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Abstract. The efficiency of quantum circuit execution on near-term
quantum processors is significantly influenced by the initial mapping of
logical qubits to physical qubits, particularly due to limited connectivity
and routing overhead. In this work, we propose a spectral heuristic based
on the Fiedler vector — the second eigenvector of the graph Laplacian
— to derive a meaningful ordering of logical qubits. This ordering is used
to assign logical qubits to physically adjacent qubits on hardware. We
demonstrate that this approach improves circuit compilation quality and
reduces SWAP overhead for graph-structured problems such as MaxCut
on benchmark graphs. Experimental evaluations using QAOA circuits on
IBM quantum backends show that Fiedler-based mapping consistently
reduces the number of SWAP gates and improves the overall fidelity
of output distributions. Our method is classical, deterministic, and in-
tegrates seamlessly with existing transpilation workflows, making it a
practical tool for NISQ-era quantum applications.

Keywords: Qubit mapping - Spectral graph theory - Fiedler vector -
QAOA - MaxCut problem.

1 Introduction

As quantum computing hardware continues to evolve, near-term quantum pro-
cessors, often referred to as Noisy Intermediate-Scale Quantum (NISQ) devices,
remain constrained by limited qubit connectivity, high gate error rates, and re-
stricted qubit counts [13]. In most hardware architectures, not all qubits are fully
connected. Consequently, two-qubit gates (e.g., CNOTs) between non-adjacent
qubits require insertion of SWAP gates, introducing additional overhead. These
limitations require efficient compilation strategies to reduce circuit depth and
error accumulation.

One critical stage in quantum compilation is qubit routing [3], i.e., the pro-
cess of inserting SWAP gates and reordering qubit assignments in a quantum
circuit so that all required two-qubit operations can be executed on a hardware
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architecture with restricted qubit connectivity, while minimizing additional cir-
cuit depth and error overhead.

Several works have shown that the initial layout—the first assignment of
logical qubits to physical qubits before routing—is a major factor in determining
the total number of SWAPs and overall fidelity of circuit execution [11,20]. We
call the problem of finding an initial mapping of logical qubits to physical qubits
in the real hardware architecture, the Qubit Mapping Problem. While heuristic
and search-based methods like SABRE [8] and VF2Layout [14] attempt to find
favorable mappings dynamically or via subgraph isomorphism, there is still a
need for simple, fast, and deterministic strategies that provide good starting
layouts for structured problems.

While previous approaches typically focus on generic optimization techniques,
we argue that leveraging the known combinatorial structure of the problem can
lead to more effective quantum circuit optimization. For example, some works
suggest the graph sparsification technique to reduce the number of gates in the
QAOA circuit for the Max-Cut problem [10,18].

1.1 Owur Contributions

In this work, we explore a spectral graph-theoretic approach to the Qubit Map-
ping problem. Specifically, we leverage the Fiedler vector—the eigenvector corre-
sponding to the second smallest eigenvalue of the Laplacian matrix of a graph—to
determine an ordering of logical qubits in a quantum circuit. The Fiedler vector
is widely used in spectral partitioning and layout problems due to its ability to
capture global structure and approximate graph distances [1,17]. By assigning
logical qubits based on their Fiedler coordinates to a path or tree-shaped subset
of the physical topology, we aim to minimize long-range interactions and routing
overhead.

We evaluate this method in the context of QAOA [4] circuits for the Max-
Cut problem on various classes of graphs, including random regular graphs and
Barabasi-Albert graphs. Our experiments on IBM Quantum backends demon-
strate that Fiedler-based initial mappings yield lower SWAP counts and im-
proved fidelity compared to SABRE-based layouts.

In Section 2, we discuss briefly about quantum computing, the Qubit Routing
Problem, QAOA and spectral graph theory. In Section 3, we go through the
intuition behind our method. In Section 4, we show the experimental results
of our method in comparison with the other existing mapping strategies. In
Section 5, we acknowledge the limitations and threats to validity that our method
faces. Finally, in Section 6, we discuss possible further improvements and future
research on this topic and conclude.

2 Preliminaries

2.1 Quantum Computing

Quantum computing [12] harnesses the fundamental principles of quantum me-
chanics, offering a new paradigm for information processing. Unlike classical bits,
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quantum bits (qubits) can exist in superpositions of states and can be entangled,
enabling quantum computers to perform certain computations more efficiently
than their classical counterparts.

Quantum information is encoded in qubits, which are realized using physical
systems such as trapped ions, superconducting circuits, or photonic devices. The
state of a qubit is described by a vector in a two-dimensional Hilbert space, and
the state of an n-qubit system is a vector in a 2"-dimensional space. Quantum op-
erations are implemented via unitary transformations, and quantum algorithms
are constructed as sequences of these operations, forming quantum circuits.

In this paper, we focus on gate-based superconducting circuits and conduct
our experiments using IBM Quantum devices.

2.2 Quantum Circuits and NISQ Constraints

A quantum circuit consists of a sequence of quantum gates applied to qubits,
culminating in measurements. In the current era of Noisy Intermediate-Scale
Quantum (NISQ) devices [13], the performance of quantum hardware is charac-
terized by limited qubit counts, gate fidelity issues, and sparse qubit connectivity.
These limitations make it essential to optimize circuit structure before execution.

Most hardware platforms impose architectural constraints, allowing two-
qubit operations (like CNOT gates) only between physically connected qubits.
Also, these two-qubit operations are usually quite expensive in terms of error-
rates and execution times. Longer execution times make the circuit more sus-
ceptible to decoherence, i.e., qubits losing their quantum state over time due to
interactions with the environment. Accordingly, minimizing the number of two-
qubit operations is essential for optimizing circuit performance on contemporary
quantum hardware.

2.3 Qubit Mapping and Routing

To execute a quantum circuit on hardware, a compiler must map logical qubits
from the circuit to physical qubits on the device. This is called the Initial Map-
ping. However, even with a good initial mapping, it is often the case that a
two-qubit gate in the circuit requires interacting qubits that are not adjacent in
the physical topology. In such cases, SWAP gates need to be inserted in the cir-
cuit to bring the logical qubits into proximity in the hardware topology. A SWAP
gate between two qubits interchanges the quantum states of the two qubits.

Since the SWAP gate is itself a two-qubit gate (equivalent to 3 alternat-
ing CNOTS), we can only apply swap gates between pairs of qubits that are
physically connected in the hardware architecture.

The Qubit Routing Problem is thus two-fold:

1. Mapping: Assigning logical qubits to physical qubits in the hardware archi-
tecture.

2. Routing: Inserting SWAP gates in the logical circuit to allow the execution
of two-qubit gates on logical qubits mapped to non-adjacent physical qubits
by relocating them to adjacent physical qubits.
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The qubit mapping and routing process is known to be NP-complete [3,6,7],
and has been the focus of many compiler optimizations, including heuristic and
noise-aware strategies [8,19].

As discussed earlier, the SWAP gates that are inserted in the routing process
are composed of multiple two-qubit gates and hence, are quite expensive to
execute on real quantum hardware. Therefore, minimizing the number of SWAP
gates in the routed circuit is a critical objective in the evaluation of qubit routing
strategies and has been the subject of substantial research in the field.

The mapping and routing problems are interdependent: a good initial map-
ping can significantly reduce the routing overhead and the number of SWAPs in
the routed circuit.

2.4 QAOA for the Max-Cut Problem
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Fig.1: A QAOA Circuit in Qiskit, a quantum computing development platform
of IBM

One promising use case for NISQ devices is the Quantum Approximate Opti-
mization Algorithm (QAOA) [4], which solves combinatorial optimization prob-
lems like MaxCut. QAOA consists of executing parameterized quantum gates,
namely the Cost and Mixer operators (Figure 1c), on qubits corresponding to
nodes of the input graph, with parameters tuned by classical optimization. The
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approximation quality of the solution given by QAOA depends on the number
of repetitions (p) of the Cost and Mixer Operators.

The implementation of QAOA is typically divided into two phases. In the
first phase, the Estimator is employed in conjunction with a classical optimizer
to determine an optimal set of parameters. The Estimator evaluates the expec-
tation value of the cost Hamiltonian with respect to the parameterized quantum
state by executing the quantum circuit multiple times (shots) and averaging
the measurement outcomes. This expectation value serves as the objective func-
tion for the optimizer, which iteratively updates the parameters to minimize it.
Once convergence is achieved, the second phase utilizes the Sampler to obtain
a probability distribution over bitstrings by repeatedly executing the optimized
quantum circuit. The bitstrings with the highest probabilities correspond to can-
didate solutions for the Max-Cut problem.

In the QAOA circuits for the Max-Cut problem, each node of the input graph
corresponds to a logical qubit in the quantum circuit. Each edge between two
nodes of the graph in Figure 1a corresponds to a two-qubit entangling gate (the
RZZ gate) of the Cost Hamiltonian between the corresponding logical qubits,
as can be seen in Figure 1b. Since RZZ gates are commuting operations, their
application order within the circuit does not affect the resulting unitary trans-
formation. Hence, the structure of the QAOA circuit is very intricately tied to
the input graph, and this dependency can be leveraged to derive effective initial
qubit mappings that reduce SWAP overheads.

2.5 Spectral Properties of Graphs and the Fiedler Vector

Spectral graph theory [1] studies the properties of graphs through the eigenvalues
and eigenvectors of matrices associated with them, such as the adjacency matrix
or the Laplacian matrix.

Given a graph G = (V, E), its (unnormalized) Laplacian matrix is defined as
L =D — A, where D is the matrix, of which the diagonal line is degrees of each
node, and A is the adjacency matrix of the graph. The Laplacian is a symmetric,
positive semi-definite matrix, and its eigenvalues contain information about the
connectivity and structure of G.

The Fiedler vector is the eigenvector corresponding to the second smallest
eigenvalue of the graph Laplacian matrix L. It solves the following optimization
problem:

min 2’ Lz
xl1, |z|=1

which is equivalent to minimizing the quadratic form:

Z (z; —x;)?, subject to Za:l =0, Za:f =1

(i.J)eE

where z is a real-valued vector defined on the nodes of the graph, FE is the set of
edges, and 1 is the all-ones vector. This property ensures that two nodes ¢ and
j that are adjacent or strongly connected typically have similar values of x; and
X g
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The Fiedler vector plays a central role in spectral partitioning and embed-
ding [17], as it captures the most significant mode of variation in the graph’s
connectivity structure. Intuitively, nodes with similar Fiedler vector values tend
to share structural and topological proximity, i.e., they are in similar positions
with respect to the graph structure. In other words, the Fiedler vector provides
a one-dimensional embedding of nodes according to the spectral properties of
the graph.

3 Method

We propose a hardware topology-aware initial mapping strategy tailored for
QAOA circuits of the Max-Cut problem, which minimizes routing overhead by
combining spectral insights from the input graph with structural proximity on
the physical qubit topology.

3.1 Properties of the Fiedler Vector

As mentioned earlier, nodes with similar values of the Fiedler vector tend to be in
similar positions within the graph. This can be seen in Figure 2 where the nodes
that are close to each other seem to be colored in similar colors, i.e., they have
similar Fiedler vector values. This seems to be especially true for graphs that
have a long, path-like structure, or that are made of multiple such structures,
such as in Figure 2a. Thus, one may think of sorting the nodes of the graph
according to their corresponding Fiedler vector values to get a promising initial

mapping.
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Fig. 2: Heatmap of the nodes of graphs with respect to the Fiedler vector values
of the graphs. (Nodes with similar colors have similar Fiedler vector values)

However, this does not mean that nodes having similar Fiedler vector values
will necessarily be close to one another. This is evident in Figure 2c where the
nodes connecting two clusters (nodes 78 and 79) have similar colors despite being
quite far from one another, as the Fiedler vector only provides a one-dimensional
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embedding while a given graph may spread out in more than one dimensions.
In this case, the Fiedler vector assigns similar values to nodes being in similar
positions in the graph structure, even if they are distant.

Therefore, directly using the Fiedler vector of the graph for the initial qubit
mapping may be suboptimal, as it can result in assigning graph nodes with
similar Fiedler vector values, yet potentially distant in the original topology,
to adjacent physical qubits. This misalignment can lead to excessive SWAP
operations during routing, thereby degrading performance while execution.

3.2 DFS Trees of the Input graph

As we have already discussed, the Fiedler Vector orders the nodes according to
their connectivity quite well for graphs with a path-like structure. So, to have
such an ordering (nodes sorted according to Fiedler vector values) for graphs that
do not have such a structure, we can extract subgraphs of the original graph that
are path-like. A Depth-First-Search Spanning Tree (DFS Tree) of a graph is a
subgraph that excellently satisfies this requirement. A DFS Tree of a graph is
simply a subgraph that is created through the Depth-First-Search Traversal of
the original graph until all the nodes of the graph have been visited.

:
.- »
p— .5" 2 _nf;‘-" .’,"-,. _;-.—'_‘.-.'.' .E'
: Fegle g f "\g p
-4}"1".' ‘."“oi'. %y s B ey
u.-'%-\ > -“J \ “)l\A? —&, ,. ."”:-'ﬁ'—-ﬂ'u"-";‘}a-p
@ N = iy g Wy B
PR e W "” . = . b N
“.ﬂ n ,.“-h gk :.‘i__ "
(¢) For a graph with clus-
(a) For a tree (b) For a 3-regular graph  ters

Fig. 3: Heatmap of the nodes of graphs with respect to the Fiedler vector values
of a DFS Tree of the graphs.

Now that we have a DFS Tree of the graph, we can order the nodes of the
graph according to the Fiedler vector values of the DFS Tree. This will ensure
that the nodes that are close to each other in the ordering, i.e., having similar val-
ues in the Fiedler vector of the DFS Tree, are actually close to each other in the
original graph. This is due to the inherently linear and narrow branching nature
of the DFS tree. The Fiedler vector, being a one-dimensional embedding, natu-
rally captures and reflects the hierarchical traversal path. Consequently, nodes
with similar Fiedler values are likely to correspond to topologically adjacent or
nearby nodes in the original graph.

In Figure 3, we can see that the issue of distant nodes having being close in
the ordering is resolved with the use of DF'S Trees. One false alarm could be the
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abrupt change of color in some pairs of adjacent nodes, such as nodes 11 and
23 in Figure 3b. However, this is acceptable since we only want nodes that are
close in the ordering to be actually nearby in the original graph. Achieving the
converse—that all nearby nodes in the graph are close in the ordering—is not
always feasible. This is because the hardware topologies of real world QPUs with
more than 100 qubits are very sparse, and even for moderately dense graphs, for
example, 5-regular graphs, we cannot map all the nodes adjacent to a node (5
nodes) to physically adjacent qubits in the hardware (which have a maximum
degree of 3 and minimum degree of 1).

3.3 Extracting a Connected Subgraph of the Hardware Topology

Now that we have a ordering of nodes of the problem graph, we need a set of
physical qubits to map the nodes to. Let G = (V, E)) represent the problem graph,
H = (Q,C) represent the layout of the physical hardware topology and S =
(81,82, ...,8n), s; € V denote the n-tuple (n = |V]) of nodes sorted according to
their corresponding Fiedler vector value of the DFS Tree of G. A path of n qubits
in H may seem like a natural choice, given the one-dimensional embedding nature
of the Fiedler vector. However, this would not be optimal since the diameter of
the subgraph would be n — 1, meaning if the first and last nodes in S happen
to be adjacent in G the distance between them in the subgraph would be n — 1,
which can be improved.

We can try to reduce the diameter of the resulting subgraph by choosing
n — 1 nodes of H that are nearest to a node s € Q. We can do this with a
Breadth-First-Search(BFS) Traversal of H with s as the source. For the regular,
lattice-like heavy hex structure of IBM QPUs, BFS is a reliable heuristic for
finding subgraphs of low diameter. Thus, we can simply choose the first n — 1
qubits that are visited in the BFS traversal of H from a random source s. Let
the resulting subgraph be H,, = (Q.,,, Cy,).

We have conducted preliminary experiments in which the source qubit s
was selected based on device-specific calibration data, focusing on regions of the
qubit topology with relatively low noise. While no significant improvements were
observed under our current experimental constraints, we expect that advantages
may become evident for larger and deeper circuits, which are presently imprac-
tical due to noise and execution time limitations. However, we do not include
this approach in our proposed method due to its current lack of feasibility.

3.4 Mapping Logical Qubits to Physical Qubits

We now have the set of physical qubits in H that the nodes of G will be
mapped to. But, the subgraph H,, is two-dimensional while the ordering S is
one-dimensional. For this we require a linear ordering of H,,. We also want that
the qubits that are close in H,, are not very far apart in the linear ordering.
We can apply the same idea of extracting path-like structures that was used in
Section 3.2 to find an initial mapping. A DFS traversal of H,,, starting from the
qubit in @, corresponding to the source s of the BFS traversal in Section 3.3, is
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expected to yield a linear ordering of qubits that tends to avoid placing qubits,
that are close in H, far apart in the ordering.

We map the nodes of G, according to S, to the qubits in H,, in the order
that they are visited by the DFS traversal. Let D = (dy,da,...,dy), d; € Qp
be the nodes in @, in the order that they were visited by the DFS traver-
sal of H, with s as the source. Then, the initial mapping is given by M =

{(81, dl), (827d2), ceey (Sn,dn)}

Algorithm 1 Fiedler-Based Initial Qubit Mapping

Require: Graph G = (V, E) with n nodes, Hardware topology graph H = (Q, C) with
QI = n
Ensure: Initial mapping M : V — Q
1: Build a Depth-First Search (DFS) tree Tprs from G
2: Compute the Fiedler vector f of Tors
3: Sort nodes of G according to their corresponding values in f to obtain ordering
(81,825, 8n)
4: Randomly select a root qubit go € @
5: Use Breadth-First Search (BFS) on H starting from go to find a connected subgraph
H,, of n qubits
6: Perform a DFS traversal of H,, starting from go to obtain ordered list of physical
qubits (d1,da,...,dn)
7: Assign each node s; to qubit d; to form the mapping M(s;) = d;
8: return Mapping M

3.5 Exploiting the Commutativity of RZZ Gates

As mentioned in Section 2.4, the order in which RZZ gates (corresponding to
the same cost operator) are present in the circuit is irrelevant. We can exploit
this fact by building circuits tailored to the initial mapping that is being used.
An effective approach is to schedule the RZZ gates according to the order of
edges in F, where the edges are sorted by the distance between their associated
physical qubits as determined by the initial mapping M. Specifically, edges whose
endpoints correspond to physically proximate qubits under M are applied first,
thereby prioritizing gates that can be executed with minimal routing overhead,
which effectively reduces the number of SWAPs in the fully routed circuit.

4 Experiments

This section presents a comparative evaluation of our proposed mapping strat-
egy, i.e. Fielder Layout (along with the circuit building strategy in Section 3.5),
against SabreLayout [15], a mapping strategy currently employed in Qiskit, and
a baseline trivial mapping. The trivial mapping maps logical qubit v; to physical
qubit ¢, and so on. SABRE is selected for comparison as it is the current de-
fault layout heuristic employed in Qiskit’s transpilation framework and is widely
adopted in current quantum compilation workflows.



