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Abstract

Infinite words are often considered as limits of finite words. As
topological methods have been proved to be useful in the theory of
ω-languages it seems to be providing to include finite and infinite
words into one (topological) space. In most cases this results in a
poor topological structure induced on the subspace of finite words.

In the present paper we investigate the possibility to link topolo-
gies in the space of finite words with a topology in the space of in-
finite words via a natural mapping. A requirement in this linking of
topologies consists in the compatibility of the topological proper-
ties (openness, closedness etc) of images with preimages and vice
versa.

Here we show that choosing for infinite words the natural topol-
ogy of the CANTOR space and the δ-limit as linking mapping there
are several natural topologies on the space of finite words compat-
ible with the topology of the CANTOR space. It is interesting to ob-
serve that besides the well-known prefix topology there are at least
two more whose origin is from language theory—centers and super-
centers of languages.

We show that several of these topologies on the space of finite
words fit into a class of L-topologies and exhibit their special prop-
erties w.r.t. to the compatibility with the CANTOR topology.

Cristian S. Calude
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1 Introduction

Topological methods are useful in the theory of ω-languages in connec-
tion with proving hierarchy results (e.g. [Tho90, Sta97, PP04]). To this
end one considers, for a finite alphabet X, the set of all infinite words (ω-
words) over X as the infinite product space of the discrete space X. This
topology is also known as the CANTOR topology. Infinite words may also
viewed as limits of (infinite) increasing families of finite words w.r.t. the
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prefix ordering. Thus it seems to be providing to include both into the
same space. One attempt into this direction was done by Boasson and
Nivat [BN80]. Redziejowski [Red86] observed that the limit considered
in [BN80] is different from that one used in the theory of ω-automata.
Therefore he proposed another topology including finite and infinite words
into one space. Recently, in [CJS09] possibilities to extend right topolo-
gies generated by partial orders onX∗ to topologies onXω orX∗∪Xω were
investigated.

Each of these concepts seems to have several drawbacks when con-
sidering topology in connection with acceptance of ω-words, the first
approach yields a trivial topological structure for finite words whereas
the other ones for infinite words give topologies others than the topology
of the CANTOR space:

The topology considered by Boasson and Nivat is closely related to the
product or CANTOR topology of Xω, on the one hand its restriction to Xω

is the CANTOR topology and, on the other hand the whole space X∗∪Xω
is a homeomorphic to a closed subset of the CANTOR space (X∪ {⊥})ω
where ⊥ /∈ X is a new letter. However, all finite word languages are open
in this topology, in particular, each finite word is an isolated point in this
topology.

Redziejowski’s topology has all sets consisting of only infinite words
(ω-languages) as closed sets, thus providing no information on the com-
plexity of acceptance by topological means.

Finally, the results of [CJS09] show that unless one uses the prefix or-
der v the limit process extending the topology on X∗ yields ambiguous
results, more precisely, the limit set may contain more than one element
and the topology induced on the space of infinite words may not coin-
cide with the CANTOR topology.

In this paper we investigate the possibility to link topologies on the
countable set X∗ to the standard topology [Tho90, Sta97, PP04] of the
CANTOR space Xω via a mapping preserving closedness and openness
of sets.

As a mapping we use the δ-limit introduced in [Dav64]. Because of
the countability of X∗ we cannot expect to obtain a full topological corre-
spondence between the spaces X∗ and Xω via any mapping. The δ-limit
does not go beyond the class Gδ of the BOREL hierarchy. For the pre-
fix topology, it provides a correspondence between the open and closed
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sets in X∗ and the CANTOR space, respectively, and furthermore, of the
(σ,δ)-subsets of X∗ as introduced in [Sta87] and subsets of Xω being si-
multaneously of type Fσ and Gδ (see [Sta97, Section 2.4]).

Among the topologies on X∗ we consider here are the topologies in-
duced by the AnfL-operators introduced in [PU79, Pro80, Pro83]. Partic-
ular cases of these topologies are the topologies induced by the centers
[PU79, BN80, BN81] and supercenters [SN86] of languages. It turns out
that both topologies play a special rôle: the center-topology being the
coarsest one having all finite sets closed, and the supercenter-topology
being the finest one for which the prefix set pref(F) of every closed subset
F⊆ Xω is the smallest closed set in X∗ corresponding to F via the δ-limit.

The paper is organised as follows. After the notation used we intro-
duce some topological background emphasising properties of the de-
rived set operator. Then we deal with several topologies for finite and in-
finite words. Section 4 describes the linking of topologies for finite words
with the CANTOR topology for ω-words. A fundamental property for a
topology of finite words is the compatibility with the topology of infinite
words. The class of L-topologies introduced by Prodinger and Urbanek
[PU79, Pro80] is the topic of Section 5. In the subsequent part we deal
with topologies fulfilling a strengthened compatibility condition. Some
of these results were announced in [Sta10]. Finally we show some limita-
tions of L-topologies in respect to compatibility with the CANTOR topol-
ogy.

2 Preliminaries

2.1 Notation

We introduce the notation used throughout the paper. By N = {0,1,2, . . .}
we denote the set of natural numbers. Let X be an alphabet of cardinal-
ity |X| > 2, a,b ∈ X,a 6= b. By X∗ we denote the set (monoid) of words on
X, including the empty word e, and Xω is the set of infinite sequences
(ω-words) over X. Forw ∈ X∗ and η ∈ X∗∪Xω letw ·η be their concatena-
tion. This concatenation product extends in an obvious way to subsets
W ⊆ X∗ and B⊆ X∗∪Xω. For a languageW letW∗ :=

⋃
i∈NW

i be the sub-
monoid of X∗ generated by W, and by Wω := {w1 · · ·wi · · · : wi ∈W \ {e}}
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we denote the set of infinite strings formed by concatenating words in
W. Furthermore |w| is the length of the word w ∈ X∗ and pref(B) is the
set of all finite prefixes of strings in B ⊆ X∗ ∪Xω. We shall abbreviate
w ∈ pref(η) (η ∈ X∗∪Xω) bywv η.

