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Abstract7

In this paper we study various notions of bi-immunity over alphabets with b � 2 elements and recursive8

transformations between sequences on di↵erent alphabets which preserve them. Furthermore, we extend the9

study from sequences bounded by a constant to sequences over the alphabet of all natural numbers, which10

may or may not be bounded by a recursive function, and relate them to the Turing degrees in which they11

can occur.12
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1. Introduction15

Randomness is an important resource in science, statistics, cryptography, gambling, medicine, art and politics.16

For a long time pseudo-random number generators (PRNGs) – computer algorithms designed to simulate17

randomness – have been the main, if not the only, sources of randomness. As early as 1951 von Neumann18

noted [52] that: “Anyone who attempts to generate random numbers by deterministic means is, of course,19

living in a state of sin.” This statement was not meant to stop people from using PRNGs, but to caution20

against mistakenly believing that PRNGs produce “true“ randomness. With the development of algorithmic21

information theory [21, 39, 23] classes of di↵erent quality of random strings/sequences have been studied and22

von Neumann intuition was rigorously proved: mathematically there is no “true“ random string/sequence [15].23

In many domains requiring random numbers it is crucial to have high quality randomness. This is obvious24

in cryptography, where good randomness is vital to the security of data and communication, but is equally25

true in other areas such as medicine, where decisions of consequence may be made based on scientific and26

statistical studies relying essentially on randomness. Problems with the poor quality of randomness of various27

PRNGs are well known and can have serious consequences: a classical example is the discovery in 2012 of a28

weakness in a worldwide-used encryption system which was traced to a PRNG [38].29

These practical requirements have driven a recent surge of interest in developing random number30

generators “better than PRNGs”, in particular, quantum random number generators (QRNGs) [17, 28].31

QRNGs are generally considered to be, by their very nature, “better” than classical RNGs and “should32

excel” precisely on properties of randomness where algorithmic PRNGs obviously fail: incomputability and33

inherent unpredictability. To date only one class of QRNGs has been proved to satisfy these desiderata34

by Abbott, Calude, Svozil [4, 5, 37]. This type of QRNGs is based on a located form [1, 3, 6, 7, 8] of35

the Kochen-Specker Theorem [35], a result true only in Hilbert spaces of dimension at least three. These36

QRNGs – which locate and repeatedly measure a value-indefinite quantum observable – produce more than37
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incomputable sequences (over alphabets with at least three letters), more precisely, bi-immune sequences1,38

that is, sequences for which no algorithm can compute more than finitely many exact values. As almost all39

applications need quantum random binary strings, there is a stringent demand of randomness-preserving40

algorithms transforming non-binary strings into binary ones. This is the context motivating the following41

questions studied in this paper: (a) which sequences on non-binary alphabets are immune or bi-immune?,42

(b) how can one algorithmically transform a bi-immune sequence over a non-binary alphabet into a binary43

bi-immune sequence?44

Historically, the notion of immunity grew out of attempts to solve Post’s problem [43]; it has since been45

studied in other areas such as algorithmic randomness [31, 22, 9], the theory of minimal index sets [50] as46

well as the theory of numberings and ⌃0
1-dense sets [12]. Traditionally, algorithmic information theory was47

presented for binary strings and sequences [23, 41]. In Calude [15] the theory was developed in the general48

case of an alphabet with at least two elements, so the invariance under the change of the size of the alphabet49

became important. Early results go back to Borel normality, which is not invariant under the change of the50

base; in contrast, Martin-Löf randomness is invariant Calude and Jürgensen [16] and Staiger [49]. In [19] the51

relations between four classes of real numbers, Liouville numbers, computable reals, Borel absolutely-normal52

numbers and Martin-Löf random reals are studied.53

In this context we investigate various generalised notions of (bi-)immunity for sequences over finite and54

infinite alphabets, in particular sequences that do not grow too quickly in the sense that a single recursive55

function bounds each term of such a sequence. The following questions will be studied: (c) how does56

the Turing degree of a (bi-)immune sequence bounded by a recursive function h (or recursively bounded57

(bi-)immune sequence) depend on h?, (d) which oracles are powerful enough to compute recursively-bounded58

(bi-)immune sequences?, (e) what is the computational power of recursively-bounded (bi-)immune sequences59

compared to that of the Halting Problem?, (f) are the Turing degrees of recursive-bounded bi-immune60

sequences closed upwards?61

2. Notation62

For background on algorithmic randomness, we refer the reader to books of Schnorr, Calude, Downey and63

Hirschfeldt, Nies [47, 15, 23, 41]. The set of positive integers will be denoted by N; N [ {0} will be denoted64

by N0. Consider the alphabet Ab = {0, 1, . . . , b � 1}, where b � 2 is an integer; the elements of Ab are to65

be considered the digits used in natural positional representations of numbers in the interval B at base66

b where B is the unit interval of real numbers. By A
⇤
b and A

!
b we denote the sets of (finite) strings and67

(infinite) sequences over the alphabet Ab. Strings will be denoted by �, x, y, u, w; the length of the string68

x = x1x2 . . . xm, xi 2 Ab, is denoted by |x|b = m (the subscript b will be omitted if it is clear from the69

context); Am
b is the set of all strings of length m. Sequences will be denoted by w = w1w2 . . . ; the prefix of70

length m of w is w � m = w1w2 . . . wm. Sequences can be also viewed as Ab-valued functions defined on N.71

Further, we consider a generalised kind of sequence called an h-bounded sequence for some recursive function72

h; for such a sequence w = w1w2 . . . , one has wi < h(i) for each i 2 N (h(0) is excluded for notational73

convenience). An h-bounded function is any (possibly partial) function g satisfying g(i) < h(i) for each74

i 2 dom(g). We denote by � the prefix relation (between two strings or a string and a sequence). The75

complement of U ✓ N0 will be denoted by U , that is, U = N0 \ U .76

Any unexplained recursion-theoretic notation can be found in the textbooks of Rogers, Soare and77

Odifreddi [44, 48, 42]. We assume knowledge of elementary computability theory over di↵erent size alpha-78

bets [15].79

For any string y 2 A
⇤
b , the class of b-ary infinite sequences extending y is denoted by y · A!b = {w 280

A
!
b : y � w}; as before, the subscript b will be omitted if it is clear from the context. Extending this81

notation, if W is any set of strings belonging to A
⇤
b , then W ·A!b = {w 2 A

!
b : (9y 2 W )[y � w]} where · is82

the concatenation of strings with other strings or sequences. Given alphabets Ab and Ab0 , a morphism (or83

homomorphism) of Ab into Ab0 is a mapping µ : A⇤
b ! A

⇤
b0 such that µ(xy) = µ(x)µ(y) for all x, y 2 A

⇤
b . A84

1The weakest form of algorithmic randomness [23].
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morphism µ of A⇤
b into A

⇤
b0 is alphabetic if, for every a 2 Ab, µ(a) is either a letter of Ab0 or the empty word,85

and it is non-erasing if no µ(a), a 2 Ab, is the empty word. We extend a morphism µ : A⇤
b ! A

⇤
b as follows86

in a natural way to sequences w 2 A
⇤
b : µ(w) = µ(w1) · µ(w2) · · ·µ(wi) · · · 2 A

⇤
b [A

!
b .87

The value of a string w1w2 . . . wn 2 A
⇤
b is the real number vb(w1w2 . . . wn) =

Pn
i=1 wib

�i 2 R. The value88

of the sequence w = w1w2 . . . 2 A
!
b is the real number vb(w) =

P1
i=1 wib

�i 2 R. Clearly, vb(w � n) ! vb(w)89

as n ! 1.90

If vb(w) is irrational, then vb(w0) = vb(w) implies w0 = w. Some rational numbers have two di↵erent91

representations. Since our interest is in incomputable reals and rational numbers are far from being92

incomputable, this issue will not cause a problem.93

Let P denote the class of all partial-recursive functions of one argument over N0, let P2 denote the class94

of all partial-functions of two arguments over N0, and let R denote the class of all recursive functions of one95

argument over N0.96

Any function  2 P2 is called a numbering of partial-recursive functions. Set  e = �i. (e, i) and97

P := { e : e 2 N0}. A numbering ' 2 P2 is said to be an acceptable numbering or Gödel numbering of all98

partial-recursive functions if P' = P and for every numbering  2 P2, there is a f 2 R such that  e = 'f(e)99

for all e 2 N0 (see [44]). Throughout this paper, ' denotes a fixed acceptable numbering and 'e denotes the100

partial-function computed by the e-th program in the numbering '. � denotes a fixed Blum complexity101

measure [13] for the numbering '. For every e, We denotes the domain of 'e.102

Let e, i 2 N0; if 'e(i) is defined then we write 'e(i)# and also say that 'e(i) converges. Otherwise, 'e(i)103

is said to diverge (abbr. 'e(i)").104

A martingale is a function mg : A⇤
b ! R+ [ {0} that satisfies for every x 2 A

⇤
b the equality

P
a2Ab

mg(x ·105

a) = b · mg(x). For a martingale mg and a sequence w 2 A
!
b , the martingale mg succeeds on w if106

supn mg(w � n) = 1.107

Let D0, D1, D2, . . . be a canonical indexing of all finite sets. For any two sets U and V , U is truth-table108

reducible or tt-reducible to V , denoted U tt V , if for some recursive functions f and g, U(i) = g(ha, ii) for109

all i, where a is the canonical index of Df(i) \ V . U is bounded truth-table reducible or btt-reducible to V ,110

denoted U btt V , if U tt V and there is some number m such that |Df(i)|  m for all i (where f is as in111

the definition of tt-reducibility). In the latter definitions, the role of f is to select the elements to be queried,112

while g evaluates the value of the truth-table condition. U is tt-equivalent (resp. btt-equivalent) to V if113

U tt V (resp. U btt V ) and V tt U (resp. V btt U). A set U has PA degree (or is PA-complete) if U114

computes a {0, 1}-valued diagonally non-recursive (d.n.r.) function, that is, a {0, 1}-valued function f such115

that f(e) 6= 'e(e) for any e such that 'e(e)#. Equivalently, a set U has PA degree if one can compute relative116

to oracle U a total extension of any partial-recursive {0, 1}-valued function, that is, for any {0, 1}-valued117

function  , there is a total function g T U such that g(i) =  (i) whenever  (i) #; moreover, g may be118

chosen to be {0, 1}-valued.119

An r.e. open set is an open set generated by an r.e. set of binary strings. Regarding We as a subset of A⇤
2,120

one has an enumeration W0 ·A!2 ,W1 ·A!2 ,W2 ·A!2 , . . . of all r.e. open sets. A uniformly r.e. sequence (Gm)m<!121

of open sets is given by a recursive function f such that Gm = Wf(m) · A!2 for each m. A Martin-Löf test122

is a uniformly r.e. sequence (Gm)m<! of open sets such that (8m < !)[�(Gm)  2�m]; here � denotes123

the uniform measure, that is, for every � 2 A
!
2 , �(� · A!2 ) = 2�|�|. A sequence w 2 A

!
2 fails the test if124

w 2
T

m<! Gm; otherwise w passes the test. w is Martin-Löf random if w passes each Martin-Löf test [40].125