10 Authors Suppressed Due to Excessive Length

4.1 Experimental Setup

The experiments were performed with widely-used benchmark graph families,
namely random regular graphs and Barabasi-Albert (BA) graphs. Hardware
topologies of real-world NISQ devices provided by IBM Quantum, such as IBM
Fez, were used in the form of coupling graphs, which represent the connectiv-
ity constraints of the device. Each QAOA circuit was constructed with a sin-
gle repetition of the cost and mixer Hamiltonians (p = 1). This setting aligns
with standard practice in prior work, as increasing the number of QAOA rep-
etitions significantly increases circuit depth, thereby amplifying the effects of
decoherence and gate noise on NISQ devices. To isolate the impact of the ini-
tial mapping, all circuits, regardless of the mapping strategy, were routed using
SabreSwap [16], which is the default routing pass in Qiskit’s transpiler. The num-
ber of nodes/qubits in the comparative graphs has been limited to 100, reflecting
current constraints, as the publicly available IBM Quantum hardware currently
supports up to 156 qubits. We use Qiskit’s transpiler with optimization level
3 to prepare the circuits for execution. For the default Qiskit transpilation, no
explicit initial qubit mapping is specified, whereas for our proposed approach,
the Fiedler-based mapping is explicitly provided as the initial mapping.

Prapassd 1w Proposed 7 Siai Prapased
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Fig.4: SWAP counts for regular graphs (top) and Barabasi—Albert (BA) graphs
(bottom). Solid lines show means; shaded bands indicate +1 SD over 10 runs.

For the local experiments (counting SWAPs and circuit simulations), a laptop
having 12th Gen Intel(R) Core(TM) i7-12650H 2.30 GHz and 16GB memory was
used. The experiments on real quantum hardware were conducted using IBM
Fez, a 156-qubit device equipped with the Heron r2 processor, which is currently
IBM’s most advanced quantum processor.
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4.2 Reduction in SWAPs

Figure 4 shows the comparison of number of SWAP gates inserted by SabreSwap
across 10 instances with initial mappings given by a trivial mapping, SabreLayout
and Fielder Layout, for random regular graphs and BA graphs respectively,
targeting the coupling map of IBM Fez. From the figures it is evident that both
SabreLayout and Fiedler Layout give a significant improvement over the trivial
mapping. Also, for smaller graphs (with vertices fewer than 40), SabreLayout
and Fiedler Layout give similar SWAP counts. However, for graphs with more
than 40 vertices, Fiedler Layout gives a clear improvement over SabreLayout that
only gets more pronounced as the size of the graph increases. For BA graphs,
as the graphs become quite dense with the value of the attachment paramater
m equal to 4, there is more overlap between SabreLayout and Fiedler Layout,
however, improvement is seen for graphs with more than 80 vertices, as can be
seen in Figure 4f.

4.3 Performance of Routed Circuit on Real Hardware
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1 oot i||||||lii:<'u. [ Method |Mean|[Std. Dev]
— = Qiskit Default |8.1024| 0.4061
||

Fiedler Mapping|8.0769| 0.3586
Random Cut 7.5 0.0

ol il
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— Table 1: Expected Cut Sizes given by

the histograms in Figure 5.

Fig.5: Output distributions on 6
qubits given by a circuit with default
qiskit transpilation (left column) and
a circuit with the proposed mapping
(right column), when run on IBM Fez
on five different instances.
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The circuits for the experiments were constructed on randomly generated
5-regular graphs with 6 vertices. Each circuit execution involved 1000 shots for
both the Estimator and the Sampler components, where “shots” refer to repeated
runs of the quantum circuit to compute an expectation value or obtain a measure-
ment outcome distribution. To account for the time-dependent and stochastic
nature of noise in quantum hardware, this experimental configuration was exe-
cuted five times. The chosen circuit depth and graph size were converged upon
while keeping expressibility and hardware limitations in mind, as larger graphs
or deeper circuits proved infeasible due to increased susceptibility to noise and
extended execution times.

Figure 5 presents the histograms obtained by sampling the measurement
outcomes of the optimized circuits 1,000 times across five separate executions
for each method. As observed, both columns exhibit similar behavior in terms
of noise susceptibility, which is reflected in the degree of uniformity within a
histogram. This shows that our method performs comparably to the standard
Qiskit compilation approach on small-scale instances. No notable improvement is
observed likely due to both methods yielding similar SWAP gate counts for small
graphs, as shown in Figure 4c. While our approach demonstrates advantages
at larger scales—around 40 qubits—these configurations remain impractical to
execute on current quantum hardware due to significant noise levels that may
obscure any benefits from circuit-level optimization.

4.4 Performance of Routed Circuit on Simulator

Defau Gk WY aneses menad
e

e |
goaoen |
-

eat

| IUIIMIJM”IJHJ“I uhhllihuum\uMuUhUhUIﬂuIIUJMMJﬂHMW

T

Fig.6: Mean Output distributions given by a circuit with default giskit tran-
spilation (left) and a circuit with the proposed mapping (right), when run on
FakeBrisbane on 100 different instances.

l Method [ Mean [Std. Dev‘
Qiskit Default |15.8065| 0.2019

Fiedler Mapping|17.0627| 0.3103
Random Cut 15.0 0.0

Table 2: Expected Cut Sizes given by the histograms in Figure 6.
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Simulations were done on FakeBrisbane, a ‘FakeBackend’ simulator [5] pro-
vided by Qiskit having configurations, like the coupling graph and noise effects,
based on IBM Brisbane. The circuits for the experiment were generated on a
5-regular graph with 12 vertices, with p = 1. We could not experiment with
larger graphs due to the usual constraints of time and noise, and the fact that
unlike the linear scaling on quantum computers, execution times for the circuits
scale exponentially with respect to the number of qubits for simulators [2]. The
configuration of the Estimator and the Sampler were the same as in Section 4.3,
with 1000 shots each. The setup was ran for 100 times on the simulator due to
varying results on different instances.

Figure 6 presents the mean probability distributions obtained by optimiz-
ing and sampling the circuits over 100 independent instances. For clarity, only
the top 100 bitstrings (by probability) are displayed for each distribution, as
visualizing the complete set would obscure the highest peaks due to scale com-
pression. The impact of noise is more pronounced in the histogram corresponding
to the circuit transpiled using the default Qiskit method, as evidenced by the
near-uniform distribution of measurement outcomes.

5 Limitations and Threats to Validity

This study, while demonstrating practical improvements in qubit mapping strate-
gies for QAOA circuits, is subject to several limitations. First, our method lacks
formal theoretical guarantees or proofs regarding optimality or performance
bounds. The results are empirical and rely on specific benchmark settings, which
may limit generalizability. Second, the current mapping procedure does not in-
corporate any noise-aware optimization. That is, device-specific calibration data
such as readout errors, gate fidelities, or decoherence times are not taken into ac-
count, which could significantly impact the performance of the compiled circuits
on real hardware.

Moreover, due to resource constraints and the limited number of reliable
qubits on current quantum hardware, our experiments were restricted to small
graph instances. As a result, we were unable to test the method’s scalability on
larger circuits where performance differences may be more pronounced. Another
source of limitation is the use of a fixed depth QAOA ansatz with only one layer
of cost and mixer operators; deeper circuits may require different optimization
strategies and could be more sensitive to mapping choices and noise.

Lastly, while our method is evaluated against a default Qiskit mapping strat-
egy, we do not benchmark against all state-of-the-art qubit routing algorithms.
Broader comparisons would provide a more comprehensive assessment of effec-
tiveness.

6 Conclusion and Future Studies

In this paper, we presented a Fiedler vector-based initial qubit mapping tech-
nique for QAOA circuits, designed to reduce SWAP overheads and improve hard-
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ware compatibility on NISQ devices. Our method leverages the spectral proper-
ties of the problem graph to derive a ordering of nodes that preserves proximity.
This ordering is then aligned with a BFS-DFS traversal of the hardware graph
to generate an initial mapping that minimizes expected routing cost.

Comparing our method with SabreLayout in terms of SWAP counts shows
significant improvement for sparse graph instances with more than 40 vertices.
Experimental results on small random 5-regular graphs suggest that the pro-
posed strategy performs competitively with Qiskit’s default mapping method.
While hardware evaluations are currently limited by the number of available
qubits and sensitivity to noise, simulations indicate that Fiedler Layout holds
potential for improved scalability and circuit efficiency in larger QAOA instances.
The competitiveness/improvement shown in terms of noise susceptibility of cir-
cuit executions implies that the proposed method integrates seamlessly with the
current Qiskit tranpilation workflow.

There are several directions for extending this work. First, the current method
operates in a noise-agnostic setting; integrating noise-aware heuristics or cal-
ibration data from specific hardware backends could further improve perfor-
mance. Additionally, while our method focuses on static initial mapping, it can
be combined with more sophisticated dynamic routing strategies to enhance gate
scheduling.

One promising avenue is the incorporation of dynamic circuit building during
QAOA compilation. This would involve iteratively constructing the circuit layer
by layer [9], inserting only those gates that are currently executable based on the
qubit mapping and topology, and applying SWAP layers selectively to unlock
additional executable gates. Such an approach could adaptively minimize SWAP
depth and gate congestion while preserving the circuit’s logical structure. Ex-
ploring this hybrid dynamic-static strategy is a natural progression toward more
hardware-efficient QAOA compilation.

Finally, we aim to evaluate this method on deeper QAOA circuits and more
structured problem graphs, as well as extend the approach to support other
combinatorial optimization problems such as the Traveling Salesman Problem,
as well as broader classes of variational quantum algorithms.
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Abstract. Combinatorial optimization problems in NP face exponen-
tial growth in feasible solutions, making classical methods like branch-
and-bound or dynamic programming quickly intractable. This work in-
troduces a Hybrid Branch-and-Bound (HBB) framework for the binary
knapsack problem, combining classical pruning with a Grover-based quan-
tum subroutine. Constraints are encoded via reversible quantum oracles
using QFT-based adders and comparators. An enhanced version (EHBB)
reduces qubit usage by 53% (from 58 to 27 for 5 items) by reusing ancillae
and uncomputing intermediates, without increasing circuit depth. Simu-
lations on Qiskit and Atos myQLM validate the method up to 10 items,
showing the promise of translating constraint programming techniques
into quantum computing.

Keywords: Quantum Computing - Hybrid Algorithms - Combinatorial
Optimisation - Constraint Programming - Binary Knapsack Problem

1 Introduction

Combinatorial optimisation problems are central to both theoretical computer
science and real-world decision-making. These problems require selecting the
best solution from a large, often exponentially growing, set of possibilities. As
the problem size increases, classical techniques such as branch-and-bound or
dynamic programming quickly become impractical [7]. This motivates the search
for alternative approaches capable of tackling such complexity.

Quantum computing provides a promising direction in this context. Since the
foundational work of Shor [10] and Grover [6], quantum algorithms have shown
the potential to outperform classical methods for certain tasks. In particular,
Grover’s algorithm provides a quadratic speedup for unstructured search [2,3],
and has been widely explored for optimisation [8,4]. However, much of the current
research remains theoretical and assumes noiseless, fully connected hardware. In
the current NISQ era [9], feasibility must be reassessed under noise, limited
connectivity, and gate errors.
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In this work, we revisit the classical binary knapsack problem and propose
a hybrid quantum approach that combines classical pruning with Grover-based
search. Drawing inspiration from constraint programming, we translate feasibil-
ity and optimisation constraints into reversible quantum circuits using arithmetic
components like QFT-based adders [5] and comparators [1]. We further intro-
duce an enhanced version (EHBB) that reduces qubit usage by over 50% through
ancilla reuse and uncomputation, while maintaining circuit depth.

Our main contributions can be summarised as follows:

1. We design modular feasibility and optimisation oracles using Draper QFT
adders and QFT comparators.

2. We develop a Hybrid Branch-and-Bound (HBB) framework embedding these
oracles into a Grover search, enabling parallel subtree evaluation.

3. We propose an enhanced version (EHBB) that significantly reduces qubit
count, improving scalability for NISQ devices.

4. We validate our approach through simulations on instances up to 10 items,
and provide a discussion on hardware constraints, potential quantum advan-
tage, and directions for future experimentation.

2 Background

This section recalls the foundations required in the remainder of the paper: (i)
constraint programming (CP) as a modelling paradigm for discrete optimisation,
and (ii) basic concepts in quantum computing that underpin our oracle design.

2.1 Constraint Programming

Constraint Programming (CP) provides a declarative framework in which a prob-
lem is specified through variables with finite domains, a set of constraints restrict-
ing feasible assignments, and, when relevant, an objective function to optimise.
CP solvers combine systematic search with constraint propagation to eliminate
infeasible states and reduce the exploration space. The 0—1 Knapsack Problem
(KP) is a canonical benchmark in this setting; its formal definition is provided
in Section 3.

2.2 Quantum Computing Basics

Quantum computation encodes information into qubits and evolves states through
unitary operations. Core principles include superposition, entanglement, and re-
versibility. Quantum algorithms are typically structured into three phases: state
preparation, unitary evolution, and measurement.

Grover’s search algorithm [6,2,3] provides a quadratic speedup for unstruc-
tured search. It relies on a reversible oracle that marks feasible solutions and
a diffusion operator that amplifies their amplitudes. For constrained optimisa-
tion problems, such oracles require arithmetic modules; in our work, we employ
Draper QFT adders [5] and QFT comparators [1].
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In the NISQ era [9], hardware noise, decoherence, and limited connectivity
impose severe resource constraints. This motivates careful circuit design with
ancilla reuse and uncomputation to control qubit count and depth.

3 Problem Formulation

The 0-1 Knapsack Problem (KP) is defined as follows [7]. Given n items, each
with weight w; and value v;, and a knapsack capacity C, the task is to select a
binary vector = € {0,1}" such that:

n

max Z’Uﬂ/’z‘, (1)

i=1

n
s.t. szxl <C, x; € {0,1}. (2)

i=1
Quantum Encoding. Each decision variable x; is mapped to a single qubit: 0
denotes exclusion and 1 inclusion of item ¢. Applying Hadamard gates to all
n qubits creates a uniform superposition of all 2" possible solutions. Figure 1

illustrates the register initialisation. Arithmetic operations and comparators are
introduced in Section 4.

Selection Vector

T n —
|x> # Selection Vector |
Initialisation

Fig. 1. Selection-vector initialisation for the knapsack problem. Each qubit encodes
the inclusion or exclusion of an item.

4 Quantum Feasibility Oracle

The feasibility oracle is the central component of our Hybrid Branch-and-Bound
framework. It encodes the knapsack constraints (capacity and value thresholds)
in a reversible quantum circuit that integrates selection, summation, compari-
son, and validity flagging. This section describes how the oracle is assembled,
referencing its building blocks and their composition.
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4.1 Arithmetic Components

The oracle relies on modular arithmetic circuits to process weights and values.
Specifically, Draper QFT adders are used for efficient quantum addition [5], and
QFT-based comparators are used to implement inequality checks [1]. Figure 2
shows their implementation in Qiskit: the left subfigure illustrates the Draper
adder, while the right subfigure presents the QFT comparator.

do I & B
aL -| X
Fim
o H 1
Poml lp mh
[2E] 10FT| *- LIQFTR
Fimf P i

[+ 2 ¢ 2 r

2 . . ' e}
QFT., ‘ @ Ukl ) QFT]

QF T @f&[—ﬁr] Q}'-T".u i o i

0y — ; |2 < a)

Fig. 2. Qiskit implementation of arithmetic components: (Up) Draper QFT adder;
(Buttom) QFT-based comparator.

Adder design choice. To motivate the use of Draper adders, Table 1 compares a
standard carry-ripple adder with the Draper QFT adder for an s-bit sum. The
ripple adder requires linear depth and multiple carry ancillas, while the Draper
adder achieves logarithmic depth at the cost of Fourier rotations. In our design,
the reduction in ancilla count is critical for NISQ feasibility.
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Table 1. Comparison of s-bit adders: ripple vs. Draper QFT. Gate counts are approx-
imate asymptotics; depth refers to circuit depth in s.

Metric Ripple Adder Draper QFT Adder
Depth O(s) O(log s)

Ancilla qubits O(s) 0 (no extra ancillas)

Gate types CNOT, Toffoli QFT rotations + CNOT
Gate count O(s) O(slog s)

Strength Simple, robust Shallower depth, ancilla-free
Weakness High ancilla usage Requires high-precision rotations

This comparison explains our design choice: although Draper adders use more
rotation gates, their absence of carry ancillas and reduced depth make them
preferable for circuits where qubit footprint is the bottleneck.

4.2 Oracle Structure

The oracle integrates these arithmetic submodules into a single reversible circuit.
The process is structured as follows (refer to Figure 3):

1. Selection vector initialization: Each item is placed in superposition using
Hadamard gates, with the first item fixed to break symmetry (Step 1).

2. Weight accumulation: Draper adders sum the weights of selected items
into a dedicated register (Steps la—1lc).

3. Capacity check: The accumulated weight is compared against the knap-
sack capacity using the QF T comparator, producing the weight validity flag
(Steps 1d—1le).

4. Value accumulation: A second Draper adder accumulates the item values
in a separate register (Steps 1f-1h).

5. Value threshold check: The accumulated value is compared with a user-
defined minimum bound to filter trivial solutions (Step 1i).

6. Final validity flag: Both conditions (capacity and value) are combined to
produce the oracle flag qubit (Step 2), which is then used by the Grover
diffuser.
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Fig. 3. Integrated feasibility oracle for the 0/1 knapsack problem (5-item instance).
The schematic shows stepwise construction: Steps la—lc: weight accumulation; Steps
1d—1e: capacity check; Steps 1f-1h: value accumulation; Step 1i: value threshold check;
Step 2: final validity flag.

5 Hybrid Branch-and-Bound Strategy

We couple Grover’s search [6,2,3] with a classical branch-and-bound (B&B)
scheme. At a node with fixed prefix x1., = b1.x, the oracle of Section 4 marks
feasible states among the remaining variables x4 1., that also exceed the current
threshold vy,in. A short Grover schedule amplifies these states; if an improvement
is observed, v, is updated and propagated down the tree.

Grover at a node

For a node with fixed prefix x1., = b1.;, we run Grover on the unfixed register
Zg4+1:m- One iteration consists of: (i) initialisation to the uniform superposition,
(ii) the oracle that marks feasible and improving assignments (capacity satisfied
and value > vp,), and (iii) the diffusion about the mean followed by measure-
ment. The complete workflow is shown once in Figure 4.

£ Conamrae. Crazbisg ciat fvachs 12} Eebsien Opavate 13 Merstiva Loss Withincreasing

+@ Il__--_---__-____-__: E E E E Prebab iy of Markez Sauman
A i — A ——— P

A ; — P O
- on SRS ea —

Fig. 4. Grover workflow at a B&B node (single illustration): initialisation — oracle
marking (feasible € improving) — diffusion — measurement. This single figure replaces
the previous two-panel layout.
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Branching scheme

We use binary branching on the next decision qubit, z; € {1,0} (include vs.
exclude). Each branch runs its own Grover evaluation on zyy1., (conceptually
in parallel, or sequentially on one device). The split at the root is depicted in
Figure 5.

First grover by fixing [x1=1] Second grover by fixant [x1=0]
selection Vector (1,H.H H.H} . selection Veetor (0,H,H,H,H}

Fig. 5. Root split with two Grover evaluations: left subtree fixes z1 = 1, right subtree
fixes 1 = 0. Each subtree calls the oracle on the remaining variables and updates the
incumbent when an improvement is found.

