive hypothesis ensures that for all m < j,

αm + eπic/2
m−1

βm = αm + e
πi

2m−1 (2j−1+
�j

l=1 al2
l−1)βm

= αm + eπi
2j−1

2m−1 e
πi

2m−1 (
�m

l=1 al2
l−1)βm

= αm + e
πi

2m−1 (
�m

l=1 al2
l−1)βm

�= αm − e
πi

2m−1 (
�m

l=1 al2
l−1)βm

= 0,

thus such a bit string a1 . . . aj exists if and only if |Cj | �= 0. Hence, Cj is non-empty for j ≤ k if and only

if ∃a1 . . . ak∀1 ≤ j ≤ k(αj = eπi
�j

l=1 al/2
j−l

βj). The condition that for j > k and all ak+1 . . . aj ∈ {0, 1}j−k

αj �= eπi
�j

l=1 al/2
j−l

βj is equivalent to |Cj | = 0, since |Cj | = 0 requires that there exists a c such that

αj + eπic/2
j−1

βj = 0 and αk + eπic/2
k−1

βk �= 0. The only c < 2
k
which satisfies this is c =

�k
l=1 al2

l−1
, so

by symmetry any c which satisfies this must be able to be written as c =
�j

l=1 al2
l−1

for some ak+1 . . . aj .
Hence we see that (ii) and (iii) are equivalent. ✷

Lemma 1 gives us conditions for when the first condition of Theorem 1 is satisfied and it remains to

determine which separable input states also satisfy the condition that DN �(|ψ̂N �) is pair product invariant.
The amplitudes which are deleted by the function DN � are the

�k
l=1 2

n−l
values of c which are in Cj for

some j. In Lemma 2 we work from Definition 5 to determine the conditions under which DN �(|ψ̂N �) is pair
product invariant.
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Lemma 2. Let |ψN � be a separable input state for which the transformed state |ψ̂N � is well-formed, i.e.
|ψN � satisfies the conditions of Lemma 1. Let k be as in Lemma 1 part (iii), n�

= n−k and N �
= 2

n�
. Then

DN �(|ψ̂N �) is pair product invariant if and only if for all j > k+1, αjβj = 0, i.e. the (k+1)th qubit can be
in an arbitrary superposition, and qubits k+2 to n must not be in a superposition, although arbitrary phase
is permitted.

Proof. Let c� be the smallest c such that f̂(c) �= 0, and let K = 2
k
. By symmetry, the N �

non-zero

amplitudes are f̂(dK+c�) for 0 ≤ d ≤ N �−1. The zero-deleted state is thus DN �(|ψ̂N �) = (f̂ �
(0), . . . , f̂ �

(N �−
1)), where f̂ �

(d) = f̂(dK + c�). By breaking up the product in (7) we see that each of these amplitudes is of

the form:

f̂ �
(d) =

1√
N




k�

l=1

(αl + eπi(dK+c�)/2l−1

βl)








n��

l=1

(αk+l + eπi(d+c�/K)/2l−1

βk+l)





= Γ

n��

l=1

(αk+l + e2πi(d+δ)/Lβk+l), (8)

where L = 2
l
, δ = c�/K is independent of d, as also is Γ =

1√
N

�k
l=1(αl + e(2πi)

dK/L
e2πic

�/Lβl) �= 0 (recall

k ≥ l so dK/L is a positive integer). For all j ∈ {2, . . . , n�}, m1,m2 ∈ {0, . . . , J/2 − 1}, pair product

invariance (recall Definition 5) requires that both f̂ �
(m1)f̂ �

(J − m1 − 1) = f̂ �
(m2)f̂ �

(J − m2 − 1) and

f̂ �
(m1)f̂ �

(J/2−m1 − 1) = f̂ �
(m2)f̂ �

(J/2−m2 − 1). Since each f̂ �
(d) �= 0, we require

f̂ �
(J −m2 − 1)f̂ �

(J/2−m1 − 1) = f̂ �
(J −m1 − 1)f̂ �

(J/2−m2 − 1). (9)

