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Diagonalization of matrix pencils provide a uniform technique to transcribe operator-valued violations of
Boole’s ‘conditions of possible experience’ involving multipartite correlations into contextuality. They also
provide structural analysis of the contexts involved, and thereby suggest compact forms of deviations of quan-
tized systems from classical predictions.
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In heuristic terms, ‘quantum contextuality’ encompasses
any aspect that contradicts classical predictions, with ‘strong’
types of contextuality entailing complete contradictions rel-
ative to classical expectations. In what follows we shall
concentrate on ‘strong quantum contextuality’ rendered by
operator-valued arguments exhibiting nonlocality. While
the inverse problem—converting contextuality into nonlocal-
ity [1]—can be of empirical importance, the solution of the
former task can identify the particular type of contextuality
exhibited.

From a structural standpoint—that is, in terms of
the quantum logical algebraic relations of the associated
propositions—operator-valued arguments may be closely re-
lated, although they may formally appear to be very different.
For instance, as observed by Cabello [2, 3], Hardy’s theorem
[4, 5] can, in quantum logical terms, be transcribed as a true-
implies-false arrangement (in graph theoretical terms, a gad-
get) of observables [6, 7]. However, as we shall see in compar-
ing Kochen-Specker (KS) and Greenberger-Horne-Zeilinger
(GHZ) arguments, there need not be such a close relationship.

The algorithmic and thus constructive analysis of a tran-
scription process for cases of operator-value arguments
demonstrating nonclassical behavior is based on the proper
spectral decomposition of the operators involved. Mutu-
ally commuting normal operators (such as Hermitian or uni-
tary operators that commute with their respective adjoints)
A1, . . . ,Al share common projection operators. However, if
their spectra are degenerate we need to find an orthonormal
basis in which every single one of this collection of mutu-
ally commuting operators is diagonal. Although in principle
well-known [8, Section 1.3], the standard procedure via block
diagonalization can be rather involved [9]. Alternatively, we
can diagonalize the matrix pencil:

P =
l

Â
i=1

aiAi, (1)

where ai are scalars (for our purposes, real numbers). As P

commutes with A1, . . . ,Al , they share a common set of projec-
tion operators. Moreover, since the scalar parameters ai can be
adjusted, and in particular, can be identified with Kronecker
delta functions di j, and as P commutes with each operator A j

for 1  j  l, P and A j share a common set of projection op-
erators.

Equipped with these techniques, any collection of com-
measurable multipartite observables corresponding to mutu-
ally commuting operators can be transcribed into projection
operators in the spectrum of the operators of these observ-
ables. If these operators render a maximal resolution, the re-
spective vectors correspond to an orthonormal basis called a
context with respect to A1, . . . ,Al . The merging or pasting of
possibly intertwining contexts then generates a quantum logic
which can be analyzed to identify and characterize the con-
textual (nonclassical) predictions and features.

Applying these techniques to the Peres-Mermin (PM)
square [10–13] renders 24 propositions and 24 contexts,
henceforth called the 24-24 configuration, that is the ‘comple-
tion’ of the (minimal in four dimensions [14]) 18-9 KS config-
uration comprising 18 vectors in 9 contexts [2]. In more detail,
this configuration involves nine dichotomic observables with
eigenvalues ±1 arranged in a 3⇥ 3 PM matrix (2). Its rows
and columns are masking six four-element contexts, one per
row and column (sis j stands for the tensor product of Pauli
spin matrices si ⌦s j, with similar notation for 12)

0

B@
sz12 12sz szsz

12sx sx12 sxsx

szsx sxsz sysy

1

CA . (2)

To explicitly demonstrate the difficulties involved co-
diagonalization of commuting degenerate matrices consider
the last row of the PM square (2). Its operators szsx, sxsz,
and sysy mutually commute—for instance, [szsx,sysy] = 0.
However, a straightforward calculation of the eigenvectors of
szsx yields:

⇣
0,1,0,1

⌘|
,
⇣
�1,0,1,0

⌘|
,
⇣

0,�1,0,1
⌘|

, and
⇣

1,0,1,0
⌘|

. None of these eigenvectors are eigenvectors of
sysy, and vice versa. This demonstrates the difficulties in-
volved in co-diagonalizing commuting degenerate matrices.

