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Abstract

This paper is a subjective, short overview of algorithmic information theory. We

critically discuss various equivalent algorithmical models of randomness motivating

a \randomness hypothesis". Finally some recent results on computably enumerable

random reals are reviewed.

1 Randomness: An Informal Discussion

In which we discuss some di�culties arising in de�ning randomness.

Suppose that one is watching a simple pendulum swing back and forth, recording 0 if it
swings clockwise at a given instant and 1 if it swings counterclockwise. Suppose further
that after some time the record looks as follows:

10101010101010101010101010101010:

At this point one would like to deduce a \theory" from the experiment.1 The \theory"
should account for the data presently available and make \predictions" about future
observations. How should one proceed? It is obvious that there are many \theories"
that one could write-down for the given data, for example:

10101010101010101010101010101010000000000000000000000000000000 : : :
10101010101010101010101010101010111111111111111111111111111111 : : :
10101010101010101010101010101010001001001001001001001001001001 : : :
10101010101010101010101010101010101010101010101010101010101010 : : :
10101010101010101010101010101010000111000111000111000111000111 : : :
10101010101010101010101010101010101011101110010110100011000111 : : :

Consistently with the requirements formulated above, each \theory" starts with the
experimental data (which is �nite) and continues with \predictions" about the system
future (which is potentially in�nite). The results of the experiment display a simple
pattern, always 10's, so probably the best prediction is that the system will continue
to produce 10's forever. Is there any rational, objective way of deciding among various
possible \theories" that does not rely only upon intuition? Occam's razor states that
the \best" theory is the \simplest" theory: \Nunquam ponenda est pluralitas sine nece-
sitate". What is a \simple theory"? For Solomono� [35] the \simplest theory" is the one

1People have studied pendulums for centuries and apparently everything is known about them: they
are the \epitome of regularity". In fact, pendulums are unpredictable in di�erent ways as chaos theory
has showed on various occasions, e.g., in Hall [24].



with the shortest length, i.e., the one printed by a shortest length computer program.
First we have to produce the experimental data; then, we have to \guess" a continuation.
For example, the following program will account for the �rst sequence:

PRINT 10101010101010101010101010101010, PRINT 0.

Can we do it better? Given the regularity of the record a considerable shorter program
can be written to produce it, namely the program \PRINT 10 16 times". This program
can be used to print out the �rst �ve \theories" above:

PRINT 10 16 times, PRINT 0

PRINT 10 16 times, PRINT 1

PRINT 10 16 times, PRINT 001

PRINT 10 forever

PRINT 10 16 times, PRINT 000111

The program \PRINT 10 16 times" can be generalised to a \law" expressed by the
program \PRINT 10 X times". Note that the length of printouts predicted by this
program grows much faster than the length of the program itself. Can we write a simple
program to print the last \theory"? In this case the continuation of the experiment
does not follow an obvious pattern : : :or maybe there is no such pattern. To understand
this \theory" we will follow Chaitin2 [11] who engaged in de�ning and studying the
\complexity" of �nite binary strings. A typical question motivating this approach is:
Are the �rst one million digits of the binary expansion of the number � less complex
than a string produced by 
ipping a fair coin one million times?3 Chaitin de�ned the
complexity of a �nite binary string as the size of the smallest program which calculates
it. If the string can be compressed into a very short program then one might conclude
that the string has a pattern, that it follows a law, that it is simple; if the string cannot
be compressed at all, then it is maximally complex or random. Let's test this idea on
some examples. Suppose that someone claims to have tossed a fair coin 64 times and the
result is:

x = 0101010101010101010101010101010101010101010101010101010101010101

Then, the experiment is repeated and the result is:

y = 1010101010010010101001011011000110001100111100110011111000011011

Almost everyone would be surprised or suspicious to see x, but the string y probably
would be acceptable. Why? Here is a typical 
awed explanation: the probability of
x is extraordinarily small, i.e., 2�64, so it is unreasonable to believe that x has been
actually produced by a real experiment. However, from a probabilistic point of view
there is nothing special about x: all of the 264 possible strings of length 64 have equal
probabilities of appearance, 2�64: The di�erence between x and y is not probabilistic,
but structural : while x is ordered, there is no apparent pattern in y.4 Laplace [27],
pp.16-17, was, in a sense, aware of the above phenomenon:

In the game of heads and tails, if head comes up a hundred times in a row
then this appears to us extraordinary, because after dividing the nearly in�-
nite number of combinations that can arise in a hundred throws into regular
sequences, or those in which we observe a rule that is easy to grasp, and into
irregular sequences, the latter are incomparably more numerous.