Martin-Löf randomness may be defined analogously for non-binary sequences over a finite alphabet;126

however, this work will consider Martin-Löf randomness only for binary sequences. Thus, throughout this127

paper, by “Martin-Löf random sequence” will always be meant “Martin-Löf random binary sequence”.128

3. Degrees of Bi-immunity Over Di↵erent Size Finite Alphabets129

We recall that an infinite set U ✓ N0 is immune (in the sense of recursion theory) if it contains no infinite130

recursively enumerable (r.e.) subset; U is bi-immune set if both U and U are immune [44, 42]. Bi-immune131

sets are highly non-recursive in the sense that no partial-recursive function with an infinite domain can be132

extended to the characteristic function of such a set. The notion of algorithmic randomness is also closely133
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related to that of immunity: every Martin-Löf random sequence w, for example, is e↵ectively bi-immune in134

the sense that there is a recursive function that computes for every e such that We is contained in w
�1(1)135

(resp. w�1(0)) an upper bound on the size of We. Even stronger than the notion of immunity is that of136

hyperimmunity : an infinite set U is hyperimmune if it is infinite and there is no recursive function f such that137

|U \ {0, . . . , f(n)}| � n for all n. In what follows, we generalise the notions of immunity and bi-immunity138

to sequences. One may take a cue from how Martin-Löf randomness for binary sequences is adapted to139

sequences over an arbitrary base b � 2 by identifying a sequence w 2 A
!
b with the real number

P1
i=0 wib

�i�1;140

these definitions of Martin-Löf randomness and asymptotic Kolmogorov complexity (constructive dimension)141

are base-invariant [16, 49]. Unfortunately, as we will show later in Propositions 21 and 23, there are reals that142

are bi-immune in one base but not in another base; thus the concept of bi-immunity is – like the concepts143

of Borel normality and disjunctiveness (see [20, 45, 46, 34]) – base-dependent if one directly adapts the144

definition of bi-immune sets to sequences.145

Further, motivated by non-binary quantum random number generators [1, 7] we study which recursive146

transformations between sequences on di↵erent alphabets preserve bi-immunity. A specific case of interest is147

the ternary and binary sequences: which recursive transformations between ternary and binary sequences148

preserve bi-immunity?149

In this paper we introduce and study a formalisation of bi-immunity for sequence over an alphabet with150

b � 2 elements. Broadly speaking, a sequence w 2 A
!
b is b-graph-immune (resp. b-graph-bi-immune) if no151

algorithm that outputs only elements of Ab can generate infinitely many correct (resp. incorrect) values of its152

elements (pairs, (i, wi)).2 This condition can be formalised directly by the following definition (given in [11]):153

Definition 1. A sequence w 2 A
!
b is b-graph-immune (resp. b-graph-bi-immune) if there exists no partial-154

recursive function ' from N to Ab having an infinite domain dom(') with the property that '(i) = wi155

(resp. '(i) 6= wi) for all i 2 dom(').156

Note that b-graph-bi-immunity does not only imply that the complement is immune, but also that the157

graph itself is immune, see Proposition 4 below, the reason we have called it graph-bi-immunity. Clearly,158

graph-bi-immunity is a stronger form of incomputability.159

Remark 2. If w 2 A
!
b does not contain a certain letter c 2 Ab then the recursive function '(i) = c witnesses160

that w cannot be b-graph-bi-immune.161

In case of b-graph-immunity the situation is di↵erent. Therefore, we introduce a more restrictive type of162

b-graph-immunity, known as strong b-graph-immunity :163

Definition 3. A sequence w 2 A
!
b is strongly b-graph-immune if it is b-graph-immune and for every c < b164

there are infinitely many i with wi = c.165

For the next proposition, we define b-graph(w) := {b · (n� 1) +wn : n 2 N} ✓ N0. This proposition provides166

various characterisations for the notion of b-graph-immune and b-graph-bi-immune sequences; the reader167

should note that we will generalise these notions in Section 7 to the case where the bound b is not a constant168

but where it is either absent (alphabet is N0) or where the size of the alphabet depends on the index of the169

item in the sequence. Also there a characterisation similar to the next proposition is possible.170

Proposition 4. The following three items characterise b-graph-immunity, strong b-graph-immunity and171

b-graph-bi-immunity, respectively.172

(a) w is b-graph-immune if one of the following equivalent characterisations holds:173

1. for all a 2 Ab, w�1(a) is immune or finite;174

2The modifier ‘graph’ comes from the fact that the immunity of a sequence w is equivalent to the immunity (in the usual
recursion-theoretic sense) of its associated b-graph, defined as {b · (n� 1) + wn : n 2 N}; see Proposition 4.
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2. b-graph(w) is immune.175

(b) w is strongly b-graph-immune if and only if for all a 2 Ab, w�1(a) is immune.176

(c) w is b-graph-bi-immune if one of the following equivalent characterisations holds:177

1. for all a 2 Ab, w�1(a) is bi-immune;178

2. for all non-empty A ⇢ Ab,
S

a2A w
�1(a) is immune;179

3. for all non-empty A ⇢ Ab,
S

a2A w
�1(a) is bi-immune;180

4. b-graph(w) is bi-immune;181

5. b-graph(w) is co-immune.182

Proof. (a) Assume that w is not b-graph-immune. Then there is a partial-recursive function ' with infinite183

domain such that '(i) = wi on the domain of '; one can now select a value a 2 Ab such that ' takes a184

infinitely often and let  be the restriction of ' to the set of inputs which are mapped by ' to a. It follows185

that the domain of  is an infinite r.e. subset of w�1(a). Thus Item 1 is not satisfied. Now if Item 1 is not186

satisfied, then some w
�1(a) is neither immune nor finite, hence w

�1(a) has an infinite recursive subset R.187

Now {b · (n� 1) + a : n 2 R} is an infinite recursive subset of b-graph(w).188

Finally, if b-graph(w) is not immune, as it is infinite, it has an infinite recursive subset R. Then '(n) = a189

if and only if b · (n� 1) + a 2 R defines a partial-recursive function witnessing that w is not b-graph-immune.190

(b) This statement is only an obvious variant of the definition.191

(c) Let w�1(a) be not bi-immune. If there exists an infinite recursive subset R ✓ {n : wn 6= a}, then192

define the partial-recursive function ' : R ! Ab via '(n) = a, n 2 R. Otherwise, there is an infinite recursive193

subset R ✓ {n : wn = a}, so define the partial-recursive function ' : R ! Ab via '(n) = a
0
, n 2 R, a

0 6= a. In194

either case, ' witnesses that w is not b-graph-bi-immune.195

If, for all a 2 Ab, the set w
�1(a) is bi-immune then its complement

S
a0 6=a w

�1(a0) and all its infinite196

subsets
S

a02A w
�1(a0), a /2 A, are immune, so Item 1 implies Item 2.197

If all sets
S

a2A w
�1(a), ; 6= A 6= Ab, are immune, so are their complements. Hence Item 2 implies Item 3.198

Let b-graph(w) be not bi-immune. Then there is an infinite recursive subset R ✓ N0 such that R ✓199

b-graph(w) or R \ b-graph(w) = ;. Without loss of generality, let R ✓ {b · (n � 1) + a : n 2 N}, a 2 Ab.200

Consider R
0 = {n : n 2 N ^ b · (n � 1) + a 2 R}. Then, in case R ✓ b-graph(w) the set R

0 is an infinite201

recursive subset of w�1(a), and in case R \ b-graph(w) = ; the set R0 is disjoint to w
�1(a). Thus, Item 3202

implies Item 4.203

Item 4 trivially implies Item 5.204

Finally, let w be not b-graph-bi-immune and ' be a partial-recursive function with infinite domain dom(')205

such that '(n) 6= wn for n 2 dom('). Then {b · (n� 1)+'(n) : n 2 dom(')} is an infinite r.e. subset disjoint206

to b-graph(w). ⇤207

Remark 5. In the binary case (that is, b = 2) Proposition 4 shows that 2-graph-immunity is equivalent208

with the property that w�1(1) and its complement w�1(0) are immune, and hence bi-immune, in the sense209

of recursion theory, i.e. they are infinite and do not contain infinite recursively enumerable (equivalently,210

recursive) sets [44]. Furthermore, we obtain that in the binary case all variants of immunity – 2-graph-211

bi-immunity, 2-graph-immunity and strong 2-graph-immunity – coincide. This does not hold for larger212

alphabets.213

Example 6. An immune sequence w 2 A
!
2 considered as an element of A!3 is 3-graph-immune but not214

3-graph-bi-immune since {i 2 N : wi = 2} = ;. In fact, every b-graph-bi-immune w 2 Ab as an element of215

Ab+1 is (b+ 1)-graph-immune but neither strongly (b+ 1)-graph-immune nor (b+ 1)-graph-bi-immune. ⇤216

It follows from Proposition 4 that every b-graph-bi-immune sequence is strongly b-graph-immune. The217

converse does not hold for b > 2 as shown by the following Example 7.218
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Example 7. Let M0 ✓ N be an immune set whose complement (with respect to N) N \M0 is recursively219

enumerable, let g : N ! N, g(N) = N \M0 be an injective recursive mapping, and let M ✓ N be a bi-immune220

set. Set M1 = g(M) and M2 = g(N \M). Then M1 and M2 are immune.221

Define a sequence w = w1w2 · · · 2 A
!
3 via the preimages w�1(a) = Ma, a 2 {0, 1, 2}. Then, clearly, every222

preimage w
�1(a) is immune, but as a recursively enumerable set the union w

�1(1) [w
�1(2) = M1 [M2 is223

not immune.224

Observe that the other combinations M0 [M1 and M0 [M2 are immune. Assume e.g. M 0 ✓ M0 [M1225

to be recursive. Then M
0 \ M1 = M

0 \ g(N0) as a recursively enumerable subset of M1 is finite. Thus226

M
0 \M0 = M

0 \ (M 0 \M1) is recursive too, hence also finite. ⇤227

Remark 8. One might also ask how b-graph-bi-immunity relates to other notions. Clearly, b-graph-bi-228

immunity is implied by but not equivalent to b-randomness. The study of b-randomness was motivated by229

the idea that the sequence should be as near as possible to the typical outcome of a sequence drawn by a230

b-sided coin; such a sequence is formally defined that there are no structures on which an e↵ective martingale231

can bet successfully [15].232

For example, b-random sequences contain every finite string infinitely often, thus they contain squares,233

that is, sequences of the form uu infinitely often. For the binary alphabet, this is shared with all sequences, as234

even every finite binary word of length 4 or more contains at least one of the following squares as a subword:235

00, 11, 0101, 1010. In contrast to this, Morse as well as Thue [51] constructed ternary sequences which do236

not contain any single square. Subsequent research [26, 29, 33] asked questions like how many squares a237

prefix of length n of a sequence can contain and Jonoska, Manea and Seki [33] conjectured that if a binary238

word contains k 1s and n � k 0s with 2  k  n/2, then there are at most (2k � 1)/(2k + 2) · n distinct239

squares. Here two squares are distinct if they are di↵erent as strings. The value k = 1 does not satisfy this240

conjecture as the string 0n�11 has bn/2� 1c squares while (2k � 1)/(2k + 2) = 1/4.241