Nonetheless, the ‘joint’ PM square contexts are revealed
as the normalized eigenvectors of the respective matrix pen-
cils (1). Table I enumerates those contexts, provided that the
s -matrices are encoded in the standard form.

Analysis of their orthogonality relations yields an adja-
cency matrix that, in turn, can be used to construct the re-
spective (hyper)graph through the intertwining 24 cliques and
thus contexts thereof. As can be expected, there are only
four-cliques corresponding to orthonormal bases in four di-
mensional Hilbert space. Figure 1(a) depicts the hypergraph
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TABLE I. Eigensystems of the matrix pencils of the rows and columns of the PM square (2) with normalization factors omitted. The
eigenvectors corresponding to the last row and column are nonseparable and thus entangled, while all others are separable. This set of 24
vectors includes the 18 vectors of Cabello, Estebaranz and Garcı́a-Alcaine [2]. As already noted by Peres [10], these six ‘primary’ contexts
associated with orthogonal tetrads are disjoint (not intertwined). In the hypergraph representation depicted in Figure 1(a) they are represented
as the ‘small ovals’ on the six edges of the hypergraph.

matrix pencils eigenvalues
a�b� c �a+b� c �a�b+ c a+b+ c

asz12 +b12sz + cszsz |7i=
⇣

0,1,0,0
⌘|

|3i=
⇣

0,0,1,0
⌘|

|1i=
⇣

0,0,0,1
⌘|

|17i=
⇣

1,0,0,0
⌘|

a12sx +bsx12 + csxsx |20i=
⇣
�1,�1,1,1

⌘|
|13i=

⇣
�1,1,�1,1

⌘|
|11i=

⇣
1,�1,�1,1

⌘|
|24i=

⇣
1,1,1,1

⌘|

aszsx +bsxsz + csysy |21i=
⇣

1,1,�1,1
⌘|

|14i=
⇣

1,�1,1,1
⌘|

|23i=
⇣
�1,1,1,1

⌘|
|10i=

⇣
�1,�1,�1,1

⌘|

asz12 +b12sx + cszsx |12i=
⇣
�1,1,0,0

⌘|
|4i=

⇣
0,0,1,1

⌘|
|2i=

⇣
0,0,�1,1

⌘|
|22i=

⇣
1,1,0,0

⌘|

a12sz +bsx12 + csxsz |15i=
⇣
�1,0,1,0

⌘|
|8i=

⇣
0,1,0,1

⌘|
|6i=

⇣
0,�1,0,1

⌘|
|19i=

⇣
1,0,1,0

⌘|

a�b� c �a+b� c �a�b+ c a+b+ c

aszsz +bsxsx + csysy |5i= |Y�i=
⇣

0,1,�1,0
⌘|

|18i= |F+i=
⇣

1,0,0,1
⌘|

|16i= |F�i=
⇣

1,0,0,�1
⌘|

|9i= |Y+i=
⇣

0,1,1,0
⌘|

representing these intertwining contexts as unbroken smooth
lines, and the vector labels as elements of these contexts, as
enumerated in Table I.