Further we denote by B/w := {η :w ·η ∈ B} the left derivative (left quo-
tient) of the set B⊆ X∗∪Xω generated by the wordw.

In the theory ofω-automata,ω-words are introduced as upper bounds
of infinite chains of words ordered by the prefix relation “@”; this is re-
flected by the following limit operation (see [CJS09, Dav64, Red86, Sta87,
Sta97]).

The δ-limit of a languageW ⊆ X∗ is defined as

Wδ := {ξ : ξ ∈ Xω∧|pref(ξ)∩W|=ℵ0} . (1)

2.2 General topology

Usually, a topology T = (X,O) on a set (space) X is given by a family of
open sets O ⊆ 2X. Here O is a family of subsets of X containing X and
closed under arbitrary (including empty) union and finite intersection.

Following Kuratowski (cf. [Kur66, RS63]) one can also define a topol-
ogy via a closure operator. A mapping α : 2X→ 2X is called a topological
closure operator provided it satisfies the following conditions.

α(∅) = ∅ (2)

α(M) ⊇ M (3)

α(M1∪M2) = α(M1)∪α(M2) , and (4)

α(α(M)) = α(M) (5)

In view of Eq. (3) the identity in Eq. (5) can be replaced by α(α(M)) ⊆
α(M).

By Tα we denote the topology Tα= (X,Oα)whereOα := {X\α(M) :M⊆
X}.

A topology T1 = (X,O1) is finer1 than a topology T2 = (X,O2) if O2⊆O1,
that is, if every T2-open set is also T1-open. This is equivalent to the fact
that it holds

α1(M)⊆ α2(M) for allM ∈ X (6)

1This includes the case that T1 and T2 coincide.
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where αi, i= 1,2 is the closure generating the topology Ti.
A closure operator may also be obtained via the CANTOR-BENDIXSON de-

rived set (set of accumulation points)Md ofM⊆X [Kur66, Ch. 1, § 9, III].
The derived set operator d has to satisfy the following conditions.

∅d = ∅ (7)

(M1∪M2)
d = Md

1 ∪Md
2 , and (8)

(Md)d ⊆ Md (9)

In particular, every closure α is also a derived set operator.
It is readily seen that αd(M) :=M∪Md is a topological closure opera-

tor and in view of Eq. (9)Md is closed in Tαd , in general, a setM is closed
in Tαd if and only if Md ⊆M. Via αd, a derived set operator d defines a
topology on X.

The following properties hold (cf. also [Kur66, Ch. 1, § 7, IV and § 9,
III]).

Property 1 EveryM ′, whereMd ⊆M ′ ⊆M∪Md, is closed in Tαd .

Property 2 Let γ : 2X→ 2X be a derived set or closure operator. Then

G∩γ(M) =G∩γ(G∩M)

ifG is open in the topology defined by γ.

For the sake of completeness we add a proof.
Proof. The inclusion⊇ is obvious.

From Eq. (8) we have γ(M) = γ(M∩G)∪γ(M\G)⊆ γ(M∩G)∪γ(X\

G). Since X\G is closed, γ(X\G)⊆X\G, and we have γ(M)⊆ γ(M∩G)∪
(X\G) whence the reverse inclusion follows via intersection with the set
G. o

As usual countable unions of closed sets are called Fσ-sets and count-
able intersections of open sets are called Gδ-sets.

3 Topologies for Words andω-words

In this section we present some known topologies for finite and infinite
words.
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3.1 The CANTOR topology on Xω

The first one is the widely investigated CANTOR topology.
We consider the setXω as a metric space (CANTOR space) (Xω,ρ) of all

ω-words over the alphabet Xwhere the metric ρ is defined as follows.

ρ(ξ,η) := inf{|X|−|w| :w@ ξ∧w@ η} (10)

Since X is finite, this space is compact, and C(F) := {ξ : pref(ξ) ⊆ pref(F)}
is the closure of the set F (smallest closed subset containing F) in (Xω,ρ).
Thus

pref(C(F)) = pref(F) and C(F) = pref(F)δ . (11)

The topology can be defined by the metric ρ as in Eq. (10) or, alter-
natively, by letting OC := {W ·Xω :W ⊆ X∗} be the set of open subsets of
Xω. Then a subset F⊆ Xω is closed if and only if pref(ξ)⊆ pref(F) implies
ξ ∈ F.

As (Xω,ρ) is a metric space the CANTOR-BENDIXSON derived set Fd of
a subset F⊆ Xω can be described as

Fd =
{
ξ : pref(ξ)⊆ {w :w ·Xω∩F is infinite}

}
(12)

It holds C(F) = F∪Fd.
We conclude this part with a relation between the δ-limit and Gδ-sets

in CANTOR space.

Proposition 3 ([Dav64]) A subset F ⊆ Xω is a Gδ-set if and only if there is
a languageW ⊆ X∗ such that F=Wδ.

3.2 The prefix topology Tp on X∗

A well-known topology onX∗which resembles the product or CANTOR topol-
ogy is the prefix topology Tp on X∗, that is, the right topology on X∗ de-
rived from the prefix order v on X∗.

The open subsets in Tp are of the form W ·X∗ where W ⊆ X∗. As it
is easily verified the closure operator defining this topology is the initial
word operator pref assigning to each language W ⊆ X∗ its set of prefixes
pref(W) := {w : ∃v(v ∈W∧wv v)}.

