
CDMTCS
Research
Report
Series

Logical Schema Design
that Quantifies
Update Inefficiency
and Join Efficiency

Sebastian Link
The University of Auckland

Ziheng Wei
The University of Auckland

CDMTCS-553
March 2021

Centre for Discrete Mathematics and
Theoretical Computer Science

Logical Schema Design that Quantifies
Update Inefficiency and Join Efficiency

Sebastian Link
The University of Auckland, New Zealand

s.link@auckland.ac.nz

Ziheng Wei
The University of Auckland, New Zealand

z.wei@auckland.ac.nz

March 31, 2021

Abstract

The goal of classical normalization is to maintain data consistency under up-
dates, with a minimum level of effort. Given functional dependencies (FDs) alone,
this goal is only achievable in the special case an FD-preserving Boyce-Codd Nor-
mal Form (BCNF) decomposition exists. As we show, in all other cases the level
of effort can be neither controlled nor quantified. In response, we establish the
`-Bounded Cardinality Normal Form, parameterized by a positive integer `. For
every `, the normal form condition requires from every instance that every value
combination over the left-hand side of every non-trivial FD does not occur in more
than ` tuples. BCNF is captured when ` = 1. We demonstrate that schemata
in this normal form characterize the instances that are i) free from level ` data
redundancy and update inefficiency, and ii) permit level ` join efficiency. We es-
tablish algorithms that compute schemata in `-Bounded Cardinality Normal Form
for the smallest level ` attainable across all FD-preserving decompositions. Addi-
tional algorithms i) attain even smaller levels of effort based on the loss of some
FDs, and ii) decompose schemata based on prioritized FDs that cause high levels
of effort. Our framework informs de-normalization already during logical design.
In particular, level ` quantifies both the incremental maintenance and join support
of materialized views. Experiments with synthetic and real-world data illustrate
which properties the schemata have that result from our algorithms, and how these
properties predict the performance of update and query operations on instances
over the schemata, without and with materialized views.
Keywords: Cardinality constraint; Data redundancy; Functional dependency;
Join; Normal form; Normalization; Update

1

Table 1: Schema Hap in 3NF with instance r over Hap

Hap
Event Venue Company Time
Party v1 Kilo t1

...
...

...
...

Party v`1 Kilo t`1
e1 Dome Mega t′1
...

...
...

...
e`2 Dome Mega t′`2

Table 2: Design D1 = {R2, R3, R4} of Hap with instance {ri = πRi
(r)}4

i=2

R2

Venue Company
v1 Kilo
...

...
v`1 Kilo

Dome Mega

R3

Event Venue Time
Party v1 t1

...
...

...
Party v`1 t`1
e1 Dome t′1
...

...
...

e`2 Dome t′`2

R4

Event Company Time
Party Kilo t1

...
...

...
Party Kilo t`1
e1 Mega t′1
...

...
...

e`2 Mega t′`2

1 Introduction

Schema design aims at finding a layout of the data that facilitates the efficient processing
of common queries and updates. The problem is challenging as data redundancy typically
causes update inefficiency but promotes join efficiency. So far, the challenge has been
addressed by performing normalization during logical schema design to achieve update
efficiency, followed by de-normalization during physical design to boost query efficiency.
In particular, de-normalization is done only after the database is operational and patterns
of data access on normalized databases emerge.

The goal of classical normalization is to maintain data consistency under updates,
with a minimum level of effort. Normalization aims at eliminating any occurrence of re-
dundant data values in any future database instance. This is attempted by structurally
transforming functional dependencies (FDs), that cause data redundancy, into keys, that
prohibit data redundancy. The well-known Boyce-Codd Normal Form (BCNF) requires
the left-hand side of every non-trivial FD to be a key. Hence, data redundancy can
never be caused by FDs transformed into keys. However, while every schema can be
decomposed into BCNF, FDs may be lost during this process and still cause data re-
dundancy [5]. A more liberal condition is given by the Third Normal Form (3NF) where
the left-hand side of every non-trivial FD must be a key or every attribute on the right-
hand side must be prime (that is, to be part of some minimal key). 3NF synthesis can
transform every schema into 3NF without losing any FD, but some FDs still cause data
redundancy as they were not transformed into keys. Hence, classical normalization can

2

only measure its success when no effort is required at all to maintain data consistency.
This is only possible when an FD-preserving BCNF decomposition exists. In all other
cases, the level of effort can be neither controlled nor even measured.

As running example consider the event management schema Hap with each record
representing an E(vent) at a V(enue) and T(ime) with some C(ompany) in charge. Hap
uses FDs to model business rules. The FD E → C says that only one company is in
charge of every event, V → C says there cannot be different companies in charge at the
same venue, V T → E says that no different events happen at the same venue at the same
time, ET → V says that no event takes place at different venues at the same time, and
CT → V expresses that no company is in charge of different venues at the same time.
The minimal keys are ET , V T and CT . Hence, every attribute of Hap is prime. While
Hap is in 3NF it has no FD-preserving BCNF decomposition. Given FD-preservation,
classical normalization cannot achieve more.

However, we cannot measure the level of effort to maintain data consistency for Hap.
In instance r of Table 1 each of the `1 > 1 occurrences of C-value Kilo is redundant due
to the FD E → C, and each of the `2 > 1 occurrences of C-value Mega is redundant
due to V → C. Recall that a value occurrence is redundant whenever every update
of the occurrence to a different value results in a violation of the FD. We refer to the
number of different tuples in which a given data value can occur redundantly as the level
of data redundancy. Clearly, the level of data redundancy on Hap is unbounded. This
is true for every schema that is in 3NF but not in BCNF. As we will show, every FD
lost during BCNF decomposition still causes an unbounded level of data redundancy.
Hence, the number of data values that need updating is a priori unbounded. Changing
one occurrence of Kilo means that a total of `1 occurrences of Kilo need updating to
ensure data consistency. We refer to the total number of occurrences that require an
update to achieve consistency as the level of update inefficiency. So, for FD-preserving
BCNF decompositions the level of effort for data consistency is at optimum 1, while it
is unbounded in all other cases.

In practice, however, `1 and `2 represent upper bounds of cardinality constraints
(CCs). They constitute a different class of business rules than FDs. For a positive
integer `, the CC card(X) ≤ ` says that every instance can have up to ` different records
with matching values on all the attributes in X. For ` = 1, X is a key. For ` = ∞,
no bound has been specified. For example, the CC card(E) ≤ `1 with `1 = 1, 000 (1k)
expresses that every event can have up to 1k different combinations of venues and times.
Similarly, the CC card(V) ≤ `2 with `2 = 1, 000, 000 (1m) expresses that every venue can
have up to 1m different combinations of events and times. CCs inform schema design
beyond classical normalization. Given CCs, the 3NF schema Hap admits level `2 data
redundancy and update inefficiency. Without CCs no integer bounds are specified, and
every non-trivial or lost FD causes an unbounded level of data redundancy and update
inefficiency, unless its left-hand side is a key. Hence, we propose to include CCs in schema
design.

With CCs we can quantify the level of effort required to maintain data consis-
tency under updates. For example, we may ask which FD-preserving decompositions
of Hap minimize level `. Applying one of our new algorithms results in schema D1 =
{(R2,Σ2), (R3,Σ3), (R4,Σ4)} in Table 2 with R2 = CV and Σ2 = {V → C}, R3 = ETV

3

Figure 1: Level ` of Effort Required For Data Consistency, and its Impact on Update
and Join Efficiency

and Σ3 = {TV → E,ET → V }, and R4 = CET and Σ4 = {CT → E,E → C}. The
schemata (R2,Σ2) and (R3,Σ3) are both in BCNF and cannot exhibit any redundant
data value. However, R4 is in 3NF and still exhibits an `1 = 1k level of data redun-
dancy and update inefficiency caused by E → C. Indeed, `1 = 1k is the optimum
level achievable by any FD-preserving decomposition of Hap. The given FD CT → V
is preserved by D1 as it is implied by CT → E and ET → V . The decomposition
D2 = {(R1,Σ1), (R3,Σ3), (R5,Σ5)} with R1 = EC and Σ1 = {E → C}, R5 = CTV and
Σ5 = {CT → V, V → C} is in 3NF and achieves level `2 = 1m data redundancy.

CCs were already introduced in Chen’s seminal ER paper [9] and used by UML,
XML, and OWL. Surprisingly, they have not been used for normalization. We also
observe that CCs quantify the level of join efficiency for a schema. We define the latter
as the maximum number of values an FD can join with some redundant value in any
instance of the schema. Instance r4 over R4 in Table 2 satisfies E → C. Hence, r4 is equal
to the join πEC(r4) ./ πET (r4). Indeed, the redundant data C-value Kilo can be joined
with the `1 T -values t1, . . . , t`1 via the E-value Party. Without CCs, the join strength
is unbounded, so the classical theory does not provide insight into the join efficiency of
a schema. CCs inform the selection of materialized views, even before the database is
operational. Here the level ` of a materialized view quantifies both its effort required for
incremental maintenance and its support for joins. Defining Hap as view over D1, its
level of maintenance and join efficiency is `2 = 1m.
Contributions. Our two main contributions are:

• We establish the first framework for logical schema normalization that quantifies
the effort required to achieve data consistency during updates.

• Our framework also quantifies the join efficiency of schemata, which means it in-
forms de-normalization already during logical design.

Figure 1 illustrates our main ideas, in particular that ` quantifies both the update effort
and join capability of schemata. Figure 2 illustrates our technical results, which are:

4

Figure 2: Achievements of `-BCNF

(1) We relax the classical BCNF condition by permitting every value combination over
the left-hand side of every non-trivial FD to occur in up to ` tuples of every instance.
Hence, we obtain the infinite hierarchy of `-Bounded Cardinality Normal Forms (`-
BCNF), with classical BCNF captured for ` = 1. Therefore, the minimum ` for which
`-BCNF is attainable measures the effort required to achieve data consistency.
(2) We show for every ` that schemata in `-BCNF characterize instances that are i) free
from level ` data redundancy and update inefficiency, and ii) permit a level ` of join
efficiency.
(3) We establish an algorithm that computes schemata in `-BCNF for the minimum level
` attainable across FD-preserving decompositions. Another algorithm prioritizes FDs for
lossless decompositions based on the level of data redundancy they cause. This algorithm
produces few output schemata, but FDs may be lost. Combining both algorithms to a
hybrid strategy, we further reduce the minimum level attainable from FD-preserving
decompositions by losing FDs.
(4) Level ` informs the selection of materialized views as it captures both the incremental
effort to maintain the views under updates, and the support for join queries by the views.
(5) Experiments with synthetic and real-world data illustrate which properties the
schemata have that result from our algorithms, and how these properties predict the
physical performance of update and query operations on instances over the schemata,
without and with materialized views.
Organization. We recall preliminaries in Section 2. In Section 3 we introduce our
family of `-BCNF and its computational properties. In Section 5 we establish which
properties schemata in `-BCNF exhibit in terms of updates and joins. We discuss three
design algorithms in Section 6. Experimental results are presented in Section 7. Related
work is discussed in Section 9. We conclude in Section 10. The data set are available for
download1.