Symmetry means the left- and right-hand sides both contain common factors of Γ
2
, as well as j − 1 factors

from the product (8) for each transformed amplitude, due to the fact that e2πiJ/L = eπiJ/L for l < j. Thus
the condition (9) simplifies to

n��

l=j

(αk+l + e2πi(J−m2−1+δ)/Lβk+l)(αk+l + e2πi(J/2−m1−1+δ)/Lβk+l)

=

n��

l=j

(αk+l + e2πi(J−m1−1+δ)/Lβk+l)(αk+l + e2πi(J/2−m2−1+δ)/Lβk+l), (10)

which holds for all j,m1,m2 if and only if DN �(|ψ̂N �) is pair product invariant.
We now show by induction that (10) is satisfied if and only if for all 1 < j ≤ n�

, αk+jβk+j = 0. Firstly,

consider the case that j = n�
. The products in (10) each contain only one factor, and expanding leaves only

the cross-terms, and the condition simplifies to

αnβn(e
2πi(N �−m2)/N

�
+ e2πi(N

�/2−m1)/N
�
) = αnβn(e

2πi(N �−m1)/N
�
+ e2πi(N

�/2−m2)/N
�
). (11)

Since this must hold for all distinct m1,m2 only the trivial solution is possible, hence αnβn = 0.

Now, assume that αk+lβk+l = 0 for l = n�, . . . , j + 1, j > 1, and consider αk+j ,βk+j . The products in

(10) run from j to n�
, but all factors for l > j cancel when the pairs on each side are expanded since, by the

inductive hypothesis, αk+lβk+l = 0 for these terms. The condition then reduces to a single factor and we

find αk+jβk+j = 0 exactly as in (11).

Hence, the transformed state is pair product invariant if and only if for all 1 < j ≤ n�
we have αk+jβk+j =

0. ✷

Theorem 2. Given a separable input state |ψN �, the transformed state |ψ̂N � is separable if and only if

(∃0 ≤ k ≤ n)(∃a1 . . . ak ∈ {0, 1}k)
�
∀1 ≤ j ≤ k

�
αj = eπi

�j
l=1 al/2

j−l

βj

�

∧
�
αk+1 �= ±eπi

�k
l=1 al/2

k−l+1

βk+1

�
∧ (∀n ≥ j > k + 1) [αjβj = 0]

�
.
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Proof. The proof follows directly from Lemmata 1 and 2. ✷

Theorem 2 allows us to determine if a given separable state |ψN � will be entangled or not by the QFT.

While the set of such states which are not entangled by the QFT is infinite, the conditions are still highly

restrictive, and there is only one qubit that can ever truly be in an arbitrary superposition. However, the

conditions between each αi and βi are relative, so separability of the transformed state is invariant under

phase rotations of individual qubits. These conditions, while restrictive, could be of value in developing new

algorithms which make use of the QFT and give a strong insight into the entangling power of the QFT.

4.3. Product-state De-quantisation

For the set of states which are not entangled by the QFT, we can use the conditions of Theorem 2

to extend the basis-state de-quantisation. Let k be as in Theorem 2. Let r =
�n−k

j=2,αk+j=0 2
−(k+j)

and

ω = e2πir be the coefficient of (αk+2 + βk+2) · · · (αn + βn) in f̂(1). The de-quantised algorithm for states

which are not entangled by the QFT is the following (b[x] is the xth component of b starting from 0):

Separable De-quantised QFT

Input: The n two-component complex vectors b1b2 . . . bn.
Output: The n transformed vectors b̂1b̂2 . . . b̂n.