2A that time a undergraduate at City University of New York; see [18]. Kolmogorov [28] developed
similar ideas.

3Record 1 for heads and 0 for tails.
4Of course, we may argue that the presence of the pattern 01 in x has no signi�cance at all because

a) the number of tosses is relatively small, b) �nding patterns and meanings is just a human subjective
predilection.
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Instead of computing probabilities of speci�c strings let's instead discuss about the
\typicality" of some strings with respect to some particular stochastic processes. For the
process of 
ipping a fair coin, incompressible strings are typical, and highly compressible
strings are atypical. And, because the number of highly compressible strings (of a given
length) is small, the occurrence of such string is extraordinary : our surprise regarding x
is justi�ed.

Of course, the above explanation is informal, and a lot need to be done to turn it
into a rigorous theory. Before presenting some technical details let indulge ourselves in
a simple counting analysis. A string of length n will be said to be c{incompressible if its
compressed length is greater than or equal to n� c. For example, the 16{incompressible
strings of length 64 are exactly the strings that can be compressed to a length of 48
or larger. Note that every n + 1{incompressible string is n{incompressible, so every 5{
incompressible string is 4{incompressible. As the number of strings of length n is 2n;
it turns out that at least half of all the strings of every length are 1{incompressible, at
least 3

4 are 2{incompressible, at least 7
8 are 3{incompressible, so on. In general, at least

1 � 1
2c of all strings of length n are c{incompressible. For example, about 99.9% of all

strings of length 64 cannot be compressed by more than 16% and about 99.99999998%
of these strings cannot be compressed by more than 50%.

2 Algorithmic Models for Randomness

In which di�erent proposals for de�ning \algorithmically random sequences"
are discussed and a \randomness hypothesis" is formulated.

The discussion in the �rst section suggests that:

1. a \random" sequence should be typical, i.e., it should belong to any \reasonable"
majority;

2. a \random" sequence should be chaotic, i.e., no simple law should be capable to
produce the terms of the sequence.

To address typicality let's isolate the set of all sequences having \all veri�able" prop-
erties that from the point of view of classical probability theory are satis�ed with \prob-
ability one" with respect to the unbiased discrete probability. Let us denote by � the
binary alphabet f0; 1g and by �� the set of all binary strings. The unbiased discrete
probability on � which gives equal preference to 0 and 1 (both appear with probability
1/2) induces the product measure � on the set of all Borel subsets of the set of all binary
sequences �!. If x = x1x2 : : : xn is a string of length n, then the cylinder induced by
x, x�!; i.e., the set of all sequences starting with x1x2 : : : xn, will have the probabil-
ity �(x�!) = 2�n: This number can be interpreted as \the probability that a sequence
y = y1y2 : : : yn : : : has the �rst element y1 = x1, the second element y2 = x2; : : : ; the
nth element yn = xn". Independence means that the probability of an event of the form
yi = xi does not depend upon the probability of the event yj = xj . Note that every open
set, i.e., a union of cylinders, is � measurable. Finally, S � �! is a null set in case for
every real " > 0 there exists an open set which contains S and has measure less than ".
For instance, every enumerable subset of �! is a null set.