1https://bit.ly/3c0fE9k

5

Table 3: Axiomatizations of CCs and FDs

card(R) ≤ 1 card(X) ≤ ∞
card(X) ≤ `

card(X) ≤ `+ 1
card(X) ≤ `

card(XY) ≤ `
(set, S) (unbounded, U) (loosen, L) (adding, A)

XY → Y
X → Y
X → XY

X → Y Y → Z
X → Z

(reflexivity, R) (extension, E) (transitivity, T)

card(X) ≤ 1
X → Y

X → Y card(Y) ≤ `
card(X) ≤ `

(key, K) (pullback, P)

2 Preliminaries

Classical normalization for FDs is part of most textbooks for relational databases. For a
detailed background on classical normalization we refer to [4, 3, 38].

2.1 Design Foundations

Just like BCNF and 3NF need to efficiently decide the implication problem for FDs,
Bounded Cardinality Normal Forms depends on the ability to efficiently decide the im-
plication problem for the combination of CCs and FDs. We adopt standard notions such
as the implication (inference) of a constraint ϕ by a set Σ of constraints (using a set R of
inference rules), denoted by Σ |= ϕ (Σ `R ϕ), the semantic closure Σ∗ (syntactic closure
Σ+

R) for a set Σ of constraints as the set of constraints implied (inferred) by Σ (using R),
an axiomatization as a set of rules R that is sound and complete (Σ∗ = Σ+

R for all Σ),
and that two constraint sets Σ and Θ are covers of one another iff Σ∗ = Θ∗ [38].

An FD over relation schema R is an expression X → Y with attribute sets X, Y ⊆ R,
and a relation r over R satisfies X → Y whenever every pair of tuples t, t′ ∈ r that
has matching values on all the attributes in X also has matching values on all the
attributes in Y , that is, ∀t, t′ ∈ r(t(X) = t′(X) ⇒ t(Y) = t′(Y)). For example, the
relation over R = {Emp,Dep,Mgr} satisfies the FDs Emp → {Dep,Mgr}, Dep → Mgr
and Mgr → Dep, but violates the FD {Dep,Mgr} → Emp. Armstrong’s axioms are
sound and complete for the implication of FDs alone [2]. They are shown in Table 3
as the set A = {R, E , T }. In fact, Table 3 shows two additional axiomatizations. The
system H = {S,U ,L,A} forms an axiomatization for CCs alone [21], and the system
L = H ∪ A ∪ {K,P} forms an axiomatization for CCs and FDs together [21]. A CC
over relation schema R is an expression card(X) ≤ l where X ⊆ R and ` is a positive
integer, and a relation r over R satisfies card(X) ≤ l whenever there are no more than
` different tuples in r that all have matching values on all the attributes in X, that
is, ∀t1, . . . , t`+1 ∈ r(t1(X) = . . . = t`+1(X) ⇒ ∃i, j ∈ {1, . . . , ` + 1}(ti = tj)). In the
introduction, the relation over R = {Emp,Dep,Mgr} satisfies the CCs card(Emp) ≤ 1,
card(Dep,Mgr) ≤ `+1 but violates the CC card(Dep,Mgr) ≤ ` as there are `+1 different

6

employees at the same department with the same manager.
Typically, axiomatizations lead us to efficient algorithms that decide implication. An

FD X → Y is implied by an FD set Σ iff the attribute set closure X+
Σ = {A ∈ R |

Σ |= X → A} contains Y , that is, Y ⊆ X+
Σ . This provides a linear-time algorithm for

FD implication. Though more expressive than CCs and FDs in isolation, the combined
implication problem can be reduced to that for FDs alone by translating any set Σ of
CCs and FDs into the FD set Σ[FD] = {X → Y | X → Y ∈ Σ} ∪ {X → R | card(X) ≤
1 ∈ Σ} [21].

Theorem 1 ([21]) For a given set Σ of CCs and FDs over a relation schema R, the
following hold: (1) Σ |= X → Y if and only if X → Y ∈ Σ[FD], and (2) For every
positive integer `: Σ |= card(X) ≤ ` if and only if Y ⊆ X+

Σ[FD] for some card(Y) ≤ `′ ∈
Σ ∪ {card(R) ≤ 1} where `′ ≤ `.

It follows that the implication problem for the combined class of CCs and FDs can thus
be decided in time O(|Σ| × ||Σ||), so in worst-case quadratic time, where |Σ| denotes the
number of elements in Σ and ||Σ|| denotes the total number of attribute occurrences in Σ.
Continuing our example, if Σ consists of the FD Emp→ {Mgr} and the CC card(Mgr) ≤
3, then the CC card(Emp) ≤ 3 is implied by Σ since {Emp}+

Σ[FD] = {Emp,Mgr} and

Mgr ∈ {Emp}+
Σ[FD] for the CC card(Mgr) ≤ 3 and `′ = 3 ≤ 3 = `.

2.2 Boyce-Codd Normal Form

For a given FD set Σ over a given relation schema R, (R,Σ) is in Boyce-Codd Normal
Form (BCNF) iff for every FD X → Y ∈ Σ+

A where Y 6⊆ X, X → R ∈ Σ+
A [38]. In fact,

(R,Σ) is in BCNF iff for every FD X → Y ∈ Σ where Y 6⊆ X, X → R ∈ Σ+
A [38]. Hence,

deciding whether (R,Σ) is in BCNF can be done in time quadratic in the input. However,
for a given sub-schema S ⊆ R it is coNP -complete to decide whether (S,Σ[S]) is in BCNF,
where Σ[S] = {X → Y ∈ Σ+

A | X, Y ⊆ S} [3, 38]. A decomposition of relation schema
R is a set D of relation schemata such that

⋃
S∈D S = R. A decomposition D of R with

FD set Σ is lossless if for every relation r over R that satisfies Σ, r = ./S∈D r[S]. Here,
r[S] = {t(S) | t ∈ r}. A BCNF decomposition of R with FD set Σ is a decomposition
D of R where for every S ∈ D, (S,Σ[S]) is in BCNF. A decomposition D of (R,Σ) is
FD-preserving iff ∀σ ∈ Σ

(⋃
S∈D Σ[S] |= σ

)
. Vincent introduced redundant data values

and showed that BCNF is equivalent to schemata that do not permit any redundant data
values in any instances that satisfy the given FD set [49]. The notion of the level of data
redundancy is a new.

2.3 Third Normal Form

For an arbitrary schema (R,Σ) we cannot guarantee that there is any FD-preserving,
lossless BCNF decomposition [38]. In response, there is the Third Normal Form (3NF)
proposal [6]. For a given FD set Σ over a given relation schema R, (R,Σ) is in 3NF iff
for every FD X → Y ∈ Σ+

A where Y 6⊆ X holds, X → R ∈ Σ+
A or every attribute in

Y − X is a prime attribute. Evidently from this definition, every schema in BCNF is

7

also in 3NF. An attribute A ∈ R is prime iff it is contained in some minimal key, that is,
A ∈ K for some K → R ∈ Σ+

A such that for all proper subsets K ′ ⊂ K, K ′ → R /∈ Σ+
A .

A 3NF synthesis of R with FD set Σ is a decomposition D of R where for every S ∈ D,
(S,Σ[S]) is in 3NF. The main idea behind 3NF was to minimize data redundancy while
preserving all FDs [28]. As illustrated by our simple example, 3NF cannot guarantee any
upper bound on the level of data redundancy. Validating if a given schema (R,Σ) is in
3NF is coNP -complete due to the requirement of having to compute all minimal keys [3].

2.4 Normalization

A relation is the lossless join over its projections on XY and X(R − Y) whenever the
relation satisfies the FD X → Y [38]. Splitting (R,Σ) into (XY,Σ[XY]) and (X(R −
Y),Σ[X(R − Y)]) eliminates all redundant data values caused by X → Y as X is a
key on (XY,Σ[XY]). BCNF decomposition starts with (R,Σ) and keeps splitting any
schema (S,Σ[S]) that is not yet in BCNF. A cover Σ for a given FD set is non-redundant
iff for all σ ∈ Σ, Σ − {σ} 6|= σ. A cover Σ for a given FD set is L-reduced iff for every
X → Y ∈ Σ there is no proper subset Z ⊂ X such that Σ |= Z → Y . We call a
non-redundant, L-reduced cover with unique left-hand sides a canonical cover [37]. If
(R,Σ) is not in 3NF, 3NF synthesis computes a canonical cover, and selects the output
schemata as (XY,Σ[XY]) where XY is maximal under set containment among the FDs
X → Y of the canonical cover, and adds a minimal key (S,Σ[S]) to remain lossless [6].

2.5 Summary

There is no previous schema design approach that addresses update and join efficiency
together. With FDs alone, BCNF decomposition cannot measure the level of data re-
dundancy caused by lost FDs, and 3NF cannot measure the level of data redundancy
caused by non-key FDs.

3 The Family of `-BCNF

We establish the family of `-Bounded Cardinality Normal Forms and some computational
properties. Its levels of update inefficiency and join efficiency are studied in Section 5.

A schema is in BCNF whenever the left-hand side (LHS) X of every non-trivial FD
X → Y is a key. Since X is a key whenever card(X) ≤ 1 holds, CCs provide a convenient
mechanism to relax the BCNF condition as follows.

Definition 1 Let Σ denote a set of CCs and FDs over relation schema R, and let ` ∈
N∞≥1. (R,Σ) is in `-Bounded Cardinality Normal Form (`-BCNF) iff for all X → Y ∈ Σ+

L

where Y 6⊆ X we have that card(X) ≤ ` ∈ Σ+
L .

Example 1 For our running example Hap consider the FD set Θ of E → C, V → C,
V T → E, ET → V , and CT → V . While (Hap,Θ) is in 3NF, it is in ∞-BCNF as
the smallest ` for which card(E) ≤ ` ∈ Θ+

L is ` = ∞. Intuitively, this matches our
understanding that the levels of data redundancy, update inefficiency, and join efficiency

8

are unbounded. Consider now (Hap,Σ) where Σ consists of the FDs in Θ and the CCs
card(E) ≤ 1k and card(V) ≤ 1m. Since V T , ET , and CT are (minimal) keys, we obtain
the CCs card(V T) ≤ 1, card(ET) ≤ 1, and card(CT) ≤ 1. Hence, every non-trivial
X → Y ∈ Σ satisfies card(X) ≤ 1m ∈ Σ+

L . The latter condition is equivalent to being in
`-BCNF (Theorem 4), so (Hap,Σ) is in 1m-BCNF. (Hap,Σ) is not in any `-BCNF for
` < 1m since we have the FD V → C ∈ Σ but the smallest `2 with card(V) ≤ `2 ∈ Σ+

L is
`2 = 1m.

Our definition of `-BCNF has the desirable property to be invariant under covers, as
stated in the next result.

Theorem 2 Let Σ and Θ denote two CC/FD sets over R that are covers of one another.
For all ` ∈ N∞≥1, (R,Σ) is in `-BCNF iff (R,Θ) is in `-BCNF.