Node routine and threshold update

The node computation combines a classical bound with a short Grover schedule:

Algorithm 1 Node(b1.x, Umin)

PP G

©

==
W N =

,_.
e

: Compute an upper bound U (b1.x) (e.g., fractional-knapsack bound).
0 if U(b1:k) < Umin then

return PRUNE
end if

: 1
: Prepare ——— sz+1m Thilin-

for r € {1,2,..., Rmax} do
Apply one Grover iteration using the oracle of Section 4.
Measure a candidate z*; classically evaluate V(z*) and feasibility.
if feasible and V(z*) > vmin then
Umin  V(2¥); store z* as incumbent; break
end if

: end for
: Recurse on zx =1 then z, =0 (depth-first), passing vUmin.
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Iterations R. When an estimate of the marked fraction M /N is available, we
follow the standard choice R ~ L% V/N/M J Otherwise we adopt a short increas-
ing schedule (Rpax € [2,6] in our experiments) with early stopping as soon as
Umin improves. This maintains depth under NISQ constraints.

Enhanced variant (EHBB)

To reduce the qubit footprint, EHBB aggressively reuses ancillas and uncom-
putes intermediate registers between oracle calls. Only the selection qubits and
a small set of flags persist across nodes; weight/value accumulators and com-
parator ancillas are reset and recycled. This halves the qubit count relative to
the baseline (see Section 6) while preserving oracle depth.

Correctness and pruning

Soundness follows from the oracle semantics: capacity feasibility is enforced by
the QFT comparator and improvement by the threshold test; the classical bound
prunes subtrees that cannot beat vy;,. Completeness holds because every un-
pruned prefix is explored by branching on z; € {1,0}; on termination, the
incumbent equals the optimal value for the explored instance.

6 Simulations and Results

We validated our modular oracles in Qiskit on Aer/statevector simulators for
small knapsack instances (n<10). We first verified the integrated feasibility ora-
cle, and then analysed post-measurement distributions obtained after embedding
the oracle in a single Grover iteration.

[IT11]

Fig. 6. Full feasibility oracle for n = 5: selection initialisation, weight accumulation,
capacity comparison, and validity flag. This matches the annotated schematic in Fig-
ure 3.
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Measurement outcomes

High-level behaviour. After one Grover iteration, the measurement histograms
concentrate probability mass on feasible selections (capacity satisfied) and sup-
press infeasible selections (capacity violated). Figure 7 shows two representative
summaries for n = 5: the left panel aggregates counts on the selection regis-
ter, while the right panel reports the same shots with derived classical features
(bitstring, total weight, carry).

IVOB-LSE1 e bl Ty Tots waig 580w

s e -ak

Fig. 7. Representative post-measurement summaries for n = 5. Left: counts on the
selection register; right: the same shots tabulated with derived totals (weight, carry).
Feasible selections dominate.

Detailed distribution at a fixed capacity. To make the separation explicit,
Figure 8 reports the full distribution for C' = 14. The optimal feasible assignment
achieves the highest amplitude; assignments exceeding the capacity appear with
visibly smaller probabilities.

tominatione meeting casacity constrales (Toral welght <= 243
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Fig. 8. Detailed post-measurement distribution for a 5-item instance with capacity
C = 14. The optimal feasible assignment attains the largest amplitude.
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Feasibility filtering. Finally, Figure 9 groups the same outcomes by feasibility:
the upper table lists selections with ), w;z; < C, while the lower table lists

>, wiz; > C. This view confirms that Grover amplification preferentially boosts
the feasible group.

Niahus Sy Wekight KT (W= 18] Valuo OKF (Wls0)  Telally Vahd?  Shols

3 i

7 v 1 s
B 1 1 +
] T 1 P
H 1 1 E]
13 ' 1 5
1 1 1 ]
1l 1 ;. 5
1E] 1 1 z
7 ' 1 3
B o a 1
| (] ]
2 [ 1 a
2 ] o

o
26 o

Frasitle Solutions [deipht oo LL SND Vsl a

= Weight Som  Vialoe Sum  Shots
E 01 14 L] 4
3. Moomn 4 m a
7 o Lk} u 5
£ moh ie 13 5
o on m LES S
2 oI “ 1 3
3 Mmoo ¥ " a
€ oo L] B 4
T ooenn 5 T 5
0 pooel a B 7

Fig. 9. Feasibility filtering of measured assignments: top — capacity satisfied

(>, wiz; < C); bottom — capacity violated (3, wiz; > C).
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Resource usage

We also measured the qubit footprint as a function of the number of items.
Figure 10 compares the baseline HBB construction with the enhanced EHBB
variant. EHBB reduces qubits by reusing ancillas and uncomputing work reg-
isters, achieving a reduction greater than 50% without materially increasing
depth—important for NISQ viability.

Qubit footprint vs, iterm count

Murmber of items (n]

Fig. 10. Qubit footprint vs. item count: baseline HBB vs. EHBB. The dashed lines
indicate common simulator limits; EHBB remains within these bounds for larger n.

Classical baseline discussion

To contextualise our approach, it is useful to recall how classical branch-and-
bound (B&B) solvers scale on the knapsack problem. For n items, the worst-case
complexity remains exponential O(2™), though practical solvers employ pruning
and bounding to reduce average runtime. Dynamic programming variants scale
as O(nC), where C is the capacity, but this becomes prohibitive for large capac-
ities or weights with many bits of precision.

Table 2 contrasts the resource demands of a classical B&B with our quantum
HBB and EHBB. The classical solver requires no qubits, but memory/runtime
scale quickly with n and C. By contrast, the quantum frameworks keep runtime
O(2™?) oracle calls (due to Grover’s quadratic speedup), at the cost of qubits
and circuit depth. The EHBB variant reduces qubits enough to make this trade-
off more realistic for NISQ devices.
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Table 2. Classical B&B vs. Quantum HBB/EHBB: asymptotic scaling and resource
demands.

Classical B&B Quantum HBB Quantum EHBB
Time complexity O(2™) worst-case 0O(2"/?) Grover calls O(2"/2) Grover calls
Memory Poly(n, C) Qubits Qusg(n) Qubits Qeusi(n)
Qubits 0 ~ 2nb + 3s ~n-+b+ 3s
Depth — Moderate-High Lower (ancilla reuse)
Strength Mature, exact Quantum speedup potential NISQ-feasible footprint

This comparison underlines that while classical solvers remain superior in ab-
solute runtime for small instances, the quantum design illustrates a path towards
polynomial qubit-efficient formulations where quadratic speedup may emerge at
scale.

7 Resource Analysis and Comparison

Qubit formulas. To make the improvement transparent, we report closed-form
counts for the original HBB layout versus our enhanced EHBB design. Let n be
the number of items, b the bit-width used to encode a single item weight /value,
and s the accumulator /comparator width. The original HBB uses multiple ded-
icated load/mask registers and ripple comparators, yielding

QHBB(”) = TL(l + 2[)) + 3s + 5, (3)

whereas EHBB reuses a single load register, adopts Draper adders, and replaces
ripple comparators with a compact QFT comparator:

QEHBB (TL) = n-++ b + 3s + 4. (4)

These formulas explain the slower qubit growth of EHBB with n.

Register-by-register headcount for n = 5. Table 3 details the qubit budget per
function block for a 5-item instance. EHBB cuts the total from 58 to 27 qubits
by (i) reusing the single load/temporary register across items, (ii) sharing one
carry ancilla, and (iii) using a single s-qubit QFT comparator instead of ripple
chains.
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Table 3. Register-wise qubit count for 5-item knapsack: original HBB vs. enhanced
EHBB.

2*Register / function Original HBB Enhanced EHBB
Formula  Qubits Formula Qubits

Selection bits « n 5 n 5
Weight load register nb 20 reuses Wt_ Vit 6
Value load register nb 20 reuses Wt_ Vit 0
AND mask (weights) nb 20 reuses Wt_ Vit 0
AND mask (values) nb 20 reuses Wt Vit 0
‘Weight sum register sum,, s 6 s 6
Value sum register sum,, s 6 s 6
Carry ancilla 2 2 shared carry 1
Comparator ancillae s+ s 12 QFT cmp (s) 6
Flags (fu. fo, fa) 3 3 3 3
Total — 58 — 27

Depth and Grover scheduling. Depth improves for two reasons: (i) ripple com-
parators are replaced by a single QFT subtraction-based comparator of width
s, and (ii) the search tree is split into two Grover runs by fixing z; € {0, 1},
which shortens each oracle and enables bound propagation between runs. In our
simulations we used a short Grover schedule (one iteration per node) to keep
depth compatible with NISQ limits while still amplifying marked states; more
iterations can be scheduled following standard amplitude-amplification guidance.

Scaling picture. Figure 10 already visualises how Qgupp stays under typical sim-
ulator limits far beyond the point where Qupp becomes unsimulable, consistent
with the register accounting above.

Takeaway. EHBB reduces the qubit footprint by more than 50% for n=>5 (58 —
27) with comparable depth, which is the dominant enabler for running hybrid
B&B oracles on today’s simulators and early devices.

8 Conclusion

In this work we revisited the 0/1 knapsack problem through the lens of quan-
tum constraint programming and proposed a modular Hybrid Branch-and-Bound
(HBB) framework. Our design integrates Grover’s search with reversible arith-
metic components, including Draper QFT adders and QFT-based comparators,
to implement feasibility and optimisation checks in superposition.

We further introduced an enhanced variant (EHBB) that reduces qubit usage
by over 50% through ancilla reuse and uncomputation. Simulation results up to
ten items demonstrated that the modular oracles behave correctly, that Grover’s
amplification concentrates probability mass on feasible assignments, and that the
qubit savings of EHBB are substantial for NISQ settings. A comparative analysis
confirmed that the new framework achieves the same logical behaviour with far
fewer qubits and comparable depth.
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Limitations. Our current experiments were performed under noiseless simula-
tion. Practical deployment on near-term devices must contend with gate errors,
decoherence, and limited connectivity. Moreover, the number of Grover itera-
tions was kept deliberately low to avoid excessive depth, and no state-of-the-art
classical baselines were included in runtime comparisons.

Future work. Several directions emerge:

1. Extending the framework to other NP-hard combinatorial optimisation prob-
lems (e.g. scheduling, graph colouring).

2. Integrating error-mitigation strategies and topology-aware mapping to study
NISQ feasibility more realistically.

3. Providing open-source circuit templates for the arithmetic blocks to enhance
reproducibility and adoption.

4. Exploring hybrid quantum-—classical strategies that combine Grover search
with classical heuristics for larger problem instances.

In summary, the enhanced hybrid B&B approach provides a concrete step to-
wards scalable quantum formulations of discrete optimisation problems, narrow-
ing the gap between theoretical quantum speedups and practical implementa-
tions on near-term hardware.
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Abstract. The Linear Bandwidth Problem (LBP) is a classical NP-hard
graph layout problem with significant applications in sparse matrix re-
ordering and VLSI design. Classical metaheuristic approaches often suffer
from scalability issues on large-scale graphs, motivating the exploration
of alternative methods such as quantum annealing (QA). Leveraging re-
cent successes of QUBO-based quantum annealing formulations for the
cyclic bandwidth problem, this paper presents the first systematic study
of QUBO formulations tailored explicitly to the linear bandwidth variant.
We propose three novel modeling strategies: (1) a decision-based QUBO
with external binary search, (2) an optimization-based QUBO utilizing
auxiliary and slack variables for direct objective minimization, and (3)
an exponential-penalty QUBO directly encoding bandwidth penalties.
We analyze and compare these models regarding variable complexity,
matrix sparsity, and compatibility with quantum hardware. Through il-
lustrative examples on small graph instances, we validate the theoretical
properties of these formulations and derive practical guidelines for select-
ing appropriate modeling strategies based on graph characteristics and
solver capabilities. Our results not only lay the groundwork for extending
quantum combinatorial optimization to LBP but also provide valuable
insights for effectively utilizing quantum annealing resources.

Keywords: Quantum annealing - QUBO - linear bandwidth.

1 Introduction

The linear bandwidth problem (LBP) is a classic graph layout problem that aims
to assign distinct integer labels to the vertices of a graph such that the largest
label difference between adjacent vertices is minimized. This problem arises in
various application domains, including sparse matrix reordering [1] and VLSI
circuit layout [2].

In recent years, the LBP has received increasing attention due to its practical
importance in computational optimization tasks. For instance, minimizing band-
width directly improves memory access patterns in scientific simulations [1]. Its
generalizations, such as the two-dimensional bandwidth minimization problem,
have also been explored using both exact and heuristic approaches [3], further

* Contact author.
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demonstrating the relevance of bandwidth-related models in real-world layout
optimization scenarios. However, solving LBP remains notoriously difficult, as it
is proven to be NP-hard [4], and even state-of-the-art classical solvers struggle
with scalability on large graphs. This highlights the ongoing need for efficient
and scalable methods.

Classical algorithms for LBP range from exact solvers to metaheuristics such
as simulated annealing and evolutionary algorithms [5]. These methods often
involve expensive combinatorial searches and lack guarantees on solution quality
or time. As problem sizes increase, their computational inefficiency becomes a
critical bottleneck.

Quantum optimization, particularly quantum annealing (QA), has emerged
as a promising alternative for solving hard combinatorial problems. Specialized
hardware known as Ising machines—including quantum annealers and optical
processors—has been explored for efficiently solving Quadratic Unconstrained
Binary Optimization (QUBO) and Ising formulations at scale [6]. QA encodes
problems into Ising or QUBO models, leveraging quantum tunneling to escape
local optima |7, 8]. Among these, recent work Heidari et al. [9] explored quantum
annealing for minimization problems in computer vision using QUBO formula-
tions; similarly, Codognet and Monfroy introduced a QUBO-based formulation
for the cyclic bandwidth problem (CBP) [10], demonstrating the potential of
quantum annealing in graph layout optimization. Their method models CBP us-
ing a decision-based QUBO formulation, where feasibility is encoded as QUBO
constraints and optimization is performed externally via classical binary search.

However, such advances have not yet extended to the linear variant of the
problem. Compared to CBP, LBP poses unique challenges due to its unbounded
linear structure, which demands different modeling strategies and penalty encod-
ings. This motivates our exploration of tailored QUBO formulations for LBP to
bridge this gap and evaluate the suitability of quantum optimization techniques.

To this end, this paper proposes three QUBO-based formulations for the
linear bandwidth problem: (1) a decision-based model with repeated feasibil-
ity checks, (2) an optimization-based model using auxiliary and slack variables
for direct objective minimization, and (3) a compact exponential-penalty model
that encodes bandwidth directly with scaled penalties. Each model is analyzed in
terms of its variable complexity, matrix sparsity, and penalty structure. We fur-
ther present guidelines for strategy selection under different problem and hard-
ware conditions.

2  Quantum annealing

QA is a metaheuristic optimization technique that exploits quantum mechanical
effects to find the global minimum of a given objective function [11]. It operates
by encoding the problem into a physical system’s Hamiltonian, where the lowest-
energy state represents the optimal solution. The process begins with the system
in a simple initial Hamiltonian, whose ground state is straightforward to prepare.
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Through a gradual adiabatic evolution, the system transitions to the problem
Hamiltonian, ideally remaining in the ground state throughout [12].

In QA, problems are typically formulated as QUBO models. A QUBO prob-
lem minimizes an objective function expressed as a quadratic polynomial over
binary variables z; € {0, 1}:

min e’ Qu = Z Qiiwi + Z Qijwix; (1)
i i<j

Here, @ is an upper-triangular matrix of coefficients, with diagonal terms
representing linear contributions and off-diagonal terms capturing quadratic in-
teractions. Constraints are incorporated as penalty terms added to this objective,
ensuring that violations increase the energy and guide the system toward feasi-
ble solutions. This formulation maps naturally to the Ising model used in QA
hardware, enabling efficient exploration of complex search spaces via quantum
tunneling [13].

3 The Linear Bandwidth Problem

3.1 Problem Definition

The Linear Bandwidth Problem (LBP) is a graph labeling problem defined as
follows.

Given an undirected graph G = (V, E) with |V| = n vertices, the goal is to
find a bijective labeling ¢ : V' — {1,2,...,n} such that the linear bandwidth of
G is minimized:

B(G,¢) = max_|¢(u) — ¢(v)] (2)
(u,v)€E
We assume edges are unordered pairs {u, v}, and for convenience, when refer-
ring to (u,v) € E, we adopt the convention that u < v to avoid double-counting
(since (u,v) = (v,u) in undirected graphs).
This problem is known to be NP-hard and has applications in sparse matrix
reordering, data layout optimization, and VLSI design.

3.2 Variable Encoding and Common Constraints

To model LBP as a QUBO problem, we adopt a constraint-based formulation.
Each solution is encoded as a binary vector, and constraints are embedded as
quadratic penalty terms [10].

Let z,; € {0,1} be a binary variable defined as:

3)

1 if vertex v is assigned label 4
Ty,i = .
0 otherwise

All models share a common permutation constraint to ensure that the label-
ing is a valid permutation of {1,2,...,n}, requiring:
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(i) Each vertex is assigned exactly one label:

Y wi=1 WweV (4)

i=1
(ii) Each label is assigned to exactly one vertex:
dapi=1 Vie{l,2,...,n} (5)
veV

Following standard QUBO modeling principles [13], we define binary vari-
ables z, ; € {0,1} indicating whether vertex v is assigned label 4. To ensure that
the labeling forms a valid permutation, we incorporate the one-hot permutation
constraints as quadratic penalties:

Ppcrm - Z (Z Ty,i — 1) + Z (Z Ty,i — 1) (6)

veV \i=l1 i=1 \veV

4 Methodology: QUBO Modeling Approaches

4.1 Method 1: Decision-based QUBO Model

Our first method is for the decision problem with an additional integer input
k < n.

Model Description The complete QUBO objective function is:
min .Z‘TQJ? = Pperm +A- Pk' (7)
ze{0,1}72

where Pyerm encodes the permutation constraint, Py, encodes the linear band-
width constraint for bandwidth at most k, and A is a penalty weighting coeffi-
cient.

Constraint and Penalty Terms We convert the optimization problem into
a satisfiability form sat(G, k) that verifies whether all adjacent vertices can be
labeled within a maximum difference k:

[p(u) = d(v) <k V(u,v) € E (®)
Let L be the set of allowed label pairs:

Ly = {(i,5) € [L,n]* | i # j and |i — j| < k} (9)
The table constraint penalty is then:

Pk = Z Z Loy, * Lo, (10)

(u,0)€E (i,5)¢ Lk
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This penalty is minimized when all adjacent vertices are assigned label pairs
within the permitted linear distance of at most k.

4.2 Method 2: Optimization-based QUBO Model

Model Description and Variables To model LBP as a Quadratic Uncon-
strained Binary Optimization (QUBO) problem without a fixed k, we introduce
the bandwidth K as an auxiliary variable and use slack variables to directly
minimize K while enforcing constraints. (See [14, 15] for some other QUBO for-
mulations using slack variables.)