The 24 rays were already discussed by Peres [10] as
permutations of the vector components of

⇣
1,0,0,0

⌘|
,

⇣
1,1,0,0

⌘|
,
⇣

1,�1,0,0
⌘|

,
⇣

1,1,1,1
⌘|

,
⇣

1,1,1,�1
⌘|

, and
⇣

1,1,�1,�1
⌘|

. The ‘full’ 24-24 configuration was obtained
by Pavičić [15] who reconstructed additional 18 contexts not
provided in the original Peres paper [10] by hand [16]. Peres’
24-24 configuration is arranged in four-element contexts asso-
ciated with four-dimensional Hilbert space, with vector com-
ponents drawn from the set {�1,0,1}, that do not support any
two-valued state. Pavičić, Megill and Merlet [17, Table 1]
have demonstrated that Peres’ 24-24 configuration contains
1,233 sets that do not support any two-valued states. Among
these 1,233 sets are six ‘irreducible’ or ‘critical’ configura-
tions which do not contain any proper subset that does not
support two-valued states. Notably, among these configura-
tions is the previously mentioned 18-9 configuration proposed
by Cabello, Estebaranz and Garcı́a-Alcaine [2]. Previously,
Pavičić, Merlet, McKay, and Megill [18, 19, Section 5(viii)]
had shown that, among all sets with 24 rays and vector com-
ponents from the set {�1,0,1}, and 24 contexts, only one
configuration does not allow any two valued state—and that
one is isomorphic to Peres’ ‘full’ (including 18 additional con-
texts) 24-24 configuration enumerated by Pavičić [15]. This
computation had taken one year on a single CPU of a super-
computer [16]. More recently, Pavičić and Megill [20, Ta-
ble 1] have demonstrated that the vector components from the
set {�1,0,1} vector-generate a 24-24 set, which contains all
smaller KS sets and is simultaneously isomorphic to the ‘com-
pleted’ 24-24 configuration configuration.

We conjecture without providing a formal proof that if a
‘larger’ collection of quantum observables (such as 24-24)
contains a ‘smaller’ collection of quantum observables (such

as 18-9), then it inherits the scarcity or total absence of two-
valued states of the latter: if the ‘smaller’ set cannot sup-
port features related to two-valued states, such as separability
of propositions [21, Theorem 0], then intertwining or adding
contexts can only impose further constraints, thereby exacer-
bating the situation by introducing new conditions.

Based on the GHZ argument Mermin has suggested [12,
22] a “simple unified form for the major no-hidden-variables
theorems” in which he identified four commuting three-partite
operators: sxsxsx, sxsysy, sysxsy, and sysysx. A par-
ity argument reveals a state-independent quantum contradic-
tion to the classical existence of (local, noncontextual) el-
ements of physical reality: The quantum mechanical ex-
pectation of the product of these four commuting three-
partite operators for any quantum state is �1 = h�18i =
h12(�12)12i = h(sx · sx · sy · sy)(sx · sy · sx · sy)(sx · sy ·
sy · sx)i = h(sxsxsx) · (sxsysy) · (sysxsy) · (sysysx)i =
hsxsxsxihsxsysyihsysxsyihsysysxi. In this formulation, ev-
ery operator sx and sy for each of the three particles occurs
twice. Therefore, if classically all such single-particle observ-
ables would coexist as elements of physical reality and inde-
pendent of what other measurements are made alongside, then
their respective product must be 1, the exact negative of the
quantum expectation.

Mermin’s configuration can be analyzed in terms of its ma-
trix pencil asxsxsx+bsxsysy+csysxsy+dsysysx, thereby
revealing the underlying, hidden context in terms of the simul-
taneous eigensystem of the four mutually commuting opera-
tors. These eight nonseparable vectors form an orthonormal
basis of an eight-dimensional Hilbert space corresponding to
an isolated single context [23, Table 1] of entangled states.
Therefore, Mermin’s configuration does not constitute a KS
proof, as it still permits a separating set of eight two-valued
states.