Proof (R,Σ) is in `-BCNF iff for all X → Y ∈ Σ+
L where Y 6⊆ X we have that

card(X) ≤ ` ∈ Σ+
L . Since Θ and Σ are covers of one another, it follows that Σ+

L = Θ+
L .

Consequently, for all X → Y ∈ Θ+
L where Y 6⊆ X we have that card(X) ≤ ` ∈ Θ+

L iff
(R,Σ) is in `-BCNF.

Theorem 2 means we need not worry how we represent application semantics as
integrity constraints. For example, let Σ′ denote the FDs in Θ together with the CCs
card(EC) ≤ 1k and card(V C) ≤ 1m. Then Σ and Σ′ are covers of one another, as
easily seen from the adding rule A, the extension rule E and the pullback rule P . Hence,
(Hap,Σ′) is in 1m-BCNF but not in `-BCNF for any ` < 1m.

Our definition gives rise to a family of syntactic normal forms that exhibit a strict
hierarchy. At the bottom is 1-BCNF, which is equivalent to the classical Boyce-Codd
normal form.

Theorem 3 For every schema (R,Σ) and every positive integer ` we have: If (R,Σ) is
in `-BCNF, then (R,Σ) is also in `+1-BCNF. However, for every positive integer ` there
are schemata (R,Σ) in `+ 1-BCNF that are not in `-BCNF.

Proof For the first part assume that (R,Σ) is in `-BCNF. That is, for everyX → Y ∈ Σ+
L

where Y 6⊆ X we have card(X) ≤ ` ∈ Σ+
L . Consequently, for every X → Y ∈ Σ+

L where
Y 6⊆ X we have card(X) ≤ `+ 1 ∈ Σ+

L .
For the second part let R = {A,B,C} and Σ = {A→ B, card(A) ≤ `+1}. Obviously,

(R,Σ) is in ` + 1-BCNF, but not in `-BCNF. Indeed, the relation r = {t0, . . . , t`} over
R where ti(A) = ti(B) = 0 and ti(C) = i for all i = 0, . . . , `, satisfies Σ, but r does not
satisfy card(A) ≤ `.

For example, (Hap,Σ) is in `-BCNF if and only if ` ≥ 1m. Theorem 3 establishes
the first infinite hierarchy of normal forms for relational schema design. It is orthogonal
to known normal forms such as 3NF, BCNF, 4NF, etc.

Combining CCs and FDs raises expressiveness without adding (much) computational
complexity. As a generalization of BCNF, known hardness results apply to `-BCNF.

9

3.1 Efficient Decidability Locally

Firstly, we show that deciding whether for a given schema (R,Σ) and for a given positive
integer `, (R,Σ) is in `-BCNF can be done in cubic time in the input. This is a conse-
quence of showing that it suffices to check the FDs in Σ to validate whether (R,Σ) is in
`-BCNF.

Theorem 4 For all (R,Σ) and ` ∈ N∞≥1, (R,Σ) is in `-BCNF iff for all X → Y ∈ Σ
where Y 6⊆ X, we have that card(X) ≤ ` ∈ Σ+

L . We can decide in O(|Σ|2 × ||Σ||) time if
for a given schema (R,Σ) and ` ∈ N∞≥1, (R,Σ) is in `-BCNF.

Proof If (R,Σ) is in `-BCNF, then certainly for all X → Y ∈ Σ where Y 6⊆ X, we
have that card(X) ≤ ` ∈ Σ+

L , because Σ ⊆ Σ+
L . However, vice versa we need to show the

following: if for all X → Y ∈ Σ where Y 6⊆ X, we have that card(X) ≤ ` ∈ Σ+
L , then for

all X → Y ∈ Σ+
L where Y 6⊆ X, we have that card(X) ≤ ` ∈ Σ+

L .
For that purpose, consider the strict chain:

Σ = Σ0 ⊂ Σ1 ⊂ · · · ⊂ Σk = Σ+
L

where the single constraint in Σj − Σj−1 results from an application of a single rule in
S to the number of required constraints in Σj−1. We show that there is already some
FD X ′ → Y ′ ∈ Σj−1 where Y ′ 6⊆ X ′ and card(X ′) ≤ ` /∈ Σ+

L , whenever there is some FD
X → Y ∈ Σj where Y 6⊆ X and card(X) ≤ ` /∈ Σ+

L . Let j > 0 and X → Y ∈ Σj − Σj−1

such that Y 6⊆ X and card(X) ≤ ` /∈ Σ+
L . Since Y 6⊆ X, X → Y was not inferred by

application of the reflexivity axiom R.
Assume that X → XY was inferred from X → Y ∈ Σj−1 using the extension rule E .

Since XY 6⊆ X, it certainly follows that Y 6⊆ X. Hence, there is some non-trivial FD
X → Y in Σj−1 such that card(X) ≤ ` /∈ Σ+

L .
Assume that X → Y was inferred from X → Z,Z → Y ∈ Σj−1 using the transitivity

rule T . In case that Z 6⊆ X, we have the non-trivial FD X → Z in Σj−1 such that
card(X) ≤ ` /∈ Σ+

L . Otherwise, Z ⊆ X holds. Consequently, Y 6⊆ Z as otherwise Y ⊆ X
would contradict our assumption. If card(Z) ≤ ` ∈ Σ+

L held, then from Z ⊆ X and
X → Z ∈ Σ+

L (by application of the reflexivity axiom) it would follows that card(X) ≤
` ∈ Σ+

L , too. This, however, is a contradiction to our assumption, and consequently
card(Z) ≤ ` /∈ Σ+

L . That is, there is some non-trivial FD Z → Y in Σj−1 such that
card(Z) ≤ ` /∈ Σ+

L .
Finally, assume that X → Y was inferred from card(X) ≤ 1 ∈ Σj−1 using the

demotion rule D. This, however, is not possible as otherwise card(X) ≤ ` ∈ Σ+
L by a

finite number of applications of the weakening rule W .
As there are no other possibilities of an inference, the proof is complete.
Hence, to decide whether (R,Σ) is in `-BCNF for a given `, we just need to decide

for every FD X → Y Σ whether it is non-trivial and whether card(X) ≤ ` ∈ Σ+
L holds.

The latter condition can be verified in time O(|Σ|× ||Σ||) by Theorem 1. This completes
the proof.

10

4 Computing the strongest normal form locally

Our new setting motivates the problems of computing i) the minimum level of data
redundancy and update inefficiency that a given schema prevents, and iii) the minimum
level of join efficiency that a given schema permits. Due to Theorem 6, these problems
amount to computing the smallest positive integer ` for which the given schema is in
`-BCNF. This is done as follows: If there are no FDs in the input, the output level will
be 1. Otherwise, we start with the worst possible level ∞. For each non-trivial input
FD with LHS X we determine the smallest positive integer `X by which X is bound
according to the input, using Theorem 1(2). We terminate with ∞ as soon as we find
that `X =∞ for some X. Otherwise, we return the maximum `X among those computed.
In this procedure we check for each FD X → Y and for each CC in the input whether it
implies some smaller bound `X .

Algorithm 1 Strongest `-Bounded Cardinality Normal Form

Require: (R,Σ) with CC/FD set Σ over schema R
Ensure: Minimum integer ` such that (R,Σ) in `-BCNF

1: if ΣFD = ∅ then
2: return 1
3: `←∞
4: Σcard ← Σcard ∪ {card(R) ≤ 1}
5: for all X → Y ∈ ΣFD such that Y 6⊆ X do
6: if `X has not been defined before then
7: `X ←∞
8: for all card(Y) ≤ `′ ∈ Σcard with `′ < `X do
9: if Y ⊆ X+

Σ[FD] then

10: `X ← `′

11: if `X ←∞ then
12: return ∞
13: return maxX{`X}

Algorithm 1 computes the strongest `-BCNF in the sense that ` is the smallest positive
integer with that property. For each FD X → Y in the input we check for each cardinality
constraint in the input whether it implies some smaller bound `X . Algorithm 1 therefore
operates in O(|ΣFD| × |Σcard| × ||Σ||) time. We thus obtain the following result.

Corollary 1 Given a set Σ of CCs and FDs over relation schema R, we can compute
in O(|ΣFD| × |Σcard| × ||Σ||) time the smallest positive integer ` such that (R,Σ) is in
`-BCNF (and equivalently in `-RFNF, `-UINF, or in `-JENF).

For (Hap,Σ), `E = 1k, `V = 1m, `V T = 1, `ET = 1, and `CT = 1. Since the maximum
is ` = `2 = 1m, `2 is the optimum ` for which (Hap,Σ) is in `-BCNF.

11

4.1 Likely intractability globally

While we can efficiently compute the strongest normal form locally, this is unlikely to be
efficient globally. Given (R,Σ, `) and a subschema S ⊆ R, it is unlikely we can find a
PTIME algorithm deciding if (S,Σ[S]) is in `-BCNF.

Theorem 5 Let Σ denote a set of CCs and FDs over R, S ⊂ R, and ` a positive integer.
Given (R, S,Σ, `), it is coNP-complete to decide whether (S,Σ[S]) is in `-BCNF.

Proof The coNP -hardness follows from the special case ` = 1, since the problem of
deciding whether a subschema is in Boyce-Codd Normal Form is already coNP -complete
[3]. Membership follows from the fact that we can guess Σ[S] and verify in polynomial-
time that (S,Σ[S]) is not in `-BCNF.

While it is already coNP -complete to decide if a given subschema is in BCNF (1-
BCNF), Theorem 5 encourages us to view schema normalization from the new perspective
of computing the smallest ` for which a schema is in `-BCNF.

5 Useful Properties of `-BCNF

We show that schemata in `-BCNF characterize instances with useful properties for
updates and joins. In particular, ` quantifies the highest number of values that need
updating to achieve data consistency, but also how many data values can be joined with
a given redundant value.

5.1 `-redundancy

Intuitively, Vincent [49] defined a single occurrence of a data value as redundant whenever
every change to this occurrence results in a relation that violates some given constraint.
Our idea is to fix some positive integer `, and define a data value as `-redundant whenever
there are ` distinct tuples in which the value occurs and every update to at least one of
these ` occurrences results in a relation that violates a given constraint. That is, the value
of these ` occurrences is already uniquely determined by the other values and knowing
the constraints are satisfied by the relation.

For example, the value Kilo in relation r4 in Table 1 is 999- but not 1k-redundant
(`1 = 1k): Concealing between 1 and 999 occurrences of the value Kilo in the C-column
still allows us to determine each of the concealed occurrences as E → C must hold and
there is at least one tuple left that has a matching E-value and C-value Kilo, as illustrated
next.

E C T
Party ? t1

...
...

...
Party ? t999

Party Kilo t1k

E → C
? = Kilo

E C T
Party Kilo t1

...
...

...
Party Kilo t999

Party Kilo t1k

12

However, concealing all 1k occurrences means the tuples could have any value on C
(as long as they all match on C).

We define a family of semantic normal forms by stipulating the absence of any relations
that feature any `-redundancy. A schema (R,Σ) is in `-Redundancy Free Normal Form
(`-RFNF) iff there is no relation r over R that satisfies Σ, there is no σ ∈ Σ, and there
is no attribute A ∈ R for which there is a data value v ∈ r(A) that is `-redundant for σ.