Let p = [log, n]. Introduce binary variables k; € {0,1} (¢t =0,1,...,p — 1)
to encode K:

m—1
K=> 2k (11)
t=0

For each edge e = (u,v) € E, introduce a slack variable s, (non-negative
integer) encoded with p = [log, n] binary variables s, , € {0,1} (r =0,1,...,p—

1):

p—1
Se=» 2se, (12)
r=0

The total number of variables is n2+p+|E|-p. The complete QUBO objective
function is:

min .Z'TQ.Z' == Pperm+A'wa+>\'PminK (13)
16{071}n2+p+\E\-P
where Pyerm encodes the permutation constraint, P, enforces the bandwidth
constraints using slack variables, P,k minimizes K, and A, A > 0 are penalty
weighting coefficients (with A > X to prioritize constraint satisfaction).

Constraint and Penalty Terms To enforce |¢p(u) — ¢(v)| < K for all (u,v) €
E without a fixed k, we introduce slack variables s. for each edge e = (u,v)
to convert the inequality constraints into quadratic penalties. This allows the
QUBO to directly minimize K while ensuring feasibility.

The effective distance for edge (u,v) is:

n o n
de - ZZ |Z - ]| * Ly,ilo,j (14)

i=1 j=1

The constraint d. < K is reformulated using the non-negative slack s, as an
equality d. — K + s, = 0, which is enforced via a squared penalty term. The
bandwidth penalty is:
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Pow= Y (de—K+s5.)° (15)

(u,v)EE

This penalty is zero if and only if d. < K for all edges, with s, = K — d,
when d. < K (absorbing the slack) or s, = 0 when d. = K. If d. > K, the
penalty is positive, as s, > 0 cannot fully compensate.

Expanding the square yields quadratic terms involving @, ;T j, Tu,ikt, Tu,iSe,r,
kiSe,r, and self-terms, which can be incorporated into the QUBO matrix ). The
matrix Q. aggregates these expansions across all edges, resulting in a block-
structured form as illustrated in Figure 1. The blocks correspond to interactions
between variable groups: x-x (from d?), x-k (from —2d.K), x-s (from 2d.s.),
k-k (from K?), k-s (from —2Ks,), and s-s (from s2). This structure is upper-
triangular to align with the QUBO formulation, ensuring efficient computation
while maintaining equivalence to the symmetric contributions from the expan-
sions.

x-x blocks

_________

(a) QUBO term blocks for Quw expansion. (b) Aggregated block structure

Fig. 1: Schematic illustration of (a) QUBO expansion term blocks and (b) the
aggregated (n? +p+|E|-p) x (n? +p+ |E|-p) QUBO matrix structure for Quy
in method 2.

This formulation ensures the model directly optimizes the minimum band-
width without external loops over k. To minimize the bandwidth K:

m—1
PminK = Z 2tk/'t (16)
t=0

This linear term (embedded in the QUBO quadratic form via diagonal ele-
ments) encourages smaller values of K.
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4.3 Method 3: Exponential-penalty QUBO Model

Model Description This model modifies the original decision-based QUBO
formulation by replacing the fixed-k table constraint k with an exponential
penalty term that encodes the bandwidth directly into the objective without
requiring an external search over k. It uses the same binary variables as the
original model, requiring n? qubits, but introduces larger constants to distin-
guish bandwidth values.

The complete QUBO objective function is:

min ' Qu = Poerm + A - Pexp (17)
ze{0,1}n?
where Pperm encodes the permutation constraint, Py, encodes the exponential
penalties for bandwidth violations, and A > 0 is a penalty weighting coefficient.
By minimizing this QUBO, the minimum value achieved (under valid per-
mutations) encodes the minimum bandwidth, which can be decoded from the
objective value as explained in the proof of correctness below.

Exponential Penalty Term Instead of a fixed k, we assign exponentially
increasing penalties based on the label distance |i — j| for each edge (u,v) € E.
The penalty term is:

n n
Pop= Y > > 2" lay,; 2, (18)

(ww)eB i=1j=1

Note that when i = j, |i — j| = 0, so 2*% = 1, but since the labeling is
bijective (enforced by Pperm), no two vertices share the same label, and self-loops
are not considered in F. This term is quadratic and can be directly incorporated
into the QUBO matrix @. The exponential base ensures that larger distances
dominate the sum, allowing the minimum bandwidth to be extracted from the
total objective value.

Proof of Correctness The correctness of this model relies on the property that
the minimum value of the QUBO objective (assuming A = 1 for simplicity, and
focusing on Peyp, under valid permutations where Pperm = 0) uniquely encodes
the minimum bandwidth B(G) = kpin. Specifically, for any valid labeling ¢, let
dmax = MaX(y, yep [P(u) — ¢(v)|. Then the value of Py, satisfies the bounds
that separate different values of dy.x.

Assume that the graph has m = |E| edges. For a fixed label with dmax = k:
Each edge contributes at most 2"* to the sum (for distances exactly k), and
there are at most m edges, s0 Pexp < m - 27k Since m < (g) < 2" 1 form>2
(and strictly m < (%) ~ n?/2 < 2" for sufficiently large n, but the bound holds
as (§) < 2" for all n > 1), we have Pey, < 27 - 2"F = 2n(k+1),

If there exists at least one edge with distance k + 1, that single edge con-
tributes exactly 2"(*+1) (or more if larger distances exist, but at minimum this),
and all other edges contribute non-negative terms, so Pexp > on(k+1),
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Combining these: If dpax < k, then Peyp < 2n(k+1) If dyaxe > k + 1, then
Pexp > 2n(k+1).

Thus, the ranges for different £ are disjoint: the minimal Py, over all valid
labelings will fall into the range corresponding to kpin = B(G), specifically
1 < Pexpmin < 27 (Fmin+1) (since at least one edge exists in non-trivial graphs,
but adjusts for m = 0 trivially). To extract kmin, compute |log,(Pexpmin +€)/1]
(with small € > 0 to handle bounds), but more precisely, find the smallest & such
that Pexpmin < 27F+1).

This ensures that the global minimum of the QUBO corresponds to a labeling
achieving the minimum bandwidth, and the objective value uniquely identifies
kmin without external iteration over k. Note that the constants 2"~ grow
rapidly, which may pose numerical challenges in classical solvers but is suitable
for quantum annealers handling large coefficients via embedding.

Improved Formulation with Adjusted Base Although the original expo-
nential penalty with base 2™ effectively distinguishes bandwidth values, it can
lead to numerical overflow for larger n due to excessively large coefficients. To ad-
dress this, we suggest modifying the model to use an adjusted base b = L(S)J +1,
which is an integer greater than the maximum possible number of edges m < (g)

The permutation constraint Pe,r, remains unchanged. The exponential penalty
term is updated as follows:

Pexp = Z i i b|1—J| *Ty,i* Lo,j (19)

(u,v)EE i=1 j=1

This preserves the quadratic structure and the ability to decode the minimum
bandwidth from the objective value, as the proof of correctness holds analogously
(with 2™ replaced by b > m).

Reasons for the Modification The primary reason for this change is to mit-
igate numerical instability and overflow issues inherent in the original formu-
lation. In the original model, coefficients reach up to 27(»~1) which grows as
20(n*)  This exponential explosion makes the model impractical for n > 20 on
standard computing hardware, as coefficients exceed the representable range of
floating-point numbers (e.g., IEEE 754 double precision limits at approximately
1.8 x 10%%8). For instance, at n = 50, 2"(*~1) ~ 22450 ~ 10738 which overflows
to infinity in most systems.

By choosing b ~ n?/2, the model maintains the separation of value ranges for
different maximum distances k (as b > m ensures disjoint intervals: Py, < bF*1
if dpax < k, and Pexp > PR if dpaxe > k + 1), while significantly reducing
coefficient magnitudes. This adjustment is simple to implement, requiring only
a precomputation of b, and does not increase the number of variables.
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Analysis of Reduced Overflow Risk The modified base substantially lowers
the overflow risk by reducing the growth rate of the maximum coefficient from
0(2”2) to approximately O((n?/2)"~1) = 20(n1ogn) Specifically:

Original maximum coefficient:

271(77,71) _ 277,2777, (20)

Modified maximum coefficient:

bnfl ~ (n2/2)n71 — 2(n71)10g2(n2/2) ~ 2(n71)(210g2 n—1) (21)

For concrete examples: (1) For n = 10: Original ~ 2% ~ 1.2 x 10%7; Mod-
ified ~ (50)? ~ 2°98% ~ 1.7 x 10% (reduction by factor of ~ 10!2). (2) For
n = 50: Original ~ 224%0 ~ 10738; Modified ~ (1250)%° ~ 259 ~ 1052 (re-
duction by factor of ~ 10586). (3) For n = 100: Original ~ 29990 ~ 102979,
Modified ~ (5000)% ~ 2(99)x(logs 5000) ~ 999x12.3 ~ 91218 ~ 10367 (still large
but representable with arbitrary-precision arithmetic, unlike the original).

This slower growth (O(nlogn) in the exponent vs. O(n?)) ensures the co-
efficients remain manageable for larger n (e.g., up to n = 100 with big-integer
libraries like Python’s int), while avoiding precision loss in quantum annealers
or classical solvers. However, for extremely large n, further optimizations such
as layered penalties or normalization may be necessary.

5 Practical Usability

5.1 Time Complexity Analysis

As summarized in Table 1, the three QUBO modeling approaches exhibit distinct
trade-offs in variable count, matrix density, and computational complexity. The
decision-based model (Method 1) requires O(logn) sequential or binary search it-
erations over the bandwidth parameter k, resulting in multiple QUBO solves, but
benefits from a relatively sparse matrix structure that is favorable for both clas-
sical and quantum solvers. In contrast, the optimization-based model (Method
2) encodes the bandwidth as additional binary variables, allowing the problem
to be solved in a single QUBO instance. This approach, however, increases the
total number of variables and matrix density, which can present greater chal-
lenges for hardware embedding and solution efficiency. The exponential-penalty
model (Method 3) similarly requires only a single QUBO solve but generates a
fully dense matrix with large coefficients, potentially imposing greater computa-
tional and numerical demands on classical solvers, though it remains well-suited
for quantum annealing devices capable of handling such dense structures. Over-
all, the choice of model involves a balance between solution generality, variable
count, and practical solvability for a given hardware platform.
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Table 1: Time complexity comparison of the three QUBO models.
Method Variable Count |Matrix Density|Overall Complexity

Decision-based
Optimization-based
Exponential-penalty

o(n?)
O(n? + |E| - logn)
O(n?)

Sparse
Medium to dense
Dense

O(Tqueo - logn)
O(Tguso)
O(Tgquso)

5.2 Illustrative Example: K3 with Pendant

Consider the graph with vertices V' = {0, 1,2,3} and edges E = {(0, 1), (0, 2), (1,
2),(0,3)} (n = 4). This is a triangle (K3) on vertices {0, 1,2} with a pendant
vertex 3 attached to 0. The optimal bandwidth is 2 (e.g., labeling ¢(0) = 2,
d(1) =1, ¢(2) = 3, ¢(3) = 4; max difference=2).

We demonstrate the solving process for each method, starting with the com-
mon Ppery and its matrix Qperm. Variables are indexed 0-15: rows 0-3 for xq 14,
4-7 for 1,14, 8-11 for T2,1—4, 12-15 for x3,1—-4-

Computing Pperm and Qperm Matrix Substitute n =4, V = {0, 1, 2, 3} into

Eq. 6:
4 3 2
<Z xv,i - 1) (Z -7;7),1: - 1)
i=1 v=0

Expanding each term: For row v = 0 (variables z¢ 1 to zg4),

3

23

v=0

2 4
+

i=1

Pperrﬂ

4 2 4 4
E Lo — 1 = E To,; + 2 E T0,;T0,5 — 2 E o, + 1
i—1 i=1 1<i<j<4 i=1

4
=2 Z To,iT0,j — Zxo,i +1
1

1<i<j<4 i=

For column ¢ = 1 (variables xg 1 to x3.1), a similar expansion yields 2 ZO<U<0/<3
3
LTy, 1Ty 1 — Z»U:O Ty,1 + 1.

Summing all (ignoring constants) gives the quadratic coefficient 2 for intra-
row/column pairs, linear -2 on diagonals. For example, with assignment zg 2 = 1,
211 =1, 223 =1, x34 =1 (valid labeling), Pyerm = 0 (each sum=1).

The matrix Qperm is derived with quadratic coeflicients of 2, according to
the standard expansion. For formulations preferring halved coefficients (e.g., to
simplify matrix values or align with integer-based solvers, without altering the
optimization minima due to proportional scaling), divide all entries by 2, as
shown in Figure 2.

Method 1: Decision-based (for k = 2) For k = 2, substitute into Eq. 9 to
compute Lo = {(4,5) | ¢ # j,|i — j| < 2}, yielding allowed pairs such as (1,2),
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Tyl Tip T13 0 Tig Ton T 23 T24 T30 32 X33 T34 Tyl T4 Ta3 T4g

T 1 0 0 0 1 0 0 0 1 0 0 0
T19 0 1 0 0 0 1 0 0 0 1 0 0
T3 0 0 1 0 0 0 1 0 0 0 1 0
T4 0 0 0 1 0 0 0 1 0 0 0 1
T2 1 0 0 0 1 0 0 0
T2 0 1 0 0 0 1 0 0
T3 0 0 1 0 0 0 1 0
Qporm = T4 0 0 0 1 0 0 0 1
) 31 1 0 0 0
39 0 1 0 0
r33 0 0 1 0
T34 0 0 0 1
T4,1
T4,2
243

T44

Fig. 2: Expanded Qperm matrix for n = 4 permutation constraint. Green entries
represent row constraints (diagonal -1, off-diagonal 1 within rows); red entries
represent column constraints (1 across rows for same label).

(1,3), (2,1), etc., and forbidden pairs (1,4) and (4,1) (since for n =4, |i — j| > 2
only these).

Expanding the table penalty via Eq. 10: For edge (0,1), sum over forbidden
(1,j) adds terms g 11,4 + To,4%1,1 (corresponding to positions with coefficient 1
at indices (0,7) and (3,4) in the QUBO matrix, where variables are ordered as
Zo,1 to 20,4, T1,1 to X1,4, etc.).

For edge (0,2), similarly adds 1224 + zoaz2,1 (at (0,11) and (3,8)); for
(1,2): ®1,1@2,4 + T1,4721 (at (4,11) and (7,8)); for (0,3): zo1234 + Toax31 (at
(0,15) and (3,12)).

Summing all gives quadratic coefficients of 1 for each forbidden interaction
across edges, resulting in a sparse Q2 with exactly 8 entries of 1 (2 per edge X
4 edges). For example, with a valid labeling like oo = 1, 11 = 1, 223 = 1,
234 = 1 (no forbidden pairs activated), P> = 0.

The matrix Q)5 is derived with these quadratic coefficients of 1, according to
the summation. For formulations preferring adjusted scales (e.g., to align with
solver precision), coefficients can be scaled uniformly without altering minima
due to proportionality, as shown in Figure 3.

Final Q = Qperm +AQtable (A = 10, per Eq. 7). Minimization yields objective
0, confirming feasibility; binary search over k determines the linear bandwidth
as 2.

Method 2: Optimization-based In this example (n = 4, |E| = 4), variables
are indexed as z,; for 0 <wv < 4,1 <i <4 (0-15), ko, k1 (16,17), and slack bits
Se,0, Se,1 for each edge e (18-25).

Key coefficient computations for each block of Q. are illustrated for a rep-
resentative edge in Figure 4, including x-x from d? (coefficients |i — j|?), x-k from
—2d. K (—2]i — j|2!), x-s from 2d.s. (2|i — j|2"), k-k from K? ((2!)?), k-s from
—2Ks, (—2-2'2"), and s-s from s2 ((27)?).



12 Q. Guo and M.J. Dinneen

Z11 Ti2 T13 Tia T21  X22 T23 T24 T31 T32 T33 T34 Ta1 Ta2 Ta3 Taa

z11 /0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1
T19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x13 0 0 0 0 0 0 0 ( 0 0 0 0 0 0
T14 0 1 0 0 1 0 1 0 1 0 1 0 1
9,1 0 0 0 0 0 0 0 0 0 0 0 0
T2 0 0 0 0 0 0 0 0 0 0 0
T3 0 0 0 0 0 0 0 0 0 0

_ Ta4 0 0 0 0 0 0 0 0 1
Qtabte = Z31 o 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0
33 0 0 0 0 0 0
T34 0 0 0 0 0
T4 0 0 0 0
Ty 0 0 0
T43 0 0

o

T4

Fig. 3: Sparse Qiaple matrix for &k = 2, highlighting penalty coefficients of 1 at
positions for forbidden pairs across all edges.

Aggregating over all edges fills the full matrix (e.g., k-k scaled by |E|). The
diagonal for kg, k1 incorporates Ppink from Eq. 16 to favor minimal K.

Solving the resulting QUBO (e.g., via quantum annealing or classical solvers)
yields K = 2 with labeling zo2 =1, 211 =1, 23 = 1, 234 = 1 (max d. = 2,
slacks absorbing differences for minimal energy).

Method 3: Exponential-penalty Substitute n = 4 into Eq. 18 to compute
Pexp = 2(uw)er Z?Zl Z?Zl 24i=ilg,, sz, ;, yielding penalties like 240 = 1 for
li — j| = 0 (avoided via permutation), 241 = 16 for distance 1, 28 = 256 for 2,
212 = 4096 for 3.

For edge (0,1), add 24%=7| to positions (e.g., (1,2): 16 at (0,5); (1,4): 4096
at (0,7); symmetric for (2,1): 16 at (1,4)). Similar for other edges, aggregating
into dense Qexp With 64 non-zero entries (coefficients 16 to 4096), as shown in
Figure 5.

For halved coeflicients (to align with solvers), divide by 2. Use adjusted base
b="7 (Eq. 19) to reduce max from 4096 to 343.

Final Q@ = Qperm + AQexp (Eq. 17). Minimization yields Pey, = 1088 for
labeling zp2 = 1, 11 = 1, z23 = 1, 34 = 1 (distances 1,1,2,2; decodes to
bandwidth 2, as 256 < 1088 < 4096 per proof).

6 Strategy Selection and Practical Guidelines

Selecting the appropriate QUBO formulation for solving the Linear Bandwidth
Problem (LBP) depends significantly on the characteristics of the input graph
(size and density) and the constraints posed by computational resources and
quantum hardware.

For graphs with small to moderate vertex counts (n < 20), or when compu-
tational resources are limited, the decision-based model is recommended. Its
primary advantage is a sparse matrix and relatively low variable count, enabling
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x-x blocks x-k blocks
(Q terms like |i — j|?) (Q terms like —2[i — j[2%)
[1—2% |1 —=3]> [1—4] 149 —2-1-1 4»&} (73 4}
[2—1 23] |2—4 | |114 ‘ 2:2:1 —=2-2-2 ‘ | \“
[3—11% 3212 |3—4)? 411 2.3-1 -2-3-2 6 —12
[4—11% |4—22 |4-32 941 2:4-1 z»sz L 8 1<;J
k-k blocks
(Q terms like (2)2)
@M M| _|12
@ (2? 24
k-s blocks s-s blocks
(Q terms like —2 - 2t27) (Q terms like (27)?)

