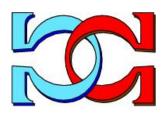


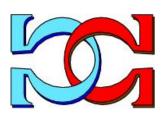
A note on Automatic BAIRE property

Ludwig Staiger

Martin-Luther-Universität Halle-Wittenberg



CDMTCS-584 May 2025, revised November 2025



Centre for Discrete Mathematics and Theoretical Computer Science

A note on Automatic BAIRE property

Ludwig Staiger*

Martin-Luther-Universität Halle-Wittenberg
Institut für Informatik
von-Seckendorff-Platz 1, D–06099 Halle (Saale), Germany

Contents

1	Preliminaries	2
	1.1 Notation	
	1.2 Regular ω -languages	3
	1.3 The Cantor space	3
2	Measure and Category	4
3	Baire property and Automatic Baire property	5
4	Simple counter-examples	7

Abstract

Automatic Baire property is a variant of the usual Baire property which is fulfilled for subsets of the Cantor space accepted by finite automata. We consider the family $\mathcal A$ of all subsets of the Cantor space having the Automatic Baire property. In particular we show that not all finite subsets have the Automatic Baire property, and that already a slight increase of the computational power of the accepting device may lead beyond the class $\mathcal A$.

In [Fin20, Fin21] Finkel introduced an automata-theoretic variant of the topological Baire property for subsets of the Cantor space. He showed

^{*}email: staiger@informatik.uni-halle.de

that this Automatic Baire property is valid for regular ω -languages, that is, for subsets of the Cantor space definable by finite automata.

In this note we investigate which ω -languages beyond regular ones have the Automatic Baire property. We get a full characterisation of ω -languages of first Baire category as well as of finite ω -languages having the Automatic Baire property. In this respect, disjunctive ω -words, that is, ω -words random w.r.t. finite automata in the measure-theoretic approach (cf. [Sta18]) play a major rôle. Here, as a tool, we use the measure-category coincidence for regular ω -languages (see [Sta76], Theorem 3 of [Sta97b], [VV06], or Section 9.4 of [VV12]).

Moreover, we show that, besides definability by finite automata, other computational constraints do not imply Automatic Baire property. To this end we derive ω -languages closed or open in the topology of the Cantor space definable by simple one-counter automata not having the Automatic Baire property.

1 Preliminaries

1.1 Notation

We introduce the notation used throughout the paper. By $\mathbb{N} = \{0, 1, 2, \ldots\}$ we denote the set of natural numbers. Its elements will be usually denoted by letters i, ..., n. Let X be an alphabet of cardinality $|X| \geqslant 2$. Then X^* is the set of finite words on X, including the *empty word e*, and X^{ω} is the set of infinite strings (ω -words) over X. Subsets of X^* will be referred to as *languages* and subsets of X^{ω} as ω -*languages*.

For $w \in X^*$ and $\eta \in X^* \cup X^\omega$ let $w \cdot \eta$ be their *concatenation*. This concatenation product extends in an obvious way to subsets $W \subseteq X^*$ and $B \subseteq X^* \cup X^\omega$. For a language W let $W^* := \bigcup_{i \in \mathbb{N}} W^i$, and $W^\omega := \{w_1 \cdots w_i \cdots : w_i \in W \setminus \{e\}\}$ be the set of infinite strings formed by concatenating non-empty words in W. Furthermore, |w| is the *length* of the word $w \in X^*$ and $\mathbf{pref}(B)$ is the set of all finite prefixes of strings in $B \subseteq X^* \cup X^\omega$. We shall abbreviate $w \in \mathbf{pref}(\{\eta\})$ ($\eta \in X^* \cup X^\omega$) by $w \sqsubseteq \eta$.

An ω -word $\zeta \in X^{\omega}$ is disjunctive (or rich, [Sta97b]) if every $w \in X^*$ is an infix of ζ , that is, $\zeta \in \bigcap_{w \in X^*} X^* \cdot w \cdot X^{\omega}$, and an ω -word $\xi \in X^{\omega}$ is ultimately periodic if there are words $w, v \in X^*$ such that $\xi = w \cdot v^{\omega} = w \cdot v \cdot v \cdot v \cdot v$. The ω -language of all ultimately periodic ω -words will be referred to as Ult.

