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Abstract

We present a method to construct an N-dimensional quantum number generator (QRNG) certified via value-
indefiniteness (Kochen-Specker Theorem) working in a Hilbert space of dimension larger than 2 that generates quan-
tum random N-digits with a pre-given probability distribution with 0 < p1,ps,...,pny < 1 and Zi\il p;=1.

Our construction is based on a unitary decomposition corresponding to a physically realisable photonic embodi-
ment via photonic primitives such as beamsplitters and phase shifters.

We prove that every sequence of quantum random digits generated by the N-dimensional QRNG is highly incom-
putable and Borel normal, hence its randomness quality is better than that of every pseudo-random generator.

1 Introduction

Over the past decade, the use of quantum random number generators (QRNGs) has grown significantly due to the
increasing demand for high-quality randomness across various fields—including cryptography, statistics, information
science, medicine, and physics—as well as the limitations and sometimes catastrophic failures of pseudo-random number
generators [[15]. QRNGs are often regarded as superior to PRNGs because they rely on the inherent unpredictability of
carefully selected and controlled quantum processes [13]]. However, the superiority of a QRNG over any PRNG warrants
deeper scientific justification, and to date, the only QRNG for which such a theory was developed is the 3D QRNG [[7, |6].

In this paper, we generalise the construction in [[6] to develop a uniform approach for constructing a class of photonic
N-dimensional QRNGs for N > 2. This method is based on a universal unitary operator and a strategy for preparing
quantum value-indefinite states that comply with the Located Kochen-Specker Theorem [2]]. Measurements on these
states yield outcomes that are produced with an apriori specified probability distribution.

We prove that every sequence of quantum random digits generated by the N-dimensional QRNG is highly incomputable
and Borel normal, hence its randomness quality is better than that of every pseudo-random generator.

2 Notation and Definitions

An observable is a physical property or physical quantity that can be measured. In quantum physics, an observable is
value-definite if it always yields the same value when measured, even if the system is in a superposition of states. The
values that a value-definite observable can take are called eigenvalues, and the states of the system that correspond to
these values are called eigenstates. A Hermitian operator is a linear operator that equals its own conjugate transpose, that
is, it is self-adjoint. If each eigenvalue of a Hermitian operator has a unique corresponding eigenvector, then there exists
a unique orthonormal basis for it; in this case we say that it has a non-degenerate spectrum. For more details, see [[16]].

By R we denote the set of reals and by C" the complex Hilbert space of dimension N > 2.

3 Theoretical Results

In this section, we summarise the main known theoretical results.

3.1 Localising value-indefinitness

Value-indefiniteness is the main concept in this paper and the Kocken-Specker Theorem [14] shows that in a Hilbert
space of dimension N > 2, there exists a value-indefinite observable. This result is proved by assuming the following
three hypotheses.



* Admissibility. This hypothesis guarantees agreement with quantum mechanics predictions. Fix a set O of one-
dimensional projection observables on C" and the value assignment function v : O — {0, 1}. Then v is admissible
if for every context C' of O, we have ), v(P) = 1. Accordingly, only one projection observable in a context
can be assigned the value 1.

* Non-contextuality of definite values. Every outcome obtained by measuring a value definite observable is non-
contextual, i.e. it does not depend on other compatible observables which may be measured alongside it.

+ Eigenstate principle. If a quantum system is prepared in the state |1/), then the projection observable Py, is value
definite

Kocken-Specker Theorem proves only the existence of value-indefinite observables, hence it is not enough for our
QRNGs, which work by measuring value-indefinite observables. The following result solves this problem:

Theorem 1 (Located Kochen-Specker Theorem[2,3]) Assume a quantum system prepared in the state |1)) in a Hilbert
space CN withn > 3, and let |¢) be any quantum state such that 0 < |(1|¢)| < 1. If the following three conditions are
satisfied: i) admissibility, ii) non-contextuality and iii) eigenstate principle, then the projection observable Py, is value
indefinite.

4 Photonic Components

In this section, we present the photonic components of the QRNGs.

4.1 Beamsplitter

We use a transformation produced by a lossless beamsplitter and an external phase shifter to represent the annihilation
operators of the quantum harmonic oscillator [[11]. Here, the transmittance and reflectivity parameters are described
within the unitary matrix, and the input and output states are represented with modes (u,v) and (v, v"), respectively:
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where 6 describes the square root of the reflectivity, the transmittance is given by sin 6 and cos  respectively, and 9
represents the phase of an external phase shifter on the second input port.

4.2 A N-multiport beamsplitter

As demonstrated in [17], given an arbitrary N-dimensional unitary operator, we can represent a generalised rotation
through the decomposition of the unitary matrix using a series of phase shifters and standard beamsplitters implemented
in an optical experiment. A multiport beamsplitter is called symmetric if the norm of all its matrix elements are equal.
To model the behaviour of an /NV-dimensional system, it is useful to generalise the effect of a standard beamsplitter to
a single multiport symmetric beamsplitter acting on N-input modes and N-output modes. For dimenison N we may
express it by:
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The parametric family of this type of operator is known, allowing for a physical realisation with an N-multiport beam-
splitter [17].