A property P of sequences is said to be true almost everywhere (in the sense of �)
in case the set of sequences not having the property P is a null set. The main example
of such a property is the famous Law of Large Numbers discovered by Borel: For every
sequence x = x1x2 : : : xm : : : and natural number n � 1, the limit of Sn(x)=n, when n
tends to 1, exists almost everywhere in the sense of � and has the value 1=2; (here
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Sn(x) = x1 + x2 + � � �+ xn): In other words, there exists a null set S � �! such that for
every x =2 S; we have Sn(x)=n = 1=2:

It is clear that a sequence satisfying a property false almost everywhere with respect
to � is very \particular". Accordingly, it is tempting to say that

a sequence x is \random" if it satis�es every property true almost everywhere
with respect to �.

Unfortunately, we may de�ne, for every sequence x; the property Px:

a sequence y satis�es Px if and only if for every n � 1 there exists a natural
m � n such that xm 6= ym.

Every Px is an asymptotic property which is true almost everywhere with respect to
� and x does not have property Px. Accordingly, no sequence can verify all properties
true almost everywhere with respect to �. The above de�nition is vacuous!

The above analysis may suggest that there is no truly lawless sequence. Indeed,
a \universal" non-trivial property shared by all sequences was discovered by van der
Waerden:

In every binary sequence at least one of the two symbols must occur in arith-
metical progressions of every length.

Looking at the proof of van der Waerden's result (and of a few similar ones) we notice
that they are all non-constructive. To be more precise, there is no algorithm which
will tell in a �nite amount of time which alternative is true: 0 occurs in arithmetical
progressions of every length or 1 occurs in arithmetical progressions of every length.

As a consequence we have to consider not all asymptotic properties true almost
everywhere with respect to �, but only a countable set of such properties. So, the impor-
tant question becomes: Which properties should be considered? Clearly, the \larger" the
chosen class of properties is, the \more random" will be the sequences satisfying those
properties. A constructive selection seems to be suggested by both statistical practice
and philosophical intuition. One such de�nition, proposed by Martin-L�of [29], is based
on randomness tests. We �x a standard computable bijective function h; i de�ned on
N� �� with values in ��; here N is the set of non-negative integers. For a set A � ��

let Ak = fx 2 �� j hk; xi 2 Ag. A Martin-L�of test is a computably enumerable (c.e.) set
A � �� such that �(Ai�

!) � 2�i; for all natural i. The set
T
i�0(Ai�

!) is the set of all
sequences which do not pass the randomness test A. We now de�ne:

a sequence x is Martin-L�of random if for every Martin-L�of test A,

x =2
T
i�0(Ai�

!):

Martin-L�of [29] proved the existence of a universal Martin-L�of test, a test W with
the property that for every Martin-L�of test A there is a constant c such that An �Wn+c,
for all n: So, Martin-L�of 's de�nition can be rephrased as:

a sequence x is Martin-L�of random if and only if x passes a universal
Martin-L�of test.

It is almost immediate that typicality is guaranteed as for each Martin-L�of test A;
the set

T
i�0(Ai�

!) is constructively null:

Theorem 1 Constructively, with probability one (in the sense of �), every sequence is
Martin-L�of-random.
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So, with probability one every binary sequence is random|the set of random se-
quences is large. However, from a topological point of view5, the set of Martin-L�of
random sequences is constructively a �rst Baire category set, i.e., it is small, cf. Calude,
Chit�escu [5]. This is a natural example where the popular analogy between measure-
theoretic small sets (null sets) and topological small sets (sets of �rst Baire category)
fails to work even in a constructive way.

Solovay [36] has proposed another measure-theoretic de�nition of randomness which
aims to capture typicality:

A sequence x is Solovay random if for every c.e. set A � �� such thatP
i�1 �(Ai�

!) <1; there exists a natural N such that for all i > N;

x =2 Ai�
!.

To address the second property associated with randomness, i.e., \chaoticity", we
follow Chaitin's complexity-theoretic approach. To this aim we employ self-delimiting
Turing machines M : such a machine reads the program from right to left only, never
going back, so its accepted programs (i.e., its domain) form a pre�x-free set. If, after
�nitely many steps, M halts with the program tape head scanning the last bit of the
input x, then the computation is a success, and we write M(x) < 1; the output of the
computation is the string M(x) 2 ��. Otherwise, the computation is a failure, we write
M(x) =1, and there is no output. The program set

PROGM = fx 2 �� jM(x) <1g

is a c.e. instantaneous code (or pre�x-free set), i.e., no program leading to a halting
computation can be the pre�x of another such program. Conversely, every pre�x-free
c.e. set of words is the domain of some self-delimiting Turing machine.