(Hap,Σ) from Example 1 is in 1m-RFNF (`2 = 1m), but not in `-RFNF for any
` < `2. Concealing any fewer than the `2 occurrences of Mega will allow us to deduce
their value.

More formally, the data value v ∈ r(A) is `-redundant for σ ∈ Σ iff there are ` distinct
tuples t1, . . . , t` ∈ r such that t1(A) = . . . = t`(A) = v, and for every `-transaction
{t′1, . . . , t′`} of t1, . . . , t` for A, the relation r′ := (r−{t1, . . . , tl})∪ {t′1, . . . , t′`} violates σ.

An `-transaction causes an actual update to at least one of ` values. More formally,
an `-transaction of t1, . . . , t` for A is a set {t′1, . . . , t′`} of tuples over R such that for all
i = 1, . . . , ` and for all A′ ∈ R − {A}, t′i(A′) = ti(A

′), and there is some j ∈ {1, . . . , `}
such that t′j(A) 6= tj(A).

5.2 `-update inefficiency

An `-redundant data value is synonymous with that of an `-update inefficiency in the
following sense. No matter how any ` occurrences of the `-redundant data value are
updated, consistency cannot be achieved since there will still remain some occurrence of
the value that could not have been updated. For the table on the right above, no matter
how we update 999 occurrences of Kilo, as long as we update at least one of them we
cannot satisfy E → C. However, updating all 1000 occurrences of Kilo consistently to a
new value will satisfy E → C. Based on the CC card(E) ≤ 1k, we require the update of
at most 1000 tuples to maintain consistency for E → C, in any legal relation. Hence, it
is justified to say that (R,Σ) is in `-Update Inefficiency Normal Form (UINF) iff (R,Σ)
is in `-RFNF.

If (R,Σ) is in `-RFNF (`-UINF), then ` is a level of data redundancy (update inef-
ficiency) that (R,Σ) prevents. Otherwise, (R,Σ) permits this level. If there is no ` for
which (R,Σ) is in `-RFNF (`-UINF), no a priori upper bound exists for the level that
(R,Σ) prevents. In this case, ` :=∞.

5.3 `-join efficiency

We define join efficiency as the maximum number of tuples that have matching values on
the LHS of a non-trivial FD. This captures the update and join efficiency due to FDs, a
core trade-off for logical schema design.

Formally, if r satisfies the non-trivial FD X → Y over relation schema R, then r is the
lossless join of its projections on XY and X(R−Y). That is, r = πXY (r) ./ πX(R−Y)(r).
Hence, the X-value for a fixed tuple t ∈ r joins the unique Y -value of t with any R− Y -
values of all tuples t′1, . . . , t

′
` ∈ r that have matching values with t on X. The number

` of those tuples denotes the join strength of t ∈ r for X → Y . The join strength of r
is the maximum join strength of any tuple in r. Finally, the join efficiency of (R,Σ) is

13

the maximum join strength of any relation over R that satisfies Σ. A schema (R,Σ) is
in `-Join Efficiency Normal Form (JENF) iff the join efficiency of (R,Σ) is at most `.

For example, the join efficiency of schema (ECT, {CT → E,E → C, card(E) ≤ 1k})
is 1k. The following relation r joins the redundant C-value Kilo with the 1k different
values t1, . . . , t1k. As r satisfies E → C, we have r = r[EC] ./ r[ET].

E C T
Party Kilo t1

...
...

...
Party Kilo t1k

=
E C

Party Kilo
./

E T
Party t1

...
...

Party t1k

If (R,Σ) is in `-JENF, then ` is a level of join efficiency that (R,Σ) permits. Other-
wise, ` is a level of join efficiency that (R,Σ) prevents. If there is no ` for which (R,Σ)
is in `-JENF, no a priori upper bound exists for the level of join efficiency that (R,Σ)
permits. In this case, ` :=∞.

5.4 Justification

It turns out for every ` ∈ N∞≥1 that `-BCNF coincides with `-RFNF (`-UINF) and with
`-JENF. Hence, schemata in `-BCNF capture instances that are i) free from any `-
redundant data value occurrences (`-update inefficiencies), and ii) permit level `-join
efficiency.

Theorem 6 For all (R,Σ) and all ` ∈ N∞≥1, the following are equivalent: (1) (R,Σ) is
in `-RFNF (`-UINF), (2) (R,Σ) is in `-JENF, and (3) (R,Σ) is in `-BCNF.

Proof (1)⇒ (2) We proceed by contraposition, and therefore assume that (R,Σ) is not
in `-JENF. We will show that (R,Σ) is not in `-RFNF. Since (R,Σ) is not in `-JENF,
the join efficiency of (R,Σ) is larger than `. That means there is some relation r over R,
some tuple t0 ∈ r, some non-trivial FD X → Y ∈ Σ+

L , and some pairwise different tuples
t0, t1, . . . , t` ∈ r such that t0(X) = t1(X) · · · t`(X) holds.

We show that there is some A ∈ R such that the data value occurrence t1(A) ∈ r(A)
is `-redundant with respect to X → A ∈ Σ+

L . Indeed, since X → Y is non-trivial we
have Y −X 6= ∅, and we let A denote an arbitrary attribute from Y −X. Now, for every
`-transaction {t′1, . . . , t′`} of {t1, . . . , t`} for A, the resulting relation (r − {t1, . . . , t`}) ∪
{t′1, . . . , t′`} will violate X → A. Indeed, for every `-transaction {t′1, . . . , t′`} of {t1, . . . , t`}
for A, there is some i ∈ {1, . . . , `} such that t′i(A) 6= ti(A). Hence, t0(X) = t′i(X) since
A /∈ X, and t0(A) = ti(A) 6= t′i(A). This shows, that (R,Σ) is not in `-RFNF.

(2) ⇒ (3) We proceed by contraposition, and therefore assume that (R,Σ) is not in
`-BCNF. We will show that (R,Σ) is not in `-JENF. Since (R,Σ) is not in `-BCNF, there
is some X → Y ∈ Σ+

L where Y 6⊆ X such that card(X) ≤ ` /∈ Σ+
L . In particular, Σ does

not imply card(X) ≤ `.
We construct a relation r := {t0, . . . , t`} over R for i = 0 . . . , ` and all A ∈ R as

follows:

ti(A) :=

{
0 , if A ∈ X+

Σ[FD]

i , else
.

14

We show that r satisfies Σ. Let U → V ∈ Σ and let t, t′ ∈ r. If t(U) = t′(U), then
U ⊆ X+

Σ[FD]. Hence, X → U ∈ Σ+
L . Since U → V ∈ Σ, we obtain X → V ∈ Σ+

L

by application of the transitivity rule. Consequently, V ⊆ X+
Σ[FD]. By construction,

t(V) = t′(V), which means that r satisfies U → V . Let card(U) ≤ `′ ∈ Σ. Since
card(X) ≤ ` /∈ Σ+

L we know that i) `′ > ` or ii) U 6⊆ X+
Σ[FD] by Theorem 1. In case i), the

`+ 1-tuple relation r satisfies card(U) ≤ `′. In case ii), the relation satisfies card(U) ≤ 1
by construction, and therefore also card(U) ≤ `′. We have shown that r satisfies Σ.
However, r does not satisfy card(X) ≤ ` since there are ` + 1 different tuples in r that
have the same projection on X ⊆ X+

Σ[FD]. Indeed, there are `+ 1 different tuples because

there is some attribute in R −X+
Σ[FD], since otherwise card(X) ≤ 1 would be in Σ+

L and

therefore also card(X) ≤ `, which would contradict our assumption.
In summary, we have generated a relation r over R that satisfies Σ such that for

tuple t0 ∈ r and FD X → Y ∈ Σ+
L there are some tuples t1, . . . , t` ∈ r such that

t0(X) = t1(X) · · · = t`(X) holds and t0, . . . , t` are pairwise different tuples. Consequently,
the join strength of t0 is at least ` + 1, which means that the join efficiency of (R,Σ) is
larger than `. That means that (R,Σ) is not in `-JENF.

(3) ⇒ (1) We proceed by contraposition, and therefore assume that (R,Σ) is not in
`-RFNF. We will show that (R,Σ) is not in `-BCNF. Since (R,Σ) is not in `-RFNF,
there is some relation r over R that satisfies Σ, some σ ∈ Σ, and some attribute A ∈ R
for which there is some data value occurrence v ∈ r(A) that is `-redundant with respect
to σ. Hence, there are ` distinct tuples t1, . . . , t` ∈ r such that t1(A) = . . . = t`(A) =
v and every `-transaction t′1, . . . , t

′
` of t1, . . . , t` for A results in a relation r′ = (r −

{t1, . . . , t`}) ∪ {t′1, . . . , t′`} that violates σ. It follows that σ = X → Y ∈ Σ such that
A ∈ Y − X. Indeed, σ cannot be a cardinality constraint since we can easily pick
an `-transaction that would result in a relation that satisfies σ otherwise (by simply
introducing a fresh domain value for one of the tuples). Hence, there must be at least
`+1 different t0, t1, . . . , t` ∈ r such that ti(XA) = t0(XA) for i = 1, . . . , `. Indeed, if there
were at most ` different t0, t1, . . . , t`−1 ∈ r such that ti(XA) = t0(XA) for i = 1, . . . , `−1,
then the `-transaction {t′0, t′1, . . . , t′`−1} of {t0, t1, . . . , t`−1} for A where t′0(A) = t′1(A) =
. . . = t′`−1(A) would result in a relation (r−{t0, . . . , t`−1})∪{t′0, t′1, . . . , t′`−1} that satisfies
X → A. Consequently, r does not satisfy card(X) ≤ ` since there are ` + 1 different
tuples in r that have the same projection on X. It follows that there is some non-trivial
X → Y ∈ Σ+

L and card(X) ≤ ` /∈ Σ+
L . Hence, (R,Σ) is not in `-BCNF.

The proof of Theorem 6 - in particular - constructs for every schema that is not in
`-BCNF an instance that features some `-redundant data value occurrence (`-update
inefficiency), and a level `+ 1-join strength. Such a construction can be used in practice
to automatically generate relations which exemplify the properties of a schema.

(Hap,Σ) from Example 1 is in `2-BCNF but not in `2− 1-BCNF. The CC card(V) ≤
`2 − 1 is not implied by Σ but V → C is an FD in Σ. Based on this FD we construct a
relation with `2 tuples t′1, . . . , t

′
`2

that all have matching values on columns in V+
Σ[FD] =

V C, and unique values on all other columns. The relation may consist of the last `2

tuples in r of Table 1. It prevents level `2 data redundancy and update inefficiency, and
permits level `2 join efficiency.

15

6 Schema Design Algorithms

After defining the update inefficiency and join efficiency of schema decompositions we
propose three algorithms for logical schema design. We also illustrate how our concepts
inform view selection already during logical design.