One might ask how the number of squares in the prefixes of length n of a b-graph-bi-immune sequence242

grows with n? The upper bound can be expected to be similar to the case of arbitrary words, as one can243

take a sequence which has about n/2 squares in a prefix and then in a very thin way adjust the bits to make244

it 2-graph-bi-immune. So one might be more interested in lower bounds which are taken by some sequence245

instead of all sequences. The following example shows that for b = 6, one can make a sequence which is246

6-graph-bi-immune.247

Example 9. There is a 6-graph-bi-immune sequence without any square as a subword. This stands in248

contrast to random sequences in which the number of squares in prefixes of length n cannot be bounded by249

any constant.250

To construct a square-free 6-graph-bi-immune sequence w, one first constructs, using the undecidable251

Halting Problem as an oracle, a sequence i1, i2, . . . of natural numbers such that i1 = 1 and ik+1 � 3ik + 9252

and whenever 'k has an infinite domain and is {0, 1, 2, 3, 4, 5}-valued then 'k(i2k)#= 'k(i2k+1)#. Next one253

defines on each interval Ik = {ik, ik + 1, . . . , ik+1 � 1} that w is chosen as follows:254

1. wikwik+1 . . . wik+1�1 is a square-free word;255

2. if k is even then the digits 0, 1, 2 are used else the digits 3, 4, 5 are used;256

3. if k = 2e and 'e(ik)#2 {0, 1, 2} then wik = 'e(ik);257

4. if k = 2e+ 1 and 'e(ik)#2 {3, 4, 5} then wik = 'e(ik).258

Next consider a square uu of length 2h and on positions j, j + 1, . . . , j + 2h � 1. Choose k such that the259

interval Ik+1 contains the upper end j + 2h� 1 of the positions of the square uu, that is, the inequalities260

ik+1  j + 2h � 1  ik+2 � 1 hold. As for all ` < h, wj+` = wj+h+` and neighbouring intervals use the261

disjoint sets {0, 1, 2} and {3, 4, 5} of digits, j + h� 1 and j + 2h� 1 must either be in the same interval or at262

least two intervals apart. Note that the chain of inequalities ik  (ik+1�9)/3  (j+2h�1�9)/3  j+h�1263

follows from the choice of the sequence i1, i2, . . .; thus these inequalities postulate that j + h� 1 2 Ik [ Ik+1.264

It follows that j + h� 1 2 Ik+1, as it cannot be in the neighbouring Ik. As both halves of uu use the same265
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digits, {j, j + 1, . . . , j + 2h� 1} ✓ Ik+1. By construction, the sequence w is square-free within the interval266

Ik+1 and therefore the square uu cannot be a subword of w. Thus it follows that the full sequence w is267

square-free. ⇤268

4. Base-invariance269

In this section, we study the question of whether (bi-)immunity for sequences over a finite alphabet is270

preserved over di↵erent bases. The main insight is that while b-graph-immunity is indeed preserved over271

bases of the form b
k, where k � 1, the same does not hold for b-graph-(bi-)immunity and thus for strong272

b-graph-immunity.273

The simplest computable transformation of a sequence w 2 A
!
3 into a binary sequence x 2 A

!
2 is to delete274

all occurrences of 2 in w; we call this transformation delete2. The next lemma shows that delete2 does not275

preserve graph-bi-immunity.276

Lemma 10. (1) There exists a sequence w 2 A
!
3 which is not 3-graph-bi-immune such that delete2(w) is277

2-graph-bi-immune.278

(2) There exists a 3-graph-bi-immune sequence w 2 A
!
3 such that delete2(w) is not 2-graph-bi-immune.3279

Proof. For (1) we take a 2-graph-bi-immune sequence x 2 A
!
2 and define the ternary sequence w by280

w2i = xi, w2i+1 = 2. For (2) we consider the family of all infinite r.e. subsets (Ni)i2N0 of N0 and choose fromNi281

the first three elements n3i < n3i+1 < n3i+2 larger than4 n3(i�1)+2 and let Mj := {n3i+j : i 2 N0}, j = 0, 1, 2.282

Then every Mj ✓ N is bi-immune as each of them contains (and does not contain) at least one element from283

every infinite r.e. subset. Now define w as follows:284

wn =

8
<

:

0, if n 2 M0,

1, if n 2 M1,

2, otherwise.

Then the image under the mapping delete2 is delete2(w) = 010101 . . . . ⇤285

Remark 11. Lemma 10 (2) was communicated in [10] with a di↵erent proof.286

Next we start with the preservation of (strongly) b-graph-(bi)-immune sequences under morphisms. We287

also provide su�cient conditions that guarantee a morphism µ : Ab ! A
⇤
b preserves (strong) b-graph-288

(bi-)immunity.289

We start with a property of morphisms of a special kind. Let ⇡i : {w : w 2 A
⇤
b ^ |w| � i} ! Ab be the290

projection on the ith letter, that is, ⇡i(w1 · · ·w`) := wi for i  `. We call a morphism µ : Ab ! A
`
b stable if291

for all i  ` and for every a 2 Ab there is an a
0 2 Ab such that ⇡i(µ(a0)) = a, that is, the letters at a fixed292

position i in the words µ(a), a 2 Ab, are just a permutation of Ab.293

Lemma 12. Let ` � 1 and let µ : Ab ! A
`
b be a stable morphism. Then µ(w) is b-graph-immune (b-graph-294

bi-immune, respectively) if and only if w is b-graph-immune (b-graph-bi-immune, respectively).295

Proof. Assume that
S

a2A w
�1(a), ; ⇢ A ⇢ Ab, contains an infinite recursive subset M ✓ N and consider296

A
(1) = {⇡1(µ(a)) : a 2 A}. Then {` · (n�1)+1 : n 2 M} ✓

S
a02A(1) µ(w)�1(a0) and {` · (n�1)+1 : n 2 M}297

is also infinite and recursive.298

Conversely, let M ✓ N be an infinite recursive subset of
S

a02A0 µ(w)�1(a0), ; ⇢ A
0 ⇢ Ab2 . Then299

there is a j  ` such that M
0 := M \ {` · (n � 1) + j : n 2 N} is also infinite and recursive. Let300

A := {a : 9a0(a0 2 A
0 ^ ⇡j(µ(a)) = a

0)}. Then {n : ` · (n � 1) + j 2 M
0} is an infinite recursive subset of301 S

a2A w
�1(a). ⇤302

3A first proof for this was given in [10].
4For completeness, set n�1 = �1.
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Remark 13. Lemma 12 does not hold for arbitrary morphisms µ even if all letters are mapped to words of303

the same length. Consider e.g. µ : A2 ! A
⇤
2 where µ(a) := 0a.304

Lemma 14. Let 2  b
0  b and let w 2 A

!
b be b-graph-bi-immune. If µ is a non-erasing alphabetic morphism305

of Ab onto Ab0 then µ(w) 2 Ab0 is b
0-graph-bi-immune.306

Proof. We have µ(Ab) = Ab0 and µ(a) 2 Ab0 for a 2 Ab. Consider a nonempty subset A
0 ⇢ Ab0 . Then307

A = {a : µ(a) 2 A
0} 6= Ab and

S
a02A0 µ(w)�1(a0) =

S
µ(a)2A0 w

�1(a). If w 2 A
!
b is b-graph-bi-immune,308

according to Proposition 4, every set
S

a02A0 µ(w)�1(a0), ; 6= A
0 6= Ab0 is immune, and therefore µ(w) is309

b
0-graph-bi-immune. ⇤310

Lemma 14 does not hold for (strongly) b-graph-immune sequences.311

Example 15. We refer to the immune subsets M0,M1,M2 ✓ N defined in Example 7 where M1 [M2 is312

recursively enumerable. Define w 2 A
!
3 via w

�1(a) = Ma, a 2 {0, 1, 2}, and µ(0) = 0, µ(1) = µ(2) = 1. Then313

w is strongly 3-graph-immune but µ(w) is not 2-graph-immune. ⇤314

The preimages of alphabetic morphisms preserve b-graph-immunity of sequences but not b-graph-bi-immunity315

even if we require that every letter occurs infinitely often in the preimage.316

Lemma 16. Let µ be a non-erasing alphabetic morphism of Ab onto Ab0 . If µ(w) 2 Ab0 is b
0-graph-immune317

then w 2 A
!
b is also b-graph-immune.318

Proof. Observe that µ(w)�1(a0) =
S

µ(a)=a0 w
�1(a). Consequently, if µ(w)�1(a0) is immune or finite then319

its subset w�1(a) is also immune or finite. ⇤320

Example 17. To show that Lemma 16 cannot be extended to b-graph-bi-immunity we refer to Example 7 and321

the sequence w defined there, and we use the morphism µ : A3 ! A2 defined by µ(0) = µ(1) = 0 and µ(2) = 1.322

Since µ(w)�1(0) = M0 [M1 and µ(w)�1(1) = M2 are both immune, µ(w) 2 A
!
2 is 2-graph-bi-immune, but,323

as shown in Example 7 the sequence w 2 A
!
3 is not 3-graph-bi-immune. ⇤324

As a special case essential in the design of a quantum random generator (cf. [1, 7, 8]), from Lemma 14 we325

obtain the following:326

Corollary 18. Consider b � 3 and a non-erasing alphabetic morphism µ of Ab onto Ab�1. Then for every327

b-graph-bi-immune sequence w 2 A
!
b , the sequence µ(w) 2 Ab�1 is (b� 1)-graph-bi-immune.328

Next we study the preservation of b-(bi-)immunity under base change, that is, we consider sequences w 2 A
!
b329

and v 2 A
!
b0 which are expansions of the same real number r = vb(w) = vb0(v).330

Proposition 19. Let w 2 A
!
b be the b-ary expansion of the real r 2 R. If v 2 Abk , k � 1, is the b

k-ary331

expansion of r and for some a 2 Abk the subset v�1(a) ✓ N is infinite and not immune then there is an332

a
0 2 Ab such that w�1(a0) ✓ N is infinite and not immune.333

Proof. Let v�1(a) be infinite but not immune, and let M ✓ N be an infinite and recursive set such that334

M ✓ v
�1(a). Since w is the b-ary expansion of r there is a homomorphism µ : Abk ! A

k
b satisfying µ(v) = w.335

Let µ(a) = a1 · · · ak, ai 2 Ab. Then w
�1(a1) ◆ {k · (n� 1)+1 : n 2 M}, and consequently w

�1(a1) is infinite336

and not immune. ⇤337

Corollary 20. Let w 2 A
!
b be b-graph-immune and the b-ary expansion of the real r 2 R. If v 2 A

!
bk , k � 1,338

is the b
k-ary expansion of r then v is b

k-graph-immune.339

Corollary 20 cannot be extended to b-graph-bi-immunity.340

Proposition 21. For every base b there is a sequence which is b-graph-bi-immune but only b
2-graph-immune341

in base b
2.342
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Proof. Note that when w is strongly b-graph-bi-immune, so is also v with v2n�1 = v2n = wn. This follows343

from Lemma 12 since the morphism µ : Ab ! A
2
b with µ(a) = aa is stable.344

However, if we consider the real r whose b-expansion is given by v then its b
2-expansion is given by345

n 7! wn ·(b+1) which has only multiples of (b+1) as digits, thus this sequence is not strongly b
2-graph-immune.346

⇤347

One might also have a b-graph-bi-immune x such that the corresponding w is strongly b
2-graph-immune but348

not b2-graph-bi-immune.349

Example 22. Let y = y1y2 · · · 2 A
!
2 be b-graph-bi-immune. Define x := y1y2 · · · 2 A

!
2 by350

x2i�1x2i =

8
>><

>>:

00, if yi = 0 ^ i is odd,
01, if yi = 0 ^ i is even,
10, if yi = 1 ^ i is even,
11, if yi = 1 ^ i is odd.