In view of this, how does one arrive at a complete GHZ
contradiction with classical elements of physical reality, as
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FIG. 1. (a) Hypergraph representing contexts (or cliques or orthonormal bases or maximal operators) as unbroken smooth lines. This
is a ‘orthogonal completion’ [10, 15] of the KS set comprising 18 vectors in 9 contexts introduced by Cabello, Estebaranz and Garcı́a-
Alcaine [2]. The filled shaded small ovals on the edges correspond to the ‘primary’ isolated (nonintertwined) contexts from the matrix pencil
calculations enumerated in Table I. (b) Hypergraph representing a 16-12 configuration: 16 elements in 12 contexts enumerated in the first,
second, fourth, and fifth row of Table I. These vectors are separable and thus correspond to factorizable, nonentangled states. (c) Two equivalent
hypergraph representations of a 8-4 configuration—8 elements in 4 contexts enumerated in the third and sixth row of Table I. These vectors
are nonseparable and thus correspond to entangled states.

outlined above? The criterion employed in an experimen-
tal corroboration [24] is to select any one of the eigenstates
forming the orthonormal basis, such as (1/

p
2)
�
|z+z+z+i+

|z�z�z�i
�
. Since this is an eigenstate of all four terms of

the matrix pencil, four separate measurements can be per-
formed (possibly temporally separated) yielding the eigenval-
ues +1 for sxsxsx as well as �1 for the three others. These
three factors �1 and one factor +1 contribute to their product
value �1, in total contradiction to the classical expectation
+1. Note that similar contradictions arise if the seven other
eigenstates of the matrix pencil are considered [23, Table 1].

Can an equally convincing argument be made for just two
particles? Natural candidates would be the ‘nonclassical’ ele-
ments of the PM square (2). Note that its ‘masked’ or ‘hidden’
contexts, revealed by the matrix pencils, can be partitioned
into four ‘separable’ type contexts depicted in Figure 1(b)
containing only separable vectors—corresponding to the first
and second rows and columns—and two ‘nonclassical’ con-
texts consisting of nonseparable vectors—corresponding to
the last row and column, as depicted in Figure 1(c).

Concentrating on these two latter contexts consisting of
nonseparable vectors, we make the following observations:
Since the observables from the last row and last column (with
the exception of sysy) do not commute, they cannot be si-
multaneously measured. Nevertheless, by forming products
within the last row and column, we may create two com-
muting operators (szsx) · (sxsz) = �(sxsx) · (szsz) = (sz ·
sx)(sx ·sz) = sysy = antidiag

⇣
�1,1,1,�1

⌘
. Their matrix

pencil

a(szsx) · (sxsz)+b(sxsx) · (szsz) (3)

has a degenerate spectrum with the Bell basis as
eigenvectors—the same as the eigenvectors of the ma-
trix pencil of the last column of the PM square. It is
enumerated in Table II.

Hence, preparing a state in one Bell basis state and measur-
ing (successively or separately) (szsx) · (sxsz), and (sxsx) ·
(szsz) or sxsx as well as szsz separately, yields

�1 = h�14i= h12(�12)i
= h(sz ·sx ·sx ·sz)(sx ·sz ·sx ·sz)i
= h(szsx) · (sxsz) · (sxsx) · (szsz)i
= h(szsx) · (sxsz)ih(sxsx) · (szsz)i.

(4)

In contrast, and in analogy to Mermin’s version of the GHZ
argument, the classical prediction is that the product of these
terms always needs to be positive, as every alleged ‘element
of reality’, in particular corresponding to sx and sz, enters an
even number of times (indeed, twice per particle).

I conclude with some comments and an outlook. A nonlo-
cal measurement in quantum mechanics refers to the simul-
taneous measurement of properties of entangled particles that
are—at least in principle—located in space-like separated re-
gions (Einstein locality). We therefore suggest calling an op-
erator, or a collection of mutually commuting operators, ‘non-
local’ if they—or more generally, the eigensystem of their
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TABLE II. Eigensystem of the matrix pencil (3) associated with the
commuting products of operators in the last (third) row and the last
(third) column of the PM square, constituting the Bell basis. Inclu-
sion of (sysy) · (sysy) = 14 does not change the calculation and is
therefore omitted. The values +1 and �1 represent the (co)measured
values of the respective commuting operators.