-2-1-1 —2-1-2| | -2 —4 (1 ME)| _ |12

—2:2:1 -2-2:2| | -4 -8 @1 @ | |24
Fig. 4: Example coefficient computations for each block in Q, (illustrated for a
representative edge).

efficient embedding and quick QUBO solves, despite the iterative search over the
bandwidth parameter k.

The optimization-based model should be chosen when reducing the num-
ber of QUBO solves is critical and the graph edges (|E|) are not extensively
dense. This method introduces additional variables (auxiliary bandwidth and
slack variables), increasing matrix density. Nevertheless, the direct bandwidth
minimization capability, requiring only a single QUBO solve, makes it highly
suitable for moderate-density graphs.

The exponential-penalty model is optimal for use with quantum annealers
or high-capacity classical solvers capable of handling large coefficients and dense
matrices. Although it has the lowest variable count and encodes the optimal
solution directly, its dense structure and large coefficients pose challenges for
classical computational tools.

7 Conclusion

We systematically investigated three quantum annealing-based QUBO formu-
lations for solving the linear bandwidth problem (LBP): the decision-based,
optimization-based, and exponential-penalty models. Each approach exhibits
distinct trade-offs regarding variable count, matrix sparsity, and numerical com-
plexity.

The decision-based model benefits from a sparse matrix and simpler struc-
ture but requires multiple iterations due to the external binary search for band-
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T i Tipe Toi  Tad i Tz Tis L 0 Trz Loy L4 Fai Taz Ias Fa
i 1 L L (L 1 i 256 A6 1 L 256 409G
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Fig. 5: Block structure of Qexp for Method 3 (n =4, |E| =4). Each 4 x 4
block corresponds to variable pairs (z,;, %, ;) for edges (u,v) and labels 4, j.
Entries are 24"=7l; zeros omitted for clarity. All blocks repeat across edges (see
main text for edge/label assignment).

width k. In contrast, the optimization-based model directly minimizes band-
width within a single solve but introduces additional variables and denser ma-
trices, potentially complicating hardware embedding. The exponential-penalty
model provides a compact single-solve formulation, yet suffers from large, ex-
ponentially growing coefficients, posing numerical challenges for classical and
quantum solvers at larger scales.

Practical experiments and theoretical analysis suggest selecting the QUBO
model according to problem size and hardware constraints: sparse or moderate
instances favor decision-based or optimization-based methods, whereas dense or
larger graphs might benefit from hybrid classical-quantum strategies or coeffi-
cient adjustments.

Future research may focus on developing hardware-optimized QUBO en-
codings, hybrid quantum-classical algorithms, and extensive benchmarking on
quantum hardware to address scalability and applicability to real-world linear
bandwidth optimization problems.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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Abstract. Fuzzy Inference Systems (FIS) are a powerful tool for prob-
lems whose domain can be formally defined thanks to extracting knowl-
edge from experts. These systems provide certain capabilities that cur-
rent trend technologies do not, but its use has decreased in the past years
due to the popularity of Machine Learning methods. In this paper, we
revisit FIS through the perspective of Quantum Computing, an approach
to make this model more powerful, thanks to superposition and entan-
glement. We present a new method for implementing FIS with quantum
circuits, named Quantum Fuzzy Inference Systems, providing the defi-
nitions for the logical operators and implication. We propose a practical
application in sleep medicine diagnosis, more specifically for the detec-
tion of apneic events. Our results show that we are able to replicate the
behavior of the classical model using the quantum proposal, up to a sim-
ilarity of 99.97%. We conclude on the contribution of this work towards
the development of hybrid algorithms and uncertainty management, and
pose some possible lines of future work on extending the inference process
and its optimization.

Keywords: Quantum Computing - Fuzzy Inference Systems - Uncer-
tainty - Sleep Medicine.

1 Introduction

When Lofti A. Zadeh first introduced fuzzy sets in 1965, one of his motivations
was to provide a formalism to represent certain kinds of knowledge in a closer
way to how humans think [20]. This new proposal was widely accepted, giving
rise to different applications, like fuzzy controllers [18] or fuzzy inference [§],
marking a milestone in classical Artificial Intelligence (AI) history.

However, in the more recent years, Machine Learning (ML) has taken over
the AI ecosystem. With the amount of data available nowadays, it is easier to
train a model than to struggle with the knowledge engineering process for the
tasks that these models are used for.
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Nonetheless, ML methods lack the capability that fuzzy tools provide for
uncertainty and explainability. Due to each one’s natures, fuzzy tools are able to
clearly state the reasons why a certain output was given (inputs, rules activated)
when using uncertain data, while ML methods are too opaque for a simple and
clear explanation [15]. Therefore, it may be of interest to revisit fuzzy tools under
a new perspective, to develop more powerful tools that work under uncertainty
and are explainable.

Parallel to these events, Quantum Computing (QC) has taken an important
spot among the cutting-edge technologies with potential for next-generational
breakthrough. Although its conception goes decades back [9], recent develop-
ments in quantum hardware have posed QC as a real contender for a plethora
of meaningful applications, in fields like chemistry, finance or health [16,11,10].

This new computing paradigm, based on the postulates of Quantum Mechan-
ics, provides computing capabilities that are simply not realizable by classical
computing. Superposition and entanglement play a fundamental role in these ad-
vantages, allowing for a more powerful parallel processing and data correlation,
among many other feats [17].

In the recently published white paper [1], quantum reasoning is posed as
one of the key directions of Al improvement through QC. In particular, fuzzy
logic systems are mentioned as one of the models that could be enhanced with
quantum approaches.

Within this context, the objective of this work is to present a method to
implement fuzzy inference through quantum circuits, providing a basis that can
be already used (as we illustrate with an example) but with room to improve by
applying QC techniques. The rest of the paper is structured as follows. Section 2
presents the theoretical basis of the work. In Section 3 we present an experiment
with a real application of the proposed method. Finally, Section 4 reflects the
conclusions achieved during the realization of this work.

2 Materials and method

In this section we present the necessary materials on Fuzzy Inference Systems,
as well as the new proposed method.

2.1 Fuzzy Inference Systems

Consider a universe of discourse U, which contains the elements to be worked
with. We define a fuzzy set S in U by a membership function (MF) pg(x), which
assigns each element x € U a real number in the interval [O, 1}, with the value
of pus(x) at x representing the “grade of membership” of = in S; the closer ug(x)
is to 1, the more x belongs to the fuzzy set S.

Therefore, a fuzzy set S contains pairs of both the elements in U and their
grade of membership:

S ={(z, ps(z)) | = € U}. (1)
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Using fuzzy sets, we can define an extension of classical logic, known as fuzzy
logic. Classical logic is then considered a particular case of fuzzy logic, where
the membership functions of each fuzzy set only evaluate to either 0 or 1 (crisp
values, rather than fuzzy), but still in the range [0,1] of fuzzy logic.

This extension calls for a redefinition of the classical logical operators, as
their behavior is only defined for the edge cases where the values are either 0
or 1. This is an interesting characteristic of fuzzy logic, as it allows for different
implementations of this operators, as long as they respect certain properties
specific to fuzzy logical operators (see Table 1).

Table 1: Fuzzy logical operators’ properties

Property Definition

Commutativity f(a,b) = f(b,a)
Monotonicity a<b = f(a,c) < f(b,c)
Associativity f(f(a,b),c) = f(a, f(b,c))

f(a,1) = a for conjunction

Identity element f(a,0) = a for disjunction

We do not pursue this exposition further as it is not necessary for our method,
but it must be kept in mind that these new operators add a layer of complexity,
necessary to manage fuzzy variables.

With this approach, we can use fuzzy logic to model uncertainty, a charac-
teristic out of reach for classical logic. We can now define values that are not
true nor false, but rather something in between. This is specially useful when
considered for the process of inference [6].

There are several forms to implement a fuzzy inference process (similar to
fuzzy logical operators), but the process itself always follows the same steps:

1. Fuzzification: at first, the information is modeled as crisp values from our
universe of discourse; it must be transformed into fuzzy variables, using the
membership functions that define the fuzzy sets of our system.

2. Inference engine: once the information has been fuzzified, the rules of the
system are applied. For each rule, its precedent is evaluated according to the
fuzzy logical operators that relate the different variables, and then a value
is obtained for the fuzzy set of the output in question.

3. Defuzzification: after all the rules have been evaluated, the fuzzy sets of
the output are aggregated to generate a crisp value, resulting in the final
output of the system.

Fuzzy Inference Systems (FIS) are used to realize this very same process in
practice. Their structure is illustrated in Figure 1. Besides the elements that
carry out the steps of the process that were described above, FIS also have
a knowledge base, which contains knowledge of the problem in question. This
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knowledge ranges from constraints that the elements must met, to the rules that
relate the elements.

4 Fuzzy Inference System

Knowledge base

Database Rules
Output

Input T

(crisp) L J (crisp)

W Infere.nce Fu—zzy>[Defuzzification]
engine
S = =/

Fig. 1: Fuzzy Inference System structure

In the text that follows, we will focus on the highlighted parts, as the rest of
the system remains virtually the same for both classical and quantum paradigms.
We provide a formal definition of the elements of FIS that are of interest for this
work:

— Input: a numeric range must be defined from the universe of discourse U
for each of the variables of our system.
T € [Ming, maty) (2)
— Fuzzy variable: a set of fuzzy sets per variable of the system, each of them
modeled by a fuzzy set X*, with its corresponding membership function.
pxi(x) @ [ming, maz,] — [0,1] (3)

— Rules: the inferential relationships between the fuzzy sets of the inputs to
those of the outputs. The operators used for precedents in rules (negation,
conjunction, disjunction; example in (4)) and the implication can be imple-
mented through different functions, as long as they abide to the properties
of Table 1.

IF (w0 is X&) € [0,1]

A (21 is X7) €[0,1]

(4)
V (z, is X¥) €10,1]

THEN (y is Y¥) € [0,1]

We use a shortened notation for fuzzy sets, with X being the fuzzy set s of
fuzzy variable x,,.
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— Output: once the inference process is carried out, the corresponding values
for each of the fuzzy sets of the output are obtained. To aggregate them and
generate a crisp output, we use the Takagi-Sugeno-Kang (TSK) inference?,
as it is a better fit for the quantum encoding used in the proposal, due to
its discrete nature:

N—1
;} Wizi

Output (crisp) = ———— (5)

> w;
i=0

where N is the number of rules, w; is the value (or weight) of each fuzzy set
of the output evaluated through inference, and z; is a constant associated to
each fuzzy set (similar to the membership functions of the inputs).

2.2 Quantum Fuzzy Inference Systems

We now turn to Quantum Computing to define a system equivalent to the clas-
sical FIS, which we refer to as Quantum Fuzzy Inference System (QFIS). The
goal is to define a process of fuzzy inference through a quantum circuit, using
properties as superposition to model the information of the system and quantum
operators for the logical operations.

With this purpose, we propose a structure for QFIS as illustrated in Figure 2.
Both the input and output of the system remain as crisp values, as well as the
processes of fuzzification and defuzzification.

The main difference regarding the classical FIS can be seen in the inference
engine, which now is purely quantum. It is divided in the following steps: (1) en-
coding of the fuzzy variables into quantum states, (2) application of a quantum
circuit for inference based on the rules, and (3) measurement of the output qubits
to obtain the output fuzzy variable. We proceed to further detail each of these
steps in the following lines.

Encoding Before delving into details, we want to highlight that this step does
not replace the fuzzification process. Once the crisp inputs have been fuzzified,
the obtained fuzzy variables are encoded into quantum registers.

In the first place, the qubits used for the inputs are initialized. Each input
x has n fuzzy sets. Each fuzzy set is mapped to a state of the qubits using
amplitude encoding, as it is similar to the idea of fuzzy variables and it is space
efficient regarding the amount of qubits (in contrast to other encodings such as
basis encoding or angle encoding). This encoding requires ¢ = [logyn| qubits per
input. With g qubits, we obtain 27 states, using n to represent the fuzzy sets:

) = Y Vi ()11 + Y 01). ©)

! If required, a normalization operation may be applied to the output obtained, trans-
lating the calculated output into a specific range.
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Knowledge base

{Database} [ Rules }
Input ! . Output

(crisp) (crisp)
. ,/ Quantum K o
Fuzzification| , . Defuzzification

, circuit

/ \
4 \
/
Fuzzy / Quantum Quantum \\ Fuzzy
// \\
| Quantum
~> Measurement
, state \

Fig. 2: Quantum Fuzzy Inference System structure

The right part of the sum evaluates to 0; those are the remaining 29 — n states
from the state space, and their amplitude is 0.

Depending on the values of pxi(x), a normalization process may be in order,
to ensure the correct definition of a quantum state (i.e. ensuring the sum of
the modulus squared of the amplitudes equals 1). Let amp be Z?;ol wxi(z). If
amp = 1, no normalization is required. If amp < 1, we initialize one of the 29 —n
states, say g, as v/1 — amp|g), acting as a garbage state. If amp > 1, we divide
each pyi(z) by amp, ensuring the normalization.

For the output, we consider a fuzzy variable y with n fuzzy sets. We use
g = [logyn] + 1 qubits, and initialize them as follows:

) =l (= 10+ 3 0l )

Given that at first we do not know which rules will be activated, we initialize
the states associated to the fuzzy sets of the output to an equal superposition,
leaving the amplitudes of the remaining states at 0. This configuration allows
for an easier implementation of the remaining elements.

The extra qubit y., is used to control the activation of the rules. When a
rule is activated, we use both the input and the output qubits to control a X
operator on this extra qubit. Therefore the state space is split in two subspaces:
the one with the extra qubit in state |1), due to the initialization, and the one
with the extra qubit in state |0), once a rule has been activated and changed
this qubit’s amplitudes.
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Inference To define a quantum circuit that realizes the inference process, we
must define how to implement the logical operators of the rules’ antecedents as
well as the implication operator for the rules.

For the precedent of the rules, there may be the case where only a single
input is present. In this case, only the qubits of that input are used, and no
extra steps are required. However, it is rather common that the precedent of the
rule is composed by a combination of multiple inputs.

In the cases where several inputs are used in the precedent of a rule, they
are related through the conjunction and disjunction operators. For the conjunc-
tion operator, we apply a single quantum operator controlled by the qubits of
the inputs, with the control state set to those states that represent the fuzzy
sets of the inputs. For the disjunction operator, we apply a combination of con-
trolled quantum operators, each being controlled by the different combinations
of states obtained from the inclusion-exclusion principle. These implementations
are based on the idea of t-norms and t-conorms, the references for implementing
classical fuzzy operators [12]. Figure 3 illustrates both operators with examples.

|l‘0) I ‘$0> D e &
1) { |z1) {
———
ly) —B— ly) —0—0—D
(a) Conjunction operator for (b) Disjunction operator for
(x0 is X)) A (21 is X01). (zo0 is XQ) V (21 is X11).

Fig. 3: Examples of quantum operators for conjunction and disjunction.

For the negation of an input, some extra work is required. With the ex-
ception of inputs with a single, this operation is non-trivial, as, in general,
X Jux, () i) # /1 — px,(x)|i). Therefore, we employ an extra qubit, ini-
tialize it to the state |1), and apply a X operator to it, controlled by the state we
want to negate. Then we use this extra qubit (whose amplitude now corresponds
to /1 — ux,(z)) as a replacement for the original input. Figure 4 illustrates such
a case.

[z0) {
|=0) — X F——

Fig. 4: Negation operator for (zg is not X{!).
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For the implication, we use the operators defined above plus the output
qubits, to control an X operator on the extra qubit y., that we previously
specified to divide the state space. This operator modifies the amplitude of the
output states proportionally to the amplitudes of the input states, accurately
modeling the behavior of classical FIS. Figure 5 illustrates the implementation
of an example rule with the elements that we have defined here.

|.’L’0> O

1)

|yez

)
|y>{ T [ [
[~ao) — X €

Fig. 5: Quantum  circuit for  the rule IF (20 is not X&) Vv
(71 is X{') THEN (y is Y1)

Pany
\V>
—D
Pany
AV

A\

Measurement The final step in this new quantum inference engine is mea-
surement. As expected, we measure the output qubits, including both the qubit
register for the states and the extra qubit to divide the state space. With these
measurements, we obtain bit strings where the first bit corresponds to the ex-
tra qubit y., that divides the state space, and the remaining bits of the string
indicate the measured state on the output qubits, which is related to a specific
fuzzy set of the output.

Out of all the shots performed, we use the ones whose first bit is 0 (the ones
where the rules were fired, as specified in the encoding of the output), and use
the rest of the bits to identify the output qubits’ state. The number of shots
measured for each state acts as the evaluation of the corresponding fuzzy set of
the output, which is later used as the weight in the defuzzification process (see
Equation (5)).

With these definitions, we have established a new inference engine for FIS
through Quantum Computing, which can be integrated with the classical fuzzifi-
cation and defuzzification processes, resulting in a hybrid classic-quantum method
for our proposal of QFIS.
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3 Experimentation

In this section, we introduce a real test case scenario by implementing an infer-
ence system for the detection of pathological respiratory events in sleep medicine
recordings.

3.1 Detection of sleep breathing events

The polysomnographic (PSG) test is the standard diagnostic tool for the diagno-
sis of sleep disorders. Among the related pathologies, sleep disordered breathing
(SDB) is one of the main causes of sleep disruption, characterized by the repeated
presence of involuntary respiration pauses during the night, hereafter referred to
as apneic events. To detect these events, a PSG involves the recording of several
biomedical signals, including airflow, thoraco-abdominal movements, and oxygen
saturation in arterial blood, among others [19].

Clinical guidelines recommend PSG data to be evaluated by a certified sleep
expert. However, this task is time-consuming, and subject to several sources of
uncertainty [3]. In this context, (semi-)automatic PSG analysis emerges as a
promising approach by assisting clinicians to reduce analysis times and associ-
ated inter-rater variability [13,4].

Following this line, we tackle PSG evaluation as a relevant case of study for
the methods introduced in this work. More specifically, we take as reference the
classical FIS implementation described in past work [7], and implement one of
the inference units using the proposed QFIS approach just described.

The chosen inference unit regards the first inference stage, which is used to
determine the relevance of a desaturation event in the signal of oxygen saturation
(Sa02). This inference unit takes two inputs; the reduction in the saturation
(SaO3Red) and the duration of the reduction event (SaOg RedDur). It outputs
the degree of severeness of the event (Event).

To model this relationship, expert knowledge in the original work was ex-
tracted based on the reference clinical guidelines [5]. This knowledge is used to
model the definition of the input and output variables and related fuzzy sets,
and the corresponding fuzzy IF-THEN rules as presented in Tables 2 and 3
respectively.

3.2 Implementation

After defining the previous knowledge, we can proceed with the implementation
of the FIS. We implement it in both classical and quantum paradigms to compare
both versions later. Materials for reproducibility of the experiments are accessible
online [14].

For the classical implementation, we use MATLAB’s Fuzzy Logic Designer, as
it is one of the most popular software programs for these systems [2]. It provides
out-of-the-box implementations of membership functions, logical operators, and
inference tools.
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Table 2: Fuzzy sets for the variables of the inference unit.