A natural example occurs for dimension 2, where a lossless symmetric beamsplitter may be used to perform a Hadamard

transformation on a qubit:
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5 An N-dimensional QRNG

In this section, we present the construction of an N-dimensional QRNG by measuring a value indefinite observable in
CN, for an arbitrary N > 3.

5.1 Preparation: the first measurement operator

We choose an N-dimensional unitary Hermitian operator with non-degenerate spectra. From Theorem [] it follows
that for any diagonalisable observable O with spectral decomposition O = sz\; 1 AiPy,;, where \; denotes each distinct
eigenvalue with corresponding eigenstate | A;), O has a predetermined measurement outcome if and only if each projector
in its spectral decomposition has a predetermined measurement outcome.

Ideally, we want an operator with eigenvectors corresponding to the standard Cartesian basis on dimension . If this is
the case, the basis states correspond to the /N input modes of the final measurement device (the alternatives that satisfy
the requirements are equivalent to a change of basis). For an arbitrary N > 3 we may construct the spin state operators
to find a suitable candidate (up to a change of basis) [[1l]. For example, in [8]], for N = 3 the first measurement operator

e V2 o1
1 V2 1

corresponds to the spin state operator S(7,0) by considering the orthonormal standard Carthesian basis.

We will use the first measurement operator to provide a value definite state (preparation state) so that its interaction
with a secondary operator satisfies Theorem |1} that is, the eigenstates of the second measurement operator are neither
orthogonal nor parallel to the preparation state.

5.2 Number generation: the second measurement operator

To fulfill the conditions required to apply the Located Kochen-Specker Theorem, we choose an N-dimensional unitary
Hermitian operator with distinct eigenvectors which is different from the one used in the first measurement operator.

We can construct such a unitary Hermitian operator by working with the parametric family of symmetric multiport
beamsplitters on dimension N and finding an appropriate phase value.

This operator may be degenerate as a consequence the role of such operators and the non-contextuality assumption in
the original formulation of the Kochen-Specker Theorem. To proceed, we recall the following conditions on a value
assignment map V.

* For any self-adjoint operator O corresponding to an observable O, we have that V (O) € {o0;}, where {o;} are the
eigenvalues of (. That is, each observable corresponds to an element of physical reality, and the values assigned
correspond to the set of possible outcomes.

* (Quasi-linearity) For commuting operators A, B3, that is [A, B] = 0, we have that V (a. A+ bB) = aV (A) + bV (B),
where a,b € R.

* (Non-contextuality) All observables are assigned values simultaneously regardless of what else is being measured
with a given observable, that is, regardless of the measurement context.

From quasi-linearity, it follows that the map must preserve the algebraic structures of the operators. That is, for any Borel
function f, we have that V(A) = f(V(B)), whenever A = f(B). This is the core element leading to a contradiction
in many proofs of the Kochen-Specker Theorem. However, the contradiction only occurs for degenerate operators in the
original Kochen-Specker formulation as a result of the following properties: If an operator A is degenerate, for some
non-degenerate operators B,C and Borel functions f, g, we have that

A= f(B)and A= g(C), with [B,C] # 0.

Thus, from quasi-linearity it follows that



The sum of the projectors of a complete orthonormal set of states yields the identity operator. So, since orthogonal
projectors commute, the sum of their assigned values must be one. In the case of one-dimensional degenerate operators,
we get a single projector with value one and N — 1 zero-valued projectors for an N-dimensional Hilbert space. This
leads to a contradiction when considering all complete sets of projectors since a projector is a function of different non-
commuting, non-degenerate operators. In other words, degenerate one-dimensional operators must be assigned the same
value regardless of which non-degenerate operator it is considered to be a function of. As a consequence, we are forced
to accept the existence of value-indefinite observables or some form of contextuality.

Note that the first measurement operator helps us prepare the measurement context with a corresponding value definite
preparation state. Moreover, all Hermitian operators are self-adjoint, so degeneracy of an observable can be understood
as having more than one measurement basis (or measurement context) for an observable and is not detrimental when
localising a value-indefinite observable (nor it is required in the localised variant of the Kochen-Specker Theorem).

“What we observe is not nature itself, but nature exposed to our method of questioning”, W. Heisenberg, [12]]

5.3 State preparation, outcome probabilities, strong incomputability and Borel normality

Choose any probability distribution p1, p2, p3, ..., pny With ), p; = 0and 0 < p; < 1. We apply the process described
in [8] to select a preparations state |1)) defined with the first measurement operator. In this way, we ensure that the
conditions imposed by the Localised Kochen-Specker Theorem are met by performing the second measurement on |1)).
That is, we may construct value indefinite observables which, by measurement, produce outcomes with the probabilities

b1,p2,P3,---,PN-

An N-dimensional QRNG can operate indefinitely many times in an algorithmic fashion of the form “preparation,
measurement, reset" and generate infinite sequences. Generalising the certification of a 3D QRNG in [6]] one can show
that every sequence generated by any N-dimensional QRNG is incomputable, that is, no sequence produced by an V-
dimensional QRNG can be reproduced exactly by any algorithm, in particular, by any pseudo-random generator. This
shows that the quality of the quantum random digits produced by every N-dimensional QRNG is provable better than
the one produced by any pseudo-random number generator

A stronger result can be obtained by using the non-probabilistic model for unpredictability [4,l5], the Eigenstate principle
and:

epr principle: If a repetition of measurements of an observable generates a computable sequence, then this
implies these observables were valued definite.