6.1 Assessing Decompositions

We can assess the quality of a schema decomposition D for both updates and joins.
The join efficiency of D results from only those FDs preserved by D. These may have
been transformed into keys or not. We define the set of join-supportive attribute subsets
as JS

(R,Σ)
D = {S : Xk | ∃S ∈ D∃X → Y ∈ Σ[S],Σ |= X → S} ∪ {S : X | ∃S ∈

D∃X → Y ∈ Σ[S],Σ 6|= X → S}. Next, the join strength of a join-supportive attribute
set is given by the minimal upper bounds for any CC that applies to it. Hence, for
(R,Σ) and X ⊆ R, `X := min{` | Σ |= card(X) ≤ `} is the minimum level of data
redundancy for X. Now we define the level of join efficiency for D as the maximum
among all minimum levels of data redundancy for a join-supportive attribute set, that
is, `JD := sup{`X | S : X ∈ JS(R,Σ)

D } ∪ {1 | S : Xk ∈ JS(R,Σ)
D }. In essence, FDs X → Y

transformed into keys X contribute level 1, and other FDs contribute level `X . Defining
`JD as supremum means it is 1 when Σ contains no FDs. In addition, the total level of
join efficiency for D is the sum of the levels: `J,total

D =
∑

S:X∈JS(R,Σ)
D

`X +
∑

S:Xk∈JS
(R,Σ)
D

1.

The update inefficiency of D is determined by all FDs of the input. In particular, any
lost FD will need to be enforced by joining elements of D whenever updates occur. A
BCNF decomposition of our running example into R2 and R3 results in a loss of the FD
E → C. As the instances r2 and r3 in Table 2 illustrate, any update of a C-value (such as
Kilo) in r2 needs to be propagated consistently for all its occurrences in r2 with the same
event (eg. Party), so the FD E → C still holds (on the join of R2 and R3). The example
illustrates how lost FDs cause data redundancy on the join of schemata. This is the
reason why they need to be enforced. Hence, we define the set of update-critical attribute
subsets as UC

(R,Σ)
D = JS

(R,Σ)
D ∪ {X ⊆ R | ∃X → Y ∈ (Σ − (∪S∈DΣ[S])+)}. Now we

define the level of update inefficiency for D as the maximum among all minimum levels
of data redundancy for an update-critical attribute set, that is, `UD := sup{`X | S : X ∈
UC

(R,Σ)
D } ∪ {1 | S : Xk ∈ UC(R,Σ)

D }. Alternatively, we can also sum up to derive the total
level of update inefficiency for D as follows: `U,total

D =
∑

S:X∈UC(R,Σ)
D

`X +
∑

S:Xk∈UC
(R,Σ)
D

1.

With only FDs, BCNF decomposition or 3NF synthesis may lead to the optimal case
of an FD-preserving BCNF decomposition with a join efficiency and update inefficiency
of 1. Otherwise, some FD is lost or not a key. Hence, every non-optimal case results in
unbounded levels of update inefficiency and join efficiency. With CCs, our framework
can measure update inefficiency and join efficiency in all cases.

We will now propose different algorithms for schema design, and illustrate their
achievements later by experiments.

16

Algorithm 2 Opt(R,Σ)

Require: (R,Σ) with CC/FD set Σ over schema R
Ensure: Lossless, FD-preserving `D-BCNF decomposition D of (R,Σ) with minimum

`D (= `UD = `JD)
1: Choose an atomic cover Σa of Σ [25];
2: for all X → A ∈ Σa do
3: Σ[X → A]← ∅
4: for all Y → B ∈ Σa(Y B ⊆ XA ∧XA 6⊆ Y +

Σ[FD]) do

5: `Y ← min{` | Σ |= card(Y) ≤ `}
6: Σ[X → A]← Σ[X → A] ∪ {(Y → B, `Y)}
7: `X→A ← sup{`Y | Y → B ∈ Σ[X → A]}
8: D ← ∅;
9: for all X → A ∈ Σa in decreasing order of `X→A do

10: if Σa − {X → A} |= X → A then
11: Σa ← Σa − {X → A}
12: else
13: D ← D ∪ {(XA,Σa[XA])}
14: Remove all (S,Σa[S]) ∈ D if ∃(S ′,Σa[S

′]) ∈ D(S ⊆ S ′)
15: if there is no (R′,Σ′) ∈ D where R′ → R ∈ Σ+

L then
16: Choose a minimal key K for R with respect to Σ
17: D ← D ∪ {(K,Σa[K])}
18: Return(D, `D)

6.2 FD-preservation

Preserving all FDs guarantees that the levels of join efficiency and update inefficiency
coincide. Otherwise, the level of update inefficiency may exceed that of join efficiency
(more pain than gain). Consequently, we aim at minimizing the level of update ineffi-
ciency across all FD-preserving decompositions. Hence, we start with the unique atomic
cover [25] (all L-reduced FDs with singleton attribute on the right-hand side), then com-
pute for all FDs σ the maximum `σ that is associated with all the non-key FDs subsumed
by σ, and then synthesize the final decomposition with schemata generated by FDs σ in
decreasing order of their `σ, unless such a σ is implied by the remaining FDs. Due to
Theorem 5, Algorithm 2 is worst-case exponential.

(Hap,Σ) from Example 1 is already in 3NF. As no FD-preserving BCNF decomposi-
tion exists, classical normalization stops here. Using (Hap,Σ) as input for Algorithm 2,
we obtain Σa = Σ ∪ {CT → E} (line 1). Hence, `CT→V = 1m and `CT→E = 1k, and for
other X → A ∈ Σa, `X→A = 1 (line 7). However, CT → V is implied by Σa−{CT → V }
(line 10). This step is critical, since CT → V has effectively been replaced by CT → E,
which also means that the 1m-level data redundancy caused by CT → V has been re-
duced to the 1k -level data redundancy caused by CT → E. Furthermore, R1 ⊆ R4 (line
13), so Algorithm 2 returns the 1k-BCNF schema D1 = {(R2,Σ2), (R3,Σ3), (R4,Σ4)}
from the intro. Classical normalization would generate neither D1 nor D2. Even if it did,
D1, D2 and (Hap,Σ) would be assessed as equal in quality.

17

Algorithm 3 Greed(R,Σ)

Require: (R,Σ) with CC/FD set Σ over R, ` ∈ N≥1

Ensure: Lossless `UD-BCNF decomposition D of (R,Σ)
1: if (R,Σ) is in `-BCNF then
2: D ← {(R,Σ)}
3: else
4: `max ← max{`X | X → Y ∈ Σ, Y 6⊆ X,Σ 6|= X → R}
5: Pick X → Y ∈ Σ (Y 6⊆ X ∧ Σ 6|= X → R ∧ `X = `max)
6: R1 ← XY ; R2 ← X(R−XY)
7: D ← Greed(R1,Σ[R1]) ∪Greed(R2,Σ[R2])
8: Return(D, `UD, `JD)

We may apply Algorithm 2 to a partial input of Σ. For example, excluding FDs which
potentially cause high update inefficiency but are unlikely violated by actual updates,
may result in higher join efficiency. Similarly, one may include all FDs X → Y where `X
meets a given threshold.

6.3 Greedy Decomposition

Typically, FD-preservation requires many output tables, which is linked to low join effi-
ciency. We reposition classical BCNF decomposition as a greedy algorithm for reducing
`UD using fewer tables. Selecting non-key FDs that drive classical BCNF decomposition is
arbitrary. With CCs at hand, we select FDs whose level of data redundancy is maximal
(for example, ∞). Algorithm 3 shows this strategy. Targeting higher join efficiency, we
may use a higher level ` as input. If unspecified, the default target is ` = 1. The algo-
rithm proceeds with some best remaining FD (lines 4-5), as long as some local schema is
not in `-BCNF (line 1). The output returns schema D, the level `UD of update inefficiency
it prevents, and the level `JD of join efficiency it permits. The penalty for fewer output
tables is the lack of control over these levels due to lost FDs. FDs X → A where `X =∞
have high priority. With no CCs given, we have the classical BCNF decomposition case
where `UD =∞ = `JD, unless D is FD-preserving and `UD = 1 = `JD.

We apply Algorithm 3 to (Hap,Σ) from Example 1. As V → C ∈ Σ causes `max = 1m
(line 4), we obtain Dg = {(R2 = V C,Σ2 = {V → C}), (R3 = EV T,Σ3 = {TV →
E,ET → V })} (line 7). We lost E → C and CT → V , so `UDg

= 1k. We create assertion
checks to enforce the lost FDs E → C and CT → V on the join R2 ./ R3:

CREATE ASSERTION LostFDEtoC CHECK(NOT EXISTS (
SELECT R3.E FROM R2, R3 WHERE R2.V = R3.V
GROUP BY R3.E HAVING COUNT(R2.C)> 1));

CREATE ASSERTION LostFDCTtoV CHECK(NOT EXISTS (
SELECT R2.C,R3.T FROM R2, R3 WHERE R2.V = R3.V
GROUP BY R2.C,R3.T HAVING COUNT(R2.V)> 1));

Dg achieves the same level of update inefficiency as D1 with fewer schemata. This

18

Algorithm 4 Hybrid(R,Σ)

Require: (R,Σ) with CC/FD set Σ over schema R
Ensure: Lossless `UD-BCNF decomposition D of (R,Σ)

1: D ← Opt(R,Σ)
2: for all S ∈ D do
3: S = XA for some X → A ∈ Σa

4: for all Y → B ∈ Σa(Y B ⊆ XA ∧XA 6⊆ Y +
Σ[FD]) do

5: if `Y > `X then
6: S1 = Y B; S2 = Y (XA−B)
7: D ← (D − {(S,Σa[S])}) ∪ {(S1,Σa[S1]), (S2,Σa[S2])}
8: Remove any non-maximal schema from D
9: Return(D, `UD, `JD)

comes at the price of lost FDs that require assertion checks and smaller join efficiency
`JDg

= 1.
Our algorithms can be adapted when more information becomes available. For

example, while Dg was driven by the FD V → C due to card(V) ≤ 1m, there
may not be updates of C-values based on V -values but frequent updates of C-values
based on E-values. Hence, we could prioritize the FD E → C instead to obtain
D′g = {(R1 = EC,Σ1 = {E → C}), (R3,Σ3)} with lost FDs V → C and CT → V .

Just like FD-preserving BCNF decompositions cannot always be achieved, `-BCNF
cannot always be achieved for a given `. Adapting a classical example [3], consider
R = {c(ity), s(treet), z(ip), A} where Σ consist of sc → z and z → c, and the CCs
card(c, s) ≤ `+ 1 and card(z) ≤ `+ 1. If {c, s, z} is not in the output D, we lose sc→ z,
and `UD = `+ 1. If {c, s, z} is in D, we will have z → c on {c, s, z}, and hence `UD = `+ 1.
Thus, no output can be in `-BCNF.

6.4 Hybrid algorithm

We combine the two previous strategies to the hybrid Algorithm 4. Here, Algorithm 2 is
applied first (line 1) to obtain the smallest possible `D among all FD-preserving decom-
positions. Next we check if for any of the output schemata XA (lines 2-3) that are in
3NF but not in BCNF (line 4), any non-key FD Y → B on XA satisfies `Y > `X (line
5). In this case, we trade the preservation of X → A for the lower level `X of update
inefficiency by decomposing with the FD Y → B (lines 6/7).