It has the following property.
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Lemma 4 The prefix topology Tp is the coarsest topology having all sub-
sets pref(F)⊆ X∗,F⊆ Xω, closed.

Proof. This follows from the identity pref(W) = pref(W ·aω)∩pref(W ·
bω) where a,b ∈ X, a 6= b. o

In this topology, however, not every finite setW⊆X∗ is closed. It holds
only the so-called T0-condition: For every pairw,v∈X∗,w 6= v, there is an
open setW ⊆ X∗ which contains exactly one of the wordsw or v.

3.3 Topologies on X∗∪Xω

In this section we consider several topologies on the space of finite and
infinite words X∗∪Xω and its restrictions to the sets Xω and X∗, respec-
tively.

The first one resembles the Scott topology on X∗ ∪Xω (cf. [Smy92]).
Its open sets are of the form W · (X∗ ∪Xω). The restriction to Xω is the
CANTOR topology and the restriction to X∗ is the prefix topology Tp.

The topology considered by Boasson and Nivat [BN80] is closely re-
lated to the product or CANTOR topology of Xω, on the one hand its re-
striction to Xω is the CANTOR topology and, on the other hand the whole
spaceX∗∪Xω is a homeomorphic to a closed subset of the CANTOR space
(X∪ {⊥})ω where⊥ /∈ X is a new letter. However, all finite word languages
are open in this topology, in particular, each finite word is an isolated
point in this topology. Thus its restriction to X∗ is the (trivial) discrete
topology.

Redziejowski [Red86] observed that the limit considered in [BN80]
is different from the one used in the theory of ω-automata. Therefore
he proposed another topology on the space of finite and infinite words.
Here the closure of a subset W ∪ F ⊆ X∗∪Xω,W ⊆ X∗,F ⊆ Xω, can be de-
scribed via the δ-limit as (cf. [Red86, Property 4.4 (1)])

cl(W∪F) =W∪Wδ∪F .

Then subsets of the form F⊆ Xω andW∪Xω,W ⊆ X∗, are closed, and,
consequently, the restrictions to Xω and X∗, respectively, are the (trivial)
discrete topologies.
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4 Linking Topologies onX∗ to CANTOR Topology

The open sets in Tp resemble those in CANTOR space. One easily ob-
serves, that due to the identity (W ·X∗)δ =W ·Xω, Eq. (11) and Lemma 4
there is a close correspondence between open (closed) subsets in the
prefix topology on X∗ and CANTOR topology, respectively.

4.1 Compatibility of topologies

The connection between the prefix topology onX∗ and the CANTOR topol-
ogy onXω via the δ-limit is shown in [Sta97, Section 2.4]. This connection
fulfils the following property.

Definition 1 (Compatibility) A topology T = (X∗,O) is compatible with
the CANTOR topology of Xω provided

1. Wδ is closed (open) ifW⊆X∗ is closed (open, respectively) in (X∗,O).

2. If F ⊆ Xω is closed (open) in CANTOR space then F =Wδ for some
W ⊆ X∗ closed (open, respectively) in (X∗,O), and

Therefore we consider topologies on X∗ which are linked via our δ-limit
to the CANTOR topology on Xω. Then every language W ⊆ X∗ has as its
image the Gδ-setWδ ⊆ Xω. (In fact, because of the different cardinalities
of the spaces X∗ and Xω, we cannot expect to obtain every subset of Xω

as an image.)
Definition 1 requires that the image of every open (closed) language

W ⊆X∗ is also open (closed), and every open (closed)ω-language F⊆Xω
is the image of an appropriately chosen open (closed) language.

Lemma 5 Let a topology Tα be compatible with the CANTOR topology.
Then the closure α : 2X

∗ → 2X
∗

satisfies the following inclusions

pref(Wδ) ⊆ pref(α(W)δ) ⊆ pref(α(W)) and (13)

C(Wδ) ⊆ α(W)δ, for allW ⊆ X∗ . (14)

Proof. The first inclusion follows from the facts that W ⊆ α(W) and
pref(Vδ) ⊆ pref(V), and the second one from the fact that α(W)δ is a
closed set containingWδ. o

Moreover, Conditions 1. and 2. of Definition 1 are inherited in the
following way.
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Lemma 6 LetT=(X∗,O) be a topology compatible with the CANTOR topol-
ogy.

1. If the topology T1 = (X∗,O1) is coarser than T then the δ-image Wδ

of every open (closed) subset W ⊆ X∗ is open (closed, respectively) in
Xω.

2. If the topology T2 = (X∗,O2) is finer than T then every open (closed)
subset F⊆ Xω has a open (closed, respectively) δ-preimageW ⊆ X∗.

Lemma 6.2 has the following special instance.

Corollary 7 If a topology T on X∗ is finer than the prefix topology Tp then
every closed (open) subset F⊆Xω (W ·Xω) has the closed (open) δ-preimage
pref(F) (W ·X∗).

4.2 (σ,δ)-subsets of X∗

As Proposition 3 shows, the δ-limit can map languages only to ω-lan-
guages in the BOREL-class Gδ, it is interesting to observe that we can
also characterise those Gδ-sets which are simultaneously Fσ-sets via their
δ-preimages (see [Sta87]). These subsets of X∗ show also some special
properties w.r.t. topologies on X∗.

We start with some easily verified properties of the δ-limit defined in
Eq. (1).

(W∪V)δ = Wδ∪Vδ (15)

pref(pref(Wδ)δ) = pref(Wδ) ⊆ pref(W) (16)

The second identity follows from applying Eq. (11) to F=Wδ.

