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Abstract

Automatic Baire property is a variant of the usual Baire property
which is fulfilled for subsets of the Cantor space accepted by finite
automata. We consider the family A of all subsets of the Cantor space
having the Automatic Baire property. In particular we show that not
all finite subsets have the Automatic Baire property, and that already
a slight increase of the computational power of the accepting device
may lead beyond the class A.

In [Fin20, Fin21] Finkel introduced an automata-theoretic variant of
the topological Baire property for subsets of the Cantor space. He showed
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that this Automatic Baire property is valid for regular ω-languages, that is,
for subsets of the Cantor space definable by finite automata.

In this note we investigate whichω-languages beyond regular ones have
the Automatic Baire property. We get a full characterisation ofω-languages
of first Baire category as well as of finiteω-languages having the Automatic
Baire property. In this respect, disjunctive ω-words, that is, ω-words ran-
dom w.r.t. finite automata in the measure-theoretic approach (cf. [Sta18])
play a major rôle. Here, as a tool, we use the measure-category coincidence
for regular ω-languages (see [Sta76], Theorem 3 of [Sta97b], [VV06], or
Section 9.4 of [VV12]).

Moreover, we show that, besides definability by finite automata, other
computational constraints do not imply Automatic Baire property. To this
end we derive ω-languages closed or open in the topology of the Cantor
space definable by simple one-counter automata not having the Automatic
Baire property.

1 Preliminaries

1.1 Notation

We introduce the notation used throughout the paper. By N = {0, 1, 2, . . .}
we denote the set of natural numbers. Its elements will be usually denoted
by letters i, . . . ,n. Let X be an alphabet of cardinality |X| > 2. Then X∗ is
the set of finite words on X, including the empty word e, and Xω is the set
of infinite strings (ω-words) over X. Subsets of X∗ will be referred to as
languages and subsets of Xω as ω-languages.

For w ∈ X∗ and η ∈ X∗ ∪ Xω let w · η be their concatenation. This
concatenation product extends in an obvious way to subsets W ⊆ X∗

and B ⊆ X∗ ∪ Xω. For a language W let W∗ :=
⋃
i∈NW

i, and Wω :=

{w1 · · ·wi · · · : wi ∈Wr{e}} be the set of infinite strings formed by concate-
nating non-empty words in W. Furthermore, |w| is the length of the word
w ∈ X∗ and pref(B) is the set of all finite prefixes of strings in B ⊆ X∗∪Xω.
We shall abbreviate w ∈ pref({η}) (η ∈ X∗ ∪ Xω) by w v η.

Anω-word ζ ∈ Xω is disjunctive (or rich, [Sta97b]) if everyw ∈ X∗ is an
infix of ζ, that is, ζ ∈

⋂
w∈X∗ X

∗ ·w ·Xω, and anω-word ξ ∈ Xω is ultimately
periodic if there are words w, v ∈ X∗ such that ξ = w · vω = w · v · v · · ·. The
ω-language of all ultimately periodic ω-words will be referred to as Ult.
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1.2 Regular ω-languages

As usual, a language W ⊆ X∗ is regular if it is obtained from finite lan-
guages via the operations union, concatenation and star. An ω-language
F ⊆ Xω is regular if it is of the form F =

⋃n
i=1Wi · Vωi where n ∈ N and

Wi,Vi ⊆ X∗ are regular languages.
We assume the reader to be familiar with the basic facts of the the-

ory of regular languages and finite automata. For more details on ω-
languages and regular ω-languages see the books [PP04, TB73] or the
papers [Sta97a, Tho90, Wag79].

The following is well-known.

Theorem 1 The family of regular ω-languages is a Boolean algebra, and
every non-empty regularω-language contains an ultimately periodicω-word.

1.3 The Cantor space

We consider Xω as a topological space (Cantor space). The closure of F ⊆
Xω (smallest closed set containing F) is C(F) := {ξ : pref({ξ}) ⊆ pref(F)}.
The open sets in Cantor space are the ω-languages of the form W · Xω.
Countable unions of closed sets are referred to as Σ2-sets, their comple-
ments as Π2-sets. The closure C(F) of a regular ω-language F ⊆ Xω is again
regular ([Sta76, Tra62]).

