
CDMTCS

Research

Report

Series

An Investigation of

Algorithms to Aesthetically

Draw Cayley Graphs

Alastair A. Abbott

Michael J. Dinneen

Department of Computer Science,

University of Auckland,

Auckland, New Zealand

CDMTCS-318
March 2008

Centre for Discrete Mathematics and

Theoretical Computer Science

An Investigation of Algorithms to Aesthetically

Draw Cayley Graphs

Alastair A. Abbott and Michael J. Dinneen

(aabb009@ec.auckland.ac.nz & mjd@cs.auckland.ac.nz)

Dept. of Computer Science, University of Auckland
Private Bag 92019, Auckland, New Zealand

March 14, 2008

Abstract

Graph visualisation is an important field in Computer Science. The visu-
alisation of groups in the form of Cayley graphs has applications in the layout
of interconnected networks and mathematics. By using theoretical results from
group theory, we present two algorithms that take as input a Cayley graph
(G,S) and draws it in a layout that highlights the symmetry of the group and
is easily readable.

1 Introduction

Graph visualisation is an important and quickly growing field in Computer Science.
Graphs can be used to represent various types of data, from family trees and simple
flow charts to subway systems or mapping the universe [1]. The main issue is taking
the raw mathematical information that describes the graph, and transforming it into
a format that is easy to understand and read. A set of aesthetic criteria have been
created that sets out some key factors that a graph layout needs to take into account
to create a drawing that is desirable. The main factors are minimising the number of
edge crossovers, keeping the total edge length to a minimum, maximising symmetry,
maximising the compactness of the graph and maximising the angles between edges.
The importance of these aesthetic properties has been supported by psychological
research [1, 2, 3]. These criteria are not inflexible, as different situations require
different graphs. For example, in an electronic wiring diagram, minimising edge
length may be especially important, as wire costs money, and other criteria may need
to be compromised [1].

1

Strictly minimising aspects such as the number of crossovers and the compactness
of a graph are not simple, and have been shown NP-complete [2]. As a result, force-
directed algorithms, otherwise known as spring algorithms have become increasingly
popular. A general spring algorithm works by placing springs between vertices, and
iterating towards a minimum energy situation. There are many spring algorithms,
such as Kamada and Kawai’s algorithm, or Tutte’s algorithm [3]. Spring algorithms
are particularly good at showing symmetry in a graph. In particular, it has been
shown that for each geometric automorphism in a graph representing a symmetry,
there is a stable state of the spring system that displays that symmetry [3].

We are looking in particular at the visualisation of a group, in the form of a Cayley
graph.

A group is a nonempty set and a binary operation (G, ·) in which · is associative,
G contains an identity element and each element in G has an inverse element in G
[4]. Any group can be represented by a Cayley graph in several ways. A Cayley
graph Cay(S : G) consists of a group G with generating set S. Each element of G
is a vertex in Cay(S : G), and for x and y in G, there is a (directed) edge (x, y) if
and only if x · s = y for some s in G. Often colours are used to represent different
generators of the Cayley graph [4]. If S is closed under inverses (S = S ∪ S−1) then
we can view Cay(S : G) as an undirected graph since we would have connections
both ways (x · s = y =⇒ y · s−1 = x · s · s−1 = x).

While there has been research done on visualisation of many different types of
data, there has been very little work done towards aiding visualisation of a group or
even Cayley graphs in general, short of implementing a spring algorithm.

In the research of interconnected networks, Cayley graphs are often used as good
models of the networks, due to their desirable properties such as vertex transitivity
and high fault tolerance, so figuring out a better way to draw them could be of great
use in that field [5]. In this situation, showing a high degree of symmetry is important,
as it allows the same routing scheme to be implemented easily across the network and
at each node. Drawing better diagrams would allow engineers to assemble networks
more easily saving time and money, and having a drawing that shows symmetry well it
should be easier to add wire connections between nodes. It is important to note that
since every group is isomorphic to a permutation group, every group is a subgroup
of a symmetric group, so being able to create good drawings would also aid pure
mathematicians with understanding the symmetry and structure of group [4].

We plan to utilise the structure of groups and their generators to create an al-
gorithm that will significantly aid in the drawing of Cayley graphs. Because of the
importance of the symmetry in Cayley graphs, especially in many applications of the
field, we will place extra emphasis on the symmetric properties of the graph, although
other aesthetic criteria such as minimising edge crossovers will still need to be taken
into account to avoid creating graphs that are too difficult to read.

2

2 Method Used for Developing a Good Drawing

Algorithm

The algorithm that we were attempting to create needed to be able to take in an
arbitrary group G, and a set S ⊆ G of generators. The generators need not generate
the whole of G, and the algorithm must be able to deal with any number of generators.
We chose to colour code our generators (at least those with 8 or less generators) as
is often the case in Cayley graphs as it allows easier understanding of the graph, and
the ability to deduce which edges relate to which generators [2, 4]. Our algorithm
can deal with a set of generators, S, that is not closed under inverses, meaning that
the graph is strictly directed.