Variable Fuzzy set
Name Type of MF Values Quantum state
Low Linear Z-shaped :1 2} 000
Normal Trapezoidal [1.824 5} 001

SaO:Red iy Trapezoidal 4 6810] 010
Very High Linear S-shaped :9 12] 011
Very Short Linear Z-shaped 3 4} 000
Short Trapezoidal 13 45 6} 001

SaOsRedDur Normal Trapezoidal =5 6. 535 60] 010
Large Trapezoidal 35 45 120 130} 011
Very Large Linear S-shaped |120 130] 100
Very Low Constant 0} 000
Low Constant ;0.3} 001

Event Medium Constant 0.5] 010
High Constant :0.7} 011
Very High Constant »1} 100

Table 3: Rules of the SaO5 inference unit.
Rule Precedent Consequent

0O UL WN

SaOzRed IS Low

SaOzRed IS High AND SaO;RedDur IS Very Short

SaO2Red IS High AND SaOzRedDur 1S Short
SaOzRed IS High AND SaOsRedDur IS Large

SaOzRed IS High AND SaO2RedDur IS Normal

FEvent IS Very Low
Event IS High
FEvent IS Medium
FEvent IS Low
FEvent IS Very Low

SaO2Red IS Very High AND SaOzRedDur IS Very Short FEvent IS Medium

SaOzRed IS Very High AND SaOzRedDur 1S Low
SaO2Red IS Very High AND SaOzRedDur IS Large
SaO2Red IS Very High AND SaO2RedDur IS Normal
SaO2Red IS Normal AND SaOzRedDur IS Very Short

SaOzRed IS Normal AND SaOsRedDur IS Low

SaOzRed IS Normal AND SaOsRedDur IS Large
SaO2Red IS Normal AND SaO2 RedDur IS Normal
SaO2RedDur IS Very High

SaO2Red 1S High AND SaOzRedDur IS Very Large

Fvent IS Medium
FEvent IS High
Event IS Very High
FEvent IS Medium
FEvent IS Medium
Event IS High
FEvent IS Very High
FEvent IS Very High
Fwvent IS Low

SaOzRed IS Very High AND SaOz RedDur IS Very Large Event IS High




Implementing QFIS for the Detection of Apneic Events 11

For the quantum implementation, we use Qiskit to define the quantum circuit
according to the proposed method, and simulate the execution using a sampler,
as we aim to study the behavior of the proposed model under ideal conditions.
We show the resulting circuit in Figure 6, omitting some of the operations for
the clarity of its presentation. The initialization of the registers depends on the
fuzzification of the values as previously explained, while the operators for the
rules and the measurements remain the same.

R1 R2 R3 R15 RI16

|SaO2Red) { — Init

>——O——O——C
>——O——O——C

|SaO2RedDur) | Init

|Eventes) X

|Event) { — Init + e

Meas. =%

D
A\

— 3

_E

I
!

1

!

T

N ]
!

\|/

1

1

Fig. 6: Quantum circuit for the QFIS of the SaOs inference unit.

As illustrated by Figure 6, once given the definitions of the problem for
classical FIS, the composition of the quantum circuit for QFIS follows from the
definition of the different elements that we provide with the proposed method,
making it a powerful framework for the quantum implementation of already-
defined classical FIS.

3.3 Results

We compare the evaluations obtained with both classical and quantum meth-
ods. For the classical FIS, MATLAB provides the results through its Fuzzy Logic
Designer, and for QFIS we run the circuit a total of 4096 shots. Figure 7 illus-
trates the control surface for each method, a 3D plot where the horizontal axes
represent the inputs of the system, and the vertical axis represents the corre-
sponding output. This study is not based on datasets, but rather an exhaustive
exploration of input ranges.
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Fig. 7: Control surfaces for classical and quantum FIS.

It can be appreciated how both control surfaces are practically identical, as
they present the same behavior when solving the same problem. In fact, the only
differences are some slight variations due to the probabilistic nature of Quan-
tum Computing. When compared analytically, we obtain a geometric similarity
(shape and proportion) of 99.97% between control surfaces, underlining the suc-
cess of the experiment.

4 Discussion and conclusions

In this paper, we have presented a new method, named Quantum Fuzzy Inference
Systems, for the implementation of Fuzzy Inference Systems under the paradigm
of Quantum Computing. Based on the classical elements of FIS, we have provided
definitions for their quantum analogues, resulting in a well-defined framework.
On top of that, we have tested the proposal with a practical application; the
detection of pathological respiratory events in sleep medicine recordings. While
the experiment implemented here is only a reasoning unit of a larger system, it
showcases the potential of QFIS for these problems.

This new method defines the standard tools of FIS (representation of fuzzy
variables, logical fuzzy operators, fuzzy implication) through quantum circuits.
These definitions allow for computations as expressive as classical ones, as shown
by the results of the experiment. More experimentation is required, to identify
possible improvements of the model and to study its behavior with problems
of larger scale, but it does not take away from the fact that the model pre-
sented here can already be employed for practical applications. In addition, it
is worth highlighting the capabilities of QC to represent and manage uncertain
information, a feature that will be continued to work on.
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As previously explained, the quantum part of QFIS is mostly present on
the inference engine, making this method hybrid in nature. The development of
such algorithms is currently set to be one of the most prolific branches of QC,
and therefore it is of importance to give the proper consideration to this aspect
of the proposal. One possible implication that it could present is the potential
improvement of energy consumption when compared to classical FIS, although
more responsibility relies on the hardware side.

Taking the method presented here, future work will focus on extending the
capabilities of QFIS. On the one hand, an important step will be allowing for the
chaining of rules, since as of right now it is not possible due to the differences on
the encoding of the inputs and outputs. On the other hand, we will research how
to apply different techniques of Quantum Computing for optimization, to intend
to obtain advantage (when compared to classical FIS) in different aspects, such
as computational, energetic, or on runtime. Parallel to these tasks, effort will be
dedicated to transversal aspects of developing Quantum Computing solutions,
like noise robustness in real hardware and scalability on larger problems (in this
case, more inputs and rules).

In conclusion, we hope the work presented here results in a step forward
towards the development of Quantum Computing techniques and algorithms,
as well as a showcase of the potential of this paradigm to manage uncertain
information in real world problems.
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Abstract. Quantum computing holds promise for speedups on many
hard problems, especially in optimization, yet the practical evaluation of
quantum algorithms is increasingly hindered by the volatility of cloud-
based quantum services. In this study, we confront the challenge of repro-
ducibility and infrastructure fragility through a case-based investigation
comparing classical solvers (Gurobi, Fixstars) with D-Wave’s quantum
annealer. While our original intent was to benchmark solver performance
on standard QUBO formulations, repeated disruptions—deprecations
of IBM’s Qiskit backends, inconsistencies in quantum API behavior,
and unstable parameter mappings—reframed our effort into a study of
methodological brittleness. We argue that this infrastructural instabil-
ity is not an incidental inconvenience but a core research challenge in
quantum benchmarking in a rapidly shifting computational landscape.

Keywords: Quantum Optimization - QUBO - Quantum Annealing.

1 Introduction

Quantum optimization via Quadratic Unconstrained Binary Optimization (QUBO)
has become more prevalent due to its potential to outperform classical solvers
such as Gurobi and Fixstars on certain combinatorial optimization problems.
However, the current landscape of quantum benchmarking remains fragile; cloud
services and software stacks evolve rapidly, APIs are frequently deprecated, and
platform access models shift. These continual changes often render previously
reproducible experiments obsolete, compromising even well-designed studies.
In response to these challenges, the quantum benchmarking literature in-
creasingly calls for standards that go beyond raw speed or accuracy. For instance,
Hashim et al. [9] propose a three-tier framework encompassing quantum device
characterization, verification of solution validity, and validation of application

* Corresponding author
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correctness. However, their focus is primarily at the hardware level and does not
address software and platform volatility.

In our experiment, we attempted to benchmark QUBO solvers across three
classes of problems—3SAT, Quadratic Assignment (QAP), and the Traveling
Salesman Problem (TSP)—using classical (Gurobi, Fixstars) and quantum (D-
Wave, Qiskit/QAOA) approaches. Our efforts to deploy QAOA on IBM Qiskit
were hindered by backend incompatibilities and API changes!.

Despite attempts to mitigate these issues by downgrading to earlier Qiskit
versions, we continued to encounter persistent failures executing quantum algo-
rithms as API updates broke existing code and backend services either became
unavailable or exhibited undocumented behavior. These recurring disruptions
not only made it difficult to maintain a consistent experimental environment
but also undermined the reproducibility and reliability of our benchmarking ef-
forts.

This paper argues that such fragility is more than an inconvenience—it rep-
resents a substantive research challenge. We reframe our prior benchmark study
within this broader context, demonstrating that evaluating QUBO solvers in an
evolving quantum computing landscape reveals inherent vulnerabilities in repro-
ducibility, fairness, and methodological integrity.

2 Related Work

2.1 Benchmarking Classical Solvers for QUBO Problems

Classical methods for solving QUBO problems rely on mature combinatorial
optimization techniques. Gurobi is a widely used commercial solver that ap-
plies mixed-integer programming (MIP) with presolve strategies, cutting planes,
and heuristics to handle binary quadratic forms [6]. Fixstars Amplify provides
a GPU-accelerated simulated annealing engine tailored to QUBO problems, of-
fering fast approximate solutions via thermal heuristics [5]. Other works have
explored parallel tempering and metaheuristic hybrids for QUBO, although few
studies benchmark these methods under shared problem formulations.

Codognet et al. compared digital annealing with D-Wave on QAP instances,
showing that classical annealers can outperform quantum hardware depending
on problem structure and embedding efficiency [1].

2.2 Quantum Annealing Benchmarks

Quantum annealing (QA) has been experimentally evaluated on problems like
Max-Cut, 3SAT, and QAP [10]. The D-Wave Advantage series supports Ising
and QUBO formats using minor embedding to map logical variables to hard-
ware qubits. However, embedding overhead and chain breakage remain signif-
icant limitations [2]. Villar-Rodriguez et al. conducted a large-scale sensitivity

! https://quantum.cloud.ibm.com/docs/en/api/qiskit/release-notes
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study, revealing that performance depends heavily on tuning parameters like
chain_strength, annealing_time, and schedule [16].

These findings emphasize the need for controlled benchmarking methodolo-
gies that isolate performance factors across parameter sweeps.

2.3 Gate-Based Quantum Optimization

Gate-model solvers like QAOA (Quantum Approximate Optimization Algorithm)
provide an alternative to annealing, encoding QUBO problems into parameter-
ized quantum circuits [4]. Implementations in Qiskit and Cirq offer access to
both simulators and real devices, while CUDA-Q is focused on simulations and
does not currently support real quantum devices. However, practical execution
of QAOA remains constrained by circuit depth, noise, and calibration drift.

3 Background

3.1 QUBO and Ising Formulations

Combinatorial optimization problems often admit reformulations into the Quadratic
Unconstrained Binary Optimization (QUBO) model, a standard mathematical
structure in both classical and quantum computing [7]. A QUBO instance is
defined by a real symmetric or upper triangular matrix @@ € R™*" and seeks a
binary vector x € {0,1}" minimizing the objective function:

BE(z) = 2TQx (1)

This framework enables encoding of problems such as Max-Cut, 3SAT, QAP,
and TSP by transforming constraints into penalty terms. For example, a con-
strained problem of the form Az = b can be absorbed into the QUBO cost using
a quadratic penalty term:

E(x) = 27Qx + )| Az — b||? (2)

where A > 0 controls the weight of the constraint penalty. The resulting
function remains quadratic in x, allowing the entire problem to be expressed as
a QUBO.

QUBO is equivalent to the Ising model, commonly used in quantum anneal-
ing. The transformation between the binary variable z; € {0,1} and the Ising
spin variable s; € {—1,+41} is given by:

o 14+ S;
2
Applying this transformation, the QUBO Hamiltonian becomes:

E(x) = Z Qi + Z Qijrizy, 4)

1<j

3)

T
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E(s) = ZQ <1 J; Si) +> Qi (1;‘9) (1;8]> (5)

1<j

:ZQQ“(HSZ«HZCi”(1+si)(1+sj) (6)

i<j

E(s) = const + Z his; + Z Jij8:55, (7)
i i<j

where h; and J;; are derived from @, and the resulting energy landscape corre-

sponds to the Ising Hamiltonian model [12].

3.2 Quantum Annealing Process

Quantum annealing (QA) is a metaheuristic that uses quantum tunneling to ex-
plore the solution space of discrete optimization problems. The annealing process
begins with a driver Hamiltonian Hp whose ground state is easily prepared (of-
ten a transverse field). Over a time-dependent schedule, the system interpolates
toward a problem Hamiltonian Hp encoding the QUBO (or Ising) cost function:

H(t) = A(t)Hp + B(t)Hp (8)

The coefficients A(t) and B(t) define the annealing schedule, which generally
satisfies A(0) > B(0) and A(T) < B(T), where T is the total annealing time.
Under adiabatic conditions, the system remains in its instantaneous ground state
throughout evolution [14].

Unlike classical simulated annealing, which relies on thermal noise to escape
local minima, QA leverages quantum tunneling, enabling transitions across en-
ergy barriers that may trap classical solvers [15].

3.3 QAOA on Gate-based Quantum Computers

The Quantum Approximate Optimization Algorithm (QAOA) is a variational
algorithm designed for gate-based quantum devices, inspired by adiabatic quan-
tum computation and quantum annealing. QAOA approximates the solution to
combinatorial optimization problems, such as QUBO or Ising models, by al-
ternating between the application of a problem Hamiltonian Hp and a driver
Hamiltonian Hp.

The QAOA circuit consists of p layers, each applying a unitary evolution
under the Hamiltonians Hp and Hp with variational parameters v and fF:

p
[p(7,8)) = [ [ e™ P ttwemtin|yen )

k=1
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Here, |+)®™ is the uniform superposition over all computational basis states.
The parameters v = (v1,...,7p) and 8 = (B4, ..., Bp) are optimized by a clas-
sical outer loop to minimize the expectation value of Hp [4].

In the limit p — oo, QAOA can theoretically reproduce the adiabatic trajec-
tory of quantum annealing, but in practice, even shallow circuits often yield good
approximate solutions. Unlike analog quantum annealing, QAOA is compatible
with near-term devices, noisy gate-model quantum hardware and enables hybrid
quantum-classical optimization [§].

4 Experiment

4.1 Solver Overview

We evaluated solver frameworks across combinatorial optimization problems:
Fixstars Amplify, D-Wave Advantage, and IBM Qiskit QAOA. All solvers were
accessed via official cloud APIs or SDKs using default configurations, unless
otherwise stated.

While additional classical solvers, including Gurobi and brute-force baselines,
were included in our full benchmark suite, we will not go into details for all
of them. Full comparative results are reported in our prior work [11] and are
excluded here for brevity and clarity of discussion.

Fixstars Amplify. A GPU-accelerated, quantum-inspired annealer that
performs simulated annealing (SA) over QUBO-defined landscapes. It runs en-
tirely on cloud hardware via REST API. Experiments used the default Simulated
Annealing engine under the Basic Evaluation Plan.

D-Wave Quantum Annealing. D-Wave Quantum Annealing. Experiments
were conducted using the Advantage System 6.4 quantum annealer via the D-
Wave Leap cloud platform. We used the Amplify SDK and recorded execution
times based on amplify.Result.Solution.time, which corresponds to the re-
ported QPU access time (including both QPU programming and sampling).
Default parameters were employed except for num_reads, set to 1000 to ensure
sufficient sampling, with each read using the default annealing time of 20 ps. The
total reported time therefore includes intrinsic QPU operation overheads beyond
the raw annealing time, but excludes non-QPU processes such as embedding or
network latency.

IBM Qiskit QAOA. Due to persistent execution failures, QAOA was ex-
cluded from the benchmark comparison and analyzed qualitatively in Section 5.

4.2 QUBO Model Formulations

Each combinatorial problem was encoded in QUBO form. For constraint-based
problems (QAP and TSP), constraints were incorporated using quadratic penalty
terms scaled by a fixed weight A. The general QUBO structure takes the form:

H=Ho+ Mg(x) (10)
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where Hp is the objective and g(z) is the penalty function enforcing fea-
sibility. Penalty weights were chosen based on empirical calibration to prevent
solution distortion while preserving constraint enforcement.

The formulation for each of the problems is from our previous work [11] as
follows:

— 3SAT

m

Hsgar = — Z((l +wi)(yi1 + Yiz + yi3) )
i=1 11

—Yi1Yi2 — Yi1Yi3 — Yi2¥i3 — 2wi) +K
where y;; are binary variables representing literals (z;), w; are the binary
variables associated with each clause, and K is an offset for normalization
and is the minimum number of clauses which are satisfied no matter the

binary literals. [3]
- QAP

Ho = ZZ firdjzijom (12)

i=1 j=1 k=1 =1
2 2
n n n n
7 91D o R IND o 0 SEAEE) IERCE
i=1 \j=1 j=1 \i=1
Hqap = Ho + Ag (14)

where f;; represents the flow (interaction) between facilities ¢ and j, d;; is
the distance between locations ¢ and j, x;; is a binary variable indicating
if facility 7 is assigned to location j, and n is the number of facilities and
number of locations.

- TSP

n n n—1

Ho =Y 3" dijzipt )

i=1 j=1 p=1

o (15)
+ Z Z dijzinxi
i=1 j=1
g = Z (Z Tip — 1> + Z (Z Tip — 1) (16)
i=1 \p=1 p=1 \i=1
Hrsp = Ho + Mg (17)

where z; , is Binary Variable indicating whether city 7 is being visited at
time p, d;; is distance between cities ¢ and j, and n is the total number of
cities.
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4.3 Execution Environment and Protocols

All solvers were evaluated on identical problem instances generated using fixed
seeds. D-Wave and Fixstars experiments were run via their respective cloud
APIs. Solver performance was measured under the following protocols:

Each solver was given a maximum runtime of 10 seconds per problem in-
stance.

Fixstars and D-Wave were used as-is through the Amplify SDK.

— D-Wave’s num_reads parameter was set to 1000.

— Each reported result represents the average of 10 independent trials.

Performance was measured in terms of success rate, solution accuracy, and
time-to-first-optimum (see Section 4.4 for metric definitions).

4.4 Experimental Metrics

To evaluate solver behavior, we recorded:

— Feasibility Rate: The proportion of runs returning syntactically valid so-
lutions.

— Solution Accuracy: The percentage of solutions matching known optima
or baselines.

— Execution Time: Average solver runtime per instance (ms).

4.5 Experiment Result

The results indicate that Fixstars achieves high accuracy with relatively short
runtimes, showing better scalability than traditional solvers. Its performance on
sparse problems like 3SAT remains consistently strong, and even dense problems
like QAP are solvable up to moderate sizes.

In contrast, the D-Wave quantum annealer currently performs worse overall
due to limitations in processing larger problem sizes on its hardware, effectively
handling sparse problems like 3SAT but struggling with dense ones such as QAP
and TSP because of minor embedding challenges and topology constraints.

Despite these limitations, D-Wave exhibits promising signs of linear time
growth, with only modest increases as problem sizes scale. This trend is evident
across all three problem types (Figures 1,2,3), highlighting its potential for future
advancements in tackling complex combinatorial optimization efficiently.

These findings underscore the evolving role of quantum annealing in the
Noisy Intermediate-Scale Quantum (NISQ) era, emphasizing the need for hybrid
approaches to overcome current hardware barriers and achieve broader quantum
advantages.