On input (Hap,Σ) from Example 1, Algorithm 4 returns decomposition D1 as output
of Algorithm 2 (line 1). In particular, S = R4 = CET is in 3NF but not in BCNF for
Σa[S] = Σ4 = {CT → E,E → C}. That is, the FD E → C ∈ Σa is critical on the
schema S = R4 = CET (lines 3 and 4). Since `E = 1k > 1 = `CT (line 5), we decompose
along the critical FD E → C to replace R4 by R6 = EC and R7 = ET (lines 6 and 7).
However, R6 = R1 and R7 ⊆ R3. Hence, the output is Dh = {(R1,Σ1), (R2,Σ2), (R3,Σ3)}
with `UDh

= 1 = `JDh
and lost FD CT → V . The assertion check LostFDCTtoV enforces

the FD CT → V on the join R2 ./ R3.

19

Table 4: Schema Designs for Running Example

Method Schema Lost FDs `U `J

Opt D1: R2 = CV with V → C none 1k 1k
R3 = ETV with TV → E, ET → V Materialized view:
R4 = CET with CT → E, E → C VD1 = πV CT (R2 ./ R3)

N/A D2: R1 = EC with E → C none 1m 1m
R3 = ETV with TV → E, ET → V Materialized view:
R5 = CTV with CT → V , V → C VD2 = πECT (R1 ./ R3)

Greed Dg: R2 = CV with V → C E → C 1k 1
R3 = ETV with TV → E, ET → V CT → V

VDg = πECT (R2 ./ R3)
Hybrid Dh: R1 = EC with E → C CT → V 1 1

R2 = CV with V → C Materialized view:
R3 = ETV with TV → E, ET → V VDh

= πV CT (R1 ./ R3)

Table 4 summarizes the schemata that our algorithms return for our example, and
also D2, including their properties.

6.5 Materialized Views

When operational, frequent access patterns emerge on the database. Adding materialized
views can help accelerate queries but will occupy additional storage space and time to
maintain data consistency. Hence, view selection should be informed by quantifying join
support and maintenance costs. We define the (total) level of join efficiency and update

inefficiency of a given view V (namely, a set of attributes) as `
J(, total)
V and `

U(, total)
V ,

respectively.
For our hybrid schema Dh as example, a frequent query may ask at what times

companies work on a venue. Hence, we may introduce the following materialized view V .

CREATE MATERIALIZED VIEW V AS (
SELECT R2.V, R2.C,R3.T FROM R2, R3 WHERE R2.V = R3.V);

In this case, the assertion check LostFDCTtoV can directly be enforced on the view
instead.

CREATE ASSERTION LostFDCTtoV CHECK(NOT EXISTS (SELECT
C, T FROM V GROUP BY C, T HAVING COUNT(V)>1));

Due to V → C, CT → V and card(V) ≤ 1m, the view has level `JV = 1m = `UV
update inefficiency and join efficiency, respectively. Join support is effective, but requires
the propagation of a C-update on base table R2 to up to 1m updates on V . Hence, the
trade-off we quantify between update inefficiency and join efficiency is also intrinsic to
materialized views and should be part of the information for helping with their selection.
Table 4 also lists some views for the various schema designs of our running example.

20

Table 5: Synthetic Experiment 1 (in seconds)

Op Hap D1 D1 + VD1 D2 D2 + VD2 Dg Dg + VDg Dh Dh + VDh

u1 0.93 0.91 0.91 0.59 1.03 1.62 1.81 0.59 0.59
u2 45.75 0.23 45.33 44.81 44.81 0.20 0.20 0.21 83.82
q1 0.011 0.009 0.009 0.17 0.012 1.32 0.009 0.14 0.14
q2 3.39 4.11 3.47 2.76 2.76 4.09 4.09 4.32 3.44

7 Experiments

Our experiments analyze the properties of our normal forms and how these translate into
the performance of updates and joins over instances of the schema. We implemented our
algorithms in Visual C++. Experiments were done on an Intel Xeon W-2123, 3.6 GHz,
256GB, Windows 10 PC, with the 2017 SQL Server Community Edition.
Qualitative study. Firstly, we analyze the performance of two updates and two joins
on synthetic instances over the schema designs for our running example.

Our first instance over (Hap,Σ) consists of 1,001,000 tuples. There are 1k tuples
with matching values on E and C, and 1m tuples with matching values on V and C.
The other values are unique in their columns. The instance is isomorphic to instance r
in Table 1 with `1 = 1k and `2 = 1m. To illustrate the impact of FDs on updates and
joins, the numbers of redundant values they cause in the instance coincides with their
levels of data redundancy on the schema (`1 and `2).

We consider four operations affected by our FDs. Update u1 (u2) replaces all occur-
rences of a C-value associated with a given E-value (V -value, respectively). Query q1

(q2) returns all CTE (CTV , respectively) combinations. Each operation is run 100 times
on each design, and the average value reported.

Updates are always propagated to views from base tables. As E → C is lost on Dg,
u1 updates C-values on R2 ./ R3 and projects them onto R2. Unless queries q1 or q2 are
equivalent to a view, the table below lists their final projection in the left column q (same
on every design), and the indices of tables joined for each design before the projection
(no join for single index), such as q1 = πECT (R1 ./ R3) over D2.

q D1 D1 + VD1 D2 D2 + VD2 Dg Dg + VDg Dh Dh + VDh

q1 = πECT 4 4 1,3 VD2 2,3 VDg 1,3 1,3
q2 = πCTV 2,3 VD1 5 5 2,3 2,3 1,3 VDh

On the instance over 3NF schema (Hap,Σ), q1 and q2 are simple projections and do
not require joins. For u1, 1k occurrences of a redundant C-value are updated, and 1m
occurrences of a redundant C-value are updated for u2, due to the non-key FDs E → C
and V → C, respectively.

Table 5 shows the times (in seconds) for the operations on the instance projected onto
the schemata of Table 4.

Specific updates and queries are best supported by different designs. Notably, the
level of data redundancy for an FD translates proportionally into the performance for
updates and joins affected by the FD. This also applies to the views.

21

Table 6: Synthetic Experiment 2 (in milliseconds)

Op Hap D1 D1 + VD1 D2 D2 + VD2 Dg Dg + VDg Dh Dh + VDh

u1 58.2 55.8 55.8 3.7 60.7 82.3 170.2 3.7 3.7
u2 10 4.4 12.7 9.8 9.8 4.9 4.9 4.7 18.9
q1 8.3 7.5 7.5 11.1 10.6 236 4 11.6 11.6
q2 5.6 14.6 5.7 5.3 5.3 14.5 14.5 14.1 7.4

Operations u2 and q1 are fast on D1 with R4 and key V on R2, but slow on D2.
Symmetrically, u1 and q2 are fast on D2 with R5 and key E on R1, but slow on D1. For
each operation, the difference in performance between D1 and D2 is proportional to the
level of data redundancy caused by the FD that affects the operation. For example, the
FD V → C with `V = 1m causes a significant difference between performing u2 (44.58s
difference) on D1 and D2, and between performing q2 (1.35s difference) on D1 and D2.
In comparison, the FD E → C with `V = 1k causes a much smaller difference between
performing u1 (0.32s) on D1 and D2, and between performing q1 (0.161s) on D1 and D2.

Relatively to `VD1
= 1m, the speed up of q2 and slow down of u2 by VD1 are large.

Relatively to `VD2
= 1k, the speed up of q1 and slow down of u1 by VD2 are smaller.

As expected, Dg performs well on u2 but not so much on the other operations. VDg

speeds up q1 with small penalty for u1, but which had poor performance already.
Dh performs well for both u1 and u2, and quite well for q1. VDh

speeds up q2 but
slows down u2 significantly.

Table 6 shows our results for the second synthetic instance with 1,100 tuples, `1 = 1k,
and `′2 = 100 < 1m. The experiment illustrates that the same combinations of operations
are best supported by the same designs, when compared to the first instance. Since the
actual cardinality (100) is much smaller than what is permitted (1m), processing times
for operations with this cardinality are much smaller (in ms).

The choice of a logical design depends on how well it is believed to support the future
workload of operations. Our framework quantifies this support by the level of data
redundancy that FDs exhibit as part of the design or materialized view, which measures
their impact on the performance of specific updates and joins. In contrast, classical
logical design may not bring forward some designs and cannot quantify the support for
workloads.
Quantitative study. Secondly, we analyze update and join performance over schema
designs derived by our algorithms for FDs and CCs we mined from the real-world data sets
in the following table. It shows the number of FDs discovered (#FD), the total number
of null marker occurrences (#⊥), and the number of rows and columns (#R,#C).

Data set #FDs #⊥ #R #C
china 918 418580 262920 18
ncvoter 568 3079822 1024000 19

The data sets benchmark algorithms that discover FDs X → A from data and rank
them in decreasing order by the lowest bound `X such that card(X) ≤ `X holds on the
data [42, 43, 50]. We regard different occurrences of ⊥ in the same column as matching

22

Table 7: Algorithmic Achievements on Real Schemata

measures Original Opt Greed Hybrid
`U 4, 097 15 512 7
`J 4, 097 15 1 7
`U,total 5, 043 87 3, 035 79
`J,total 5, 043 87 6 73
|D| 1 65 6 66
time (ms) - < 1 < 1 < 1

(a) Measures for top-20% FDs of ncvoter

measures Original Opt Greed Hybrid
`U 4, 889 56 4, 881 55
`J 4, 889 56 1 50
`U,total 62, 492 327 54, 247 257
`J,total 62, 492 327 4 165
|D| 1 145 4 157
time (ms) - < 1 < 1 < 1

(b) Measures for top-20% FDs of china

domain values (⊥=⊥). Our results are very similar otherwise (⊥6=⊥). The discovered
CCs and FDs represent patterns on the data, but not necessarily on the domain. Input to
our algorithms are only more relevant FDs, namely those ranked in the top-20%. Adding
further FDs causes hardly any differences, indicating that FDs with higher levels of data
redundancy determine schema designs.

Analysis of update and join efficiency levels. We apply Algorithms 2 (Opt), 3
(Greed), and 4 (Hybrid) to the schemata for ncvoter and china.

Table 7 shows the levels `U ; `J for the decompositions D and the original input, their
total levels `U,total; `J,total, output size |D|, and the runtime.

The reduction in update inefficiency levels is significant for Opt and Hybrid. Greed
achieves small reductions due to lost FDs. The join efficiency level for Greed equals
1 since every FD becomes either a key or is lost. Under FD-preservation, Opt always
achieves the optimum level `U , which always equals `J as all FDs are preserved. Hybrid
achieves even lower levels `U by loss of some FDs and lowering `J .

The reductions of `U are achieved by different output sizes: Greed requires few
schemata, while Opt achieves the optimum by adding schemata to preserve all FDs, and
Hybrid achieves further reductions by even more schemata. All algorithms are fast as
the input is an atomic cover [25].