The proof of Theorem 5.1 from [6] can be generalised from N = 3 to every N > 2:

Theorem 2 Assume the epr and Eigenstate principles. Let x be an infinite sequence generated by an N -dimensional
ORNG. Then no single digit x; x can be predicted.

Now, fix an integer m > 1 and consider the alphabet A;* = {a1,...,ay= } of all strings x € A} with |x|, = m, ordered
lexicographically. A string € A; will be denoted by =" when we emphasise that it belongs to (A4;")*. By Ay we
denote the set of all infinite sequences x = xyx2 - - - with z; € Aj.

Take for example, for Ay = {0,1},m = 2, A3 = {00,01, 10, 11}; the string z = 10110100 € A% will be denoted by
z% = (10)(11)(01)(00) when considered in A3. Clearly, |z|]» = 8 and |2?|4 = 4. In the same way a sequence X € AY
will be written as x"* when considered in (A}")*.

Let N;(x) be the number of occurrences of i € Ay in the string x € Aj and for every u € A" let N;'(2™) be the
number of occurrences of u in the string ™ € (A}")*. Recall that for x € Ay andn > 1, x(n) = z122...2, € Aj.
The sequence x is called m-Borel normal (m > 1) in case for every v € (A;")* one has:
N™(xm (|2 1
NP
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The sequence x € A} is called Borel normal if it is Borel m-normal, for every natural m > 1, [9]].

For applications that require binary strings, in order to ensure the results from [7, 8] apply, we need to choose a suitable
probability distribution and a suitable alphabetic morphism; this is dependent on the dimension N.

In particular, for dimension N = 2" with positive integer m > 1, choosing an equally likely distribution of outcomes
allows us to achieve Borel m-normality through a simple alphabetic morphism ¢: assign a different string from the
alphabet A5 to each of the possible N outcomes.



Theorem 3 Let m > 1 and the 2 -dimensional QRNG described above, in which the preparation state was selected so
that each outcome occurs with probability of 2~™. Fix an alphabetic morphism given by a bijection ¢ : Aym — A3
Then, for every sequence x generated by the QRNG, the binary sequence o(X) is m-Borel normal.

6 A 4-dimensional Example

We can find the first measurement operator for an arbitrary N > 3 by constructing the spin state operator for N. For
dimension N = 4, we have the Hermitian non-degenerate operator

30 0 0
1{fo =1 0 o0
210 0 1 o0
0 0 0 -3

Since the operator is non-degenerate, it has distinct eigenvectors and eigenvalues that we can map to each input port.

These are given by {%, %, —%, —%} and the corresponding eigenvectors with respect to the Cartesian Standard basis are:

|1>: 7’2>: 7‘3>: 7|4>:

o O O
o O = O
O = OO
— o O O

For the second measurement operator an element of the family of symmetric multiport beamsplitters on dimension 4 is
given by:

1 1 1 1
11 e —1 —e?
211 -1 1 -1
1 —€% —1 ¢
Choosing the phase ¢ = 7 we get the unitary Hermitian operator
1 1 1 1
If1r -1 -1 1
211 -1 1 =1}’
1 1 -1 -1
with eigenvectors
0 -1 2 1
-1 2 1 0
Loy =1 o | RO =11 [Bu)=],] B =],
1 0 1 0

For dimension N = 4 and equally likely outcomes (%, %, i, %) this process yields the state

) =518 + 5 14).

Indeed, applying the second measurement to |4) we get that

(1ohb) = (4h) = 3 (4l4) = (L)l =

)

(20b) = (31) = 7 (313) =

—
, = [(Lul)* =
=

, (Lol)[* =

(3ul) = (4h) = 3 (4l4) =

il Y N I NN

(k) = (3l == 5 33) 2, = [(uhs) =

57
So we get a value indefinite outcome with the desired probability distribution. Finally, by Theorem [3] we may guarantee
Borel 2-normality for applications requiring binary strings.
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Figure 1: Photonic realisation of the unitary decomposition. The numbering on the left side indicates the input modes

6.1 Unitary decomposition

Consider the following beamsplitter matrix:

id o
BS — (e cos 0 sm9>.

e?sinf  cosh

We note that BS is equivalent to the beamsplitter matrix presented in Section 4.1 by a phase factor. We work here with
the matrix BS because its form facilitates the decomposition technique in [10].

Here, ¢ represents a phase and ¢ an angle. Let B.S; ; represent the beamsplitter between modes 7 and j we have:

Beamsplitter | 6 10)
BSip 71 0
BS3.4 T -
BSy 3 71 0
BSLQ g —T
BS54 5 | 2.55
BSs3 T s
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