Then according to Proposition 4, the sequence x 2 A
!
2 is also 2-graph-bi-immune, e.g. {j 2 N : xj = 0} =351

{2i � 1 2 N : yi = 0} [ {2i 2 N : yi = 0 ^ i is odd} [ {2i 2 N : yi = 1 ^ i is even}. Let w 2 A
!
4 such that352

v2(x) = v4(w).353

By construction w contains at even positions only the letters 1 and 2 and at odd positions only the354

letters 0 and 3. Thus Proposition 19 and Proposition 4 show that w is strongly 4-graph-immune but not355

4-graph-bi-immune. ⇤356

The following proposition shows that another natural algorithmic transformation fails to preserve graph-bi-357

immunity.358

Proposition 23. There exists a real whose base 8-expansion is strongly 8-graph-bi-immune while its base 4359

expansion is not 4-graph-bi-immune.360

Proof. Let c denote the mirror image of the binary complement of b, so possible pairs bc in the system of361

base 8 are 07, 13, 25, 31, 46, 52, 64, 70 and from now on, bc is always one pair of these octal digits. Next we362

define the stable morphism µ : A8 ! A82 via µ(b) = bc and choose an 8-bi-immune sequence v. According to363

Lemma 12 the image w = µ(v) is also 8-bi-immune.364

However, the base 4 counterpart y 2 A
!
4 of w translates every block w2nw2n+1 into three quaternary365

digits where the middle digit is either 1 or 2 as this is binary 01, 10 and the pairs bc are such selected that the366

end digit of b in binary di↵ers from the first digit of c in binary. Thus y�1(1) [ y
�1(2) contains the infinite367

recursive subset {3(n� 1)+ 2 : n 2 N}, and according to Proposition 4 the sequence y is not 4-bi-immune. ⇤368

5. Blind Martingales369

In this section we use blind martingales to study recursive transformations preserving bi-immunity.370

A martingale is called blind if its bet on u 2 A
⇤
b only depends on the length |u| and not on the actual371

history coded in u; furthermore, the share of the capital betted on a digit a 2 Ab is also blindly computed,372

but the scaling in dependence of the available capital can, of course, be done.373

We start with the definition of the blind martingale:374

Definition 24. A martingale over Ab is referred to as blind if there is a family (�`)`2N0 , ; 6= �` ✓ Ab, such375

that, for u 2 A
⇤
b and a 2 Ab it holds376

mg(u · a) =
(

b
|�|u|| ·mg(u), if a 2 �|u|,

0, otherwise.
377

A blind martingale is recursive if the mapping f : N0 ! 2Ab with f(`) = �` is recursive.378

We note that �` = Ab is equivalent to abstaining from betting.379
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Proposition 25. (a) A sequence w 2 A
!
b is b-graph-bi-immune if and only if there is no blind recursive380

martingale succeeding on w.381

(b) A sequence w 2 A
!
b is b-graph-immune if and only if there is no blind recursive martingale succeeding382

on w with |�`| = 1 for infinitely many ` 2 N0.383

Proof. (a) If w is not b-graph-bi-immune then there is a nonempty subset � ⇢ Ab for which
S

a2� w
�1(a)384

is infinite and not immune. Let M ✓
S

a2� w
�1(a) be infinite and recursive. Then the martingale385

mg(u · a) =

8
><

>:

mg(u), if |u|+ 1 /2 M,
b
|�| ·mg(u), if a 2 � and |u|+ 1 2 M,

0, otherwise.
386

succeeds on w.387

Conversely, let a blind recursive martingale succeed on w. Since Ab is finite, there is an infinite recursive388

set M ✓ N0 such that for some subset A ⇢ Ab, for all ` 2 M , �` = A. Consequently, M ✓
S

a2A w
�1(a),389

and according to Proposition 4, w is not strongly b-graph-bi-immune.390

(b) Assume w to be not b-graph-immune. Then the subset � ⇢ Ab can be chosen to be a singleton, and391

the construction is the same as in part (a).392

Let a blind recursive martingale succeed on w with |�`| = 1 for infinitely many ` 2 N0. As in case393

(a) there is an infinite recursive set M ✓ N0 such that for some a 2 Ab and all ` 2 M , �` = {a}, that is,394

M ✓ w
�1(a). Again Proposition 4 shows that w is not b-graph-immune. ⇤395

6. Mappings Preserving Strong b-graph Immunity396

For any function f : N ! N, say that f preserves strong b-graph-immunity if for any strongly b-graph-immune397

sequence w 2 A
!
b , the sequence v defined by vi = wf(i) for all i 2 N is strongly b

0-graph-immune for some398

b
0 2 {2, . . . , b}.399

Theorem 26. 1. Suppose b � 3. Then for all recursive functions f : N ! N, f preserves strong b-400

graph-immunity if and only if range(f) is co-finite and f
�1(j) := {i 2 N : f(i) = j} is finite for all401

j 2 N.402

2. Suppose b = 2. Then for all recursive functions f : N 7! N, f preserves strong b-graph-immunity if and403

only if range(f) is infinite and f
�1(j) := {i 2 N : f(i) = j} is finite for all j 2 N.404

Proof. Assertion 1. Let f be any recursive function. Suppose range(f) is co-finite and f
�1(j) := {i 2 N :405

f(i) = j} is finite for all j 2 N. Take any strongly b-graph-immune sequence w 2 A
!
b . By the definition406

of strong b-graph-immunity, range(w) = Ab and every a 2 Ab occurs infinitely often in w. As range(f) is407

co-finite, it follows that every a 2 Ab occurs infinitely often in the sequence v 2 A
!
b given by vi = wf(i) for408

all i 2 N. Thus for each a 2 Ab, v�1(a) is infinite. Since f
�1(j) := {i 2 N : f(i) = j} is finite for all j 2 N,409

it follows that if M were an infinite recursively enumerable subset of v�1(a), then {f(i) : i 2 M} would be410

an infinite recursively enumerable subset of w�1(a), contradicting the immunity of w�1(a). Therefore v is411

strongly b-graph-immune.412

Next, suppose that range(f) is co-infinite. We first prove the statement “range(f) is co-infinite ) f does413

not preserve strong b-graph-immunity” for the case b = 3, and then explain at the end how to extend the414

proof to the case b > 3. Consider two cases.415

Case 1: range(f) is finite. Take any strongly b-graph-immune sequence w 2 A
!
b . Without loss of generality,416

assume that {i : f(i) = f(1)} is infinite (otherwise, one may replace 1 by any i0 2 N for which417

{i : f(i) = f(i0)} is infinite in the subsequent argument; such an i exists because range(f) is finite).418

Then {i : f(i) = f(1)} is an infinite recursively enumerable subset of v�1(v1) = v
�1(wf(1)), and so v419

is not strongly b
0-graph-immune for any b

0 2 {2, . . . , b}.420
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Case 2: range(f) is infinite.421

Consider any bi-immune set U such that N \ (range(f) [ U) is infinite. We will show later that such a422

set U exists. Let s = min(range(f) \ U); such an s exists due to the bi-immunity of U . Now define a423

sequence w 2 A
!
3 as follows. For all i 2 N,424

wi =

8
<

:

0, if i 2 {s} [ (N \ (range(f) [ U)),
1, if i 2 U \ {s},
2, if i 2 range(f) \ U .

Let v be the sequence defined by vi = wf(i) for all i 2 N. Then by construction, v�1(0) = {j 2 N :425

f(j) = s}; the latter set being recursively enumerable (possibly even finite), it follows that v cannot426

be a strongly b
0-graph-immune sequence for any b

0 2 {2, . . . , b}. On the other hand, w is a strongly427

3-graph-immune sequence because:428

• w
�1(0) = {s} [ (N \ (range(f) [ U)), which is infinite due to N \ (range(f) [ U) being infinite by429

assumption, and {s} [ (N \ (range(f) [ U)) ✓⇤ N \ U . Since N \ U is immune, w�1(0) must also430

be immune.431

• w
�1(1) = U \ {s} is an infinite subset of U and so it is immune.432

• w
�1(2) = range(f) \ U is an infinite subset of N \ U ; otherwise, range(f) ✓⇤

U , which would433

contradict the immunity of U . Therefore, since N \ U is immune, w�1(2) is also immune.434

It remains to show that a set U as chosen above exists. Let I0, I1, I2, . . . be a one-one enumeration435

of all infinite recursively enumerable sets. For all i 2 N, define U and pairs (s2i�1, t2i�1), (s2i, t2i) in436

stages as follows.437

• (s2i�1, t2i�1) is any pair of distinct elements belonging to Ij for the least j such that s2i�1 and t2i�1438

are di↵erent from any si0 or ti0 with i
0
< 2i� 1, and

S
i0<2i�1{si0} ⇢ Ij or

S
i0<2i�1{si0} ⇢ N \ Ij .439

Put s2i�1 into U .440

• (s2i, t2i) is any pair of distinct elements belonging to Ij for the least j such that s2i and t2i are441

di↵erent from any si0 or ti0 with i
0
< 2i, and s2i 2 range(f) and t2i /2 range(f). Such j, s2i and t2i442

exist because the infinitude and coinfinitude of range(f) together imply that there are infinitely443

many infinite recursively enumerable sets that infinitely intersect both range(f) and N \ range(f).444

Put s2i into U .445

By construction, every infinite recursively enumerable set Ij intersects both U and N \ U . Thus U is446

bi-immune. Furthermore, N\U intersects N\range(f) infinitely often. Consequently, N\ (range(f)[U)447

is infinite, as required.448

To finish this part of the proof, we explain how to convert the strongly 3-graph-immune sequence w449

into a strongly b-graph-immune one w
0 for any b > 3. In the definition of w, replace the last condition450

“wi = 2 if i 2 range(f) \ U” by “w0
i = k+2 if i 2 (range(f) \U) \ Vk”, where {V0, . . . , Vb�3} is a partition of451

range(f) \U into b� 2 infinite sets. For all other values of i, w0
i is defined to be wi. Each Vi is an infinite452

subset of the immune set N \ U , and is thus immune too. Therefore w
0 2 A

!
b and w

0�1(i) is immune for all453

i 2 {0, . . . , b}. The same argument as before shows that the sequence v
0 with v

0
i = w

0
f(i) for all i 2 N cannot454

be strongly b
0-graph-immune for any b

0 2 {2, . . . , b}.455

Finally, suppose there is some j 2 range(f) such that f
�1(j) is infinite. Fix any such j. Take any456

bi-immune set U 0. Without loss of generality, assume that j 2 U
0 (otherwise, one may replace U