Table 1 is adapted from our previous work [11].
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Table 1. Summary of D-Wave results for 3SAT, QAP, and TSP

3SAT QAP TSP
size  acc(%)  time (ms) size acc(%) time(ms) size acc(%) time(ms)
20 100.000 95.803 4 100 94.444 4 100 94.443
40 99.000 106.503 5 70 99.603 5 100 99.603
70 97.091 126.205 6 0 106.165 6 20 106.164
111 97.033 190.226 7 0 124.323

268  97.523 193.467
400  95.661 211.567
530  95.721 227.981
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5 Benchmark Fragility

Reproducibility is a well-established concern in quantum algorithm evaluation,
but its root causes increasingly stem from infrastructural—mot algorithmic—fragility.
Mauerer & Scherzinger (2022) explicitly highlight the importance of reproducibil-
ity engineering in quantum software experiments. Their approach advocates for
packaging code and configuration to remain traceable even when common hard-
ware or vendor platforms change [13].

Our own experience supports this diagnosis. After initial success using D-
Wave’s Advantage System 6.4 through the Leap cloud interface, it could not be
accessed with the same free-tier account after D-Wave releases as new pricing
model. In the case of IBM Qiskit, we attempted to follow the official QAOA
MaxCut tutorial?, which was functional on simulators. However, adapting the
same circuit logic to more general QUBO problems like TSP failed to yield valid
results. Even on simulation, QAOA produced nonsensical tours for instances
less than 5 nodes. This contrasts sharply with classical solutions obtained us-
ing NumPy and Scipy-based optimizers, which matched the known optimum.
Furthermore, when transpiled and submitted to real quantum backends, jobs
consistently failed to complete due to interactivity timeouts in the Qiskit Run-
time environment. These timeouts likely stemmed from session mismanagement
or delays exceeding the platform’s job queuing threshold, which disconnects users
from backend access during extended idle periods between QAOA iterations.

6 Discussion

Our benchmarking results reveal not only the relative performance of quantum
and classical QUBO solvers, but also the operational fragility that underlies
current quantum computing infrastructure—both at the hardware and software
level. This section reflects on the empirical findings, methodological decisions,
and broader reproducibility implications, particularly in light of evolving quan-
tum cloud services.

6.1 QAOA and Workflow Limitations in General QUBO Problems

Building on the practical failures discussed in Section 5, we now reflect on the
broader implications these issues have for solver behavior, quantum benchmark-
ing methodology. Although the Qiskit version (1.3.1) supported QAOA un-
der the qiskit.algorithms and qiskit.optimization modules, these modules
were removed from official qiskit support at the time of experimentation. They
remained widely indexed in online documentation and tutorials, leading us to
adopt an outdated implementation path unknowingly.

These failures were not due to quantum noise, or algorithmic instability, but
to volatility at the software and platform layers. Such infrastructural disruptions

2 https://quantum.cloud.ibm.com/docs/en /tutorials /quantum-approximate-
optimization-algorithm
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pose a methodological threat to the integrity of longitudinal quantum experi-
ments and must be addressed as a first-class concern in quantum benchmarking
research.

6.2 Reproducibility and Structural Fragility in QCaaS Workflows

The broader insight from our benchmarking effort is the fragility of quantum
workflows under the QCaaS paradigm. Access to D-Wave’s cloud platform was
inconsistent: after initial experiments using Advantage 6.4, subsequent team
members were unable to access the same solver endpoints under the free-tier
account. Similarly, software-layer volatility in Qiskit made it difficult to execute
and generalize otherwise functional circuits. These issues were not due to algo-
rithmic shortcomings, but rather to unstable access models, poorly maintained
legacy APIs, and weak documentation pathways.

This supports the view that reproducibility in quantum computing must
be treated as a systems-level concern. Fragility arises not only from quantum
noise or hardware constraints but from the broader ecosystem—SDK evolution,
cloud API policies, and the discoverability of supported workflows. Until these
structural issues are addressed, benchmarking results must be interpreted within
the context of their platform dependencies and temporal validity.

6.3 Toward Robust Benchmarking Standards

The fragility observed in quantum benchmarking is not an incidental artifact—it
is a reproducible phenomenon that demands formal attention. As quantum
computing transitions into an infrastructure-intensive discipline, benchmark-
ing methodologies must evolve to address both algorithmic performance and
systems-level resilience.

To that end, we propose a four-pronged framework for designing robust quan-
tum benchmarks that are resilient to evolving APIs, deprecations, and cloud-
access variability. This framework aims to standardize practices across research
teams and improve reproducibility in future studies.

1. Standardized Baselines: Adopt shared, publicly available QUBO formu-
lations with open-source reference implementations and solution sets. These
should include canonical problems like Max-Cut, 3SAT, QAP, and TSP
across defined sizes (e.g., 4-20 variables). Publishing not just problem defi-
nitions but also embedding logic and parameter settings ensures consistent
testing.

2. Snapshot-Aware Experimentation: Every benchmark run should log the
full software and platform stack, including;:

— Backend name and version (e.g., advantage_6.4, ibmq_brisbane)

— SDK version (e.g., qiskit==1.3.1)

— API changes or warnings during execution

— Execution date, user tier (free, pay as you go, premium, etc), and region
(when relevant)
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These metadata form a "benchmark snapshot" that, while not guaranteeing
full reproducibility on real quantum hardware—due to ongoing backend evo-
lution and calibration drift—enable more reliable re-execution in simulators
and simplify migration to updated software stacks.

3. Resilient Methodology: Benchmarks should emphasize robustness over
narrow tuning. Parameter sensitivity (e.g., D-Wave’s chain_strength, an-
nealing time) should be reported as distributions or sweeps, not single val-
ues. Similarly, use QUBO encodings that are platform-agnostic—avoiding
reliance on proprietary transpilation steps when possible.

4. Benchmarking the Benchmarks: Core benchmark suites should be re-
executed periodically (e.g., quarterly or annually) to measure longitudinal
drift in performance or compatibility. This meta-benchmarking helps de-
tect when infrastructure evolution introduces silent errors, regressions, or
improvements.

Together, these components shift benchmarking from a one-off evaluation
to a reproducible and portable protocol. In future work, we envision a feder-
ated benchmarking registry—akin to MLPerf in machine learning—that tracks
quantum benchmark scores, version metadata, and known failure modes.

Finally, we recommend that platform-layer failure modes (e.g., runtime er-
rors, silent crashes, or API deprecations) be explicitly reported in benchmark
papers, not discarded as outliers. Treating infrastructure behavior as part of the
benchmark result will accelerate progress toward both trustworthy evaluations
and robust software-hardware co-design.

7 Conclusion

This study revisits the problem of benchmarking quantum and classical solvers
on combinatorial optimization tasks encoded as QUBO models. Our original goal
was to evaluate D-Wave’s quantum annealing system alongside classical base-
lines and gate-based quantum algorithms. While our experiments did succeed
in comparing D-Wave, Fixstars, Gurobi, and Brute Force on standard bench-
marks (3SAT, QAP, TSP), a deeper insight emerged: the fragility of quantum
benchmarking pipelines is now an intrinsic feature of working in this domain.

D-Wave’s annealer performed reliably within its embedding limits, show-
casing low-latency performance and high solution accuracy. Fixstars Amplify, a
quantum-inspired classical solver, consistently delivered the fastest results across
problem types and sizes. Gurobi remained a strong general-purpose baseline. Yet
despite our preparation, efforts to run QAOA on IBM Quantum failed due to
systemic shifts in the software ecosystem: deprecated primitives, incomplete V2
support, and mismatched transpilation workflows rendered the platform unus-
able for our purposes. These failures stemmed from structural volatility, not user
or algorithmic error.

The implications of these results extend beyond raw performance. Bench-
marking in quantum computing is no longer only a matter of evaluating speed
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or scalability—it now requires explicit awareness of platform evolution, software
versioning, and service deprecation. As Hashim et al. note [9], reproducibility in
quantum computing must grapple with a moving target.

We emphasize: Benchmarking in quantum computing is now an
exercise in infrastructure navigation, reproducibility engineering, and
version-aware experimentation. Platform instability—whether through
API changes, job failures, or embedding collapse—must be recognized
as a primary challenge.

To move the field forward, we recommend:

— Treating solver configurations and backend versions as first-class experimen-
tal parameters.

— Recognizing and reporting platform-level failure modes as benchmark out-
comes.

As quantum computing transitions from theoretical promise to practical eval-
uation, methodological resilience will be as critical as raw performance. Our find-
ings are not a verdict on solver supremacy, but a call for mature, reproducible,
infrastructure-aware benchmarking standards in the next phase of quantum al-
gorithm research.

Acknowledgments. The first three authors contributed equally to this work.
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Abstract. Autonomous satellite servicing presents unique challenges,
including constrained onboard resources, uncertain dynamics, and the
critical need for sample-efficient learning. Classical Reinforcement Learn-
ing (RL) methods, such as Proximal Policy Optimisation (PPO), of-
ten struggle under these conditions, exhibiting slow convergence and
high sample complexity. This paper proposes GRACE (Grover-enhanced
Reinforcement-learning Actor-Critic Engine), a hybrid quantum-classical
RL framework designed to address the limitations of classical RL in high-
precision, high-dimensional robotic manipulation tasks. GRACE intro-
duces a Grover-enhanced amplitude amplification mechanism into an
Actor-Critic architecture built on Variational Quantum Circuits. This
integration leverages quantum properties such as entanglement and su-
perposition to enhance policy expressiveness and exploration focus, while
PPO ensures stable training. The framework selectively amplifies the
probability amplitudes of favourable actions using Grover-enhanced logic
embedded within the quantum policy circuits. Preliminary experiments
on a simulated robotic satellite repair task, removing and manipulat-
ing components of the Hubble Space Telescope, show improved conver-
gence speed, enhanced training stability, and higher sample efficiency
compared to a classical PPO baseline, despite requiring fewer training
episodes. These findings highlight the potential of quantum-enhanced RL
in solving optimisation problems where classical approaches fall short,
particularly in space robotics domains that demand fine-grained control
under tight computational constraints. While current quantum hardware
remains limited, the GRACE framework establishes a practical algorith-
mic foundation for future Quantum RL research in highly safety-critical,
resource-constrained applications.

Keywords: Quantum Reinforcement Learning - Machine Learning -
Classical Reinforcement Learning - Robotic Hand - Satellite Servicing.
1 Introduction

Autonomous robotic systems are critical for future space missions where commu-
nication delays, dynamic environments, and mission duration constraints make
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continuous remote control infeasible [3,19]. These intelligent robotic systems
must operate independently, executing complex, multi-step manipulation tasks
under tight resource and timing constraints [3,19]. However, traditional con-
trol strategies, including classical Reinforcement Learning (RL), struggle in such
conditions, exhibiting slow convergence, poor scalability, and high sample inef-
ficiency in high-dimensional, stochastic environments [16].

To address the challenges of classical RL, we propose GRACE (Grover-
enhanced Reinforcement-learning Actor-Critic Engine), a hybrid framework,
with both quantum and classical counterparts, that integrates Grover-enhanced
amplitude amplification into an Actor-Critic architecture built on Variational
Quantum Circuits (VQCs). GRACE is designed to improve exploration effi-
ciency and accelerate policy convergence by leveraging quantum principles to
bias action selection toward more promising policies, all within the stability of
Proximal Policy Optimisation (PPO).

At its core, RL is an optimisation process where agents iteratively update
their policies to maximise cumulative reward [21]. Classical RL algorithms, such
as Policy Gradient and Actor-Critic methods, perform this optimisation by inter-
acting with the environment to estimate gradients and adjust policy parameters
accordingly [21]. However, classical methods become increasingly inefficient as
task complexity and the dimensionality of state-action spaces grow [16]. The
GRACE framework addresses these limitations by embedding quantum mecha-
nisms, specifically, trainable Grover-enhanced diffusion and oracle components,
within the policy network, where the oracle functions without prior knowledge of
which state is correct or optimal. These quantum components selectively amplify
favourable action encodings, thereby improving both the efficiency of learning
and the quality of decision-making in uncertain, high-dimensional environments.

Quantum Reinforcement Learning (QRL) leverages qubits, which can exist
in superpositions and become entangled, enabling compact and parallel repre-
sentations of policy information [11,25]. Variational Quantum Circuits (VQCs)
take advantage of these quantum properties to model expressive functions with
fewer parameters than classical networks [15]. Grover’s algorithm, originally de-
veloped for quantum search tasks, provides a natural foundation for structured
amplitude amplification techniques [13,24]. In the GRACE framework, Grover-
enhanced logic is employed to guide action selection without requiring oracle
access, that is, without prior knowledge of the optimal solution.

This paper contributes the design and preliminary evaluation of the GRACE
framework. While focused on robotic satellite servicing as a motivating use case,
the GRACE framework is applicable to a broad class of resource-constrained
environments that require efficient control, high reliability, and fast policy con-
vergence. Early experiments using the AstroArm simulation environment demon-
strate improved convergence speed, enhanced training stability, and reduced
sample complexity compared to classical baselines, laying a foundation for future
research into scalable and practical quantum-enhanced RL systems.
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2 Technical Background

To facilitate understanding of the proposed GRACE framework, this section in-
troduces key foundational concepts in quantum computing, reinforcement learn-
ing, and recent developments in Quantum Reinforcement Learning. Each concept
is briefly explained with emphasis on its relevance to the design of GRACE.

2.1 Quantum Computing and Reinforcement Learning Concepts

Quantum computing differs fundamentally from classical computing by operat-
ing on qubits instead of classical bits [11,25]. While classical bits are binary
and can hold a value of either 0 or 1 at any given time, qubits can exist in
a superposition of both states simultaneously. Such quantum superposition al-
lows quantum systems to represent and evaluate multiple possibilities in parallel,
greatly increasing computational efficiency for certain types of problems [11,25].
Furthermore, qubits can become entangled, meaning the state of one qubit is
intrinsically linked to the state of another, regardless of the physical distance
between them. Quantum entanglement enables non-classical correlations that
allow quantum algorithms to perform distributed, highly parallel computations
in ways that are fundamentally impossible with classical systems [11, 25]. To-
gether, superposition and entanglement form the basis of quantum parallelism,
enabling powerful algorithmic primitives such as amplitude amplification and
interference, tools that offer the potential to solve complex problems more effi-
ciently than classical methods [18].

In light of the qubit state representation, qubits can exist in a superposition
of both states simultaneously, therefore exponentially increasing the computing
power [11,25]. Moreover, as a result of the entanglement quantum phenomenon,
quantum computers are capable of processing information in highly efficient and
novel ways, unlocking unprecedented computational capabilities [11,25]. In en-
tangled systems, the state of one particle becomes dependent on the state of
another, regardless of the distance separating them, allowing qubits to establish
correlations that classical bits cannot achieve [11,25]. Hence, through a series
of quantum gates, quantum circuits are able to create entanglement, superpo-
sitions, perform computations, and execute quantum-enhanced algorithms to
offer exponential state representations, enhanced expressiveness, and exponen-
tially faster convergence than classical computers [11,25].

Quantum circuits operate using unitary gates, such as R, (), R,(9), R.(9),
which perform rotations around the Bloch sphere axes, as well as entangling
gates like the controlled-NOT (CNOT), which introduce quantum correlations
between qubits [9,25]. These operations enable expressive transformations on
high-dimensional quantum states by manipulating the amplitudes and relative
phases of superposed states in a reversible and coherent manner [9,25]. A Varia-
tional Quantum Circuit (VQC) is a specific class of quantum circuit that includes
parameterised gates, where the gate angles are treated as trainable parameters
optimised during learning [9,25]. These parameters define agent policy or value
function when applied to reinforcement learning tasks [9,25]. The VQC acts
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as the core learnable component in hybrid quantum-classical models, enabling
compact, flexible representations of complex mappings [9,25]. The final stage of
a VQC involves quantum measurement, which collapses the quantum state into
a classical bitstring by projecting the probabilistic superposition onto a com-
putational basis, typically |0) or |1), thereby producing observable outputs for
learning and decision-making [9,25]. The quantum-classical hybrid approach en-
ables the efficient computation of gradients through the quantum circuit, while
simultaneously allowing the variational parameters to be updated using classical
optimisation algorithms [9,25].

Early development of Quantum Computing (QC) started with the Grover’s
search algorithm, which is a foundational quantum search algorithm that pro-
vides a quadratic speedup over classical counterparts [13]. The key operations
in Grover’s algorithm are amplitude selection and amplitude amplification. The
process works by increasing the probability amplitudes of desired target states
while suppressing others through constructive and destructive interference. The
mechanism of Grover’s algorithm has inspired a range of quantum-enhanced
strategies in optimisation and decision-making, including Quantum Reinforce-
ment Learning [24].

Grover-enhanced logic in GRACE refers to a modified form of Grover’s al-
gorithm adapted for quantum learning circuits. Instead of performing a full
quantum search, the adapted algorithm selectively amplifies favourable quantum
encodings, such as actions, using trainable selection and diffusion components.
These components are parameterised and integrated within variational quantum
layers to enhance the likelihood of selecting high-reward actions in reinforcement
learning tasks. Unlike the original Grover algorithm, which is used for searching
unstructured databases, Grover-enhanced logic in GRACE is embedded within
the actor and critic circuits to improve exploration bias during training.

Reinforcement Learning is a learning paradigm where an agent interacts with
an environment to maximise cumulative rewards over time. The decision-making
process is formalised as a Markov Decision Process, aiming to find an optimal
policy that maps states to actions [21]. Within RL, the optimisation objective is
to adjust the parameters of a policy or value function to maximise expected re-
turn. Actor-Critic methods decompose the learning task into two parts: the actor
selects actions based on the current policy, and the critic estimates the value of
states or actions to inform policy updates. Proximal Policy Optimisation (PPO)
is a policy-gradient algorithm that improves training stability through clipped
updates and advantage-weighted gradient estimates [23]. In high-dimensional or
resource-constrained environments such as robotics in space, RL faces challenges
due to large state-action spaces, delayed convergence, and inefficient exploration
strategies [6,26]. These challenges provide strong motivation for hybrid quantum-
classical approaches like GRACE, which exploit the expressiveness of quantum
circuits and Grover-enhanced amplitude amplification to improve sample effi-
ciency, policy convergence, and learning robustness in demanding environments.
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2.2 Prior Work in Quantum Reinforcement Learning

Quantum Reinforcement Learning combines quantum computing principles with
reinforcement learning techniques to enable more efficient exploration, policy
representation, and convergence [16]. QRL can represent complex policies with
fewer parameters using VQCs, which include parameterised gates and entangle-
ment layers [10,15]. Measurement collapses the probabilistic quantum state into
classical outputs suitable for learning and control.