Next we recall some further topological notions, see [Kur66, Oxt80].
An ω-language F ⊆ Xω is nowhere dense in Xω if its closure C(F) does not
contain a non-empty open subset. This property is equivalent to the fact
that for all v ∈ pref(F) there is a w ∈ X∗ such that v · w /∈ pref(F). If a
regular ω-language F ⊆ Xω is nowhere dense then there is a word w ∈ X∗
such that F ⊆ Xω r X∗ ·w · Xω [Sta76].

Moreover, a subset F ⊆ Xω is meagre or of first Baire category if it is a
countable union of nowhere dense sets.

Any subset of a nowhere dense set is nowhere dense, hence, every sub-
set of a meagre set is again meagre. A finite union of nowhere dense sets is
nowhere dense, and a countable union of meagre sets is meagre.

The following property is a consequence of the fact that in Cantor space
no non-empty open subset is of first Baire category.

Property 2 Let F ⊆ Xω be of first Baire category and E ⊆ Xω be open. If
their symmetric difference F ∆ E is of first Baire category then E = ∅.
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2 Measure and Category

In this section we consider the relation between measures on Cantor space
and topological density.

For every w ∈ X∗ the ball w · Xω =
⋃
x∈Xwx · Xω is a disjoint union

of its sub-balls. Thus µ(w · Xω) =
∑
x∈X µ(wx · Xω) for every measure µ

on Xω. The support of a measure µ on Xω, supp(µ), is the smallest closed
subset of Xω such that µ(supp(µ)) = µ(Xω).

As measures µ on Xω we consider finite non-null measures (0 < µ(Xω) <∞) having the following property that the measure of a non-null sub-ball
wx · Xω does not deviate too much from µ(w · Xω) (cf. [Sta97b, VV12]).

Definition 1 (Balance condition) A measure µ on Xω is referred to as bal-
anced (or bounded away from zero [VV12]) provided there is a constant
cµ > 0 depending only on µ such that for all words w ∈ X∗ and every
x ∈ X we have µ(wx · Xω) = 0 or cµ · µ(w · Xω) 6 µ(wx · Xω).

In the book by Oxtoby [Oxt80] analogies between topological density
and measure, in particular, the “duality” between measure and category,
are discussed. The papers [Sta76, Sta97b, VV06] and [VV12] show that for
regular ω-languages in Cantor space measure and category coincide.

Theorem 3 (Theorem 3 of [Sta97b]) Let F ⊆ Xω be a regularω-language.
Then the following conditions are equivalent:

1. No ζ ∈ F is a disjunctive ω-word.

2. F is of first Baire category.

3. For all measures µ with supp(µ) = Xω satisfying the balance condition
it holds µ(F) = 0.

4. There is a measure µ with supp(µ) = Xω satisfying the balance condi-
tion such that µ(F) = 0.

Items 1 and 2 of Theorem 3 show that the union of all regularω-languages
of first Baire category R0 is the complement of the set of disjunctive ω-
words (see e.g. Korollar 8 of [Sta76]).

R0 =
⋃
w∈X∗

(Xω r X∗ ·w · Xω) (1)
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3 Baire property and Automatic Baire property

Automatic Baire property was introduced by Finkel [Fin20, Fin21]. Here
we define this variant of the usual Baire property and derive several of its
properties. First we recall the following (see e.g. [Kur66, Oxt80]).

Definition 2 A subset F ⊆ Xω has the Baire property if there is an open set
E ⊆ Xω such that F ∆ E is of first Baire category.

Theorem 4 Every Borel set of the Cantor space has the Baire property.

The Automatic Baire property requires the sets E and F ∆ E to be restricted
in some sense to regular ω-languages.