Physical performance. We ran updates and join queries over our original data sets
and the outputs of Algorithms 2 and 3 on input sets that included all FDs X → Y
where `X met a given target level `. Figures 3 and 5 show the results of Algorithm 2,
and Figures 4 and 6 those of Algorithm 3. The x-axes always show the target levels `,
the number n of output tables and the number of input FDs. The y-axes in Figures 3
and 4 show the runtimes (in sec) for a join query, and the runtimes (in sec) for updates

23

Figure 3: Join performance after using Opt

Figure 4: Join performance after using Greed

in Figures 5 and 6.
The join queries are i) a simple SELECT ∗ FROM Hap over the original schema

Hap, and ii) a SELECT ∗ FROM R1 NATURAL JOIN . . . NATURAL JOIN Rn over
{R1, . . . , Rn}.

Join times increase with lower target levels `. For Opt, join performance becomes
poor due to the many output tables required for FD preservation. This is compensated
by Greed, but the trade-off is poor update performance for lost FDs. The level `,
solely determined by the input integrity constraints, translates into different physical
performance degrees for updates and joins on the output of our algorithms. Making
these options available is the point of our new framework.

Updates involve changes to all occurrences of some redundant value (recall the update
scenario from Section 5). After an FD is transformed into a key, every value occurs at
most once, so an update is required for at most one occurrence.

Average update times for keys are about two orders of magnitude lower than those
for input FDs on the original data. For preserved, non-key FDs (called critical FDs) the
gain is about one order of magnitude (grey bars in Figures 5 and 6, with no data point
when all FDs become keys). Lost FDs require more update time than on the original
data set, due to necessary joins. With no lost FDs, only keys need to be enforced (in
Figure 6 for the largest target level). Figures 5 and 6 show that, by lowering the level

24

Figure 5: Update performance after using Opt

Figure 6: Update performance after using Greed

`, more FDs are converted into keys (for Opt), which improves update efficiency at the
expense of introducing more tables. A main message is that schema design is primarily
driven by high-ranked FDs, but inclusion of low-ranked FDs means that more FDs need
to be preserved during synthesis to lower their update time (by transformation into keys
or critical FDs with Opt), or more FDs will be lost during decomposition (Greed).
Comments. Logical schema design is driven by business rules which constrain instances
to those that are meaningful to the underlying domain. We have seen how the upper
bounds of CCs inform schema design and quantify the support for query and update
operations. Our experiments illustrate that smaller bounds mean smaller differences
in performance between designs. During logical design the choice of a schema is thus
determined by the upper bounds, as these represent the current requirements. When
requirements change over time, physical database tuning, such as de-normalization, can
lift performance. However, this is only possible once the database is operational, when
actual instances can be observed and stable patterns of workloads have emerged. If
constraints evolve to the point that a different design is more suitable, then this may

25

Table 8: Benchmark schemata and data

Data set #FDs #⊥ #R #C
abalone 137 0 4177 9
adult 78 0 48842 14
balance 1 0 625 5
chess 1 0 280560 7
iris 4 0 28056 7
letter 61 0 20000 17
lineitem 3984 0 6001215 16
nursery 1 0 12960 9
breast 46 16 699 11
bridges 142 77 108 13
echo 527 132 132 13
ncvoter 758 2863 1000 19
hepatitis 8250 167 155 20
horse 128727 1605 368 28
plista 178152 23317 1000 63
flight 982631 51938 1000 109
china 918 418580 262920 18
diabetic 40195 192849 101766 30
uniprot512k 3703 3759296 512000 30
pdb 68 2035242 17305799 13
ncvoter1024k 568 3079822 1024000 19

justify migration to a new schema. Ultimately, logical design informs the choice of a
schema based on application requirements (evolved or not evolved).

Ranking designs informs the search for a relevant schema, just as ranking websites
informs the search for relevant websites. Blindly picking a design with minimum ` is
similar to using the “I’m feeling lucky” button. This also extends to the selection of
materialized views. Our experiments suggest to carefully examine which operations are
affected by which FDs. The level of data redundancy caused by the FDs quantifies how
much they affect the operations. In particular, if the level of data redundancy caused by
some FD is a priori unbounded (` = ∞), our framework alerts analysts to the fact that
requirements analysis may still be incomplete.

8 Additional Experiments

Besides china and ncvoter1024k (previously called ncvoter) we also applied our frame-
work to the real-world data sets and schemata in Table 8. The data set are available for
download2.

We demonstrate the following. 1) Classical Boyce-Codd Normal Form decomposition

2https://bit.ly/3c0fE9k

26

and 3NF synthesis result in schemata that still exhibit significant data redundancy. 2)
Legacy data can be profiled using `-BCNF to provide insight into the distribution of
data redundancy patterns 3) The logical notion of the level of data redundancy is an
indicator for the physical number of redundant values in the data. 4) We illustrate how
our decomposition algorithms reduce the level and total levels of update inefficiency and
join efficiency. We show the trade-offs between the levels, the number of tables in the
decomposition, FD-preservation and the computation time. 5) We illustrate that the top-
ranked 30-40% of FDs cause the majority of redundant data values, and that limiting
normalization to those results in decompositions with half the number of tables compared
to including all FDs. 6) The bounds of CCs guide us in finding fully normalized schema
designs that process updates quickly and joins slowly, or fully de-normalized schema
designs that process updates slowly and joins quickly, or schemata with different degrees
of (de-)normalization that provide a better balance of update and query efficiency.
Set up. We implemented our algorithms in Visual C++. Experiments were done on
an Intel Xeon W-2123, 3.6 GHz, 256GB, Windows 10 PC, with the 2017 SQL Server
Community Edition. Our experiments are based on FDs mined from the given data sets,
and ranked by the number of redundant value occurrences they cause. This was achieved
by FD discovery algorithms [43, 50]. For each LHS X of some discovered FD X → Y ,
we computed the smallest positive integer `X such that card(X) ≤ `X holds on the data
set. The discovered CCs and FDs represent exactly the patterns that hold on the given
data, but not necessarily of the underlying domain. Since we only illustrate our concepts
based on the data we have and not based on the underlying domain, the use of these
constraints is fine for our purposes.

8.1 Redundant Values Resulting From Classical Normalization

We use the data sets from Table 8 to illustrate shortcomings of the well-known normal-
ization frameworks of Boyce-Codd and Third normal form.

For each data set we performed 100 Boyce-Codd Normal Form decompositions using
different orders of the given FDs. The blue bars of Figure 7 show for each data set the
average ratio of the number of redundant data value occurrences caused by FDs that were
not preserved during the decomposition relative to the number caused by all given FDs.
The orange bars indicate the average ratio of the number of redundant data values caused
by FDs that were preserved relative to the number caused by all given FDs. The two
ratios are not complements of one another as some occurrences are caused by preserved
FDs and by lost FDs. In a strict sense such occurrences are not eliminated, but it is just
interesting to observe.

Figure 8 shows the ratio of redundant data value occurrences exhibited after 3NF
synthesis using canonical covers. It illustrates that 3NF synthesis removes all or nearly all
data redundancies on some data sets (adult, breast, iris, letter, pdb), removes reasonable
numbers of data redundancies (abalone, bridges, echo, ncvoter), but also introduces many
additional data redundancies on other data sets (china, diabetic, flight, hepatitis, horse,
plista).

The experiments illustrate that significant numbers of redundant data value occur-
rences remain after classical normalization approaches are applied. However, the main

27

Figure 7: Average proportion of redundant data value occurrences caused (blue) and
eliminated (orange) by FDs not preserved during Boyce-Codd decomposition

Figure 8: Data redundancy ratio after 3NF synthesis

28

Figure 9: Distribution of redundancy levels for individual FDs on complete data sets

29

Figure 10: Distribution of redundancy levels for individual FDs on incomplete data sets

point is that these normal forms cannot guarantee a priori bounds on the level of data
redundancy, the level of update inefficiency nor the level of join efficiency.

8.2 Data Profiling with `-BCNF

Here we use the benchmark schemata and data to illustrate the insight that our normal
forms can provide.

Firstly, we can use any legacy data for a given schema to compute a purely data-
driven view for which positive integer ` the schema is in `-BCNF, simply by computing
`X for each left-hand side X of a non-trivial, non-key FD we previously mined. Note
that this is also a very useful application of the FD discovery algorithms that have been
developed over the last 40 years. In fact, we can take this illustration further and show the
distribution of the `X for the data set. The results are shown in Figure 9, Figure 10 and
Figure 11. Here, the labels on x-axis indicate the various levels `X of data redundancy,
with the maximum level ` being the smallest positive integer for which the given data
set is in `-BCNF. The y-axis indicates how many of the discovered FDs X → Y have the
associated cardinality bound `X on the x-axis.

One may also show which specific FDs have which associated levels of data redun-
dancy, and later on use this information for other purposes, such as normalization. In-
deed, the level of data redundancy - as introduced in this article - provides us with
information that should drive the schema design process.

8.3 Indicator of Data Redundancy

Indeed, the left-hand columns of Figures 12 and 13 show for the bottom ten percent of our
FDs which cardinality bounds are associated with them, while the right-hand columns

30

Figure 11: Distribution of redundancy levels for individual FDs on NCVoter fragments

show the bounds associated with the top ten percent of our FDs.
Figures 12 and 13 show that the level `X of data redundancy (termed maximum

cardinality in the figures) is a strong indicator at design time which FDs will cause
many redundant values in instances. Indeed, the left column shows that the bottom
10%-numbers of redundant values were caused by FDs X → Y where `X is small. The
right column shows that the top 10%-numbers of redundant values were caused by FDs
X → Y where `X is high. Hence, FDs that cause higher numbers of redundant values
have typically higher levels of data redundancy.

8.4 Update and Join Efficiency Levels

We apply Algorithms 2 (Opt), 3 (Greed), and 4 (Hybrid) to our benchmark schemata,
using FDs in the top-k percentages for k = 20 and k = 80 as input.

Our analysis visualizes the reduction of the update inefficiency levels `UD for the de-
composition D compared to the input schema (Figure 14), and also the total levels, `U,total

D
(Figure 15), the size |D| of the output (Figure 16), and the runtime (Figure 17).

The reduction in the levels is significant for all three algorithms. As Figures 14
and 15 show, Greed achieves the least reduction, due to lost FDs. This loss could
not be measured by the classical BCNF decomposition based on FDs alone. The join
efficiency levels `JD and `J,total

D for Greed all equal 1 since an FD is either transformed
into a key or lost. Opt preserves all FDs, meaning that the (total) levels of update
inefficiency and join efficiency always coincide. For FD-preserving decompositions, Opt
always achieves the optimum level `UD of update inefficiency. Hybrid trades even lower
levels of update inefficiency for lower levels of join efficiency. The various levels achieved
by selecting the FDs from the top-20% and top-80%, respectively, are very similar. This
shows that achievements depend primarily on those FDs that cause higher numbers of

31

Figure 12: Left (Right): The x-axis shows the maximum cardinality (= level of data
redundancy) for FDs in the bottom (top) 10% for the number of redundant values, the
y-axis shows how many FDs have these levels - Part I

32

Figure 13: Left (Right): The x-axis shows the maximum cardinality (= level of data
redundancy) for FDs in the bottom (top) 10% for the number of redundant values, the
y-axis shows how many FDs have these levels- Part II

33

redundant values (indicated by higher levels of data redundancy according to our first
experiment).