For any generator s the nodes generated by s starting at any node, say g, would
result in a cycle gs, gs2, . . . gsn = g because if G is a finite group then sn = e, the
identity [4]. This set of nodes generated by s will either span all of G, or will form a
subset of G, trivially. From group theory we can recognise that this set is a coset of
H in G containing s, where H is the set of elements in the word generated by s [4].
This realization is important, and leads us to a number of findings that we can use
to aid our drawing. For a coset Hs and a group G, |H| divides |G|, meaning that a
generator s will either generate all of G, or a number of cosets all of equal order [4].
Furthermore, |s| = |H| since H is simply the set of elements generated in the walk
consisting of the powers of s, hence a generator generate |G|/|s| cosets, all of order
|s|.

It is desirable to tackle the set of generators in some logical order. From our
previous findings, it seems wise that we would initially wish to draw the cycles of the
largest length. These largest cycles are direct representations of the cosets of s, so
it follows that the generator with the largest order will create the largest cycles. We
use this finding to decide to rank S by element order, descending. If two elements
have equal order, then there is no need to differentiate between them, so we can leave
their order untouched after the sorting algorithm is run.

Generators beyond the first generator will lead us to one of two cases. A generator
s = si with i ≥ 2, will either form a coset that is a subset of exactly one coset formed
by s1, or will create a coset that intersects multiple cosets of s1. In the first case,
the geometric result is a sub-cycle of a cycle generated by s1. That is, it is a cycle of
less length, but with each node in it also being in one larger cycle. In this case, the
generator should have little weighting, if any, towards the final shape of the drawing,
as the cycle shape should be dictated by the larger cycle. In the second case, the coset
will join cycles that were created by s1 and can be seen as ‘spokes’ between cycles.
These are important in the final graph layout, and we should attempt to apply the
aesthetics criteria to these spokes to create a desirable layout. We would also like to
attempt to exploit the inherent symmetry of a group to easily show the symmetric
characteristics in the final drawing, as is especially desirable in this situation due to
the importance of symmetry in groups [4].

3

Next we turned our attention to creating a base layout for the graph. The two
main possibilities we decided to explore based on examination of existing Cayley
graphs [4, 10] were a ‘radial’ layout and a ‘nested’ layout, and we developed each
of these methods into separate algorithms.

The radial layout involved placing the initial cycles generated by s1 as nodes in
a larger cycle centered on the center of the drawing. The remaining edges generated
by the remaining generators where just added without changing the node position as
calculated by the first generator. This seemed logical and nice in some situations,
but looked messy even on some basic Cayley graphs based on Abelian (commutative)
groups such as Z4 ×Z3 ×Z3 (see Figure 1), mainly because it resulted in an excessive
number of crossovers, which made for a messy and difficult to read drawing.

(0,0,0)

(0,0,1)

(0,0,2)

(0,1,0)

(0,1,1)

(0,1,2)

(0,2,0)

(0,2,1)

(0,2,2)

(1,0,0)

(1,0,1)

(1,0,2)

(1,1,0)

(1,1,1)

(1,1,2)

(1,2,0)

(1,2,1)

(1,2,2)

(2,0,0)

(2,0,1)

(2,0,2)

(2,1,0)

(2,1,1)

(2,1,2)

(2,2,0)

(2,2,1)

(2,2,2)

(3,0,0)

(3,0,1)

(3,0,2)

(3,1,0)

(3,1,1)

(3,1,2)

(3,2,0)

(3,2,1)

(3,2,2)

Figure 1: A cluttered radial drawing of an Abelian Cayley graph.

4

The nested algorithm was similar, but involved placing the initial cycles inside of
each other, and adding the remaining edges as in the radial method. This showed
much more success, with a low number of crossovers and a logical order that made
it easy to visualise the group, especially in examples such as dihedral groups, where
one cycle directly represented rotations of itself, and the spokes between the cycles
represented a possible reflection at each position [4]. It also successfully showed
the symmetry of the group in a highly desirable and obvious way, especially the
rotational symmetry [3]. The main problem with this method was that it led to
multiple edges being on top of each other, which was highly misleading in some
situations. We countered this by rotating each alternate cycle by a few degrees,
although in cases where the overlapping edges corresponded to a generator of which
the inverse generator was also in S this would have been unnecessary. This lead to
slightly more crossovers but was a huge improvement in aesthetics of the layout and
the symmetry of the underlying group was still highly visible.