LetM be a self-delimiting Turing machine. The program-size complexity of the string
x 2 �� (relative to M) is

HM (x) = minfjyj j y 2 ��; M(y) = xg;

where min; = 1. It was shown by Chaitin [13] (see Calude [2]) that there is a self-
delimiting Turing machine U that is universal, in the sense that, for every self-delimiting
Turing machine M , there is a constant cM (depending upon M) with the following
property: if M(x) < 1, then there is an x0 2 �� such that U(x0) = M(x) and jx0j �
jxj+ cM .6 Clearly, every universal self-delimiting machine produces every string. Every
two universal self-delimiting machines U and V induce roughly the same program-size
complexity, i.e., HU(x) = HV (x) + O(1). We denote by x� the canonical program of x,
i.e., x� = minfy 2 �� j U(y) = xg, where the minimum is taken according to the quasi-
lexicographical order 0; 1; 00; 01; 10; 11; 000; : : : Clearly, the program-size complexity of a
string x is exactly the length of its canonical program.7

The probability that a program generated by a coin tossing run on M will produce
the output x is the measure of the cylinder induced by the set of strings y which output
x on M :

PM (x) =
X

fM(y)=xg

2�jyj:

5� comes equipped with the discrete topology and �! is endowed with the product topology.
6This \optimality" holds true for space complexity, but it seems to fail to be true for time complexity:

the simulation time is much bigger than the original computational time.
7By de�nition, x� is the most compact way (for U) to store x: the computation U(x�) = x produces

x by freeing jxj � jx�j bits of memory. What is the least thermodynamic cost of generating a string x
from the canonical program x�? Zurek [37] has proven that the computation U(x�) = x can be achieved

reversibly, with no cost in terms of entropy increase. Let's note that a reversible computation, i.e., a
computation which can be undone, can be performed only by using computer memory to keep track of
the exact logical path from input to output (see more in [6] and [3]): thermodynamic irreversibility is
inevitable only in the presence of logically irreversible operations.
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In the case M = U we simply write PROG = PROGU
8; H(x) = HU(x), P (x) =

PU (x): The relation between program-size complexity (H) and algorithmic probability

(P ); known as the Coding Theorem (Chaitin [13], G�acs [23], Calude [2]) is given by the
following formula:

H(x) = � log2 P (x) + O(1):

The program-size complexity is only up to a �xed constant di�erent from the entropy;9

the probability of computing x is concentrated in the canonical program x� computing
x. 10

We are now in a position to give two complexity-theoretic de�nitions of random
sequences.

An in�nite sequence x is Schnorr random if there is a constant c such that
H(x(n)) > n� c, for every integer n > 0 (Chaitin [13]).

An in�nite sequence x is Chaitin random if limn!1H(x(n)) � n = 1
(Chaitin [13]).

Finally, we present Hertling and Weihrauch topological approach to de�ne random-
ness initiated in [25, 26]. A randomness space is a triple (X;B; �), where X is a topo-
logical space, B : N ! 2X is a total numbering of a subbase of the topology of X, and
� is a measure de�ned on the �-algebra generated by the topology of X.11 Let (Wn)n
be a sequence of open subsets of X; a sequence (Vn)n of open subsets of X is called W{
computable if there is a c.e. set A � N such that Vn =

S
�(n;i)2AWi for all n 2 N.12 Next

we de�ne W 0
i = W 0(i) =

T
j2D(1+i)

Wj , for all i 2 N, where we have used the bijection

de�ned on D : N ! fE j E � N is �niteg by D�1(E) =
P

i2E 2i. Note that if B is
a numbering of a subbase of a topology, then B0 is a numbering of a base of the same
topology. A randomness test on X is a B0{computable sequence (Wn)n of open sets with
�(Wn) � 2�n; for all n 2 N.