Definition 3 (Automatic Baire property) A subset F ⊆ Xω has the Auto-
matic Baire property if there are regular ω-languages E, F ′ ⊆ Xω where E is
open and F ′ is a Σ2-set of first Baire category such that

F ∆ E ⊆ F ′ . (2)

Then it holds the following.

Theorem 5 ([Fin20, Fin21]) Every regular ω-language has the Automatic
Baire property.

Next we show that in Definition 3 the requirement that F ′ be a Σ2-set can
be dropped.

Corollary 6 Let F be a regular ω-language of first Baire category. Then there
is a regular ω-language F ′ of first Baire category such that F ⊆ F ′ and F ′ is a
Σ2-set.

Proof. Since F is regular, in view of Theorem 5 there are regular ω-lan-
guages E, F ′ ⊆ Xω such that E is open, F ′ a Σ2-set of first Baire category
and F ∆ E ⊆ F ′. Now the assertion follows from Property 2. o

We derive some properties of the class A of all ω-languages having the
Automatic Baire property. It is obvious that every ω-language which has
the Automatic Baire property has also the Baire property.

Lemma 7 A is a Boolean algebra.

Proof. This follows from (F1 ∪ F2) ∆ (E1 ∪ E2) ⊆ (F1 ∆ E1) ∪ (F2 ∆ E2) and
(Xω r F) ∆ (Xω r E) = F ∆ E and the fact that the union of two regular ω-
languages of first Baire category is also regular and of first Baire category.

o
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We derive a necessary condition for sets to have the Automatic Baire
property.

Lemma 8 Let F ∆ E ⊆ F ′ where E ⊆ Xω is open and F ′ ⊆ Xω a regular
ω-language of first Baire category. Then for every measure µ with support
supp(µ) = Xω satisfying the balance condition it holds µ(F) = 0 if and only
if F is of first Baire category.

Proof. Let F ∆ E ⊆ F ′ where E is open and F ′ is regular and of first Baire
category. According to Theorem 3 we have µ(F ′) = 0.

If µ(F) = 0 then µ(E) = µ(E) − µ(F) 6 µ(Er F) 6 µ(E ∆ F) 6 µ(F ′) = 0
implies E = ∅. Thus F = E ∆ F is of first Baire category.

If F and E ∆ F are of first Baire category then E ⊆ (E ∆ F) ∪ F is also of
first Baire category. Thus E = ∅. Consequently, µ(F) = µ(E ∆ F) = 0. o

Remark. Observe that in Lemma 8 we did not use the fact that the open
set E is regular.
The proof of Lemma 8 shows also the following.

Corollary 9 Let F ⊆ Xω be of first Baire category. Then F ∈ A if and only if
F ⊆ F ′ for some regular ω-language of first Baire category.

Finite ω-languages in A are characterised as follows.

Corollary 10 Let F ⊆ Xω be finite. Then F ∈ A if and only if F does not
contain a disjunctive ω-word.

Proof. If F is finite then F is of first Baire category. Now Corollary 9 and
Theorem 3 imply that F does not contain a disjunctive ω-word.

If F is finite and does not contain a disjunctiveω-word then for every ξ ∈
F there is a wξ such that ξ /∈ X∗ ·wξ ·Xω. Then F ⊆

⋃
ξ∈F(X

ωrX∗ ·wξ ·Xω)
which is a regular and nowhere dense ω-language. o

Besides finite ω-languages containing disjunctive ω-words, examples of
sets not satisfying the Automatic Baire property are the following ones.

Lemma 11 If F ⊆ Xω, Ult ⊆ F ⊆ R0, then F does not have the Automatic
Baire property.

Proof. Assume F ∆ E ⊆ F ′ where E is open and F ′ is a regular ω-language
of first Baire category. As F ⊆ R0, the set F is of first Baire category. Now
Property 2 shows that E = ∅.
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Then Ult ⊆ F ⊆ F ′. Since F ′ is regular, we have F ′ = Xω which is not of
first Baire category. o

Corollary 12 The family A is not closed under countable union.