In the creation of our programs, we decided to implement a generalised group
class to aid the visualisation of groups. Any group can be trivially represented by an
adjacency list of its Cayley graph G, with the identity element 0. The generating set
is {x | (0, x) ∈ E(G)}, and each multiplication required in the creation of the Cayley
graph can be trivially computed. This allowed us to deal with the visualisation of
Cayley graphs without the underlying group structure to be known, as is the case
in the more general example. Using this as our trivial case, the program structure
allows for the creation of more complicated classes to represent a class of groups,
provided an invertible function that maps the elements of the group onto the integers
0 to |G| − 1 exists. For examples, a class of symmetric groups can be created, using
the mapping described in [6] to map the permutations to the integers. This structure
allows a user to create a class to represent a group of any objects, and visualise it
using our algorithms.

Having implemented both the nested and radial methods, we examined the results
that we had obtained by drawing the 10 example graphs presented in Appendix A.
By examination, with the aesthetic criteria in mind, we found the nested algorithm
to be producing significantly better results than the radial algorithm.

Because Cayley graphs are not necessarily planar [7] crossovers are inevitable, and
as the size of the generating set S grows, the number of crossovers is bound to rise.
While the nested method seemed to be superior to the radial method in terms of most
aesthetic criteria, it still had the possibility for the number of crossovers and the final
layout to be improved.

We decided to introduce spring algorithm concepts into our algorithms using a
base layout as a structured and promising starting position for the nodes. A spring
algorithm seemed like a good idea because they are good at showing symmetry, as
is our base layouts, and should help to reduce the number of crossovers. We decided
to implement the Kamada and Kawai’s algorithm [8]. Rather than just running
a standard spring algorithm using the nested/radial starting positions for vertices,

5

which would dramatically reduce performance, we decided to implement it in stages.
After each generator si, we ran a spring algorithm with decreasing sensitivity to
moving vertices after each successive generator. We achieved this by decreasing the
number of iterations, and also tried decreasing the spring force.

The spring algorithm methods gave mixed results. As we wished, the number of
crossovers were reduced, and symmetry was maintained. However, the structure of
the group that the nested layout by itself effectively presented was somewhat lost, and
while symmetry was still visible it did not represent the symmetry of the group itself,
as the nested method did. Because of this, it turned out that the nested algorithm,
without any integrated springs, provided the picture that was the best aesthetically,
having taken into account the importance of the group structure and symmetry.

3 Results

The pseudocode for the nested algorithm that we developed is given as follows:

1. Rank the generating set S by the order of the generators descending

2. Calculate number c of cosets as |G|/s1.

Draw the edges generated by the 1st generator and position nodes.

3. while there is an unseen node g do

until the current node, g, reaches back at the start of this coset:
a) Position g on a circle around the center which has a radius
proportional to the number of the current coset, at i/c of the way
around the circle, where i is the node number within the coset.
b) Add edge (g, g · s1)
c) Let g = g · s1

Add the edges generated by the remaining generators.

4. for each generator si in S do

for each node g in G do

Add edge (g, g · si)

To test our algorithm we chose 10 example Cayley graphs, including some Abelian
and non-Abelian groups, as well as some very dense and large graphs. These are
detailed in Table 1, and the full adjacency lists and generators are in Appendix A.The
notation we used for the groups is standard, with the quaternion group Q = Q4. The
groups are described fully in [11]. The semi-direct products (of cyclic groups) used
are explained in more detail in [9].

6

Table 1: Basic attributes of the 10 key example graphs studied.

Group Name Order Is Abelian? Number of Generators

D28 56 No 4
Z4×σ Z29 116 No 5
Z2 ×σ Z12 48 No 3
Z2 × Z2 × Z3 × Z4 48 Yes 4
Z9 × Z3 27 Yes 7
Q8 × Z2 32 No 4
S4 24 No 4
Q × Z3 24 No 4
Q10 20 No 5
A4 12 No 4

We present our drawings of these test cases in Appendix B. Figures (A4 nested)
and (A4 radial) show the Cayley graph of the group A4. The drawing (A4 nested)
shows the graph produced by our algorithm using the nested algorithm of drawing the
graph. The cosets and relations are clearly visible, and it is easy to use the symmetry
of the graph to get an idea on the structure of the group. The drawing (A4 radial)
on the other hand shows the same Cayley graph drawn using the radial algorithm.
This method produces a graph that lacks the symmetry and niceness of the nested
graph, and this result was seen on virtually all the graphs using this method, with
the exception of those graphs where the highest generator order was 2. In this case,
the result was superior to the nested algorithm, due to the lack of cycles of length 3
or more, which resulted in unnecessary crossovers. This can be seen in the difference
between the drawings (Z2×Z12 nested) and (Z2×Z12 radial). The drawing (A4 nested
spring) shows the same Cayley graph of A4 drawn using the nested method but with
the spring algorithm applied as discussed in Section 2, with decreasing sensitivity to
moving vertices. This was the nicest of the spring drawings I was able to produce,
and it shows the symmetry and main features well.