0 by N \ U 0
457

in the subsequent argument). Let {U 0
0, . . . , U

0
b�2} be any partition of N \ U

0 into b � 1 infinite sets. Let458

w 2 A
!
b be the sequence for which wi = 0 if i 2 U

0 and wi = k + 1 if i 2 U
0
k. The bi-immunity of U 0 implies459

that w�1(a) is immune for every a 2 Ab, and so w is strongly b-graph-immune. If v is the sequence given460

by vi = wf(i) for all i 2 N, then f
�1(j) = {i 2 N : f(i) = j} is an infinite recursively enumerable subset of461

v
�1(0). Therefore v cannot be a strongly b

0-graph-immune sequence for any b
0 2 {2, . . . , b}.462
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Assertion 2. Suppose b = 2, and f is any recursive function such that range(f) is infinite and f
�1(j) is463

finite for all j 2 N. As mentioned earlier, all variants of immunity coincide over binary alphabets; thus it464

su�ces to consider 2-graph-immune sequences in the following proof. Let w 2 A
!
2 be any 2-graph-immune465

sequence. By the 2-graph-immunity of w, range(f) \w
�1(0) and range(f) \w

�1(1) are both infinite. Thus466

the sequence v defined by vi = wf(i) for all i 2 N belongs to A
!
2 , and v

�1(0) and v
�1(1) are both infinite.467

If M were an infinite recursively enumerable subset of v�1(0), then {f(i) : i 2 M} would be contained468

in w
�1(0); moreover, since f

�1(j) is finite for all j 2 N, {f(i) : i 2 M} would be an infinite recursively469

enumerable subset of w�1(0), contradicting the 2-graph-immunity of w. A similar argument shows that470

v
�1(1) cannot contain any infinite recursively enumerable subset. Thus v is 2-graph-immune, as required.471

If range(f) is finite, then the argument in Case 1 of the proof of Assertion 1 shows that f cannot be 2-graph-472

immune-preserving. Finally, if range(f) is infinite and there is some j 2 range(f) such that f�1(j) is infinite,473

then an argument similar to that in the proof of Assertion 1 shows that f is not 2-graph-immune-preserving.474

⇤475

Remark 27. Suppose a function f : N ! N is said to be strongly b-graph-weakly-immune-preserving if476

for any strongly b-graph-immune sequence w 2 A
!
b , the sequence v defined by vi = wf(i) for all i 2 N477

is b-graph-immune (in contrast to being strongly b
0-graph-immune for some b

0 2 {2, . . . , b}). Then any478

one-one increasing recursive function f : N ! N is strongly b-weakly-immune-preserving: for each a 2 Ab,479

either v
�1(a) = {i : wf(i) = a} is finite, or {i : wf(i) = a} is infinite; in the latter case, if there were an480

infinite recursively enumerable subset M of {i : wf(i) = a}, then, since f is one-one and increasing, the set481

{f(i) : i 2 M} would be an infinite recursively enumerable subset of w�1(a), which would contradict the482

immunity of w�1(a).483

7. Immunity and Bi-immunity for Sequences Over Infinite Alphabets484

In this section we introduce and study various notions of (bi-)immunity for sequences over an infinite485

alphabet. Immunity and bi-immunity for sequences over infinite alphabets are defined almost exactly as they486

are for sequences over finite alphabets: a graph-immune (resp. graph-bi-immune) sequence w is one such487

that no algorithm (with no restriction on the output range) can generate infinitely many, and only correct488

(resp. incorrect) values of its elements – pairs of the form (i, wi). Graph-immunity of w is equivalent to489

immunity, in the usual recursion-theoretic sense, of the graph of w as a subset of N⇥ N0; this is analogous490

to the earlier observation (Proposition 4) that w is b-graph-immune if and only if b-graph(w) is immune491

as a set. We also consider sequences that are strictly bounded above by a single recursive function h with492

h(i) � 2 for all i, or h-bounded sequences. Unless otherwise specified, when we refer to a h-graph-(bi-)immune493

sequence, h is always taken to be a generic recursive function such that h(i) � 2 for all i. The terms of such494

a recursively-bounded sequence may range over an infinite alphabet, though they do not grow too quickly in495

that they are bounded by a single recursive function. Since no h-bounded sequence is graph-bi-immune, as496

witnessed by h itself, it is fairly natural to define immunity and bi-immunity for h-bounded sequences with497

respect to h-bounded partial-recursive functions with an infinite domain. An interesting question, which is498

partially addressed in this section, is whether, and if so how, the choice of the bound function h influences the499

computational power of the class of h-graph-(bi-)immune sequences. We proceed with the formal definitions500

of graph-(bi-)immunity.501

Definition 28. Let h be a recursive function such that h(i) � 2 for all i. An h-bounded sequence is any502

sequence w = w1w2 . . . satisfying wi < h(i) for each i 2 N. Let w = w1w2 . . . be a sequence.503

(i) w is graph-immune if for every partial-recursive function g with an infinite domain, there is an504

i 2 dom(g) with wi 6= g(i).505

(ii) w is graph-bi-immune if for every partial-recursive function g with an infinite domain, there are506

i, j 2 dom(g) with wi = g(i) and wj 6= g(j).507

(iii) w is h-graph-immune if w is h-bounded and for every partial-recursive function g such that the domain508

of g is infinite and g is h-bounded, there is an i 2 dom(g) with wi 6= g(i).509
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(iv) w is h-graph-bi-immune if w is h-bounded and for every partial-recursive function g such that the510

domain of g is infinite and g is h-bounded, there are i, j 2 dom(g) with wi = g(i) and wj 6= g(j).511

Remark 29. (i) Definition 28(i) is just a reformulation of the fact that {(i, wi) : i 2 N} is immune as512

a subset of N ⇥ N0. However, Definition 28(ii) does not imply that {(i, wi) : i 2 N} is bi-immune513

as a subset of N ⇥ N since, for example, {(1, c) : c 6= w1} is already an infinite recursive subset of514

(N⇥ N) \ {(i, wi) : i 2 N}.515

(ii) Flajolet and Steyaert introduced the concept of immunity into computational complexity theory by516

defining an infinite set U to be immune for a complexity class C if U contains no infinite subset belonging517

to C; an infinite, coinfinite set U is bi-immune for C if U and U are both immune for C [24, 25]. The notion518

of h-graph-immunity may be formulated in a similar fashion: w is h-graph-immune if {hi, wii : i 2 N}519

is immune for
n
{hi,'e(i)i : i 2 N0} : e 2 N0 ^

��dom('e)
�� = 1 ^(8i 2 dom('e))['e(i) < h(i)]

 
. The520

notions of graph-(bi-)immunity, h-graph-bi-immunity and strong b-graph-(bi-)immunity may be defined521

analogously.522

Here are some examples of graph-(bi-)immune sequences, as well as h-graph-(bi-)immune sequences.523

Example 30. (i) If U is limit-recursive and non-recursive, then its convergence-module sequence w
U

524

given by w
U
i := min{s0 � i : 8s � s

0 8j  i [Us(j) = U(j)]} is a graph-immune sequence, where for525

each j, the uniformly recursive approximation Us(j) converges to U(j).526

(ii) Let 'e1 ,'e2 , . . . be an enumeration of all partial-recursive functions with infinite domain. For every i,527

let (ai, bi) be a pair of elements in the domain of 'ei such that {ai, bi} \ {aj , bj} = ; whenever i 6= j.528

Then for every sequence w such that for each i, w and 'ei agree on exactly one of {ai, bi} (for example,529

wai = 'ei(ai) and wbi = 'ei(bi) + 1), w is graph-bi-immune. Thus there are 2@0 graph-bi-immune530

sequences.531

(iii) Let h be a recursive function with h(i) � 2 for all i. Let 'd1 ,'d2 , . . . be an enumeration of all532

partial-recursive functions with infinite domain such that 'di(j)#< h(j) for each j 2 dom('di). Let533

a1, a2, . . . be a strictly increasing sequence such that 'di(ai)# for each i. Then the sequence w defined534

by wai = 'di(ai) for each i 2 N and wj = 0 for each j /2 {a1, a2, . . .} is h-graph-bi-immune. ⇤535

We begin by providing equivalent characterisations of (h-)graph-(bi-)immunity; these characterisations will536

be useful later in some proofs.537

Proposition 31. Let w = w1w2 . . . be a sequence.538

(i) w is graph-immune if and only if every partial-recursive g with infinite domain satisfies that g(i) 6= wi539

for infinitely many i 2 dom(g).540

(ii) w is graph-bi-immune if and only if every partial-recursive g with infinite domain satisfies that g(i) = wi541

for infinitely many i 2 dom(g).542

(iii) w is graph-bi-immune if and only if for every partial-recursive function g with infinite domain, there is543

an i 2 dom(g) such that wi = g(i).544

(iv) Assertions (I), (II) and (III) hold also for h-graph-(bi-)immunity, where w and g are h-bounded for545

any recursive function h satisfying h(i) � 2 for all i.546

Proof. Assertion (I). Let g be a partial-recursive function with infinite domain. Suppose on the contrary547

that g(i) 6= wi for only finitely many i 2 dom(g). Let U = {i 2 dom(g) : g(i) 6= wi}. Define f as follows548

f(i) =

(
wi, if i 2 U ,

g(i), otherwise.
(1)
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Since U is finite, f is partial-recursive. Moreover, f(i) = wi for all i 2 dom(f), where dom(f) = dom(g) is549

infinite. This contradicts that w is graph-immune. Hence, every partial-recursive g with infinite domain550

satisfies that g(i) 6= wi for infinitely many i 2 dom(g).551

The proof of the converse is trivial.552

Assertion (II). We prove the contrapositive. Let g be a partial-recursive function with infinite domain553

such that g(i) = wi for only finitely many i 2 dom(g). Define f as follows554

f(i) =

(
abs(g(i)� 1), if g(i) = wi,

g(i), otherwise.
(2)

Since there are finitely many i such that g(i) = wi, f is partial-recursive. Moreover, dom(f) = dom(g) is555

infinite and f(i) 6= wi for all i 2 dom(f). Thus w is not graph-bi-immune. Now, suppose that w is not556

graph-bi-immune. Then, there is a partial-recursive function g
0 with infinite domain such that g0(i) = wi557

for all i 2 dom(g0) or there is a partial-recursive function g
00 with infinite domain such that g