1.2 Regular ω -languages

As usual, a language $W \subseteq X^*$ is *regular* if it is obtained from finite languages via the operations union, concatenation and star. An ω -language $F \subseteq X^{\omega}$ is *regular* if it is of the form $F = \bigcup_{i=1}^{n} W_i \cdot V_i^{\omega}$ where $n \in \mathbb{N}$ and $W_i, V_i \subseteq X^*$ are regular languages.

We assume the reader to be familiar with the basic facts of the theory of regular languages and finite automata. For more details on ω -languages and regular ω -languages see the books [PP04, TB73] or the papers [Sta97a, Tho90, Wag79].

The following is well-known.

Theorem 1 The family of regular ω -languages is a Boolean algebra, and every non-empty regular ω -language contains an ultimately periodic ω -word.

1.3 The Cantor space

We consider X^{ω} as a topological space (Cantor space). The *closure* of $F \subseteq X^{\omega}$ (smallest closed set containing F) is $\mathfrak{C}(F) := \{\xi : \mathbf{pref}(\{\xi\}) \subseteq \mathbf{pref}(F)\}$. The *open sets* in Cantor space are the ω -languages of the form $W \cdot X^{\omega}$. Countable unions of closed sets are referred to as Σ_2 -sets, their complements as Π_2 -sets. The closure $\mathfrak{C}(F)$ of a regular ω -language $F \subseteq X^{\omega}$ is again regular ([Sta76, Tra62]).

Next we recall some further topological notions, see [Kur66, Oxt80]. An ω -language $F \subseteq X^{\omega}$ is *nowhere dense in* X^{ω} if its closure $\mathcal{C}(F)$ does not contain a non-empty open subset. This property is equivalent to the fact that for all $v \in \mathbf{pref}(F)$ there is a $w \in X^*$ such that $v \cdot w \notin \mathbf{pref}(F)$. If a regular ω -language $F \subseteq X^{\omega}$ is nowhere dense then there is a word $w \in X^*$ such that $F \subseteq X^{\omega} \setminus X^* \cdot w \cdot X^{\omega}$ [Sta76].

Moreover, a subset $F \subseteq X^{\omega}$ is *meagre* or of *first Baire category* if it is a countable union of nowhere dense sets.

Any subset of a nowhere dense set is nowhere dense, hence, every subset of a meagre set is again meagre. A finite union of nowhere dense sets is nowhere dense, and a countable union of meagre sets is meagre.

The following property is a consequence of the fact that in Cantor space no non-empty open subset is of first Baire category.

Property 2 Let $F \subseteq X^{\omega}$ be of first Baire category and $E \subseteq X^{\omega}$ be open. If their symmetric difference $F \Delta E$ is of first Baire category then $E = \emptyset$.

2 Measure and Category

In this section we consider the relation between measures on Cantor space and topological density.

For every $w \in X^*$ the ball $w \cdot X^{\omega} = \bigcup_{x \in X} wx \cdot X^{\omega}$ is a disjoint union of its sub-balls. Thus $\mu(w \cdot X^{\omega}) = \sum_{x \in X} \mu(wx \cdot X^{\omega})$ for every measure μ on X^{ω} . The *support* of a measure μ on X^{ω} , **supp**(μ), is the smallest closed subset of X^{ω} such that $\mu(\mathbf{supp}(\mu)) = \mu(X^{\omega})$.

As measures μ on X^{ω} we consider finite non-null measures ($0 < \mu(X^{\omega}) < \infty$) having the following property that the measure of a non-null sub-ball $wx \cdot X^{\omega}$ does not deviate too much from $\mu(w \cdot X^{\omega})$ (cf. [Sta97b, VV12]).

Definition 1 (Balance condition) A measure μ on X^{ω} is referred to as *balanced* (or *bounded away from zero* [VV12]) provided there is a constant $c_{\mu} > 0$ depending only on μ such that for all words $w \in X^*$ and every $x \in X$ we have $\mu(wx \cdot X^{\omega}) = 0$ or $c_{\mu} \cdot \mu(w \cdot X^{\omega}) \leq \mu(wx \cdot X^{\omega})$.