An element x 2 X is called random if x 62
T
n2NWn, for every randomness

test (Wn)n on X.

Consider now the topological space �! and the numbering B of a subbase (in fact a
base) of the topology is given by Bi = �(i)�! = fp 2 �! j �(i) is a pre�x of pg, where
� : N ! �� is the length{lexicographical bijection between N and the set ��. The last
de�nition reads:

8Sometimes PROG is denoted by K:
9Let's illustrate the Coding Theorem with an example from Cover and Thomas [21]. We look at a

monkey trying to \type" the entire work of Shakespeare, of say 1; 000; 000 bits long. If the monkey types
\at random" on a dumb typewriter, the probability that the result is Shakespeare's work is 2�1;000;000 ;
if the monkey sits in front of a computer terminal, then the algorithmic probability that it types the
same text is 2�H(Shakespeare) � 2�250;000 ; an event with an extremely small chance to happen, but still
more likely than the �rst event. The use of the typewriter reproduces exactly the input produced by the
typing while a computer \runs" the input and produces an output. Consequently, a random input to a
computer is much more likely to produce an \interesting" output than a \random" input to a typewriter.
Is this a way to create \sense" out of \nonsense"?

10We are now in a position to come back to Occam's Razor principle by calculating the probability of
seeing a 1 next after having obtained n 1's in the experiment described in the �rst section. This conditional
probability is the ratio of the probability of all sequences with an initial string 1n+1 (i.e., the cylinder
1n+1�!) to the probability of all sequences having an initial string 1n: The canonical programs carry most
of the probability, hence we can approximate the probability that the next bit is a 1 with the probability
of the program \PRINT 1's forever". Consequently, �yP (1

n+1y�!) � P (111 : : : 11 : : :) = c > 0: It is
more di�cult to estimate the probability that next bit is 0 which is 1=(cn + 1), cf. Cover and Thomas
[21], p. 169.

11Recall that a subbase of a topology is a set � of open sets such that the sets
T
W2E

W , for �nite,
nonempty sets E � � form a basis of the topology.

12�(n; i) is a computable bijection, for exmple, �(n; i) = (n+ i)(n+ i+ 1)=2 + i.
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A sequence is Hertling{Weihrauch random if it is random in the space (�!; B; �).

All the above approaches lead to the same class of sequences:

Theorem 2 Let x 2 �!. The following statements are equivalent:

1. The sequence x is Martin-L�of random.

2. The sequence x is Chaitin random.

3. The sequence x is Schnorr random.

4. The sequence x is Solovay random.

5. The sequence x is Hertling{Weihrauch random.

In what follows we will simply call \random" a sequence satisfying one of the above
equivalent conditions. Theorem 2 motivates the following \randomness hypothesis":

A sequence is \algorithmically random" if it satis�es one of the equivalent
conditions in Theorem 2.

Various arguments supporting this hypothesis, e.g., random sequences are Borel ab-
solutely normal13 are analysed in Calude [2]. Here is another argument due to Fouch�e
[22]: if X � �! is a �0

1 set and has measure one, then it contains at least one random
sequence. In particular, if X is �0

1 set which contains some random sequence, then it has
non-zero measure. So, if a �0

1 event re
ected in some random sequence, then the event
must be probabilistically signi�cant.

3 Information: Quantity vs Structure

In which we contrast the properties of three reals aiming to encode the same amount of
information as the halting problem.

We shall consider three reals 
;�; and �: The �rst real is the halting probability of
U to stop on a program whose bits have been obtained by tossing a fair coin, Chaitin's

 number:14


 =
X

x2��

PU (x) =
X

x2PROG

2�jxj:

The second one is the halting problem characteristic real: put string(i) the ith binary
string in quasi-lexicographical and de�ne

� =
X

string(i)2PROG

2�i:

Finally, let time(string(i)) be the running time of the computation U(string(i))15,
and de�ne the third real

13Every string appears in a random sequence with the probability 2�n, where n is the length of the
string.