00(i) 6= wi558

for all i 2 dom(g0). In the first case define ĝ as ĝ(i) = abs(g0(i)� 1). Then, ĝ is partial-recursive and559

dom(ĝ) = dom(g0) is infinite but ĝ(i) 6= wi for all i 2 dom(ĝ).560

Thus in both cases there is a partial-recursive function f 2 {g00, ĝ} with infinite domain such that561

f(i) 6= wi for all i 2 dom(f).562

Assertion (III). Suppose that for every partial recursive function g with infinite domain, there is an563

i 2 dom(g) such that wi = g(i). Let g be a partial recursive function. Define g
0 : i ! abs(g(i)� 1). Then,564

for every partial recursive function g with infinite domain, there is a j 2 dom(g) = dom(g0) such that565

wj = g
0(j) = abs(g(j)� 1) 6= g(j). So w is graph-bi-immune.566

The proof of the converse is trivial.567

Assertion (IV). The above proofs also apply for the h-bounded version, since if w and g are both bounded568

by h, then so are the functions constructed in the proofs. ⇤569

The following series of propositions will establish methods for constructing new h-graph-(bi-)immune sequences570

from given ones. In the subsequent proposition, it is shown that any recursive finite-one function preserves571

graph-bi-immunity of each h-graph-bi-immune sequence, albeit with respect to a recursive bound function572

that may be di↵erent from h in general.573

Proposition 32. Assume that w is h-graph-bi-immune and f a recursive finite-one function. Then the574

function i 7! wf(i) is h̃-graph-bi-immune, where h̃(i) = h(f(i)) for all i.575

Proof. First, note that since wi < h(i) for all i, wf(i) < h̃(i) for all i. Suppose that g̃ is a partial-recursive576

function with infinite domain such that g̃(i) < h̃(i) for all i 2 dom(g̃). Let f
0 be a partial-recursive577

function defined such that f 0(i) is the first j 2 dom(g̃) found that satisfies f(j) = i. Define g(i) = g̃(f 0(i)).578

Then, g is a partial-recursive function with domain f(dom(g̃)) and g(i) = g̃(f 0(i)) < h̃(f 0(i)) = h(i) for579

all i 2 dom(g). Since f is finite-one and g̃ has infinite domain, dom(g) is also infinite. Then there are580

i, j 2 dom(g) with wi = g(i) and wj 6= g(j). Then, f 0(i), f 0(j) 2 dom(g̃) and wf(f 0(i)) = wi = g(i) = g̃(f 0(i))581

and wf(f 0(j)) = wj 6= g(j) = g̃(f 0(j)). So, by Proposition 31, the function is h̃-graph-bi-immune. ⇤582

Proposition 33. Assume that h, h̃ are recursive functions, w is h-graph-bi-immune and 8i [2  h̃(i)  h(i)].583

Let w̃i = wi mod h̃(i) for all i. Now w̃ is h̃-graph-bi-immune.584

Proof. Let g be a partial-recursive function with infinite domain such that g(i) < h̃(i) for all i 2 dom(g).585

Since w is h-graph-bi-immune and h̃(i)  h(i), by Proposition 31, g(i) = wi for infinitely many i. Since586

g is strictly bounded by h̃, for all i such that g(i) = wi, we also have that w̃i = wi. Hence, g(i) = w̃i for587

infinitely many i. So, by Proposition 31, w̃ is h̃-graph-bi-immune. ⇤588

Proposition 34. If w is graph-bi-immune and h is a recursive function such that h(i) � 2 for all i, then w̃589

with w̃i = wi mod h(i) is h-graph-bi-immune.590
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Proof. Let g be a partial-recursive function with infinite domain such that g(i) < h(i) for all i 2 dom(g).591

Since w is graph-bi-immune, by Proposition 31, g(i) = wi for infinitely many i 2 dom(g). Since g is strictly592

bounded by h, for all i 2 dom(g), if g(i) = wi, then wi = w̃i. Hence, g(i) = w̃i for infinitely many i. So, by593

Proposition 31, w̃ is h-graph-bi-immune. ⇤594

Proposition 35. If there is a U -recursive sequence w and an unbounded recursive function h such that595

h(i) � 2 for all i, and w is h-graph-bi-immune then for any recursive function h̃ with 8i [h̃(i) � 2] it holds596

that there is a w̃ T U such that w̃ is h̃-graph-bi-immune.597

Proof. Let f(i) be the first number j found such that h(j) � h̃(i) and if i > 0, j > f(i � 1). Since h is598

unbounded, f is recursive and one-one. Then by Proposition 32, the sequence i 7! wf(i) is h
0-graph-bi-immune599

where h
0(i) = h(f(i)) for all i. By the definition of f , h0(i) � h̃(i) for all i. So, by Proposition 33, the600

sequence w̃ : i 7! wf(i) mod h̃(i) is h̃-graph-bi-immune. Moreover, since w̃ is recursive in w, w̃ T U . This601

completes the proof. ⇤602

The next theorem shows that for every many-one recursive function h, the class of h-graph-immune sequences603

is fairly rich; in fact, every non-recursive Turing degree contains such a sequence. The proof is e↵ective in604

that it shows how to construct such a sequence from any given set in the non-recursive degree.605

Theorem 36. Let h be a recursive function such that h(i) � 2 for all i. If h is finite-one then every606

non-recursive Turing degree contains an h-graph-immune sequence.607

Proof. Let a be a non-recursive Turing degree. Let U be a set in a. Define wi =
P

m:2m+1<h(i) 2
m · U(m)608

where U(m) takes the value 1 if m 2 U and 0 otherwise.609

Let g be a partial-recursive function with infinite domain, bounded by h. Suppose that g(i) = wi for all610

i 2 dom(g). Since h is finite-one, for any i there must be a j 2 dom(g) such that h(j) > 2i+1. Then, U(i) is611

the (i+ 1)-st digit counted from the right of the binary representation of g(j). So, U is Turing reducible to612

every recursive enumeration of the graph of g. Such recursive enumerations exist and therefore then U would613

be recursive, a contradiction. Hence, w must be h-graph-immune.614

Clearly, w T U . Moreover, we can determine whether or not i 2 U from w where h(j) > 2i+1 as shown615

earlier. Hence, w is in a. ⇤616

The next result characterises the Turing degrees containing at least one h-graph-immune sequence for any617

recursive function h such that h takes at least one value infinitely often.618

Theorem 37. Let h be a recursive function such that h(i) � 2 for all i. If h takes some value infinitely619

often then a Turing degree contains an h-graph-immune function if and only if it contains a bi-immune set.620

Proof. We will use the following lemma to prove the backward direction.621

Lemma 38. Let h, h̃ be recursive functions such that 8i[h̃(i) � h(i) � 2]. If sequence w is h-graph-immune,622

then w is h̃-graph-immune.623

Proof. Let g be a partial-recursive function strictly bounded by h̃ with infinite domain. Suppose that g is624

strictly bounded by h. Then, there is an i 2 dom(g) with wi 6= g(i). Otherwise, there is an i 2 dom(g) such625

that g(i) � h(i) > wi. So, wi 6= g(i). ⇤626

Let a be a bi-immune Turing degree. Then, there is a bi-immune set V in a. By Proposition 4, the627

characteristic function of V is 2-graph-immune. Thus, by the above lemma, the characteristic function of V628

is h-graph-immune.629

Conversely, suppose that a contains an h-graph-immune sequence w. By definition, there is a c such that630

h takes the value c infinitely often. Then, there is a one-one recursive function f such that h(f(i)) = c for all i.631

Suppose that there is a partial-recursive function g with infinite domain, bounded by c such that g(i) = wf(i)632

for all i 2 dom(g). Then, there is a partial-recursive function g
0 : i 7! g(f�1(i)) where g(f�1(j)) = wj633

for all j 2 dom(g0) = f(dom(g)). Since f is one-one, dom(g0) is also infinite. This contradicts that w is634

h-graph-immune. So, w(f) is c-graph-immune. Note that w(f) is Turing reducible to w.635

To show that the degree of w is bi-immune, we use the following lemma.636
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Lemma 39. Let w
c be a c-graph-immune sequence. Then, there is a sequence reducible to w

c which is637

2-graph-immune.638

Proof. Suppose that wc is c-graph-bi-immune. Then, by Proposition 33, the sequence i 7! w
c
i mod 2 is639

2-graph-bi-immune and so 2-graph-immune. This sequence is Turing reducible to w
c.640

Otherwise, suppose that there exists a partial-recursive function g with infinite domain and bounded641

by c such that g(i) 6= w
c
i for all i 2 dom(g). There exists an a such that g

�1(a) is infinite. Without642

loss of generality, assume that a = c � 1. Now we can find a one-one recursive function f such that643

g
0(i) = g(f(i)) = c� 1 for all i. Then, wc�1

i = w
c
f(i) 6= g(f(i)) = c� 1 for all i. By the c-graph-immunity of644

w
c, wc�1 is thus (c� 1)-graph-immune. Moreover, wc�1 T w

c.645

By iterating this process repeatedly, we can find a sequence w
2 which is 2-graph-immune and Turing646

reducible to w
c. ⇤647

Hence, by the lemma, there is a sequence reducible to w which is 2-graph-immune and thus is a characteristic648

sequence of a bi-immune set. By the upward closure of bi-immune degrees (as shown in [30, 32]), the degree649

a containing w is also bi-immune. ⇤650

The following theorem shows that for any unbounded recursive function h with h(i) � 2 for all i, Martin-Löf651

random sequences of hyperimmune-free degree cannot compute any h-graph-bi-immune sequence.652

Theorem 40. Let h be a recursive unbounded function which is always at least 2. Then no Martin-Löf653

random sequence v which has a hyperimmune-free degree can compute an h-graph-bi-immune sequence w.654

Proof. Recall from [39] that v is Martin-Löf random if and only if the prefix-free Kolmogorov complexity655

H satisfies the inequality H(v1v2 . . . vn) � n for all su�ciently large n.656

Now assume that v has hyperimmune-free Turing degree and w T v. Then w is truth-table reducible657

to v (see, for example, [42, Proposition VI.6.18]). Furthermore, there is a recursive function f such that f is658

strictly ascending and h(f(n)) > n
3, as h is unbounded. Furthermore one can for the truth-table reduction659

choose a use-function which is recursive and one-one; here a use-function is a function which bounds all the660

queries of the truth-table reduction.661

Now let g be a partial-recursive function with the recursive domain {f(0), f(1), . . .} such that g(f(n)) is662

that value m below h(f(n)) for which the number of tuples of length use(f(n)) mapped by the truth-table663

reduction to m is the smallest among all possible values. So there are at most 2use(f(n))/n3 many strings664

mapped to g(f(n)) by the truth-table reduction and the prefix of v up to use(f(n)) must be among these665

strings for those n where wf(n) = g(f(n)) and there exist infinitely many of those in the case that w is666

h-graph-bi-immune. So one can describe the string v1v2 . . . vuse(f(n)) in a prefix-free way by H(n) bits667

giving n in a prefix-free way and then compute from n the value use(f(n)) and the right choice among the668

2use(f(n))/n3 possibilities can be selected with a binary number of length use(f(n))� 3 log(n) plus constant669

bits.670

The length of this binary number can also be computed from n. Thus there is a prefix-free code using671

H(n) + use(f(n)) � 3 log(n) + d bits where d is a constant to describe v1v2 . . . vuse(f(n)) infinitely often;672

as H(n)  2 log(n) + d
0 where d

0 is some constant for almost all n, there are infinitely many n where673

H(v1v2 . . . vuse(f(n)))  use(f(n)) + d
00 � log(n) for some constant d

00 and so, for binary sequences v of674

hyperimmune-free degree, either v is not Martin-Löf random or there is no h-graph-bi-immune sequence675

Turing reducible to v. ⇤676

Remark 41. There are Martin-Löf random sequences that have hyperimmune-free degree, so Theorem 40 is677

not vacuously true. By the characterisation of Martin-Löf randomness via prefix-free Kolmogorov complexity,678

for any fixed b, if vb := {v : (8n)[H(v � n) > n � b]}, then every member of vb is Martin-Löf random.679