In the book by Oxtoby [Oxt80] analogies between topological density and measure, in particular, the "duality" between measure and category, are discussed. The papers [Sta76, Sta97b, VV06] and [VV12] show that for regular ω -languages in Cantor space measure and category coincide.

Theorem 3 (Theorem 3 of [Sta97b]) *Let* $F \subseteq X^{\omega}$ *be a regular* ω *-language. Then the following conditions are equivalent:*

- 1. No $\zeta \in F$ is a disjunctive ω -word.
- 2. F is of first Baire category.
- 3. For all measures μ with $\text{supp}(\mu) = X^{\omega}$ satisfying the balance condition it holds $\mu(F) = 0$.
- 4. There is a measure μ with $supp(\mu) = X^{\omega}$ satisfying the balance condition such that $\mu(F) = 0$.

Items 1 and 2 of Theorem 3 show that the union of all regular ω -languages of first Baire category \mathbf{R}_0 is the complement of the set of disjunctive ω -words (see e.g. Korollar 8 of [Sta76]).

$$\mathbf{R}_0 = \bigcup_{w \in X^*} (X^\omega \setminus X^* \cdot w \cdot X^\omega) \tag{1}$$

3 Baire property and Automatic Baire property

Automatic Baire property was introduced by Finkel [Fin20, Fin21]. Here we define this variant of the usual Baire property and derive several of its properties. First we recall the following (see e.g. [Kur66, Oxt80]).

Definition 2 A subset $F \subseteq X^{\omega}$ has the *Baire property* if there is an open set $E \subseteq X^{\omega}$ such that $F \Delta E$ is of first Baire category.

Theorem 4 Every Borel set of the Cantor space has the Baire property.

The Automatic Baire property requires the sets E and F Δ E to be restricted in some sense to regular ω -languages.

Definition 3 (Automatic Baire property) A subset $F \subseteq X^{\omega}$ has the *Automatic Baire property* if there are regular ω -languages $E, F' \subseteq X^{\omega}$ where E is open and F' is a Σ_2 -set of first Baire category such that

$$\mathsf{F}\,\Delta\,\mathsf{E}\subseteq\mathsf{F}'\,. \tag{2}$$

Then it holds the following.

Theorem 5 ([Fin20, Fin21]) Every regular ω -language has the Automatic Baire property.

Next we show that in Definition 3 the requirement that F' be a Σ_2 -set can be dropped.

Corollary 6 Let F be a regular ω -language of first Baire category. Then there is a regular ω -language F' of first Baire category such that $F \subseteq F'$ and F' is a Σ_2 -set.

Proof. Since F is regular, in view of Theorem 5 there are regular ω -languages E, F' $\subseteq X^{\omega}$ such that E is open, F' a Σ_2 -set of first Baire category and F Δ E \subseteq F'. Now the assertion follows from Property 2.

We derive some properties of the class $\mathcal A$ of all ω -languages having the Automatic Baire property. It is obvious that every ω -language which has the Automatic Baire property has also the Baire property.

Lemma 7 A is a Boolean algebra.

Proof. This follows from $(F_1 \cup F_2) \Delta (E_1 \cup E_2) \subseteq (F_1 \Delta E_1) \cup (F_2 \Delta E_2)$ and $(X^{\omega} \setminus F) \Delta (X^{\omega} \setminus E) = F \Delta E$ and the fact that the union of two regular ω -languages of first Baire category is also regular and of first Baire category.

We derive a necessary condition for sets to have the Automatic Baire property.

Lemma 8 Let $F \Delta E \subseteq F'$ where $E \subseteq X^{\omega}$ is open and $F' \subseteq X^{\omega}$ a regular ω -language of first Baire category. Then for every measure μ with support $\operatorname{supp}(\mu) = X^{\omega}$ satisfying the balance condition it holds $\mu(F) = 0$ if and only if F is of first Baire category.

Proof. Let $F \Delta E \subseteq F'$ where E is open and F' is regular and of first Baire category. According to Theorem 3 we have $\mu(F') = 0$.