1. Calculate k, a1 . . . ak as in Theorem 2

2. Calculate r, ω

3. For j = 1 to k + 1:

4. Set b̂n−j+1 =
1√
2
×
�
αj + eπi

�j−1
l=1 al/2

j−l
βj

αj − eπi
�j−1

l=1 al/2
j−l

βj

�

5. End For

6. For j = 1 to n− k − 1:

7. Let l = n− j + 1

8. Set b̂j =
1√
2
×
�
αl + βl

αl + βl

�

9. End For

10. For j = 1 to n:

11. Set b̂n−j+1[1] = ωb̂n−j+1[1]

12. Set ω = ω2

13. End For

Theorem 3. The Separable De-quantised QFT algorithm correctly computes the transformed n-qubit state
|ψ̂N � = FN |ψN �, where |ψN � is separable and the cth component of |ψ̂N � is described by (7), and does so in
O(n) time.

Proof. We first note that only one string a1 . . . ak can satisfy the first condition of Theorem 2: it is clear

that only one value of a1 satisfies it for j = 0 and, for each subsequent j ≤ k, given a1 . . . aj−1 only one value

of aj can satisfy the condition. The values of k and a1 . . . ak can hence be found readily in O(n) time by

sequentially checking each pair αj ,βj to see which option, aj = 0, 1, makes the first condition of Theorem 2

true, and setting aj accordingly. When neither is aj = 0, 1 satisfies the condition we have found k. It is

then evident that r and ω can be efficiently found by direct calculation.

It remains to verify that the algorithm correctly produces the state

f̂(c) =
1√
N

n�

j=1

(αj + e
πic/2j−1

βj)

=
1√
N




k+1�

j=1

(αj + e
πic/2j−1

βj)








n�

j=k+2

(αj + e
πic/2j−1

βj)



 .
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The algorithm calculates the amplitudes for each qubit, so if we let the n-bit binary expansion of c be

cn . . . c1 we have

f̂(c) = b̂1[cn] · b̂2[cn−1] · · · b̂n[c1]

=
ωc

√
N




k+1�

j=1

(αj + (−1)
cje

πi
�j−1

l=1 al/2
j−l

βj)








n�

j=k+2

(αj + βj)





=
ωc

√
N




k+1�

j=1

(αj + e
πi

2j−1 (cj2
j−1+

�j−1
l=1 al2

l−1)
βj)








n�

j=k+2

(αj + βj)



 . (12)

Note that, since αj = 0 or βj = 0,

n�

j=k+2

(αj + e
πic/2j−1

βj) = e
2πicr

n�

j=k+2

(αj + βj) = ω
c

n�

j=k+2

(αj + βj),

so our algorithm produces this factor correctly.

Since the output state is separable, the conditions of Theorem 2 must be satisfied and only one out of

the first K amplitudes is non-zero. This amplitude is the one with c� =
�k

l=1 al2
l−1, and by symmetry all

the other non-zero amplitudes occur at c = c� + d2n−k for 0 ≤ d ≤ K − 1. To verify this, note that for all

j ≤ k, we have

αj + e
πi

2j−1

�k
l=1 al2

l−1

βj = αj + e
πi

2j−1

�j
l=1 al2

l−1

βj �= 0,

and hence f̂(c�) �= 0. From (12) it is clear that f̂(c) is calculated correctly for these values of c. For all other

values of c which have c1 . . . cn �= a1 . . . an, let m be the smallest i ≤ n such that ci �= ai. Then we have

αm + e
πi

2m−1

�n
l=1 cl2

l−1

βm = αm − e
πi

2m−1

�m
l=1 al2

l−1

βm = 0,

and hence f̂(c) is correctly produced for all c.

The algorithm is also clearly seen to require O(n) time, and thus the proof is completed. ✷

This algorithm has all the advantages of the basis-state de-quantised algorithm, but operates on a much

larger ranger of input states, making it a much more powerful de-quantisation. Importantly, just like the

basis-state de-quantisation, it is actually more efficient than the QFT algorithm. While this algorithm

will not work on all separable input states like the tensor-contraction simulation in [6], it is a stronger

de-quantisation in the sense that it gives a complete description of the output state as opposed to the

probability of measuring a particular value, and is trivial to use as a subroutine in a larger de-quantisation.