Consider the nested method for drawing another non-Abelian group, Q8×Z2. This
large, order 32 graph shows is symmetry well and has a low number of undesirable
edge crossings given its size. The benefit of adding twists to alternate concentric
cycles can be seen along the diagonals. Without this twist all of the close blue lines
would misleadingly overlap. The spring-based nested drawing of this same Cayley
graph shows less structure. Unlike the drawing for A4, it produced an undesirable
drawing that lost much of the symmetry that we desire in Cayley graphs, and is
difficult to read.

Now consider the drawing (Z9 × Z3 nested). This is a very dense graph drawn
with these generators, and unlike the previous two, it is based on an Abelian group.
While it is cluttered due to the density, the symmetry is still startlingly obvious, and

7

by maintaining this structure it is still possible to examine the group easily by closely
examining the graph. Because of the density of the graph, it will contain a lot of
crossovers when drawn with any algorithm, but my algorithm draws it very nicely
and uses the group structure to produce a much better picture than would be possible
with other algorithms.

A comparison of all the 10 main examples we used are available in Appendix B,
including those drawn with some of the inferior methods along the way. All these
graphs are structured well and are easy to interpret. As we initially stated as being
desirable, they show the inherent symmetry of the groups, and produce equally good
drawings for Abelian and non-Abelian groups.

4 Discussion

The nested algorithm that we found successful works well for a number of reasons.
Because we are dealing with finite groups, every element g of G has finite order [4].
We can prove that the set of elements generated by an element s forms a coset:

Since |H| = |s| and |H| divides |G|, we have |G|/|s| cosets of size |s|. By ordering
the group S by element order, we ensure that |s| is a maximum. This means we
have a minimum number of cosets in our graph, where each coset is viewed as a cycle
of length |s|. By ordering S, we ensure that the maximum number of edges are in
these cycles, and the minimum number of edges go between these cycles. The edges
drawn by the remaining generators go between these cycles and are the edges that
have potential to cross other edges. By minimising this number we improve the final
drawing of the graph.

The nested algorithm generally produces nicer layouts than the radial one because
it effectively shows the symmetry of the graphs, which helps make a graph much easier
to interpret [3, 1]. The radial method results in regions of the graph being very dense
and others rather sparse due to the asymmetric placing of nodes within cosets in
relation to other cosets. This creates lopsided graphs that are not easy to make
sense of. Because the nested method arranges the cosets concentrically around each
other, it displays rotationally symmetry of the graph, and for Abelian groups it also
reflective symmetry as defined in [3]. This makes a graph easy to interpret and shows
the structure of the group well, with the bonus that the symmetry displayed directly
relates to the symmetry of the group.

Our algorithm is much more efficient than a spring-type algorithm. This is because
spring algorithms use a large number of iterations to converge on a stable and good-
looking drawing. By exploiting the symmetry of the groups, our algorithm does not
do this at all. We were able to draw graphs with more than 100 vertices in a fraction
of a second, where a spring algorithm took more than 30 minutes to draw the same
graph. This is a significant advantage for the applications of this field as networks
and groups that need to be visualised are often very large.

8

Our program has the potential to be easily adapted in many situations due to
the flexibility of its accommodation of custom group classes. By creating a class that
describes one type of group, it can be instantly used to visualise similar groups of
any size or selection of generators, as well as the possibility for customisation of other
features of the group. This could speed up the visualisation of a large number of
Cayley graphs simultaneously.

The way our algorithms1 work should be an advantage in the field of intercon-
nected networks. Because the symmetry is strongly shown, it would be particularly
easy to set up routing schemes at each node. By creating an algorithm that draws a
Cayley graph in such a way that is aesthetic with a strong emphasis on the display
of symmetry we have achieved this goal.

5 Future Work

While the algorithm we have described efficiently and aesthetically draws Cayley
graphs, there are areas that can be looked into in order to, with sufficient time for
development, further improve the quality of drawing produced.

The algorithm could be improved to cope better with edges that go in both di-
rections, i.e. edges (u, v) and (v, u) both exist for some u, v in V . This could be done
at the drawing time, or the algorithm could possibly be expanded to recognise when
a generator is its own inverse, or the inverse of another generator and deal with the
cases accordingly. This also has the potential for an increase in efficiency, because it
is not necessary to calculate the edges generated by a generator g and its inverse g−1;
they can both be done from one of the other.

The nested algorithm uses produces unsatisfactory results when all the generators
have order 2, with all nodes falling on a straight line. The radial algorithm produces
much more desirable results in this situation, but and could be used instead. However,
the results are still not always ideal and better ways of dealing with this situation
should be explored.