If $\mu(F)=0$ then $\mu(E)=\mu(E)-\mu(F)\leqslant \mu(E\smallsetminus F)\leqslant \mu(E\mathrel{\Delta} F)\leqslant \mu(F')=0$ implies $E=\emptyset$. Thus $F=E\mathrel{\Delta} F$ is of first Baire category.

If F and E Δ F are of first Baire category then $E \subseteq (E \Delta F) \cup F$ is also of first Baire category. Thus $E = \emptyset$. Consequently, $\mu(F) = \mu(E \Delta F) = 0$.

Remark. Observe that in Lemma 8 we did not use the fact that the open set E is regular.

The proof of Lemma 8 shows also the following.

Corollary 9 Let $F \subseteq X^{\omega}$ be of first Baire category. Then $F \in A$ if and only if $F \subseteq F'$ for some regular ω -language of first Baire category.

Finite ω -languages in \mathcal{A} are characterised as follows.

Corollary 10 Let $F \subseteq X^{\omega}$ be finite. Then $F \in \mathcal{A}$ if and only if F does not contain a disjunctive ω -word.

Proof. If F is finite then F is of first Baire category. Now Corollary 9 and Theorem 3 imply that F does not contain a disjunctive ω -word.

If F is finite and does not contain a disjunctive ω -word then for every $\xi \in F$ there is a w_{ξ} such that $\xi \notin X^* \cdot w_{\xi} \cdot X^{\omega}$. Then $F \subseteq \bigcup_{\xi \in F} (X^{\omega} \setminus X^* \cdot w_{\xi} \cdot X^{\omega})$ which is a regular and nowhere dense ω -language.

Besides finite ω -languages containing disjunctive ω -words, examples of sets not satisfying the Automatic Baire property are the following ones.

Lemma 11 If $F \subseteq X^{\omega}$, $Ult \subseteq F \subseteq \mathbf{R}_0$, then F does not have the Automatic Baire property.

Proof. Assume $F \Delta E \subseteq F'$ where E is open and F' is a regular ω -language of first Baire category. As $F \subseteq \mathbf{R}_0$, the set F is of first Baire category. Now Property 2 shows that $E = \emptyset$.

Then Ult \subseteq F \subseteq F'. Since F' is regular, we have F' = X^{ω} which is not of first Baire category.

Corollary 12 *The family* A *is not closed under countable union.*

Proof. As $\mathbf{R}_0 = \bigcup_{w \in X^*} (X^w \setminus X^* \cdot w \cdot X^w)$ and every ω -language $X^w \setminus X^* \cdot w \cdot X^w$ is regular and nowhere dense in X^w (cf. [Sta76]), the assertion follows immediately.

4 Simple counter-examples

In Corollary 10 we have seen that there are even finite ω -languages having the Baire property but not the Automatic Baire property. Those finite ω -languages contain ω -words $\xi \notin \text{Ult}$ and are, therefore, not context-free (e.g. [EH93, Sta97a]), that is accepted by push-down automata.

In this part we show that also a slight increase of the computational power of accepting devices results in open or closed ω -languages not having the Automatic Baire property.

As measure in Cantor space we use the equidistribution. For a language $W \subseteq X^*$ we set $\sigma_X(W) := \sum_{w \in W} |X|^{-|w|}$. Then $\mu_=(W \cdot X^\omega) = \sigma_X(W)$, if $W \subseteq X^*$ prefix-free, that is, $w \sqsubseteq v$ and $w, v \in W$ imply w = v.

Since $\sigma_X(W)$ is a rational number for regular languages $W \subseteq X^*$, we have the following.

Theorem 13 (Theorem 4.16 of [Tak01]) The measure $\mu_{=}(F)$ of a regular ω -language is rational.