value vector (szsx) · (sxsz) sxsx szsz (sxsx) · (szsz)

a�b |Y+i +1 +1 �1 �1
a�b |F�i +1 �1 +1 �1

�a+b |Y�i �1 �1 �1 +1
�a+b |F+i �1 +1 +1 +1

matrix pencil—allow entangled, that is, nonseparable, eigen-
states after projective measurements. This is the case for the
last row and column of the PM square, and also for the four
three-partite operators suggested by Mermin in the context of
the GHZ argument. I shall motivate and discuss these issues
further in a later publication.

The matrix pencil method provides an elegant solution for
simultaneously diagonalizing commuting operators with de-
generate spectra. It offers a systematic approach for the ap-
plication of ‘contextual’ nonclassical performance in quan-
tized systems, particularly in delineating operator-valued ar-
guments.

The PM square demonstrates a fundamental contradiction
(quantum �1 versus classical +1) compared to classical ex-
istence in a dichotomic operator-valued formulation. By em-
ploying matrix pencils, this contradiction can be transcribed
into a KS type argument with 24 vectors. This configuration,
which does not support any binary (two-valued) state, consist
of 6 ‘original’ isolated contexts from the matrix pencils asso-
ciated with every row and column of the PM square, as well
as 18 ‘secondary’ intertwining contexts obtained by studying
orthogonalities.

Mermin’s rendition of the GHZ operator-valued argument
is indeed altogether different. When transcribed into quantum
logic, it reveals a single isolated context that is perfectly set
representable, for instance, by partition logic. Thereby, the
quantum state becomes crucial for any experimental corrobo-
ration: if one takes any eigenstate of the matrix pencil it leads
to a complete contradiction (again quantum �1 versus clas-
sical +1) when multiplying all the results and comparing the
squares of operators in a parity argument.

In analyzing the ‘entangled contexts’ corresponding to the
last row and column of the PM square and constructing mu-
tually commuting products thereof, one arrives at a very sim-
ilar argument as Mermin’s rendition of the GHZ argument.
It is also state-independent and operates within a single con-
text. The operators are: (szsx) · (sxsz) and alternatively,
(sxsx) · (szsz) or sxsx and szsz and, although not needed
for the constraction, (sysy) · (sysy). These operators com-
mute, and for the Bell basis yield at a complete contradic-
tion (quantum �1 versus classical +1) contingent on the as-
sumption of noncontextual classical existence of those ele-

ments of physical reality. This reduces the eight-dimensional
argument to a four-dimensional one. It might be interesting
to probe the factors sz ·sx and sx ·sz of the tensor product
(szsx) · (sxsz) = (sz ·sx)(sx ·sz) by the Bell states |Y�i and
|F+i in an Einstein-Podolsky-Rosen configuration, because
this alone could ‘isolate’ the ‘rub’, as the quantum predic-
tion of the observed value would be �1. Likewise, applica-
tion of the Bell states |Y+i and |F�i on (szsz) · (sxsx) =
(sz ·sx)(sz ·sx) would result in an observed value �1.

Why or how can such operator-valued contradictions arise
in the context of a single isolated context? Because measure-
ments like sxsy(sy) as part of a context from a matrix pencil
should not be perceived as ‘local’ and cannot be performed
as two (or three) single-qubit local measurements [13]. Such
operator-valued arguments are based on a classically justi-
fied conviction that every two- (or three-) particle state can
be composed of single-particle states in such a way that the
former retains all properties of the latter. This is no longer
true for entangled states, which encode relational informa-
tion at the (unitary) cost of abandonment of local proper-
ties. From this perspective, both dichotomic operator-valued
GHZ arguments as well as binary two-valued state KS ar-
guments against noncontextuality share a nonoperational and
thus (meta)physical presumption: the contingent use of coun-
terfactuals.