5. Discussion

The ability to de-quantise the QFT algorithm brings up some interesting points. The two de-quantisations

presented in this paper compute the Fourier transform on a restricted set of input states. On the other hand

the standard QFT algorithm computes the Fourier transform on arbitrary separable or entangled input

states. In fact, the standard QFT algorithm is a quantum implementation of the basis-state algorithm, but

the linearity of quantum mechanics ensures that arbitrary input states are transformed by this simple algo-

rithm. De-quantisation techniques such as the one presented, as well as those of [3, 4, 6], all have to efficiently

simulate the linearity that is inherent in the quantum mechanical medium. The de-quantisations in this

paper highlight the important distinction that should be made between the quantum Fourier transform and

the quantum algorithm computing it. The QFT is a unitary transformation of an n-qubit state, while the

QFT algorithm is a recipe for creating a sequence of local gates which computes the QFT on a given state.

While these two notions are equivalent in quantum computation, when we depart from quantum mechanics

this is no longer the case, and the de-quantised algorithm does not suffice to compute the complete QFT.

12



It is interesting to note that both de-quantisations presented in this paper run in O(n) time, more

efficient than the O(n2
) of the quantum algorithm. This is due to the restrictions imposed by measurement

no longer being present when we develop a classical counterpart. This increase in efficiency is something

not seen in other de-quantisations of the QFT which are based on the quantum circuit topology, and thus

inherently and perhaps unnecessarily work within the restrictions the quantum circuit was designed under.

The Separable De-quantised QFT algorithm computes the QFT on a large number of input states, and any

algorithm using a subset of these states can immediately be de-quantised using the algorithm presented. The

fact that both the input and output states are separable also ensures the existence of a de-quantised inverse

algorithm too, which is of practical significance. While it remains to be seen if any current algorithms can

be de-quantised using the algorithm presented, any new algorithms developed will be able to be checked

against the conditions to see if de-quantisation is possible. Further, by looking for interesting algorithms

working on states which remain separable, new classical algorithms might also be found.

Another issue worth noting is that we must be careful to consider the complexity involved in manipulating

the complex amplitudes in a state-vector when performing de-quantisation. While our manipulation of

complex amplitudes did not contribute to the complexity of the de-quantised algorithms presented in this

paper, attention had to be paid to make sure this was the case. If we had instead implemented directly the

obvious algorithm and calculated each factor ωj individually, this computation would have dominated the

running time of the algorithm. In quantum computation, however, the amplitudes are just our representation

of a property of physical states. It is these physical states, rather than the amplitudes, which are altered by

unitary transformations, and as a result we observe the amplitudes changing. This reiterates the need for

care when de-quantising, as the amplitudes have no a priori reason to be easily calculated, or computable

at all for that matter.

6. Summary

We have shown that the quantum algorithm computing the QFT can be de-quantised into a classical

algorithm which is more efficient and in many senses simpler than the quantum algorithm, primarily because

the need to avoid measurement of the system is no longer present. However, the direct de-quantisation of the

QFT algorithm leads to a classical algorithm which only acts on a basis-state. This difference is due to the

linearity of quantum computation ensuring a basis-state algorithm computes the complete QFT, highlighting

this linearity as a key feature in the power of the QFT. By examining the entangling power of the QFT we

derived conditions which ensure that the QFT leaves a separable state unentangled, and showed that this

separability is invariant under phase-rotation of the input qubits. We extended our de-quantisation to work

on this set of states without any loss of efficiency.

The restrictions on the amplitudes of the state vector for de-quantisation highlight symmetries in both

the positions of zeros in the vector, and the relationship between non-zero amplitudes. These symmetries

are invariant under the Fourier transform, and it is this invariance which makes de-quantisation possible.

This idea of looking for symmetries on separable states which are invariant is a promising technique for

developing de-quantisations.

This de-quantisation of the QFT serves not only to illustrate more deeply the nature of the QFT, but

also gives the possibility of de-quantising other algorithms which use it with very little effort. Further, the

results can help aid the creation of new quantum algorithms and subroutines by clarifying which symmetries

lead to separability, and which do not; the latter offer the possibility of being exploited only by quantum

algorithms.
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