We define the language $V_3 \subseteq \{a,b\}^*$ by the equation $V_3 = a \cup b \cdot V_3^3$. This language is prefix-free and satisfies the condition that $w \cdot a^{3 \cdot |w|} \in V_3 \cdot \{a,b\}^*$ when $w \in \{a,b\}^*$ (cf. Proposition 1.1 of [Sta05]). Moreover, it can be accepted by a deterministic one-counter automaton using empty-storage acceptance (cf. Example 6.3 of [ABB97]). Accordingly, the ω -languages $V_3 \cdot \{a,b\}^{\omega}$, $F := \{a,b\}^{\omega} \setminus V_3 \cdot \{a,b\}^{\omega}$ and $V_3 \cdot c \cdot \{a,b,c\}^{\omega}$ are also accepted by deterministic one-counter automata [EH93, Sta97a].

Since V_3 is prefix-free, the measure of these ω -languages can be easily computed from the value $\sigma_X(V_3)$ which in turn is the minimum positive solution $t_{|X|}$ of the equation (cf. Theorem 3.1 of [Sta05])

$$t = |X|^{-1} \cdot (1 + t^3). {3}$$

The minimum positive solutions $t_2 = \frac{\sqrt{5}-1}{2} < 1$ and $0 < t_3 < 1$ are irrational¹.

The first example presents an open ω -language accepted by a deterministic one-counter automaton not satisfying the Automatic Baire property.

Example 1 We consider the open ω -language $F_1 := V_3 \cdot c \cdot \{a,b,c\}^{\omega} \subseteq \{a,b,c\}^{\omega}$. Since $\mu_=(\{a,b\}^{\omega}) = 0$ in $\{a,b,c\}^{\omega}$, we obtain $\mu_=(F_1) = \mu_=(F_1 \cup \{a,b\}^{\omega}) = t_3/3$ which is irrational. Observe that $F_1 \cup \{a,b\}^{\omega}$ is closed.

If $E\subseteq\{a,b,c\}^\omega$ is open and regular then $\mathfrak{C}(E)\smallsetminus E$ is regular and nowhere dense, hence $\mu_=(\mathfrak{C}(E)\smallsetminus E)=0$ by Theorem 3. Now according to Theorem 13 $\mu_=(E)=\mu_=(\mathfrak{C}(E))$ is rational. Thus $\mu_=(F_1)\neq\mu_=(E)$.

If $\mu_{=}(F_1) > \mu_{=}(E) = \mu_{=}(\mathcal{C}(E))$ then $F_1 \smallsetminus \mathcal{C}(E)$ is non-empty and open; if $\mu_{=}(E) > \mu_{=}(F_1) = \mu_{=}(F_1 \cup \{a,b\}^\omega)$ then $E \smallsetminus (F_1 \cup \{a,b\}^\omega) \subseteq E \smallsetminus F_1$ is non-empty and open. In both cases $F_1 \Delta E$ contains a non-empty open subset, hence F_1 cannot have the Automatic Baire property.

Next we present a closed ω -language accepted by a deterministic onecounter automaton not having the Automatic Baire property.

Example 2 (Example 3 of [Sta97b]) Define $F_2 = \{a, b\}^{\omega} \setminus V_3 \cdot \{a, b\}^{\omega}$ as a subset of the space $X^{\omega} = \{a, b\}^{\omega}$. Then F_2 is closed and has, according to the value of t_2 , measure $\mu_{=}(F_2) = 1 - t_2 = \frac{3 - \sqrt{5}}{2} > 0$. Since $w \cdot a^{3 \cdot |w|} \in V_3 \cdot \{a, b\}^* \subseteq X^* \setminus \mathbf{pref}(F_2)$ for $w \in \{a, b\}^*$, F_2 is nowhere dense.

The measure $\mu_{=}$ trivially satisfies the balance condition. Now Lemma 8 shows that F_2 does not have the Automatic Baire property.

ORCID

Ludwig Staiger - https://orcid.org/0000-0003-3810-9303

References

[ABB97] Jean-Michel Autebert, Jean Berstel, and Luc Boasson. Contextfree languages and pushdown automata. In Grzegorz Rozenberg

 $^{^1}$ In case of t_3 assume $t_3=p/q$ where $p\neq q$ are natural numbers having no common prime divisor. Then Eq. (3) yields $3\cdot p\cdot q^2=p^3+q^3$ which is impossible.