Definition 2 A subset W ⊆ X∗ is referred to as a (σ,δ)-subset of X∗ pro-
vided for every ξ ∈ Xω one of the sets pref(ξ)∩W or pref(ξ)\W is finite.2

Then we have the announced connection to Fσ-sets in CANTOR space.

Lemma 8 ([Sta87, Lemma 12]) A subset F ⊆ Xω is simultaneously an Fσ-
and a Gδ-set in (Xω,ρ) if and only if there is a (σ,δ)-subset W ⊆ X∗ such
that F=Wδ.

2There are languages W ⊆ X∗ such that both sets pref(ξ)∩W and pref(ξ) \W are
infinite.
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Examples of (σ,δ)-subsets ofX∗ are languages of the form pref(W),W ·X∗,
andW ⊆ X∗ such thatWδ = ∅.

Definition 2 is equivalent to the following one

W is a (σ,δ)-subset of X∗ if and only if (X\W)δ = Xω \Wδ . (17)

We have also the following equivalent property.

Lemma 9 A subset W ⊆ X∗ is a (σ,δ)-subset of X∗ if and only if for every
V ⊆ X∗ one of the the identities (V ∩W)δ = Vδ∩Wδ or (V \W)δ = Vδ \Wδ

is fulfilled.

Proof. The inclusion (V ∩W)δ ⊆ Vδ∩Wδ is obvious.
If W is not a (σ,δ)-subset of X∗ then there is a ξ ∈Wδ such that V :=

pref(ξ) \W is infinite. Then Vδ = {ξ} and, consequently, Vδ ∩Wδ = {ξ}

whereas (V ∩W)δ = ∅.
LetW be a (σ,δ)-subset ofX∗, and let ξ∈Wδ∩Vδ. Then ξ∈Wδ implies

that pref(ξ) \W is finite. Since pref(ξ)∩V is infinite, pref(ξ)∩V ∩W is
infinite, too.

The other assertion follows if we replaceW by X∗ \W. o

From Eq. (11) we have Wδ ⊆ C(Wδ) = pref(Wδ)δ. Thus Lemma 9 and
Eq. (15) imply the following.(

W∩pref(Wδ)
)δ

=Wδ and
(
W \pref(Wδ)

)δ
= ∅ . (18)

Corollary 10 ([Sta87, Proposition 14]) The class of all (σ,δ)-subsets of X∗

is a Boolean algebra.

We finish this section with a sufficient condition for the compatibility
of topologies T = (X∗,O) which is immediate from Eq. (17).

Lemma 11 Let T = (X∗,O) be a topology on X∗ such that every open set
W ∈O is a (σ,δ)-subset ofX∗. ThenT is compatible with the CANTOR topol-
ogy ifWδ is open for everyW ∈O and every open subsetE⊆Xω has an open
δ-preimage V ∈ O.

5 L-topologies

In this section we investigate a method for defining a class of topologies
on X∗ which are finer that the prefix topology Tp.
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5.1 The operator Anf

This class can be defined via the Anf-operator introduced by Prodinger
and Urbanek [PU79, Pro80]. They defined a generalisation of the initial
word operator pref as follows. Let L⊆ 2X

∗
be a family of languages,W ⊆

X∗, and define

AnfL(W) := {w :w ∈ X∗∧W/w ∈ L} (19)

The operator AnfL has the following properties (see [PU79, Pro80, RS08]):

AnfL(W)⊆ AnfM(W) if and only if L⊆M (20)

Property 12 1. AnfL(W/w) = AnfL(W)/w

2. AnfL is monotone if and only ifW ∈ L andW ⊆ V imply V ∈ L.

3. AnfL is ∪-stable if and only if AnfL is monotone and W ∪V ∈ L im-
pliesW ∈ L or V ∈ L.

Property 13 The following conditions are equivalent.

1. ∅ /∈ L

2. AnfL(∅) = ∅, and

3. ∀W(AnfL(W)⊆ pref(W))

Proof. 1 Þ 3. Let ∅ /∈ L and v /∈ pref(W). Then W/v = ∅ /∈ L whence
v /∈ AnfL(W).

3 Þ 2. is obvious
2 Þ 1. We have e ∈ AnfL(W) if and only ifW ∈ L. Thus e /∈ AnfL(∅) = ∅

implies ∅ /∈ L. o

Next we give some relations to the prefix-operator pref = AnfLp .

Proposition 14 Let L⊆ 2X
∗
. The following conditions are equivalent.

1. ∀W
(
W ⊆ X∗→ (AnfL(W) 6= ∅→W ∈ L)

)
2. ∀W∀v

(
W ⊆ X∗∧v ∈ X∗→ (W/v ∈ L→W ∈ L)

)
3. ∀W

(
W ⊆ X∗→ pref(AnfL(W)) = AnfL(W)

)
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Proof. The equivalence of Items 1 and 2 is Theorem 4.18 of [PU79].
3 Þ 1. IfW/v∈L then v∈AnfL(W). Now 3. implies e∈pref(AnfL(W))⊆

AnfL(W) which in turn showsW ∈ L.
2 Þ 3. Let w ∈ pref(AnfL(W)). Then there is a v ∈ X∗ such that w · v ∈

AnfL(W), that is, W/w · v = (W/w)/v ∈ L. Now 2. yields W/w ∈ L which
in turn showsw ∈ AnfL(W). o

We continue with the requirements under which the operator AnfL
satisfies the conditions of Eqs. (9) of a derived set operator.

Lemma 15 It holds ∀W (AnfL(AnfL(W))⊆ AnfL(W)) if and only if
∀W(AnfL(W) ∈ L→W ∈ L).

Proof. Let AnfL(W) ∈ L. Consequently, e ∈ AnfL(AnfL(W)). Then the
inclusion AnfL(AnfL(W))⊆ AnfL(W) implies e ∈ AnfL(W). ThusW ∈ L.