Furthermore, vb is a ⇧0
1-class since it is closed and the corresponding tree Tvb = {x : (x ·A!2 ) \ v

b 6= ;} is680

co-r.e. It is known (see, for example, [41, Theorem 1.8.42]) that every non-empty ⇧0
1 class has a member681

that is recursively dominated.682

The fact that there exist Martin-Löf random sequences with hyperimmune-free degree also implies683

that the condition in Theorem 40 that the function h be unbounded cannot be lifted: otherwise, taking684
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h(i) = 2 for all i, any Martin-Löf random sequence with hyperimmune-free degree would automatically be685

h-graph-bi-immune.686

Remark 42. Kučera [36] and Gács [27] independently showed that any sequence is weak truth-table687

reducible to some Martin-Löf random sequence. In particular, an h-graph-bi-immune sequence is always688

weak truth-table reducible to a Martin-Löf random sequence. Thus the condition in Theorem 40 that v be of689

hyperimmune-free degree is essential.690

In contrast to Theorem 40, the next result shows that for any PA-complete set U , there is a sequence w T U691

for which w is h-graph-bi-immune.692

Theorem 43. Let h be a recursive function with h(i) � 2 for all i. Let U be a PA-complete set. Then there693

is a sequence w ⌘T U such that w is h-graph-bi-immune.694

Proof. The proof is based on the fact that PA-complete sets can compute an infinite branch in a finitely695

branching infinite co-r.e. tree [42, Theorem V.5.35]. The tree will at input i branch with all functions which696

on input i take one of the values ?, 0, 1, . . . , h(i)� 1. Furthermore, let the interval I` = {3`, 3`+ 1, 3`+ 2}697

and fix a recursive enumeration  0, 1, . . . of all partial-recursive functions with recursive domains; here  e698

can either code an undefined place with ? or remain undefined from some point i onwards. The specific699

domain of  e are those i where  e(i) outputs a natural number (and not ?).700

Now a string � satisfies the requirement E(e) if and only if there is an i 2 dom(�) such that  e(i)701

mod h(i) = �(i) and  e(i) 6=?. A string � gets cancelled if either there is a requirement E(e) for which there702

are at least e+ 1 intervals I` completely covered by the domain of � and which intersect the specific domain703

of  e but E(e) is not satisfied or if there is an interval I` completely inside the domain of � on which �704

does not take at least twice the value ?. The cut-o↵ branches of the tree T are all those which extend some705

cancelled string �.706

Note that one can, using the oracle for the Halting Problem K, construct an infinite branch of this tree707

such that no prefix � gets cancelled: The algorithm is to find in each I` the smallest e such that on one708

i 2 I`,  e(i) is defined and the prefix � up to the beginning of I` does not satisfy the requirement E(e).709

Let sk be the smallest such i 2 I`. Then one lets �(sk) =  e(sk) mod h(i) and �(j) =? for the two other710

members j of I`.711

Note that this priority algorithm blocks the requirement E(e) on at most e many intervals where  e is712

defined on some member of I`; on the first such interval where the requirement is not blocked, a coincidence713

with  e is put and therefore the requirement is satisfied before the requirement can cancel the branch714

constructed. Furthermore, it is made sure that always at least two values in I` are assigned a ?.715

Note that the tree T of all � which never get cancelled and never have a prefix which gets cancelled is a716

co-r.e. tree which has an infinite branch and which is finitely branching, due to the bound function h. As717

argued two paragraphs ago, this tree T has infinite branches and since T is co-r.e., the class of all infinite718

branches of T is a ⇧0
1 class and consequently U allows to compute one such branch w̃. Now on any interval719

I` and i 2 I`, if w̃i =? then wi = U(`) else wi = w̃i. The so constructed w is Turing equivalent to U , as U(`)720

is the majority-value of w on I`.721

Now consider a partial-recursive function g with infinite domain which is bounded by h. This g extends722

some  e which has an infinite recursive domain; that  e coincides with w on some i 2 dom( e). Thus g723

agrees with w at least once. Thus w is h-graph-bi-immune. ⇤724

The notion of a diagonally non-recursive (d.n.r.) function, that is, a function f such that f(e) 6= 'e(e)725

whenever 'e(e)#, arises quite naturally in the study of Martin-Löf randomness. For example, every Martin-Löf726

random set weak truth-table computes a d.n.r. function [36]. The following observation follows from the727

definition of h-graph-bi-immunity together with the fact that there are infinitely many recursive functions f728

such that f(i) < h(i) for all i.729

Proposition 44. Let h be a recursive function with h(i) � 2 for all i. Then no h-graph-bi-immune sequence730

is d.n.r.731
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We recall that the Boolean algebra of r.e. sets does not contain any bi-immune set: this follows from an732

argument by induction, using the fact that the di↵erence between two r.e. sets cannot be bi-immune. A733

similar observation extends to h-graph-bi-immune sequences, as the next proposition shows.734

Proposition 45. If h is a recursive function satisfying h(i) � 2 for all i, then the Boolean algebra of r.e.735

sets does not contain the graph of any h-graph-bi-immune sequence.736

Proof. Consider any Boolean combination Cw of r.e. sets equal to the graph of some sequence w such737

that wi < h(i) for all i; without loss of generality, assume Cw :=
S

1i` Ui \ Vi, where, for all i, Ui738

and Vi are r.e. sets for which Ui \ Vi ✓ {hi0, ji : i0 2 N, j < h(i0)}. Assume further that for each i, there739

are infinitely many i
0 such that for some j, hi0, ji 2 Ui \ Vi; this assumption will be lifted at the end740

of the proof. It will be shown by induction that for each k  `, there is a partial-recursive function g741

with infinite domain and g(i) < h(i) for each i 2 dom(g) such that (i) graph(g) ✓
S

ik Ui \ Vi or (ii)742

graph(g) ✓ {hi, ji : j < h(i)} \
S

ik Ui \ Vi. The induction statement holds for k = 0 (the empty union);743

now assume it holds for some k, and let g be a partial-recursive function with infinite domain such that (i)744

or (ii) holds. If (i) holds, then graph(g) ✓
S

ik Ui \ Vi [ (Uk+1 \ Vk+1) =
S

ik+1 Ui \ Vi, so the induction745

statement for k + 1 automatically follows. Suppose (ii) holds. Consider two cases.746

Case 1: graph(g) ✓⇤ {hi, ji : j < h(i)} \ (Uk+1 [ Vk+1). Then there is a partial-recursive function g
0 and a747

finite set F with graph(g0) = graph(g) \ F and graph(g0) ✓ {hi, ji : j < h(i)} \
S

ik+1 Ui \ Vi, so the748

induction statement (for some partial-recursive g
0 satisfying (ii)) holds for k + 1.749

Case 2: Not Case 1. Then graph(g) \ (Uk+1 [ Vk+1) is infinite. If graph(g) \ Vk+1 is also infinite, then one750

could enumerate an infinite subgraph graph(g0) of graph(g)\Vk+1 for some partial-recursive function g
0;751

therefore graph(g0) ✓ {hi, ji : j < h(i)} \
S

ik+1 Ui \ Vi, and again the induction statement (for some752

partial-recursive g
0 satisfying condition (ii)) holds for k + 1. Suppose graph(g) \ Vk+1 is finite. Then753

graph(g)\ (Uk+1[Vk+1) = (graph(g)\ (Uk+1 \Vk+1))[ (graph(g)\Vk+1) =⇤ graph(g)\ (Uk+1 \Vk+1).5754

It follows that graph(g)\ (Uk+1 \Vk+1) is an infinite r.e. set equal to the graph of some partial-recursive755

function g
0 with g

0(i) < h(i) for all i, so the induction statement (for some partial-recursive g0 satisfying756

condition (i)) holds for k + 1.757

This completes the proof by induction. To conclude the proof of the original statement, take the union of758

Cw and the graph of any function f with finite domain such that f(i) < h(i) for all i, and consider the case759

that {hi, ji : j < h(i)} \ Cw contains the graph of some partial-recursive function g with infinite domain and760

g(i) < h(i) for all i (if, instead, Cw contains such a function g, then there is nothing more to prove). Then761

{hi, ji : j < h(i)} \ (Cw [ graph(f))=⇤{hi, ji : j < h(i)} \Cw, so {hi, ji : j < h(i)} \ (Cw [ graph(f)) contains762

the graph of some partial-recursive function g
0 with infinite domain and g

0(i) < h(i) for all i, as required. ⇤763

In the next series of results, we compare the computational power of h-graph-bi-immune sequences to that of764

the Halting Problem K by studying various types of reducibilities between them. The following proposition765

shows that K is truth-table equivalent to some h- graph-bi-immune sequence. Since, as mentioned earlier,766

every set is weak truth-table reducible to some Martin-Löf random set, and, as shown by Calude and Nies [18],767

no Martin-Löf random set truth-table computes K, it follows that an h-bi-immune sequence may not be768

truth-table reducible to any Martin-Löf random set.769

Proposition 46. Suppose h is a recursive function such that h(i) � 2 for all i. Then there is an h-770

graph-bi-immune sequence w such that w ⌘tt K. In particular, no Martin-Löf random sequence v satisfies771

w tt v.772

Proof. We construct a sequence w satisfying two requirements for each s: (1) 's(s)# if and only if exactly773

one of {w2s+1, w2s+2} equals 0; (2) if dom('s) is infinite and 's(i) < h(i) for all i, then there is some j774

satisfying wj = 's(j). Requirement (1) codes K into the values of w, while Requirement (2) ensures that no775

5For any sets U and V , we write U =⇤ V to mean that U is a finite variant of V , that is, (U \ V ) [ (V \ U) is finite.
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h-bounded partial-recursive function g with infinite domain satisfies g(i) 6= wi for all i 2 dom(g) (this would776

in turn ensure that w is h-graph-bi-immune).777

In detail: at stage s, the following steps are carried out in sequence using oracle K:778

1. Search for the least e  s such that 'e has not yet been diagonalised against and 'e(2s+1)#< h(2s+1)779

or 'e(2s+ 2)#< h(2s+ 2). If such an e exists, go to Step 2. If no such e exists, go to Step 3.780

2. Let s0 be the minimum of {2s+1, 2s+2} such that 'e(s0)# and set ws0 = 'e(s0). Let s00 be the unique
element of {2s+ 1, 2s+ 2} \ {s0}, and define

ws00 =

⇢
1, if (ws0 = 0 ^ 's(s)#) _ (ws0 6= 0 ^ 's(s)"),
0, otherwise.

3. If 's(s)#, set w2s+1 = 0 and w2s+2 = 1. If 's(s)", set w2s+1 = w2s+2 = 0.781

By construction, 's(s)# if and only if exactly one of {w2s+1, w2s+2} equals 0. Thus K is btt-reducible to w.
To see that w tt K, let g and f be recursive functions such that for all e, s and j,

'e(s)#< h(s) , g(e, s) 2 K,

'e(s)#= j , f(e, s, j) 2 K.