14For more about 
 see Bennett [1], Calude, Salomaa [10], Calude, Meyerstein [9], Rozenberg, Salomaa
[31].

15time(string(i)) is a positive integer in case string(i) 2 PROG, and time(string(i)) = 1; in the
opposite case.
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� =
X

i

2�i=time(string(i)): (1)

All three numbers can be computed from PROG: Can we do it better, i.e., compute
some of these reals without using PROG? The answer is negative for 
 (cf. Chaitin
[13]):

Theorem 3 
 is random.

Proof. 16 Let f be a computable one-to-one function which enumerates PROG, the
domain of U . Let !k =

Pk
j=0 2

�jf(j)j. Clearly, (!k) is an increasing sequence of rationals
converging to 
. Consider the binary expansion of 
 = 0:
0
1 � � �.

We de�ne a self-delimiting Turing machine M as follows: on input x 2 �� com-
pute y = U(x) and the smallest number (if such a number exists) t with !t � 0:y.
Let M(x) be the �rst (in quasi-lexicographical order) string not belonging to the set
fU(f(0)); U(f(1)); : : : ; U(f(t))g if both y and t exist, and M(x) = 1 if U(x) = 1 or t
does not exist.

If x 2 PROGM and x0 is a word with U(x) = U(x0), then M(x) =M(x0). Applying
this to an arbitrary x 2 PROGM and the canonical program x0 = (U(x))� of U(x) yields

HM (M(x)) � jx0j = H(U(x)) : (2)

Furthermore, by the universality of U; there is a constant c > 0 with

H(M(x)) � HM (M(x)) + c (3)

for all x 2 PROGM . Now, �x n and assume that x is a word with U(x) = 
0
1 � � �
n�1.
Then M(x) < 1. Let t be the smallest non-negative integer (computed in the second
step of M) with !t � 0:
0
1 � � �
n�1. We have

0:
0
1 � � �
n�1 � !t < !t +
1X

s=t+1

2�jf(s)j = 
 � 0:
0
1 � � �
n�1 + 2�n :

Hence,
P1

s=t+1 2
�jf(s)j � 2�n. This implies jf(s)j � n, for every s � t + 1. From the

construction of M we conclude that HU(M(x)) � n. Using (3) and (2) we obtain

n � H(M(x)) � HM(M(x)) + c � H(U(x)) + c = H(
0
1 � � �
n�1) + c ;

which proves that the sequence 
0
1 � � � is random.

What about �? It is not di�cult to see that � is not computable (otherwise we
could use it to test whether string(i) is in PROG, contradicting the undecidability
of the halting problem): again we need PROGU to compute �: Is � random? The
answer is negative as the following Diophantine argument (due to Chaitin [16]) shows.
Using a classical arithmetization we can obtain e�ectively a Diophantine equation17

E(n; x1; : : : ; xm) = 0 with the property that for every natural n, 
n = 1 if and only if
the equation E(n; x1; : : : ; xm) = 0 has in�nitely many solutions in x1; : : : ; xm: A similar
representation can be obtained for � in case we replace the question \the equation
E(n; x1; : : : ; xm) = 0 has in�nitely many solutions" with a weaker question, namely,
\the equation E0(n; x1; : : : ; xm) = 0 has �nitely many solutions", for a suitable equation

16The proof is taken from [7].
17An exponential Diophantine equation is an equation E(a1; : : : ; an; x1; : : : ; xm) = 0 built from non-

negative integers a1; : : : ; an by using only the operations of addition, multiplication and exponentia-
tion.The most famous example of exponential Diophantine equation is Fermat's equation xn + yn = zn,
proven to admit no integer solution greater than 3.
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E0. Indeed, the question whether an arbitrarily given exponential Diophantine equation
E0(n; x1; : : : ; xm) = 0 has �nitely many solutions is undecidable, but the answers to such
questions have no maximal information content because they are not independent. To
see this let's consider such an equation E0(n; x1; : : : ; xm) = 0; with m = 0; 1; 2; : : : ; t� 1;
and consider the binary string b = b0b1b2 : : : bt�1 where biis 0 if the answer corresponding
to m = i is negative and 1 in the opposite case. The quantity of information encoded
by b is about log2 t bits, much less than the length of b which is t. The reason is simple:
knowing how many equations have a positive answer gives enough information to �nd
exactly which equations do have a positive answer. Consequently, � is neither computable
nor random.