Recent research in QRL focuses on employing VQCs as function approxima-
tors, leading to the development of QRL variants. A study in 2022 presented two
frameworks for deep QRL tasks using gradient-free evolutionary optimisation [4].
The amplitude encoding scheme was first applied to the Cart-Pole problem, a
classic control task where the objective is to balance a pole upright on a moving
cart, demonstrating the quantum advantage of parameter saving using ampli-
tude encoding [4]. A hybrid framework was later proposed where the QRL agent
was equipped with a hybrid Tensor Network-VQC (TN-VQC) architecture to
handle inputs of dimensions exceeding the number of qubits, allowing the per-
formance of QRL in the MiniGrid environment with 147-dimensional inputs [4].
The hybrid TN-VQC framework offers an intuitive and effective method for
compressing input dimensions, making the architecture well-suited for advanc-
ing QRL on Noisy Intermediate-Scale Quantum devices [4]. In another paper [5],
a framework for analysing the performance of QRL via policy iteration on Ope-
nAl Gym environment was studied. Key to the study was building quantum
states that approximately encode the value function of a policy 7 to construct
quantum policy evaluation methods for infinite-horizon discounted problems, as
well as quantum policy improvement methods by post-processing measurement
outcomes on the quantum states [5].

Additionally, the application of Quantum Reinforcement Learning in energy-
efficient scenarios was actively explored, where both the benefits and limitations
of QRL are examined in contexts such as HVAC (Heating, Ventilation, Air-
Conditioning) control, electric vehicle energy management, and building energy
optimisation [1]. As a testbed, the authors utilised existing energy-efficiency-
focused RL simulators to compare classical RL algorithms with the proposed
quantum-based approach. The results, across use cases like HVAC systems, elec-
tric vehicle fuel consumption, and profit optimisation for electrical charging sta-
tions, indicated that the quantum solution outperforms classical RL methods.
Their proposed approach achieved higher cumulative rewards while requiring
fewer parameters to be learned [1].

A recent paper, focusing on the space and satellite domain, proposed and
highlighted the potential of QRL for coordinated mobility and satellite sys-
tems [14]. The appeal of QRL in the space context stems from its unique advan-
tages including faster convergence rates and high scalability. The paper demon-
strates that QRL can effectively address several limitations of conventional re-
inforcement learning, particularly in environments characterised by large and
continuous action spaces, high-dimensional state representations, and the need
for real-time decision-making under uncertainty. Furthermore, the study pro-
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poses the use of multi-agent QRL strategies to support a variety of mobility
system applications [14].

In light of the growing research supporting QRL in complex and constrained
settings, its application to in-orbit robotic-hand satellite manipulation is a nat-
ural extension. Robotic manipulation tasks in orbital settings are characterised
by uncertain dynamics, complex spatial constraints, and limited onboard com-
putational resources, making them ideal candidates for quantum-enhanced RL
models such as GRACE [1,12,16].

3 Motivation for QRL in Resource-Constrained Systems

Classical RL methods, including Deep RL variants, have achieved impressive
results across numerous domains [17]. However, when deployed in real-world
systems that operate under strict memory, power, or computational constraints,
such as space-robotic manipulators, classical approaches encounter obstacles. In
such environments, the size of the state and action spaces increases rapidly with
task complexity, leading to inefficient exploration and limited generalisation [17].
Such limitations are especially critical in precision-dependent, multi-step ma-
nipulation tasks, where poor sample efficiency and slow convergence can render
classical RL approaches impractical [17].

Moreover, classical RL agents are fundamentally limited by the sequential
nature of classical hardware [17]. Even with the use of deep networks, policy
updates rely on gradient descent over large batches of experience, requiring high
computational power and memory access [17]. In space contexts, where on-board
computing is tightly constrained and real-time decisions are required, these de-
mands create a bottleneck classical architectures struggle to overcome [17].

Quantum Reinforcement Learning offers a potentially transformative alter-
native [1]. Quantum circuits allow for the parallel encoding and manipulation of
multiple solution candidates via superposition, while entanglement enables com-
pact representation of complex dependencies between input variables [1,12,16].
Together, these properties offer the prospect of faster policy search, more efficient
exploration, and scalable value propagation over high-dimensional spaces [25].
In particular, quantum amplitude amplification techniques can bias sampling to-
ward high-reward actions earlier in training, something classical agents typically
require many episodes to discover through trial and error [25].

Despite these advantages, most existing QRL approaches remain in early
stages, often limited to discrete action spaces, shallow environments, or minimal
circuit depths due to current hardware constraints [25]. Furthermore, few archi-
tectures explicitly address the challenge of continuous control or the integration
of quantum search mechanisms into policy improvement routines [25]. These
limitations strongly motivate the development of a more robust, scalable, and
expressive QRL agents, designed from the ground up to tackle control problems
in high-stakes, real-time domains.

To this end, we propose the GRACE framework, a Grover-enhanced
Reinforcement-learning Actor-Critic Engine. As discussed in Section 2, GRACE
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integrates Grover-enhanced amplitude amplification within a hybrid Actor-Critic
architecture, powered by Variational Quantum Circuits and Proximal Policy Op-
timisation. By uniting quantum search logic with robust policy gradient training,
GRACE is designed to accelerate convergence and improve action selection in
high-dimensional continuous control settings. The next section presents the ar-
chitecture in detail.

4 Proposed Framework: GRACE — Grover-enhanced
Reinforcement-learning Actor-Critic Engine

Classical RL agents, including deep and actor-critic variants, often face limi-
tations in high-dimensional, resource-constrained environments, such as space
robotics, due to slow convergence, inefficient exploration, and the inability to
scale efficiently across large state-action spaces [17]. Section 3 outlined how
quantum mechanisms such as superposition, entanglement, and amplitude am-
plification can address these challenges. Building upon this, we present the
GRACE framework—Grover-enhanced Reinforcement-learning Actor-Critic En-
gine, which integrates Grover-enhanced logic into a hybrid quantum-classical
Actor-Critic architecture trained using Proximal Policy Optimisation.

GRACE introduces a novel synthesis of quantum search mechanisms with
classical reinforcement learning policy training. Specifically, the framework em-
beds Grover-enhanced amplitude amplification within both the Actor and Critic
quantum circuits, using Variational Quantum Circuits and PPO to perform
quantum-enhanced function approximation. The goal is to guide action selection
and value estimation more effectively by amplifying desirable solution paths in
the quantum latent space.

The GRACE pipeline, as illustrated in Figure 1, is as follows:

— Input: The agent receives an observation of the current environment state,
including joint angles and end-effector position, from the AstroArm simula-
tion environment (Figure 1, left).

— Actor circuit: The input state is encoded using Angle Embedding, which
transforms classical inputs into quantum rotation gate parameters and is
passed through a parameterised VQC (Figure 1, upper-central block), com-
posed of strongly entangling layers. The encoded quantum state is then
processed by a Grover-enhanced oracle and diffusion block that amplifies
favourable action amplitudes. The resulting quantum state is measured, pro-
ducing outputs that are linearly mapped to action logits, which are real-
valued scores that indicate the model’s relative preference for each possible
action before applying a sampling step. A Normal distribution is then sam-
pled from these logits to produce an action. The selected action is then passed
back to the simulation environment, where the action is executed and the
corresponding reward is computed.

— Critic circuit: The same input quantum state is sent through a structurally
similar quantum circuit (Figure 1, lower-central block). Using the same angle
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embedding and Grover-enhanced amplification, the critic estimates the scalar
value of the current state under the policy.

— Policy Update: The value output is used to compute the advantage func-
tion. PPO calculates a clipped objective that balances policy improvement
and stability. The full loss includes policy loss, value loss, and entropy regu-
larisation. Gradients are propagated using PennyLane’s automatic differen-
tiation engine with adjoint methods (Figure 1, right).

The GRACE architecture offers several advantages: the Grover-enhanced
blocks amplify quantum states corresponding to high-reward actions, improv-
ing the signal for policy optimisation; entanglement layers support richer policy
modelling than shallow classical architectures; and quantum superposition al-
lows parallel exploration in the policy search space. By embedding amplitude
amplification into the training loop, GRACE biases updates toward desirable
outcomes more efficiently than classical counterparts.

Although Grover’s original algorithm was designed for database search, the
GRACE framework adapts its core idea, namely amplifying solution amplitudes,
into a differentiable, trainable structure suited for reinforcement learning. Unlike
prior QRL frameworks, GRACE applies this amplification not only to the policy
network but also to the critic, enabling coherent quantum-enhanced estimation
of both action and value functions.

Environment ] Loss

state input

CritievQc

; ql —
ratem B i BE Ty —
Simulation Ervirenment

T ——

Fig.1: GRACE framework architecture: a hybrid quantum-classical
Actor-Critic model integrating VQC with Grover-enhanced amplitude
amplification for enhanced policy representation and exploration.

Figure 1 highlights the bidirectional flow of information between the environ-
ment, Actor and Critic quantum circuits, and the PPO loss computation. While
the full theoretical guarantee of quantum advantage requires robust quantum
error correction, GRACE is designed with near-term, hybrid execution in mind
and can be evaluated using simulators such as lightning. qubit.
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5 Use Case: Training a Dexterous Robotic Hand for
Satellite Repair

Building on the previously established work in [20], all experiments were con-
ducted in the AstroArm simulation environment, which includes a 3D model of
the Hubble Space Telescope (HST), the Science Instrument Control and Data
Handling (SI C&DH) unit, and a dexterous robotic hand. The HST was cho-
sen for its modular design featuring Orbital Replaceable Units (ORUs), which
include instruments and batteries accessible via mechanical interfaces such as
doors and fasteners [20].

The SI C&DH unit was selected as the manipulation target, following NASA’s
EVA replacement sequence [20]. The documented sequence offers a realistic
benchmark for simulating precise robotic interaction in a space-based context
[20]. Integrating the ST C&DH replacement procedure into the AstroArm envi-
ronment enables the evaluation of quantum-enhanced control architectures in a
physically grounded and operationally relevant scenario [20].

Figure 2a shows the simulation setup with the satellite, robotic hand, and
door assembly [20]. Figures 2b and 2c¢ provide close-ups of the SI unit, which
includes a handle, screw, nut, and the robotic hand. The hand features two grip-
pers and eight degrees of freedom (joints) for manipulation and movement [20].
Nonessential joints are deactivated based on task requirements to reduce action
space and improve training efficiency [20].

(a) Overall Simulation Environment (b) The SI Unit behind the door

(¢) The robotic hand.

Fig. 2: Components of AstroArm simulation environment

To enable autonomous manipulation of the SI C&DH components, an RL pol-
icy was trained to control the robotic hand in the simulation environment [20].
The policy observed joint positions, end-effector pose, and task-relevant feed-
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back, and outputs continuous motor actions to operate the grippers and joints.
The goal was to learn precise movement sequences to complete various manip-
ulation tasks within geometric and action space constraints [20]. The control
problem was framed within a classical Actor-Critic RL architecture, where the
Actor selected actions and the Critic estimated state values to stabilise updates.
PPO was used for its robustness in high-dimensional continuous control and its
clipped update mechanism [20]. However, the complexity of spatial interactions
and the need for fine-grained precision pose challenges for classical RL Actor-
Critic PPO, motivating the use of quantum-enhanced methods [20].

The proposed GRACE framework, which integrates Grover-enhanced logic
into Actor-Critic VQCs within a PPO setting, is trained within the AstroArm
simulation environment to carry out the task of SI Unit removal. The objec-
tive is to enable and enhance the robotic hand to learn a sequence of precise
manipulations required to detach the SI Unit components, such as the door,
screw, and nut, under the complex spatial constraints of the satellite assembly,
by leveraging the benefits of the quantum model. Once the training is complete,
the performance of the quantum-enhanced model is systematically evaluated and
compared against that of a classical Actor-Critic PPO baseline, focusing on key
metrics such as task success rate, convergence speed, and sample efficiency. This
comparison aims to assess the potential advantages of QRL in domains requiring
fine-grained control and efficient policy learning.

6 Preliminary Results

To assess the viability of the GRACE framework, a set of preliminary experi-
ments was performed using the AstroArm simulation environment, focusing on
the specific task of opening the door of the SI C&DH unit. These experiments
aim to explore whether Grover-enhanced amplitude amplification improves ac-
tion selection and learning efficiency when integrated into a hybrid Actor-Critic
architecture with PPO optimisation. The following results offer early-stage in-
sights into the behaviour and training dynamics of the GRACE agent, even
under constraints such as limited circuit depth and a small number of qubits.

As illustrated in Figures 3a and 3b, the quantum-enhanced agent demon-
strates a more stable training process and higher peak rewards compared to the
classical baseline. In the classical agent training curve (Figure 3a), reward val-
ues mostly remain below 8 and exhibit long stretches of stagnation, particularly
in the middle episodes. In contrast, the GRACE agent (Figure 3b) maintains
higher variability and more frequent high-reward spikes throughout the training
phase, even though the agent was only trained for 100 episodes, compared to
250 episodes for the classical model, suggesting improved sample efficiency and
potentially faster convergence.

Additional insight is offered by the test-phase results shown in Figures 3c
and 3d. Across 10 test episodes, the classical agent completed 3 tasks success-
fully, while the quantum agent completed 4. Although the difference is small in
absolute terms, the improved performance was achieved with reduced training
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time, suggesting that the quantum-enhanced model may achieve comparable or
better generalisation using fewer computational resources.

Overall, the early results indicate that the Grover-enhanced amplitude am-
plification mechanism embedded within GRACE may support more focused ex-
ploration, helping the agent discover high-reward trajectories more efficiently.
Additionally, the reduced training duration implies potential gains in sample
efficiency, which is crucial for robotics scenarios where simulation or real-world
interaction is expensive. While further evaluation is necessary to establish ro-
bustness across environments and hyperparameter settings, these findings serve
as an encouraging starting point for future investigation into quantum-classical

RL architectures.
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Fig. 3: Training and testing performance for the SI C&DH door-opening task in
AstroArm. (a) Classical training, (b) GRACE training, (c) Classical testing,
(d) GRACE testing. The GRACE agent was trained for 100 episodes,
compared to 250 for the classical agent.

7 Position Justification and Assumptions

The proposed GRACE framework introduces a Quantum-enhanced Actor-Critic
architecture that incorporates Grover-enhanced Variational Quantum Circuits to
strengthen exploration and sample efficiency in Reinforcement Learning. While
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classical RL algorithms, such as Proximal Policy Optimisation, have achieved
state-of-the-art performance across a number of domains, such methods con-
tinue to face challenges related to suboptimal exploration and local policy con-
vergence, particularly in high-dimensional robotic manipulation tasks with com-
plex dynamics [22]. By embedding quantum amplitude amplification into the
policy circuit, our approach aims to bias the agent toward high-reward actions
by amplifying their associated quantum amplitudes. The targeted selection pro-
cess enhances exploration efficiency and helps guide the policy updates more
effectively, which can lead to faster convergence and increased robustness in
high-dimensional or stochastic environments.

However, acknowledging several valid and anticipated concerns is important
at this stage. Important limitations of quantum computing include the number
of qubits, noise, errors, and decoherence/coherence times, indicating that current
devices struggle to maintain stable quantum states over long periods, or execute
interference-free operations [7]. Moreover, prior work highlights that quantum
systems can suffer from poor error correction methods and limited inter-qubit
connectivity, both of which affect scalability [7]. Other persistent problems, such
as limited qubit fidelity, state preparation and efficiency in the application of
quantum logic gates, also show that the manipulation of quantum information
can still be inaccurate [7]. Lastly, operational limitations include restricted ac-
cess to quantum devices, caused by high demand and limited availability, which
slows down the research progress [7].

We acknowledge these concerns and limitations as valid within the context
of today’s hardware constraints. Current quantum devices remain noisy, lim-
ited in qubit count, and difficult to scale for practical reinforcement learning
applications [7]. However, our position is grounded in a long-term vision rather
than a short-term deployment claim. The advocated GRACE framework is devel-
oped as a forward-looking architecture designed to explore how hybrid quantum-
classical learning systems may benefit from quantum expressivity, parallelism,
and amplitude-based optimisation in high-dimensional control spaces once the
supporting hardware matures. By proactively addressing architectural design
now, GRACE lays the foundation for future RL systems capable of operating in
complex, resource-constrained environments, such as robotics, edge computing,
and satellite space-based missions, where classical methods struggle to scale, en-
abling real-time quantum-enhanced decision-making for challenging operations,
such as autonomous satellite servicing.

Simulation results conducted through software framework such as Penny-
Lane [2] and Qiskit [20] demonstrate the feasibility of not only quantum algo-
rithms, such as hybrid Variational Quantum Circuits, but also the incorporation
of Grover-enhanced logic [2,12]. Moreover, hybrid quantum-classical methods, as
advocated in this work, are specifically designed to mitigate the shortcomings of
current QPUs by switching between classical processors (CPUs or GPUs) for pre-
processing and postprocessing, and quantum processors (QPUs) for components
where entanglement and quantum representation offer a unique advantage [2,12].

Prior studies have demonstrated that VQCs can be effectively scaled to sim-
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ple robotic control tasks, yielding competitive results in terms of policy learn-
ing and sample efficiency [10]. Building on this foundation, our preliminary ex-
periments show that incorporating amplitude amplification mechanisms, such
Grover’s-enhanced logic, can further enhance action selection in more complex,
high-dimensional environments. The observed improvement is particularly no-
table in tasks where precise action selection and exploration are critical for
achieving stable learning performance and successful task completion.

The position adopted here is based on the assumption that practical access
to quantum devices will become increasingly feasible in the near future, driven
by ongoing advancements in both academic research and industry [8]. We do not
claim that quantum advantage is achievable today, rather, we argue that foun-
dational research in architecture and algorithm design must precede the arrival
of mature, large-scale quantum hardware. By investigating QRL frameworks
now, we aim to position the RL community to take full advantage of emerg-
ing quantum capabilities as those technologies become practically viable. Such
a forward-looking strategy ensures that future applications are not constrained
by a lack of algorithmic readiness when quantum technologies reach sufficient
scale, reliability, and integration into real-world systems.

8 Conclusion

This paper proposed a paradigm shift in RL for high-precision space robotics via
the GRACE framework, a hybrid quantum-classical architecture. By integrating
Grover-enhanced amplitude amplification within an Actor-Critic architecture
powered by Variational Quantum Circuits and Proximal Policy Optimisation,
the proposed approach aims to overcome core limitations of classical RL meth-
ods in high-dimensional, resource-constrained, and uncertain environments.

Preliminary results, obtained in a simulated robotic satellite repair scenario,
suggest that the quantum-enhanced agent demonstrates improved training sta-
bility, faster convergence, and better sample efficiency relative to its classical
counterpart, even when trained with fewer episodes. The early findings support
the hypothesis that quantum policy representations, especially those incorpo-
rating structured amplitude amplification, can yield more targeted and effective
exploration in RL.

We acknowledge the hardware limitations inherent in the quantum devices of
today, including decoherence, gate depth constraints, and limited qubit fidelity.
Nonetheless, this work is situated within a long-term vision, to proactively es-
tablish the architectural and algorithmic foundations required to unlock the full
potential of quantum RL as QPUs continue to mature.

Ultimately, the present study calls for expanded research into QRL frame-
works in safety-critical, high-dimensional domains such as space robotics. The
compounded challenges of real-time decision-making, constrained onboard com-
putation, and the need for highly sample-efficient learning make space robotics
and similar applications not only suitable testbeds but also urgent and strate-
gically important use cases for advancing quantum-enhanced learning systems
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[6,26]. Since RL is inherently an optimisation problem, where the agent seeks
to maximise expected cumulative reward through iterative policy improvement
[21], enhancing the learning and optimisation cycle with quantum mechanisms
presents a natural and promising direction. The GRACE framework offers a
compelling and forward-looking path for such advancements.
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