Given any number 2s+ 1, the tt-reduction from w to K makes queries to the given oracle for elements in782

{g(e, t) : e  s^ t  2s+2}[{f(e, t, z) : e  s^ t 2 {2s+1, 2s+2}^ z < max{h(j) : j  2s+2}}[{s}. The783

reduction then determines w2s+1 based on the answers to these queries. First, based on the answers to queries784

for elements in {g(e, t) : e  s ^ t  2s+ 2}, one may determine whether there is a least e  s such that 'e785

has not yet been diagonalised against up to stage s and 'e(2s+ 1)#< h(2s+ 1) or 'e(2s+ 2)#< h(2s+ 2);786

moreover, if such a least e exists, then its value may be determined. If no such e exists, then w2s+1 = 0. If787

such an e exists, then the answers to queries for elements in {g(e, 2s+ 1), g(e, 2s+ 2), s} [ {f(e, t, z) : t 2788

{2s+1, 2s+2}^ z < max{h(j) : j  2s+2}} allow one to determine the least s0 2 {2s+1, 2s+2} such that789

'e(s0)#, as well as the value of 'e(s0) and whether 's(s)#; it follows from Step 2 of the earlier algorithm790

that this information may be used to determine w2s+1. We note that this procedure for determining w2s+1791

is recursive for any oracle (not just K). A similar tt-reduction applies to any even number. ⇤792

Remark 47. Although, as shown in the proof of Proposition 46 K is btt-reducible to some h-graph-bi-793

immune sequence, in general no h-graph-bi-immune sequence is btt-reducible to K. This follows from794

Proposition 45 and the fact that a set is btt-reducible to K if and only if it is in the Boolean algebra795

generated by the r.e. sets [42, Proposition III.8.7]. More generally, we observe in the next proposition that796

no h-graph-bi-immune sequence is bounded Turing reducible to any r.e. set.797

Any tt-reduction from an h-graph-(bi-)immune sequence w to an r.e. set cannot be positive; in other798

words, the tt-condition in any such reduction must contain negation. For otherwise, one could recursively799

enumerate infinitely many pairs (i, j) for which the tt-condition is true (which implies that j = wi), thereby800

contradicting the h-graph-(bi-)immunity of w.801

If U is a non-recursive r.e. set, then any tt-reduction from U to an h-graph-(bi-)immune sequence w cannot802

be conjunctive, that is, the tt-condition is not a conjunction of positive formulas. For otherwise, given a one-one803

recursive enumeration x0, x1, x2, . . . of U , one obtains a corresponding enumeration Dg(x0), Dg(x1), Dg(x2), . . .804

(for some recursive function g) of queried sets such thatDg(xi) ✓ graph(w) for all i. Furthermore,
S

i2N0
Dg(xi)805

is infinite; otherwise, {g(xi) : i 2 N0} would be finite and one could then determine recursively whether806

xi 2 U for each i via the relation xi 2 U , Dg(i) ✓ graph(w). Thus there would be an infinite one-one807

recursive enumeration of a subset of graph(w), contradicting the h-(bi-)immunity of w. Similarly, if U808

is a non-recursive r.e. set, then any tt-reduction from U to an h-graph-(bi-)immune sequence cannot be809

disjunctive, that is, the tt-condition is not a disjunction of positive formulas.810

We recall that a function f is bounded Turing reducible to a set U (f bT U) if there is a Turing functional811

�e and a constant c such that f = �U
e and for all i, �e on input i makes at most c queries to the oracle U .812
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Proposition 48. No graph-immune sequence and no h-graph-immune sequence is bounded Turing reducible813

to an r.e. set.814

Proof. Assume that w bT U for an r.e. set U with constant c. Now one can for each i define the815

computation-track of i as the oracle answers given by U while computing wi followed by a 2. These finite816

strings have at most length c+ 1. Furthermore, one can define similar strings for approximations Us to U817

and observe that those computation-tracks which converge in s states converge from below lexicographically818

to the computation track for U at i. Let � be the lexicographically maximal computation track taken by819

infinitely many i, let X be the set of these i. There are only finitely many i in a further set Y where some820

approximation has a computation track which takes the value � as at those i 2 Y the computation track821

is larger. For that reason, the set X is recursively enumerable as the set of all i /2 Y where at some s the822

computation track � is taken. For the i 2 X one can compute wi by supplying the oracle answers of U823

according to the bits in � and will eventually obtain the correct value of w. Thus there is a partial-recursive824

function with the infinite domain X which coincide with w on its domain. Thus w is not graph-immune and825

also not h-graph-immune for any h. ⇤826

In the next proposition, we observe that the bi-immune-free Turing degrees exclude not only traditional827

bi-immune sets, but also h-graph-bi-immune sequences and graph-bi-immune sequences. This contrasts with828

Theorem 36, where it was shown that every non-recursive Turing degree contains an h-graph-immune set829

whenever h is a many-one recursive function.830

Proposition 49. Let h be a recursive function such that h(i) � 2 for all i. The bi-immune-free Turing831

degrees do not contain any h-graph-bi-immune sequence and also no graph-bi-immune sequence.832

Proof. Let U be a set of bi-immune-free Turing degree. Assume that w T U is graph-bi-immune or833

h-graph-bi-immune for a suitable h; now w̃ given by 8i [w̃i = wi mod 2] is 2-graph-bi-immune and thus834

the characteristic function of a bi-immune set. However, U does not Turing compute any bi-immune set.835

Therefore such an w cannot exist. ⇤836

It is known (see, for example, [41, Proposition 4.3.11]) that the Martin-Löf random Turing degrees are837

not closed upwards; the following proposition shows, in contrast, that the degrees of h-graph-bi-immune838

sequences are closed upwards.839

Proposition 50. Let h be recursive such that h(i) � 2 for all i. If w is an h-graph-bi-immune sequence840

and v is a binary sequence in a hyperimmune-free Turing degree which can compute w then there is a further841

h-graph-bi-immune sequence within the same Turing degree as v.842

Proof. Let B be the set of all binary strings x which are a prefix of the sequence v1v2v3 . . . (written x � v)843

and assume that there is a recursive set R of strings which contains infinitely many members of B and also844

infinitely many non-members of B. In the case that for each x /2 B, the set R contains only finitely many845

strings extending x, then one can compute B in the limit, as for each string of length n, one guesses always846

that the string of length n with the most extensions found so far in R is the member of B; this algorithm847

converges for all n to v1v2 . . . vn. However, the only binary sequences of hyperimmune-free Turing degree848

which are limit recursive are the recursive sequences (see, for example, [41, Proposition 1.5.12]) and those849

do not compute an h-graph-bi-immune sequences; hence this case does not occur. Thus there is an x /2 B850

such that infinitely many extensions of x are in R; all these are not in B and R has the infinite recursive851

subset {y 2 R : x � y} not containing a member of B. This fact will be used in the construction of w̃ – the852

sequence with the same Turing degree as v and is h-graph-bi-immune.853

One makes a recursive bijection from binary strings to the natural numbers following the length-lexico-854

graphic ordering, so the empty string gives 0, the string 0 gives 1, the string 1 gives 2 and the string 00 gives855

3. Let num(x) be the natural number assigned to x. Now one defines856

w̃i =

(
vn, if i = num(v1v2 . . . vn�1),

wi, if i = num(y) for some y 6� v, that is, if i /2 num(B).
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One can reconstruct v recursively from w̃ as vn = w̃num(v1v2...vn�1), so v T w̃. Now consider any partial-857

recursive function g̃ such that the domain of g̃ is infinite and, for all i 2 dom(g̃), g̃(i) < h(i) and g̃(i) 6= w̃i.858

The domain of g̃ has an infinite recursive subset R which, as explained above, can be chosen to be disjoint859

from num(B). Now one defines, for all i 2 R, g(i) = g̃(i); for all other x, g(i) is undefined. It follows that860

g(i) < h(i) and g(i) 6= wi for all i 2 R. Thus if g̃ witnesses that w̃ is not h-graph-bi-immune then g witnesses861

that w is not h-graph-bi-immune, in contradiction to the choice. Hence w̃ is h-graph-bi-immune. It was862

already mentioned that v T w̃. It can also be seen that w̃ T v�w and, as w T v, w̃ ⌘T v. Here w�v863

denotes the join of two binary sequences w and v, defined to be the sequence w1v1w2v2w3v3 . . . as usually864

done in recursion theory. ⇤865

8. Conclusions866

The motivation of this study came from the necessity to find an algorithm to transform an infinite ternary867

graph-bi-immune sequence into a binary graph-bi-immune sequence. This problem has arisen in the design868

of a QRNG based on measuring a value-indefinite quantum observable [1, 3, 6, 7]. Each ternary sequence869

generated by such a QRNG is graph-bi-immnune, which shows that the quality of randomness generated is870

provable higher than the quality of randomness generated by software. Preserving graph-bi-immunity in871

algorithmic transformations of infinite ternary graph-bi-immune sequences into a binary sequence turned to be872

a non-trivial problem: to solve it we had to better understand the notion of graph-bi-immunity on non-binary873

alphabets, the scope of this paper. Corollary 18 has been used in the design of the QRNG by Agüero and874

Calude in [8] whose protocol is based on measuring a located form [1, 3, 6, 7, 8] of the Kochen-Specker875

Theorem, a result true only in Hilbert spaces of dimension at least three. Such a QRNG – which locates and876

repeatedly measures a value-indefinite quantum observable – always, not only with probability Lebesgue one877

– produces graph-bi-immune sequences, that is, sequences for which no algorithm can compute more than878

finitely many exact values. In fact, no algorithm can compute any exact value of any sequence generated by879

the QRNG [8]. As almost all applications need quantum random binary strings, there is a stringent demand880

of randomness-preserving algorithms transforming non-binary strings into binary ones.881

In this paper we have studied various notions of b-graph-bi-immunity over alphabets with b � 2 elements882

and recursive transformations between sequences on di↵erent alphabets which preserve them. Furthermore,883

we have extended the study from sequence bounded by a constant to sequences over the infinite alphabet N0884

which may or may not be bounded by a recursive function, and related them to the Turing degrees in which885

they can occur.886

Finally we mention a few open questions. What is the computational power of algorithms using various887

bi-immune sequences as oracles [2]? In particular, can the Halting Problem be solved with such an algorithm?888

A weaker question is to replace the Halting Problem with the lesser principle of omniscience [14]: given a889

recursive binary sequence (xn) containing at most one 1, decide whether x2n = 0 for each n � 1 or else890

x2n+1 = 0 for each n � 1.891
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LNCS 8327:339–350, 2014.959

[34] P. Hertling. Disjunctive !-words and real numbers. Journal of Universal Computer Science 2(7):549–568, 1996.960

[35] S. B. Kochen and E. Specker. The problem of hidden variables in quantum mechanics. Journal of Mathematics and961

Mechanics (now Indiana University Mathematics Journal), 17(1):59–87, 1967.962
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[37] A. Kulikov, M. Jerger, A. Potočnik, A. Wallra↵, and A. Fedorov. Realization of a quantum random generator certified965

with the Kochen-Specker theorem. Physical Review Letters, 119:240501, Dec 2017.966



Bi-immunity 23

[38] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and C. Wachter. Ron was wrong, Whit is right. Santa967

Barbara: IACR:17, https://eprint.iacr.org/2012/064.pdf, 2012.968
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