There seem to be cases in some graphs such as the simple example (Cayley graph
for group S3) of Figure 2 in which the graph the algorithm produces are nice and
symmetric, but an edge crosses unnecessarily. For denser graphs it is harder to tell if
this is happening, but it is likely that it is. It should be possible to algorithmically
swap around certain vertices in graphs to eliminate theses crossovers. This would
create graves with less edges crossing, which is desirable when drawing nice graphs,
as set out by [1].

While our experimentation with working spring-algorithm techniques into our
methods yielded some success, it seems likely that it could be used in certain situations
or in limited ways to achieve nice drawings. A possible technique to look further into

1The programs are freely available for noncommercial use by request from the authors.

9

[1,2,3] [2,1,3]

[1,3,2]

[2,3,1]

[3,1,2]

[3,2,1]

Figure 2: Example drawing of S3 where we get too many edge crossings.

is creating a subgraph only containing the initial cosets created by the first generator,
as well as any edges that go between 2 of these cosets, i.e. edges (u, v) where u from
coset1, v from coset2, coset1 6= coset2. This could work because a lot the mess in
the graphs seem to come from these edges only, as these are the only edges with the
potential to cross other edges. It would also be a lot more efficient that calculating the
spring forces for all the other edges when they would already be desirably connected.

6 Conclusion

In our research we explored a number of options to work towards creating an algorithm
that creates better drawings of Cayley graphs. By using theories and aspects of
group theory, we were able to come up with some algorithms that are specifically
suited towards drawing Cayley graphs. Our algorithms use group theory to create a
drawing that shows the symmetry of a Cayley graph, is easy to interpret and does a
decent job of creating a graph drawing that is aesthetically good by minimizing edge
crossovers and illustrating structures of a good graph. The nested algorithm proved
to be superior to the radial algorithm in almost all cases. Our algorithms will be of
use when it is necessary to visualise a group or draw a Cayley graph in an easy to
interpret fashion. This could be of use in many situations such as in the planning of
interconnected networks.

10

A Adjacency Lists of Example Graphs

The first three adjacency lists are semi-direct products of cyclic groups (see [9]). The
final seven lists are taken from the group tables given in [11]. The Cayley graph
generators g1, g2, . . . , g∆ for each case are given as the neighbors of vertex 0 (the
identity element). The i-th neighbor in each adjacency list for row j corresponds to
the product j · gi, where gi is the i-th generator.

Z4 ×σ Z29:

0: 78 71 55 109 58
1: 79 72 56 110 59
2: 80 73 57 111 60
3: 81 74 29 112 61
4: 82 75 30 113 62
5: 83 76 31 114 63
6: 84 77 32 115 64
7: 85 78 33 87 65
8: 86 79 34 88 66
9: 58 80 35 89 67

10: 59 81 36 90 68
11: 60 82 37 91 69
12: 61 83 38 92 70
13: 62 84 39 93 71
14: 63 85 40 94 72
15: 64 86 41 95 73
16: 65 58 42 96 74
17: 66 59 43 97 75
18: 67 60 44 98 76
19: 68 61 45 99 77
20: 69 62 46 100 78
21: 70 63 47 101 79
22: 71 64 48 102 80
23: 72 65 49 103 81
24: 73 66 50 104 82
25: 74 67 51 105 83
26: 75 68 52 106 84
27: 76 69 53 107 85
28: 77 70 54 108 86
29: 95 98 80 3 87
30: 96 99 81 4 88
31: 97 100 82 5 89
32: 98 101 83 6 90
33: 99 102 84 7 91
34: 100 103 85 8 92
35: 101 104 86 9 93
36: 102 105 58 10 94
37: 103 106 59 11 95
38: 104 107 60 12 96

39: 105 108 61 13 97
40: 106 109 62 14 98
41: 107 110 63 15 99
42: 108 111 64 16 100
43: 109 112 65 17 101
44: 110 113 66 18 102
45: 111 114 67 19 103
46: 112 115 68 20 104
47: 113 87 69 21 105
48: 114 88 70 22 106
49: 115 89 71 23 107
50: 87 90 72 24 108
51: 88 91 73 25 109
52: 89 92 74 26 110
53: 90 93 75 27 111
54: 91 94 76 28 112
55: 92 95 77 0 113
56: 93 96 78 1 114
57: 94 97 79 2 115
58: 9 16 90 36 0
59: 10 17 91 37 1
60: 11 18 92 38 2
61: 12 19 93 39 3
62: 13 20 94 40 4
63: 14 21 95 41 5
64: 15 22 96 42 6
65: 16 23 97 43 7
66: 17 24 98 44 8
67: 18 25 99 45 9
68: 19 26 100 46 10
69: 20 27 101 47 11
70: 21 28 102 48 12
71: 22 0 103 49 13
72: 23 1 104 50 14
73: 24 2 105 51 15
74: 25 3 106 52 16
75: 26 4 107 53 17
76: 27 5 108 54 18
77: 28 6 109 55 19