Conversely, let AnfL(W) ∈ L implyW ∈ L, and let v ∈ AnfL(AnfL(W)).
Then AnfL(W)/v∈L. Since AnfL(W)/v=AnfL(W/v), we have AnfL(W/v)∈
L and, consequently,W/v ∈ L, that is v ∈ AnfL(W). o

5.2 L-topologies

Under several conditions an AnfL-operator has the properties of a de-
rived set operator on X∗. The following theorem is an analogue to Theo-
rem 2.3 of [Pro80] for derived set operators.

Theorem 16 A mapping AnfL is a derived set operator on X∗ if and only if
the following conditions are satisfied.

1. ∅ /∈ L,

2. W ∈ L and W ⊆ V imply V ∈ L, and W ∪V ∈ L implies W ∈ L or
V ∈ L, and

3. AnfL(W) ∈ L impliesW ∈ L .

Proof. 1. First ∅ ∈ L if and only if AnfL(∅) = ∅. Thus Eq. (7) holds.
2. Theorem 4.13 of [PU79] shows that this is equivalent to AnfL(V ∪

W) = AnfL(V)∪AnfL(W) which in turn is Eq. (8).
3. Lemma 15 shows that Item 3 is equivalent to Eq. (9). o

Simple examples of L-topologies are the prefix topology Tp and the dis-
crete topology D = (X∗,2X

∗
). Here one can choose Lp = {W :W 6= ∅}, and
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LD = ∅, respectively. This yields AnfLp = pref and AnfLD
(W) = ∅, for all

W ⊆ X∗.
Utilising Property 13.3 and Proposition 14.3 we obtain the following

sufficient condition for AnfL to be a derived set operator.

Corollary 17 A mapping AnfL is a derived set operator on X∗ if the follow-
ing conditions are satisfied.

1. ∅ /∈ L,

2. W ∈ L and W ⊆ V imply V ∈ L, and W ∪V ∈ L implies W ∈ L or
V ∈ L, and

3. IfW/w ∈ L thenW ∈ L.

Since everyL-topology is finer than the prefix topologyTp, Lemma 6.2
and Corollary 7 yield the following.

Proposition 18 An L-topology is compatible with the CANTOR topology
on Xω if and only if for everyW ⊆ X∗, the set αL(W)δ is closed and the set
(X∗ \αL(W))δ is open in CANTOR space.

Finally, we mention thatL-spaces can be characterised also via their open
sets.

Theorem 19 ([Pro80, Theorem 2.16]) A topological space T = (X∗,O) is
an L-space if and only ifW ∈ O impliesw ·W,W/w ∈ O forw ∈ X∗.

6 Strongly Compatible Topologies on X∗

In this section we consider topologies on X∗ compatible with the CAN-
TOR topology. Several of them can be defined using the apparatus intro-
duced in the preceding section.

6.1 Center and Supercenter topologies

Special AnfL-operators were considered in connection with language-
theoretic questions. These were referred to as centers [BN81] or super-
centers [SN86], respectively, of languages.
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Definition 3 (Center)
center(W) := AnfLc(W) , where Lc = {V : V ⊆ X∗ is infinite }

Definition 4 (Supercenter)
sctr(W) := AnfLsc(W) , where Lsc = {V : V ⊆ X∗∧Vδ 6= ∅}

Definition 4 is equivalent to sctr(W) = pref(Wδ) = pref(C(Wδ)).
Since the alphabet X is finite, König’s infinity lemma shows that

W ⊆ X∗ is infinite if and only if pref(W) is infinite which is equivalent
to pref(W)δ 6= ∅. Thus we have

center(W) = sctr(pref(W)) = pref(pref(W)δ) . (21)

Both families Lc and Lsc satisfy the conditions of Corollary 17. So center
and sctr are derived set operators and define topologies Tc and Tsc, re-
spectively, on X∗. As L-topologies the center or supercenter topologies
are finer than the prefix topology Tp. Moreover, Eq. (20) shows that Tsc is
finer than Tc.

In Tsc every W with Wδ = ∅ is closed. The language a∗ ·b is infinite,
(a∗ ·b)δ = ∅ and center(a∗ ·b) = a∗ 6⊆ a∗ ·b. Therefore it is not closed in Tc.
This shows that Tsc does not coincide with Tc.

The prefix topology has the property that not every finite subset of X∗

is closed. The center topology proves to be the coarsest topology refining
Tp and having all finite sets closed. To this end we show the following.

Theorem 20 Ifα : 2X
∗→ 2X

∗
is a topological closure such that all pref(F),F⊆

Xω, and all finite sets are closed then

α(W∪ center(W)) =W∪ center(W) .

Proof. If all pref(F),F ⊆ Xω, are α-closed, then according to Lemma 4
α(W)⊆ pref(W), for allW ⊆ X∗, and allW ·X∗ are α-open.

Eq. (21) shows that every center(W) is α-closed. Now the inclusion
α(W∪ center(W))⊇W∪ center(W) follows from α(V)⊇ V .

It suffices to show α(W)\ center(W)⊆W.
Let u ∈ α(W) \ center(W) ⊆ pref(W) \ center(W). Then W ∩u ·X∗ is fi-

nite. Consequently, α(W ∩ u ·X∗) = W ∩ u ·X∗. Since u ·X∗ is α-open,
Property 2 shows α(W)∩u ·X∗ = α(W∩u ·X∗)∩u ·X∗ =W∩u ·X∗ whence
u ∈W. o
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Corollary 21 The topology Tc is the coarsest topology having all subsets
pref(F)⊆ X∗ and all finite subsets closed.