The computations of both � and 
 require extra information, for example, the one
given by PROG. If we know � we can compute 
; and conversely, if we know 
 we can
compute �; so, in an informal sense, � encodes the same quantity of information as 
.
However, their structures are quite di�erent. What about �? Obviously, knowing 
 or �
is enough to compute �, because string(i) 2 PROG if and only if time(string(i)) <1:
Is the converse implication true? The answer is negative:

Theorem 4 The real � is computable.

Proof. We construct an algorithm computing, for every positive integer n, the
nth digit of �: The idea is simple: only the terms 2�i=time(string(i)) for which
time(string(i)) = 1 do produce perturbations in (1) because at every �nite step of
the computation they appear to be non-zero when, in fact, they are zero! The solution
is to run all non-stopping programs string(i) enough time such that their cumulated
contribution is too small to a�ect the nth digit of �.

All three numbers, 
;�; and � are c.e., i.e., they are all limits of increasing, com-
putable sequences of rationals18; however, 
 is random (so, non-computable), � is non-
computable, but non-random, while � is even computable.

Let's have a closer analysis of the above numbers. We start by de�ning the concept
of \random real". A real � 2 (0; 1) is random in case its binary expansion is a random
sequence. Actually, the choice of base is irrelevant, cf. Theorem 6.111 in Calude [2]. This
can be seen also by de�ning directly random reals using Hertling-Weihrauch's approach.
To this aim we consider the set of reals R with the usual Lebesgue measure � and
B the numbering of a base of the real line topology de�ned by B�(i;j) = fx 2 R j
jx� �D(i)j < 2�jg;19 where �D(< k; l;m >) = (k� l)2�m is de�ned on the set of dyadic
reals D = fx 2 R j x = (i� j)2�k; for some i; j; kg. For the unit interval we work with
the restriction of the Lebesgue measure and Bi \ [0; 1].

The �rst question is: are there random c.e. reals? Chaitin's 
 number is a �rst
example. Solovay[36] has introduced the notion of 
{like real and proved that every such
number is c.e. and random. To de�ne 
{like reals we need the relation of domination.
Following Solovay we say that the real � dominates the real � (we write � �dom �) if
there are a partial computable function f from rationals to rationals, and a constant c > 0
with the property that if p is a rational number less than �, then f(p) is (de�ned and) less
than �, and satis�es the inequality c(��p) � ��f(p). Informally, � �dom � if there is an
e�ective way to get a good approximation to � from below from any good approximation
to � from below. For c.e. reals domination can also be expressed as follows: a c.e. real �
dominates a c.e. real � if and only if there are two computable, non-decreasing sequences
(ai) and (bi) of rationals and a constant c > 0 such that limn an = �, limn bn = �, and
c(� � an) � � � bn, for all n.

18Equivalently, a real is c.e. if the set of rationals less than it is c.e.
19Recall that � is a computable bijection.
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A real � is 
-like if it is the limit of a universal computable, increasing
sequence of rationals20 (Solovay [36]).

Theorem 5 Let 0 < � < 1. The following conditions are equivalent:

1. The real � is a Chaitin 
 real, i.e., for some universal self-delimiting Turing ma-
chine U , � = 
U .

2. The real � is 
{like.

3. The real � is c.e. and dominates all c.e. reals.

4. There exists a universal computable, increasing sequence of rationals converging to
�.

5. Every computable, increasing sequence of rationals with limit � is universal.

6. The real � is c.e. and random.

The implication 1 =) 2 was proved by Solovay [36]; the equivalence 2 () 3 can
be found in Chaitin [15]; the implication 2 =) 1 and equivalences 2 () 4 () 5 are
proved in Calude, Hertling, Khoussainov, Wang [7]; �nally, the implication 6 ) 2 was
proved by Slaman [32]. Recently, Slaman [33] proved that the measure of any section of
a universal Martin-L�of test W; �(Wn�

!); is 
{like.
Let's now compare the information of an 
-like c.e. real 
 to that of a non-
-like

c.e. real �. Clearly, either 
 contains more information or at least its information is
structured in a more useful way (because we can �nd a good approximation from below
to any c.e. real from a good approximation from below to 
). Sometimes we need to
compute not just an arbitrary approximation (say, of precision 2�n) from below to a
c.e. real, instead, but a special approximation, namely the �rst n digits of its binary
expansion. Is the information in 
 organized in such a way as to guarantee that for
any c.e. real � there exists a total computable function g : N ! N (depending upon
�) such that from the �rst g(n) digits of 
 we can actually compute the �rst n digits
of �? The answer is negative if one demands that the computation is to be done by a
total computable function, but it is positive if we instead work with a partial computable
function.

For a set A � �� we denote by �A the characteristic function of A. For example,
� = �PROG: We say that A is Turing reducible to B (we write A �T B) if there is a
B{oracle Turing machine 'B such that 'B(x) = �A(x). We say that A is weak truth-
table reducible to B (we write A �wtt B) if A �T B via a Turing reduction which
on input x only queries strings of length less than g(x), where g : �� ! N is a �xed
computable function. Finally, A is truth-table reducible to B (we write A �tt B) if
there is a computable sequence of Boolean functions fFxgx2�� , Fx : �rx+1 ! �, such
that for all x, we have �A(x) = Fx(�B(0)�B(1) � � ��B(rx)). Note that in contrast with
tt-reductions, a wtt-reduction may diverge. If r 2 fT, tt, wttg; then A =r B in case
A �r B and B �r A: A c.e. set A is tt(wtt)-complete if PROG �tt A (PROG �wtt A).
See Odifreddi [30] or Soare [34] for more details.

For every in�nite sequence x 2 �!, let Ax = fv 2 �� j 0:v � 0:xg and A#
x =

fstring(n) j xn = 1g. Then, if 0:x is a c.e. real, then Ax is a c.e. set which is Turing

equivalent to A#
x ; however, A

#
x is not necessarily c.e. Now, 0:x �tt 0:y in case A#

x �tt

20A computable, increasing, and converging sequence (ai) of rationals is called universal if for every
computable, increasing and converging sequence (bi) of rationals there exists a number c > 0 such that
c(�� an) � � � bn for all n, where � = limn an and � = limn bn.
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A#
y . It is easy to see that 0:x �tt 0:y if and only if there are two computable functions

g : N! N and F : �� ! �� such that x(n) = F (y(g(n))); for all n.
The following result summarizes the reducibility relations between 
;�;� and

PROG :

Theorem 6 The following statements are true:

1. � 6�dom 
,

2. A
 =T A�K =T �;

3. For every c.e. real �, � �tt �;

4. � 6�tt 
, so 
 is not tt-complete,

5. for any c.e. real 0:x there exist a computable function g and a partial computable
function F with x(n) = F (
(g(n))) for all n; so 
 is wtt-complete.

So, the �tt{preorder has a maximum among the c.e. reals, but this maximum is not 
,
as no random c.e. real is maximal; 
 is maximal for the �tt{preorder. The �rst four
statements come from Calude, Hertling, Khoussainov, Wang [7]; the last statement was
proven in Calude, Nies [8].

A �nal question: Is the compatibility between randomness and computable enumer-
ability jeopardizing the randomness hypothesis (randomness should exclude constructiv-
ity)? The answer is negative: the compatibility is a consequence of the fact that there
is no sequence passing any test of randomness|as discussed in section 2. Note that the
c.e. of 
 is of very little help in computing the digits of 
0;
1; ::: as this set is immune
(cf. Calude, Chit�escu [4]), that is no in�nite subset of it is c.e.
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