78: 0 7 110 56 20
79: 1 8 111 57 21
80: 2 9 112 29 22
81: 3 10 113 30 23
82: 4 11 114 31 24
83: 5 12 115 32 25
84: 6 13 87 33 26
85: 7 14 88 34 27
86: 8 15 89 35 28
87: 50 47 7 84 29
88: 51 48 8 85 30
89: 52 49 9 86 31
90: 53 50 10 58 32
91: 54 51 11 59 33
92: 55 52 12 60 34
93: 56 53 13 61 35
94: 57 54 14 62 36
95: 29 55 15 63 37
96: 30 56 16 64 38
97: 31 57 17 65 39
98: 32 29 18 66 40
99: 33 30 19 67 41

100: 34 31 20 68 42
101: 35 32 21 69 43
102: 36 33 22 70 44
103: 37 34 23 71 45
104: 38 35 24 72 46
105: 39 36 25 73 47
106: 40 37 26 74 48
107: 41 38 27 75 49
108: 42 39 28 76 50
109: 43 40 0 77 51
110: 44 41 1 78 52
111: 45 42 2 79 53
112: 46 43 3 80 54
113: 47 44 4 81 55
114: 48 45 5 82 56
115: 49 46 6 83 57

11

D28:

0: 1 55 7 45
1: 2 0 12 50
2: 3 1 9 47
3: 4 2 14 52
4: 5 3 11 49
5: 6 4 16 54
6: 7 5 13 51
7: 8 6 18 0
8: 9 7 15 53
9: 10 8 20 2

10: 11 9 17 55
11: 12 10 22 4
12: 13 11 19 1
13: 14 12 24 6
14: 15 13 21 3
15: 16 14 26 8
16: 17 15 23 5
17: 18 16 28 10
18: 19 17 25 7

19: 20 18 30 12
20: 21 19 27 9
21: 22 20 32 14
22: 23 21 29 11
23: 24 22 34 16
24: 25 23 31 13
25: 26 24 36 18
26: 27 25 33 15
27: 28 26 38 20
28: 29 27 35 17
29: 30 28 40 22
30: 31 29 37 19
31: 32 30 42 24
32: 33 31 39 21
33: 34 32 44 26
34: 35 33 41 23
35: 36 34 46 28
36: 37 35 43 25
37: 38 36 48 30

38: 39 37 45 27
39: 40 38 50 32
40: 41 39 47 29
41: 42 40 52 34
42: 43 41 49 31
43: 44 42 54 36
44: 45 43 51 33
45: 46 44 0 38
46: 47 45 53 35
47: 48 46 2 40
48: 49 47 55 37
49: 50 48 4 42
50: 51 49 1 39
51: 52 50 6 44
52: 53 51 3 41
53: 54 52 8 46
54: 55 53 5 43
55: 0 54 10 48

Z2 ×σ Z12:

0: 19 23 12
1: 18 22 23
2: 17 21 22
3: 16 20 21
4: 15 19 20
5: 14 18 19
6: 13 17 18
7: 12 16 17
8: 23 15 16
9: 22 14 15

10: 21 13 14
11: 20 12 13

12: 7 11 0
13: 6 10 11
14: 5 9 10
15: 4 8 9
16: 3 7 8
17: 2 6 7
18: 1 5 6
19: 0 4 5
20: 11 3 4
21: 10 2 3
22: 9 1 2
23: 8 0 1

12

Z2 × Z2 × Z3 × Z4:

0: 1 4 24 12
1: 2 5 25 13
2: 3 6 26 14
3: 0 7 27 15
4: 5 8 28 16
5: 6 9 29 17
6: 7 10 30 18
7: 4 11 31 19
8: 9 0 32 20
9: 10 1 33 21

10: 11 2 34 22
11: 8 3 35 23
12: 13 16 36 0
13: 14 17 37 1
14: 15 18 38 2
15: 12 19 39 3
16: 17 20 40 4
17: 18 21 41 5
18: 19 22 42 6
19: 16 23 43 7
20: 21 12 44 8
21: 22 13 45 9
22: 23 14 46 10
23: 20 15 47 11

24: 25 28 0 36
25: 26 29 1 37
26: 27 30 2 38
27: 24 31 3 39
28: 29 32 4 40
29: 30 33 5 41
30: 31 34 6 42
31: 28 35 7 43
32: 33 24 8 44
33: 34 25 9 45
34: 35 26 10 46
35: 32 27 11 47
36: 37 40 12 24
37: 38 41 13 25
38: 39 42 14 26
39: 36 43 15 27
40: 41 44 16 28
41: 42 45 17 29
42: 43 46 18 30
43: 40 47 19 31
44: 45 36 20 32
45: 46 37 21 33
46: 47 38 22 34
47: 44 39 23 35

Z9 × Z3:

0: 3 17 23 5 1 9 19
1: 4 15 21 3 2 10 20
2: 5 16 22 4 0 11 18
3: 6 20 26 8 4 12 22
4: 7 18 24 6 5 13 23
5: 8 19 25 7 3 14 21
6: 9 23 2 11 7 15 25
7: 10 21 0 9 8 16 26
8: 11 22 1 10 6 17 24
9: 12 26 5 14 10 18 1

10; 13 24 3 12 11 19 2
11: 14 25 4 13 9 20 0
12: 15 2 8 17 13 21 4
13: 16 0 6 15 14 22 5

14: 17 1 7 16 12 23 3
15: 18 5 11 20 16 24 7
16: 19 3 9 18 17 25 8
17: 20 4 10 19 15 26 6
18: 21 8 14 23 19 0 10
19: 22 6 12 21 20 1 11
20: 23 7 13 22 18 2 9
21: 24 11 17 26 22 3 13
22: 25 9 15 24 23 4 14
23: 26 10 16 25 21 5 12
24: 0 14 20 2 25 6 16
25: 1 12 18 0 26 7 17
26: 2 13 19 1 24 8 15

13

Q8 × Z2:

0: 1 8 16 23
1: 2 9 17 16
2: 3 10 18 17
3: 4 11 19 18
4: 5 12 20 19
5: 6 13 21 20
6: 7 14 22 21
7: 0 15 23 22
8: 15 4 24 25
9: 8 5 25 26

10: 9 6 26 27
11: 10 7 27 28
12: 11 0 28 29
13: 12 1 29 30
14: 13 2 30 31
15: 14 3 31 24

16: 17 24 0 7
17: 18 25 1 0
18: 19 26 2 1
19: 20 27 3 2
20: 21 28 4 3
21: 22 29 5 4
22: 23 20 6 5
23: 16 31 7 6
24: 31 20 8 9
25: 24 21 9 10
26: 25 22 10 11
27: 26 23 11 12
28: 27 16 12 13
29: 28 17 13 14
30: 29 18 14 15
31: 30 19 15 8

S4:

0: 16 12 6 20
1: 17 13 7 21
2: 18 14 4 22
3: 19 15 5 23
4: 20 16 11 12
5: 21 17 10 13
6: 22 18 9 14
7: 23 19 8 15
8: 12 20 1 16
9: 13 21 0 17

10: 14 22 3 18
11: 15 23 2 19

12: 9 0 20 6
13: 8 1 21 7
14: 11 2 22 4
15: 10 3 23 5
16: 2 4 12 11
17: 3 5 13 10
18: 0 6 14 9
19: 1 7 15 8
20: 7 8 16 1
21: 6 9 17 0
22: 5 10 18 3
23: 4 11 19 2

Q × Z3:

0: 1 4 8 22
1: 2 5 9 23
2: 3 6 10 20
3: 0 7 11 21
4: 7 2 12 16
5: 4 3 13 17
6: 5 0 14 18
7: 6 1 15 19
8: 9 12 16 6
9: 10 13 17 7

10: 11 14 18 4
11: 8 15 19 5

12: 15 10 20 0
13: 12 11 21 1
14: 13 8 22 2
15: 14 9 23 3
16: 17 20 0 14
17: 18 21 1 15
18: 19 22 2 12
19: 16 23 3 13
20: 23 18 4 8
21: 20 19 5 9
22: 21 16 6 10
23: 22 17 7 11

14

Q10:

0: 1 10 17 14 4
1: 2 11 18 15 5
2: 3 12 19 16 6
3: 4 13 10 17 7
4: 5 14 11 18 8
5: 6 15 12 19 9
6: 7 16 13 10 0
7: 8 17 14 11 1
8: 9 18 15 12 2
9: 0 19 16 13 3

10: 19 5 8 1 16
11: 10 6 9 2 17
12: 11 7 0 3 18
13: 12 8 1 4 19
14: 13 9 2 5 10
15: 14 0 3 6 11
16: 15 1 4 7 12
17: 16 2 5 8 13
18: 17 3 6 9 14
19: 18 4 7 0 15

A4:

0: 1 4 7 11
1: 0 5 6 10
2: 3 6 5 9
3: 2 7 4 8
4: 7 8 10 2
5: 6 9 11 3
6: 5 10 8 0
7: 4 11 9 1
8: 10 0 1 5
9: 11 1 0 4

10: 8 2 3 7
11: 9 3 2 6

15

B Drawings of the Graphs in Appendix A

B.1 Radial drawings

Z4 ×σ Z29:

0

1

2

3

4

5

6
78

9

10

11

12

13

14

15

16

17

18

19

20

21 22
23

24

25

26

27

28

29

30

31

32
3334

35

36

37

38

39

40

41

42

43

44

45

46

47 48
49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69 70
71

72

73

74

75

76

77

78

79

80

81

82

83
8485

86

8788

89

90

91

92

93

94

95

96

97

98

99

100

101 102
103

104

105

106

107

108

109

110

111

112

113

114

115

16

D28:

0

1

2

3

4

5

6

7

8

9

10

11
12

131415
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
40

41 42 43
44

45

46

47

48

49

50

51

52

53

54

55

17

Z2 ×σ Z12:

0

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

16

17

18

19

20

21

22

23

18

Z2 × Z2 × Z3 × Z4:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

31
32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

19

Z9 × Z3:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

20

Q8 × Z2:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

21

S4:

0

1

2

34

56

7

89 1011

12

13

14

15

16

17

18

19

20

21

22

23

22

Q × Z3:

01 23

45

67

89

1011

1213

1415

1617

1819

2021

2223

Q10:

0

1

23

4

5

6

7 8

9

10

11

1213

14

15

16

17 18

19

23

A4:

0

1

2

3

4

5

6

7

8

9

10

11

24

B.2 Force directed with radial base

Z4 ×σ Z29: (too cluttered to display)

D28:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17
18

19

20

21

22
2324

25

26

27

28

29

30

31

32
33

34

35

36

37

38

39

40 41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

25

Z2 ×σ Z12:

0

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22

23

26

Z2 × Z2 × Z3 × Z4:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

27

Z9 × Z3:

0

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

Q8 × Z2:

0

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

29

S4:

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

1617

18

19

20

21

22

23

30

Q × Z3:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

31

Q10:

0

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19

32

A4:

0

1

2

3

4

5

6

7

8

9

10

11

33

B.3 Nested drawings

Z4 ×σ Z29:

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77
78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

34

D28:

0

1

2

3

4

5

6

7

8

9

10

11
12131415

16
17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
40 41 42 43

44
45

46

47

48

49

50

51

52

53

54

55

Z2 ×σ Z12:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

35

Z2 × Z2 × Z3 × Z4:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

36

Z9 × Z3:

0
1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16

17

18

19

20

21

22

23

24

25

26

37

Q8 × Z2:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

38

S4:

0
12

3 4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

39

Q × Z3:

0
12

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

40

Q10:

0

1

23

4

5

6

7 8

9

10

11

1213

14

15

16

17 18

19

41

A4:

0 1
2

3

4

5

6

7

8

9

10

11

42

B.4 Force directed with nested base

Z4 ×σ Z29: (too cluttered to display)

D28:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31
32

33

34

35

36

37

38

39

40 41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

43

Z2 ×σ Z12:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

22

23

44

Z2 × Z2 × Z3 × Z4:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

45

Z9 × Z3:

0

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

46

Q8 × Z2:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

47

S4:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

48

Q × Z3:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23

49

Q10:

0

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

50

A4:

0

1

2

3

4

5

6

7

8

9

10

11

51

References

[1] R. Fleischer and C. Hirsch, “Graph Drawing and its Applications,” in Drawing

Graphs – Methods and Models, vol. 2025, Lecture Notes in Computer Science, M.
Kaufmann and D. Wagner, Eds. New York: Springer, pp. 1-22.

[2] M. Jünger and P. Mutzel, Graph Drawing Software. Berlin: Springer-Verlag,
2004.

[3] P. Eades and X. Lin, “Spring algorithm and symmetry,” Theoretical Computer

Science, vol. 240(2), pp. 379-405, 2000.

[4] J.A. Gallian, Contemporary Abstract Algebra, Fifth Edition. Boston: Houghton
Mifflin Company, 2002.

[5] M.-C Heydemann, “Cayley graphs and interconnection networks,” in Graph

Symmetry – Algebraic Methods and Applications, vol 497, Mathematical and Physical

Sciences, G.Hahn and G. Sabidussi, Eds. Dordrecht: Kluwer Academic Publishers,
1996, pp. 167-224.

[6] W.H. Campbell, “Indexing Permutations,” Journal of Computer Sciences in

Colleges, vol. 19(3), pp. 296-300, January 2004.

[7] D. Renault, “Enumerating Planar Locally Finite Cayley Graphs,” Geometri-

aeDedicata, vol. 112(1), pp. 25-49, April 2005.

[8] T. Kamada and S. Kawai, “Automatic display of network structure for human
understanding,” Information Processing Letters, vol. 31, pp. 7-15, 1989.

[9] M. J. Dinneen and P. R. Hafner, “New results for the degree/diameter prob-
lem,” Networks, vol. 24, pp. 359-367, October 1994.

[10] A. T. White, Graphs of Groups on Surfaces – Interactions and Models. Am-
sterdam: Elsevier Science B.V, 2001.

[11] A. D. Thomas and G. V. Wood, Group Tables. Kent: Shiv A Publishing
Limited, 1980.

52