Proof. This follows from Eq. (6) and Theorem 20. o

The next lemma shows a connection between the supercenter topol-
ogy and (σ,δ)-subsets of X∗.

Lemma 22 If a topology T on X∗ is coarser than the supercenter topology
Tsc then every open or closed set is a (σ,δ)-subsets of X∗.

Proof. If T is coarser than Tsc, then every V ⊆ X∗ closed in T is also
closed in Tsc, that is, is of the form V =W∪pref(Wδ) = (W \pref(Wδ))∪
pref(Wδ). Along with all prefix-closed languages, in Tsc all languages W
with sctr(W) = pref(Wδ) = ∅ are closed. Now the assertion follows with
Eq. (18) and Corollary 10. o

The proof of Lemma 22 shows also that every set open in the supercenter
topology has the formW ·X∗ \V where Vδ = ∅.

6.2 Strong compatibility - characterisation

In every topology finer than the prefix topology Tp all languages pref(F)
where F ⊆ Xω are closed. Moreover, pref(F)δ = C(F). In this section we
are investigating which topologies have the languages pref(F) as smallest
closed sets yielding Vδ = C(F). It turns out that supercenters of languages
play a crucial rôle in this respect.

Definition 5 (Strong compatibility) A topologyT=(X∗,O) is strongly com-
patible with the CANTOR topology providedT is compatible with the CAN-
TOR topology and

∀F
(
F⊆ Xω→ pref(F) = min⊆{αT(W) : F⊆Wδ}

)
(22)

In particular, every pref(F),F⊆ Xω, is closed in T.

Lemma 23 A topologyT onX∗ is strongly compatible with the CANTOR topol-
ogy if and only if the corresponding closure operatorαT satisfies pref(W)⊇
αT(W)⊇ pref(Wδ) for allW ⊆ X∗.

Proof. Let T be strongly compatible with the CANTOR topology. Then ev-
ery pref(F) is closed in T, and Lemma 4 shows that T refines the prefix
topology Tp.
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Moreover, Eq. (22), for F=Wδ, yields pref(Wδ)⊆ αT(W).
If pref(W) ⊇ αT(W) ⊇ pref(Wδ) then every pref(F),F ⊆ Xω, is closed,

and pref(F) ∈ {αT(W) : F ⊆Wδ}, since F ⊆ pref(F)δ. Let αT(V) ∈ {αT(W) :

F⊆Wδ}. Then Vδ ⊇ F. Consequently, αT(V)⊇ pref(Vδ)⊇ pref(F).
The compatibility with the CANTOR topology follows from Corollary 7

and Lemma 22. o

In view of Eq. (6) the inequality of Lemma 23 is equivalent to the con-
dition that the topology T is finer than the prefix topology Tp and coarser
than the supercenter topology Tsc. Then Lemma 22 implies that open
and closed sets are (σ,δ)-subsets of X∗.

6.3 Strong compatibility and L-topologies

The so far considered strongly compatible topologiesTp,Tc andTsc areL-
topologies. It arises the question whether all strongly compatible topolo-
gies are L-topologies. In view of Lemma 23 this is equivalent to whether
all topologies between the prefix and the supercenter topology are L-
topologies.

A further observation is that as a consequence of Lemmata 22 and 23,
the closed and the open sets in every topology strongly compatible with
the CANTOR topology are always (σ,δ)-subsets of X∗. We also address the
question whether all compatible L-topologies having as open sets (σ,δ)-
subsets of X∗ are strongly compatible.

In this section we will show that for both instances we find counter-
examples. To this end we use the well-known possibility to define topolo-
gies via their bases (e.g. [RS63, Ch. I, § 2, 2.1]):

Property 24 Let X be a set and B ⊆ X be closed under intersection. Then
for O := {

⋃
M∈AM : A ⊆ B} the pair T = (X,O) is a topological space with

open sets O.

Remark. The set B in Property 24 has the properties of a base of the
topological space T, as it generates all its open sets. In topology, however,
it is not required that a base be closed under intersection [Kur66, RS63].

The first example is a topology on X∗ which is strongly compatible
with the CANTOR topology but not an L-topology.
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Example 1 Let X = {a,b} and define B := {w ·X∗ \V : w ∈ X∗∧V ⊆ a∗ ·b}
and the family of open sets O as in Property 24. Then T = (X∗,O) is a
topology finer than the prefix topology Tp and, since Vδ = ∅ for V ⊆ a∗ ·b,
coarser than Tsc.

Consider W := b · (X∗ \a∗ ·b). Then b ∈W and bb /∈W. The smallest
open set containing the word b is b ·X∗ \a ·a∗ ·bwhich contains the word
bb. Thus W is not open, and according to Theorem 19 the topology T is
no L-topology. 4

Since the topology T = (X∗,O) of Example 1 is coarser than Tsc, its
open sets are (σ,δ)-subsets of X∗. Next we provide an example of a com-
patible L-topology having all open sets as (σ,δ)-subsets of X∗ but not
strongly compatible.

Lemma 25 There are compatible L-topologies on X∗ such that all its open
sets are (σ,δ)-subsets of X∗ which are not strongly compatible with the
CANTOR topology.

Proof. We construct an L-topology T = (X∗,O) such that every open set
W ∈ O and hence also every closed set is a (σ,δ)-set. To this end we use
Theorem 19 and Property 24.