This research was funded in whole or in part by the Aus-
trian Science Fund (FWF), Grant-DOI: 10.55776/I4579. For
open access purposes, the author has applied a CC BY public
copyright license to any author accepted manuscript version
arising from this submission.
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Cabello and Jan-Åke Larsson regarding aspects of Refer-
ence [13], as well as explanations, discussions, and sugges-
tions from Mladen Pavicic regarding the properties of the 24-
24 configuration. (Any remaining confusion remains solely
with the author.)

⇤ karl.svozil@tuwien.ac.at; http://tph.tuwien.ac.at/˜svozil
[1] A. Cabello, Physical Review Letters 127, 070401 (2021),

arXiv:2011.13790, URL https://link.aps.org/doi/10.
1103/PhysRevLett.127.070401.

[2] A. Cabello, J. M. Estebaranz, and G. Garcı́a-Alcaine, Physics
Letters A 212, 183 (1996), arXiv:quant-ph/9706009, URL
https://doi.org/10.1016/0375-9601(96)00134-X.

[3] A. Cabello, P. Badziag, M. Terra Cunha, and M. Bourennane,
Physical Review Letters 111, 180404 (2013), URL https://
doi.org/10.1103/PhysRevLett.111.180404.

[4] L. Hardy, Physical Review Letters 68, 2981 (1992), URL
http://dx.doi.org/10.1103/PhysRevLett.68.2981.

[5] L. Hardy, Physical Review Letters 71, 1665 (1993), URL
http://dx.doi.org/10.1103/PhysRevLett.71.1665.

[6] A. Cabello, J. R. Portillo, A. Solı́s, and K. Svozil, Physical Re-
view A 98, 012106 (2018), arXiv:1805.00796, URL https:
//doi.org/10.1103/PhysRevA.98.012106.

mailto:karl.svozil@tuwien.ac.at
http://tph.tuwien.ac.at/~svozil
https://link.aps.org/doi/10.1103/PhysRevLett.127.070401
https://link.aps.org/doi/10.1103/PhysRevLett.127.070401
https://doi.org/10.1016/0375-9601(96)00134-X
https://doi.org/10.1103/PhysRevLett.111.180404
https://doi.org/10.1103/PhysRevLett.111.180404
http://dx.doi.org/10.1103/PhysRevLett.68.2981
http://dx.doi.org/10.1103/PhysRevLett.71.1665
https://doi.org/10.1103/PhysRevA.98.012106
https://doi.org/10.1103/PhysRevA.98.012106


5

[7] K. Svozil, Physical Review A 103, 022204 (2021),
arXiv:2006.11396, URL https://doi.org/10.1103/
PhysRevA.103.022204.

[8] R. A. Horn and C. R. Johnson, Matrix Analysis (Cam-
bridge University Press, New York, NY, 2013), 2nd ed.,
ISBN 9780521839402,9780521548236,9781139785884, URL
https://www.cambridge.org/9780521548236.

[9] R. P. Nordgren, Simultaneous diagonalization and SVD of com-

muting matrices (2020), arXiv:2006.16364, URL https://
doi.org/10.48550/arXiv.2006.16364.

[10] A. Peres, Journal of Physics A: Mathematical and Gen-
eral 24, L175 (1991), URL https://doi.org/10.1088/
0305-4470/24/4/003.

[11] A. Peres, Physics Letters A 151, 107 (1990), URL https://
doi.org/10.1016/0375-9601(90)90172-k.

[12] D. N. Mermin, Physical Review Letters 65, 3373 (1990), URL
https://doi.org/10.1103/PhysRevLett.65.3373.

[13] C. Budroni, A. Cabello, O. Gühne, M. Kleinmann, and J.-
A. Larsson, Reviews of Modern Physics 94, 045007 (2022),
arXiv:2102.13036, URL https://https://doi.org/10.
1103/RevModPhys.94.045007.
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