- and Arto Salomaa, editors, *Handbook of Formal Languages*, volume 1, pages 111–174. Springer-Verlag, Berlin, 1997. https://doi.org/10.1007/978-3-642-59136-5_3.
- [EH93] Joost Engelfriet and Hendrik Jan Hoogeboom. X-automata on ω -words. *Theor. Comput. Sci.*, 110(1):1–51, 1993.
- [Fin20] Olivier Finkel. The automatic Baire property and an effective property of ω-rational functions. In Alberto Leporati, Carlos Martín-Vide, Dana Shapira, and Claudio Zandron, editors, *Language and Automata Theory and Applications*, Lect. Notes Comput. Sci., pages 303–314. Springer-Verlag, Cham, 2020. https://doi.org/10.1007/978-3-030-40608-0_21.
- [Fin21] Olivier Finkel. Two effective properties of ω -rational functions. *Int. J. Found. Comput. Sci.*, 32(7):901–920, 2021.
- [Kur66] Kazimierz Kuratowski. *Topology. Vol. I.* Państwowe Wydawnictwo Naukowe, Warsaw, 1966.
- [Oxt80] John C. Oxtoby. *Measure and Category*, volume 2 of *Graduate Texts in Mathematics*. Springer-Verlag, New York-Berlin, 1980.
- [PP04] Dominique Perrin and Jean-Éric Pin. *Infinite Words. Automata, Semigroups, Logic and Games*. Elsevier/Academic Press, Amsterdam, 2004.
- [Sta76] Ludwig Staiger. Reguläre Nullmengen. *Elektron. Informationsverarbeit. Kybernetik*, 12(6):307–311, 1976.
- [Sta97a] Ludwig Staiger. ω-languages. In Grzegorz Rozenberg and Arto Salomaa, editors, *Handbook of Formal Languages*, volume 3, pages 339–387. Springer-Verlag, Berlin, 1997. https://doi.org/10.1007/978-3-642-59126-6_6.
- [Sta97b] Ludwig Staiger. Rich omega-words and monadic second-order arithmetic. In Mogens Nielsen and Wolfgang Thomas, editors, *Computer Science Logic*, volume 1414 of *Lect. Notes Comput. Sci.*, pages 478–490. Springer-Verlag, Berlin, 1997. https://doi.org/10.1007/BFb0028032.

[Sta05] Ludwig Staiger. The entropy of Łukasiewicz-languages. *Theor. Inform. Appl.*, 39(4):621–639, 2005.

- [Sta18] Ludwig Staiger. Finite automata and randomness. In Stavros Konstantinidis and Giovanni Pighizzini, editors, *Descriptional Complexity of Formal Systems*, volume 10952 of *Lect. Notes Comput. Sci.*, pages 1–10. Springer-Verlag, Cham, 2018. https://doi.org/10.1007/978-3-319-94631-3_1.
- [Tak01] Izumi Takeuti. The measure of an omega regular language is rational. Sūrikaisekikenkyūsho Kōkyūroku (Algebraic semigroups, formal languages and computation (Japanese)), (1222):114–122, 2001. https://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1222-19.pdf.
- [TB73] Boris A. Trakhtenbrot and Yan M. Barzdiń. *Finite automata*. North-Holland, Amsterdam, 1973.
- [Tho90] Wolfgang Thomas. Automata on infinite objects. In Jan van Leeuwen, editor, *Handbook of Theoretical Computer Science*, volume B, pages 133–191. Elsevier, Amsterdam, 1990.
- [Tra62] Boris A. Trakhtenbrot. Finite automata and the logic of one-place predicates. *Sib. Mat. Zh.*, 3:103–131, 1962. (Russian).
- [VV06] Daniele Varacca and Hagen Völzer. Temporal logics and model checking for fairly correct systems. In *21th IEEE Symposium* on Logic in Computer Science (LICS 2006), pages 389–398. IEEE Computer Society, 2006.
- [VV12] Hagen Völzer and Daniele Varacca. Defining fairness in reactive and concurrent systems. *J. ACM*, 59(3):Art. 13, 1–37, 2012.
- [Wag79] Klaus Wagner. On ω -regular sets. *Inform. and Control*, 43(2):123–177, 1979.