We let X = {a,b} and B =
{
w ·X∗ \U ·b ·a∗ :w ∈ X∗∧U⊆ X∗ finite

}
be

a base of T.
Then every open set has the form3

W =
⋃
i∈M

(wi ·X∗ \Ui ·b ·a∗), M⊆ N . (23)

First we show that O is closed under the operations w · and /w. Closure
under premultiplication with a word is trivial. It remains to show that
(w ·X∗ \U ·b ·a∗)/v= (w ·X∗/v)\(U ·b ·a∗)/v is a union of sets of the given
shape. If v /∈ pref(w ·X∗), (w ·X∗ \U ·b ·a∗)/v = ∅. Otherwise, w ·X∗/v =
w ′ ·X∗ for a suffixw ′ ofw. Moreover, observe that

(U ·b ·a∗)/v=
{

(U/v) ·b ·a∗ , if v /∈U ·b ·a∗ and
(U/v) ·b ·a∗∪a∗ , otherwise.

In the former case (w ·X∗ \U · b · a∗)/v = w ′ ·X∗ \ (U/v) · b · a∗ is of the
required form. In the latter case we getw ′ ·X∗ \a∗ =

⋃
v ′∈w ′·a∗·b v

′ ·X∗ and,

3Observe that the union in Eq. (23) is always an at most countable one.
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consequently, (w ·X∗\U ·b ·a∗)/v=
⋃
v ′∈w ′·a∗·b(v

′ ·X∗\(U/v) ·b ·a∗) is also
in O.

Next, we show that every open setW ⊆ x∗ is a (σ,δ)-subset of X∗, that
is, for ξ ∈Wδ we have to show that pref(ξ)\W is finite. If ξ ∈Wδ in view
of Eq. (23) there is an i ∈ N such that ξ ∈ wi ·Xω. Since Ui is finite, ξ /∈
Ui ·b ·aω implies that pref(ξ)\W ⊆ pref(ξ)∩Ui ·b ·a∗ is also finite.

If ξ ∈Ui ·b ·aω then ξ= u ·b ·aω for some u ∈Ui. Since pref(ξ)∩W is
infinite, there is a j ∈ N such that pref(ξ)∩ (wj ·X∗ \Uj ·b ·a∗), contains a
word |w|> |u|+2. Thus u ·b ·avw@ ξ.

For w ∈ u ·b ·a∗ and w /∈ Uj ·b ·a∗ it holds u /∈ Uj. Thus u ·b ·a∗∩Uj ·
b ·a∗ = ∅whence pref(ξ)∩Uj ·b ·a∗ ⊇ pref(ξ)\W is finite.

For the compatibility of T = (X∗,O) with the CANTOR topology, in view
of Lemma 11, it suffices to show thatWδ is open ifW is given by Eq. (23).
First observe that Wδ ⊆

⋃
i∈Nwi ·Xω and wi ·Xω ⊇ (Wδ ∩wi ·Xω) ⊇ wi ·

Xω \Ui · b · aω. Thus wi ·Xω \Wδ is finite, hence wi ·Xω ∩Wδ is open.
ConsequentlyWδ =

⋃
i∈N(wi ·Xω∩Wδ) is also open.

Finally, the set b ·a∗ is closed in T and (b ·a∗)δ = {b ·aω} but pref({b ·
aω}) 6⊆ b ·a∗. Thus T= (X∗,O) is not strongly compatible with the CANTOR

topology. o

7 Miscellaneous

In this section we first present examples of topologies which are com-
patible with the CANTOR topology but not strongly compatible. Then we
consider L-topologies related to the CANTOR-BENDIXSON derived set in
CANTOR space.

7.1 Some examples

The first one is coarser than the prefix topology, and the second one is
a refinement of the first one incomparable with the prefix topology and
the center topology. For both topologies the open (and closed) sets are
(σ,δ)-sets.

Example 2 Define the topology T2p by O2p := {W ·X∗ :W ⊆ (X2)∗}. Then
every open set is also a (σ,δ)-subset of X∗.
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The set a ·X∗= {a}∪a2 ·X∗ is not open. Thus T2p is strictly coarser than
Tp. SinceW ·Xω = (W ·X∗∩(X2)∗) ·Xω = ((W ·X∗∩(X2)∗) ·X∗)δ, Lemma 6.1
shows that T2p is compatible with the CANTOR topology. 4

Lemma 26 Let B2sc := {Wi ·X∗ \Vi :Wi ⊆ (X2)∗∧Vδi = ∅} and define O2sc

as in Property 24. Then B2sc is closed under finite intersection and O2sc

consists solely of (σ,δ)-subsets of X∗.

Proof. Closure under intersection follows from the identities (Wi ·X∗ \
Vi)∩(Wj ·X∗ \Vj) = (Wi ·(X2)∗∩Wi ·(X2)∗) ·X∗ \(Vi∪Vj) and (Vi∪Vj)δ = ∅.

Finally, since O2sc ⊆ Osc, all open sets are (σ,δ)-subsets of X∗. o

Example 3 Lemma 26 shows that O2sc is a family of open sets consisting
solely of (σ,δ)-sets. Assume a ·X∗ = {a}∪a2 ·X∗ to be open. Then a ·X∗ =⋃
i∈I(Wi ·X∗ \Vi) implies that e ∈Wi ⊆ (X2)∗ for some i ∈ I, that is a ·X∗ ⊇

X∗ \Vi. This contradicts a ·Xω = (a ·X∗)δ ⊆ (X∗ \Vi)
δ = Xω.

Thus the topology T2sc is not finer than the prefix topology Tp. Since
everyUwithUδ= ∅ is closed in T2sc, in particular, every finite set is closed
in T2sc, the topology is not coarser than Tc. 4

7.2 CANTOR-BENDIXSON-topology

In this section we first present two examples ofL-topologies which which
are strictly finer than the supercenter topology. Thus they are not strongly
compatible. The first example is related to the CANTOR-BENDIXSON de-
rived set in CANTOR space and compatible with the CANTOR topology.
The second one refers to the CANTOR-BENDIXSON Theorem as it is con-
cerned with condensation points in Wδ, that is, points ξ ∈ Xω for which
everyw ·Xω∩Wδ,w@ ξ, is uncountable.