Proof. As R0 =
⋃
w∈X∗(X

ωrX∗ ·w ·Xω) and everyω-language XωrX∗ ·w ·
Xω is regular and nowhere dense in Xω (cf. [Sta76]), the assertion follows
immediately. o

4 Simple counter-examples

In Corollary 10 we have seen that there are even finite ω-languages hav-
ing the Baire property but not the Automatic Baire property. Those finite
ω-languages contain ω-words ξ /∈ Ult and are, therefore, not context-free
(e.g. [EH93, Sta97a]), that is accepted by push-down automata.

In this part we show that also a slight increase of the computational
power of accepting devices results in open or closed ω-languages not hav-
ing the Automatic Baire property.

As measure in Cantor space we use the equidistribution. For a language
W ⊆ X∗ we set σX(W) :=

∑
w∈W |X|−|w|. Then µ=(W · Xω) = σX(W), if

W ⊆ X∗ prefix-free, that is, w v v and w, v ∈W imply w = v.
Since σX(W) is a rational number for regular languages W ⊆ X∗, we

have the following.

Theorem 13 (Theorem 4.16 of [Tak01]) The measure µ=(F) of a regular
ω-language is rational.

We define the language V3 ⊆ {a,b}∗ by the equation V3 = a∪b·V3
3 . This

language is prefix-free and satisfies the condition that w ·a3·|w| ∈ V3 · {a,b}∗

when w ∈ {a,b}∗ (cf. Proposition 1.1 of [Sta05]). Moreover, it can be
accepted by a deterministic one-counter automaton using empty-storage
acceptance (cf. Example 6.3 of [ABB97]). Accordingly, the ω-languages
V3 · {a,b}ω, F := {a,b}ωrV3 · {a,b}ω and V3 · c · {a,b, c}ω are also accepted
by deterministic one-counter automata [EH93, Sta97a].

Since V3 is prefix-free, the measure of these ω-languages can be easily
computed from the value σX(V3) which in turn is the minimum positive
solution t|X| of the equation (cf. Theorem 3.1 of [Sta05])

t = |X|−1 · (1 + t3) . (3)
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The minimum positive solutions t2 =
√

5−1
2 < 1 and 0 < t3 < 1 are irra-

tional1.
The first example presents an openω-language accepted by a determin-

istic one-counter automaton not satisfying the Automatic Baire property.

Example 1 We consider the open ω-language F1 := V3 · c · {a,b, c}ω ⊆
{a,b, c}ω. Since µ=({a,b}ω) = 0 in {a,b, c}ω, we obtain µ=(F1) = µ=(F1 ∪
{a,b}ω) = t3/3 which is irrational. Observe that F1 ∪ {a,b}ω is closed.

If E ⊆ {a,b, c}ω is open and regular then C(E) r E is regular and
nowhere dense, hence µ=(C(E) r E) = 0 by Theorem 3. Now according
to Theorem 13 µ=(E) = µ=(C(E)) is rational. Thus µ=(F1) 6= µ=(E).

If µ=(F1) > µ=(E) = µ=(C(E)) then F1 r C(E) is non-empty and open;
if µ=(E) > µ=(F1) = µ=(F1 ∪ {a,b}ω) then E r (F1 ∪ {a,b}ω) ⊆ E r F1

is non-empty and open. In both cases F1 ∆ E contains a non-empty open
subset, hence F1 cannot have the Automatic Baire property. 4

Next we present a closed ω-language accepted by a deterministic one-
counter automaton not having the Automatic Baire property.

Example 2 (Example 3 of [Sta97b]) Define F2 = {a,b}ω r V3 · {a,b}ω as
a subset of the space Xω = {a,b}ω. Then F2 is closed and has, according
to the value of t2, measure µ=(F2) = 1 − t2 = 3−

√
5

2 > 0. Since w · a3·|w| ∈
V3 · {a,b}∗ ⊆ X∗ r pref(F2) for w ∈ {a,b}∗, F2 is nowhere dense.

The measure µ= trivially satisfies the balance condition. Now Lemma 8
shows that F2 does not have the Automatic Baire property. 4
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