Theorem 27 Let L∞ := {W :Wδ is infinite }. Then AnfL∞ is a derived set
operator on X∗ and the topology defined by AnfL∞ is compatible with the
CANTOR topology.

Moreover, AnfL∞(W)δ = ∅wheneverWδ is finite.

Proof. First, in view of Proposition 14 and Theorem 16 AnfL∞ is a derived
set operator which satisfies AnfL∞(W)=pref(AnfL∞(W)). ThenαL∞(W) :=

W∪AnfL∞(W) is a closure in X∗.
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Next, observe that w ∈ AnfL∞(W) is equivalent to Wδ/w is infinite
which in turn is equivalent toWδ∩w ·Xω is infinite. Thus, ξ∈ AnfL∞(W)δ

if and only if Wδ∩w ·Xω is infinite for all w ∈ pref(ξ), that is, in view of
Eq. (12) AnfL∞(W)δ is the CANTOR-BENDIXSON derived set of Wδ. This
shows that αL∞(W)δ =Wδ∪AnfL∞(W)δ = C(Wδ) is closed.

It remains to prove that (Xω \αL∞(W))δ is open. To this end we use
the fact that AnfL∞(W)δ is the CANTOR-BENDIXSON derived set of Wδ

and AnfL∞(W) = pref(AnfL∞(W)) is a (σ,δ)-subset of X∗. The latter im-
plies AnfL∞(W)δ = Xω \ (X∗ \AnfL∞(W))δ. Then AnfL∞(W)δ ⊆ Xω \ (X∗ \

αL∞(W))δ ⊆ αL∞(W)δ = C(Wδ), and according to Property 1 the set Xω \

(X∗ \αL∞(W))δ is closed.
The second assertion is obvious. o

Example 4 To see that the topology generated by αL∞ is not strongly
compatible with the CANTOR topology we remark that the closed set {ab}∗

is no (σ,δ)-subset of X∗.
Indeed, ({ab}∗)δ is finite implies αL∞({ab}∗) = {ab}∗. 4

Finally, we give a non-trivial example4 of an L-topology not compatible
with the CANTOR topology.

Example 5 Let LCB := {W : Wδ is uncountable }. As in the case of L∞
Proposition 14 and Theorem 16 prove that AnfLCB

is a derived set opera-
tor. Here (AnfLCB

(W))δ =
{
ξ : ∀w(w@ ξ→w ·Xω∩Wδ is uncountable)

}
is

the set of condensation points ofWδ in CANTOR-space (cf. [Kur66, Ch. 2,
§ 23, III]).

As AnfLCB
(a∗ba∗) = ∅ the language a∗ba∗ is closed, but (a∗ba∗)δ =

a∗baω is not closed in CANTOR space. 4

References

[BN80] Luc Boasson and Maurice Nivat. Adherences of languages. J.
Comput. Syst. Sci., 20(3):285–309, 1980.

[BN81] Luc Boasson and Maurice Nivat. Centers of languages. In Peter
Deussen, editor, Theoretical Computer Science, volume 104 of

4The discrete topology D= (X∗,2X∗) is a trivial example.



22 L. Staiger

Lecture Notes in Computer Science, pages 245–251, Heidelberg,
1981. Springer.

[CJS09] Cristian S. Calude, Helmut Jürgensen, and Ludwig Staiger.
Topology on words. Theoret. Comput. Sci., 410(24-25):2323–
2335, 2009.

[Dav64] Morton Davis. Infinite games of perfect information. In Ad-
vances in game theory, Edited by M. Dresher, L. S. Shapley, and
A. W. Tucker. Annals of Mathematics Studies, No. 52, pages 85–
101. Princeton Univ. Press, Princeton, N.J., 1964.

[Kur66] Kazimierz Kuratowski. Topology I. Academic Press, New York,
1966.

[PP04] Dominique Perrin and Jean-Éric Pin. Infinite Words, volume
141 of Pure and Applied Mathematics. Elsevier, Amsterdam,
2004.

[Pro80] Helmut Prodinger. Topologies on free monoids induced by clo-
sure operators of a special type. RAIRO Inform. Théor. Appl.,
14(2):225–237, 1980.

[Pro83] Helmut Prodinger. Topologies on free monoids induced by fam-
ilies of languages. RAIRO Inform. Théor. Appl., 17(3):285–290,
1983.

[PU79] Helmut Prodinger and Friedrich J. Urbanek. Language opera-
tors related to Init. Theor. Comput. Sci., 8:161–175, 1979.

[Red86] Roman R. Redziejowski. Infinite-word languages and continu-
ous mappings. Theor. Comput. Sci., 43:59–79, 1986.

[RS63] Helena Rasiowa and Roman Sikorski. The Mathematics of Meta-
mathematics. PWN, Warszawa, 1963.

[RS08] Tobias Richter and Ludwig Staiger. Topological lan-
guage operators. In Proceedings 18. Theorietag Auto-
maten und Formale Sprachen, pages 109 – 114. Insti-
tut für Informatik, Universität Gießen, Gießen, 2008.
https://d-nb.info/1064837174/34#page=111.



Topologies for Finite Words: Compatibility with the CANTOR Topology 23

[Smy92] Michael B. Smyth. Topology. In Samson Abramsky, Dov M. Gab-
bay, and Thomas S. E. Maibaum, editors, Handbook of Logic in
Computer Science, volume 1, pages 641–761. Oxford Univ. Press,
New York, 1992.

[SN86] Ludwig Staiger and Werner Nehrlich. The centers of context-
sensitive languages. In Jozef Gruska, Branislav Rovan, and Jiři
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