Figure 16 explains how the algorithms achieve different reductions in update ineffi-
ciency: Greed generally requires few schemata, while Opt achieves its minimization of
update inefficiency by adding many schemata, and Hybrid achieves further reductions
by even more schemata. An analysis of these trade-offs is important since additional
schemata require additional joins when processing queries. Our results stress that sup-
porting fewer joins in common queries may require the enforcement of many constraints
on joins of schemata, and the local enforcement of constraints may require the processing
of more joins during query evaluation. Figure 17 shows that all three algorithms work
fast. Due to the importance of identifying the right database schema, the time spent on
this crucial task will be time worth spent.

8.5 Top-k normalization

FDs that cause higher numbers of redundant data values appear to be more relevant for
database normalization. We use Algorithm 2 to visualize the impact of using only the
top-k percent of FDs mined from our data sets for our synthesis algorithms. The main
takeaway from Figure 18 is that the top-30 to top-40% of FDs capture the majority of
all redundant data values, around 75% of those. In fact, as Figure 18 shows, considering
too many FDs can easily reverse the reduction in data redundancy (china, ncvoter on the
left), or even introduce additional redundant data values due to their duplication across
multiple schemata (flight, plista on the right). In fact, Figures 19 and 20 show that nor-
malization with the top-30 to top-40% of FDs leads to decompositions of approximately
half the size of those decompositions that are generated when all FDs are included, while
both achieve similar total levels of data redundancy and eliminate similar numbers of
redundant data values. This reconfirms that higher ranked FDs are more meaningful for
normalization, which facilitates ideas such as data-driven normalization [44].

34

Figure 14: Reducing the level of redundancy using the top-20% (left) and top-80% (right)
of FDs

35

Figure 15: Reducing the total level of redundancy using the top-20% (left) and top-80%
(right) of FDs

36

Figure 16: Number of schemata in output with top-20% (left) and top-80% (right) of
FDs

37

Figure 17: Time for algorithms with top-20% (left) and top-80% (right) of FDs

38

Figure 18: Ratio of data redundancy after applying Algorithm 2 to the top-k FDs

Figure 19: Total level of data redundancy after applying Algorithm 2 to top-k FDs

8.6 Physical Performance

We ran updates and join queries over our original data sets and the decompositions
resulting from Algorithms 2 and 3 on input sets that included all FDs X → Y where `X
met a given target level `. Figure 21 shows the results of Algorithm 2 on diabetic, and
Figure 22 shows the results of Algorithm 3. Updates involve changes to all occurrences
of some redundant value. Indeed, a change for one occurrence of the redundant data
value means that the other redundant occurrences of the same value need to be updated,
too. After an FD is transformed into a key, only one value requires an update. The
join queries are i) a simple SELECT ∗ FROM Hap over the original schema Hap,
and ii) a SELECT ∗ FROM R1 NATURAL JOIN . . . NATURAL JOIN Rn over the
decomposition {R1, . . . , Rn}. The x-axis shows the target level `, the number n of tables
in the decomposition and the number of FDs in the input. The left y-axis shows the time
in seconds required for the join query, while the right y-axis (logarithmic scale) shows the
average time in seconds required for the updates. Average update times for keys of the
decomposition are consistently two orders of magnitude lower than those for the input
FDs on the original data. For preserved non-key FDs the gain is approximately one order
of magnitude (grey lines in Figure 21, with no data point when all FDs were transformed

39

Figure 20: Size of decompositions after applying Algorithm 2 to top-k FDs

into keys). However, lost FDs require more update time on the decomposition than
on the original data set. This is because lost FDs can only be updated on the join of
schemata that contain all their attributes. If there are no lost FDs, only keys need to
be enforced (in Figure 22 for the largest target level). Join query times increase with
lower target levels `. For Opt, join performance becomes prohibitively poor due to the
many output tables that guarantee FD preservation. This is compensated by Greed,
but the trade-off is poor update performance for lost FDs. The level `, solely determined
by the input integrity constraints, translates into different physical performance degrees
for updates and joins in the output of our algorithms. Making these options available is
precisely the point of our new framework.

Figure 21: Update and join performance on Opt

40

Figure 22: Update and join performance on Greed

9 Related Work

Schema design has been studied in data models such as SQL [26], nested relations [40],
data warehouses [30], object-orientation [24], semantics [9], temporality [23], the Web [1],
uncertainty [35], and graphs [16]. Similar to classical design, our results may be extended
to richer data models and higher normal forms such as 4NF [14], Project-Join Normal
Form [15], or Inclusion-Dependency Normal Form [33].

Unlike BCNF/3NF [4, 6], CCs measure the effort for achieving data consistency.
Our algorithms return designs that quantify worst-case update inefficiency and best-case
join efficiency. Our concepts also quantify incremental maintenance and join support of
views during logical design. In contrast, numerical dependencies (NDs) apply classical
normalization after horizontal decomposition into blocks where FDs hold [19]. NDs are
not finitely axiomatizable [18].

Schema design is not expected to optimize the layout for all instances. Instead,
physical tuning kicks in after deploying the logical schema and once reliable data retrieval
patterns emerge. These include virtual de-normalization in main memory databases [36],
migration to NoSQL [51], and data warehouse designs [30]. Guidelines have been devised
to recover 3NF from de-normalised schema [45], and de-normalizing normalised schemata
[7]. Information-theoretic justifications exist for fact tables in snowflake schemata [32]
and for 3NF [28]. Update inefficiency and join efficiency inform the difficult problem of
selecting materialized views [11].

Kojić and Milićev de-normalize by maximizing read benefits while write costs remain
under a threshold [27]. Their technique tunes a logical schema (for example, in 3NF)
based on specific updates and queries. Hence, their approach is applicable once the
database is operational and a mature workload model available. This additional input

41

makes it possible to derive a schema optimized for the input workloadfor [27]. The
work in [27] does not use CCs. Our approach is for logical schema normalization where
a workload model in terms of frequent update and query operations is not available
yet. We use CCs to explore various normal forms with different properties in terms of
update inefficiency and join efficiency on the schemata. Hence, the design team can
assess different designs based on their properties. We only require a set of attributes,
FDs, and CCs as input. As our work brings forward a logical schema, it may provide a
different starting point for applying the work in [27] than classical normalization does.
For example, once frequent updates and queries have emerged, we may apply [27] to the
output of Algorithm 2 rather than the 3NF schema (Hap,Σ).

Recent approaches to schema design and evolution for NoSQL databases [47] are
driven by a query workload, and NoSQL schemata are thus de-normalized. We are
unaware of work for logical NoSQL schema design for CCs and FDs.

“Cardinality constraints are one of the most important kinds of constraint in concep-
tual modeling” [41]. “CCs correspond to very common semantic rules on relationships
and their formal definition at the conceptual level improves significantly the completeness
of data description” [31]. Surprisingly, our way of applying CCs to logical schema design
has not been observed before. CCs were introduced in Chen’s seminal ER paper [9],
and have been studied in data models such as semantic [34], Web [17], spatial and tem-
poral [13], and uncertain models [46]. They are part of major languages for data and
knowledge modeling, including UML, EER, ORM, XSD (such as maxOccurs), or OWL
(such as owl:maxCardinality) [20]. They have also been used in data cleaning [10],
database testing [8], query answering [12] and reverse engineering [48].

Violations of dependencies by dirty data motivate relaxed notions such as approximate
keys and FDs [22, 29, 39]. When mining from (dirty) data, approximate notions may
improve the recall but worsen the precision of identifying meaningful rules. The CC
card(X) ≤ ` may be seen as an approximate key permitting up to ` duplicates. For small
`, we may therefore view our work as extending classical schema design to approximate
keys, offering some robustness for dirty data.

10 Conclusion and Future Work

We introduced the first logical schema design framework that measures update ineffi-
ciency and join efficiency, based on integrity constraints alone. This is possible by the
new notion of level-` data redundancy, which is determined by the upper bounds of CCs
at schema design time. Our infinite family of `-Bounded Cardinality Normal Forms char-
acterizes instances that are free from level ` data redundancy and update inefficiency, and
permit level ` join efficiency. We developed algorithms for schema design, and illustrated
experimentally how they reduce the levels of update inefficiency and join efficiency with
trade-offs in the size of output designs. We also showed experimentally how these levels
quantify the suitability of schema designs and materialized views for the performance
of specific updates and joins on instances of the designs. Our framework uses domain
knowledge about CCs to advance logical schema design.

Future work will address more constraints and data models. We expect the interaction

42

of CCs and join dependencies to challenge the development of higher normal forms.
Acknowledgements. The authors thank the anonymous reviewers for their valuable
suggestions. The first author thanks Joachim Biskup, Bernhard Thalheim, and Jef Wijsen
for insightful discussions during Dagstuhl Seminar 19031.

References

[1] M. Arenas. Normalization theory for XML. SIGMOD Record, 35(4):57–64, 2006.

[2] W. W. Armstrong. Dependency structures of data base relationships. In IFIP
congress, volume 74, pages 580–583. Geneva, Switzerland, 1974.

[3] C. Beeri and P. A. Bernstein. Computational problems related to the design of
normal form relational schemas. ACM Trans. Database Syst., 4(1):30–59, 1979.

[4] C. Beeri, P. A. Bernstein, and N. Goodman. A sophisticate’s introduction to
database normalization theory. In VLDB, pages 113–124, 1978.

[5] P. A. Bernstein and N. Goodman. What does boyce-codd normal form do? In
VLDB, pages 245–259, 1980.

[6] J. Biskup, U. Dayal, and P. A. Bernstein. Synthesizing independent database
schemas. In SIGMOD, pages 143–151, 1979.

[7] D. B. Bock and J. F. Schrage. Denormalization guidelines for base and transaction
tables. ACM SIGCSE Bull., 34(4):129–133, 2002.

[8] N. Bruno, S. Chaudhuri, and D. Thomas. Generating queries with cardinality con-
straints for DBMS testing. IEEE Trans. Knowl. Data Eng., 18(12):1721–1725, 2006.

[9] P. Chen. The entity-relationship model-toward a unified view of data. ACM Trans.
Database Syst., 1(1):9–36, 1976.

[10] W. Chen, W. Fan, and S. Ma. Incorporating cardinality constraints and synonym
rules into conditional functional dependencies. Inf. Process. Lett., 109(14):783–789,
2009.

[11] R. Chirkova and J. Yang. Materialized views. Found. Trends Databases, 4(4):295–
405, 2012.

[12] G. Cormode, D. Srivastava, E. Shen, and T. Yu. Aggregate query answering on
possibilistic data with cardinality constraints. In ICDE, pages 258–269, 2012.

[13] F. Currim and S. Ram. Conceptually modeling windows and bounds for space and
time in database constraints. Commun. ACM, 51(11):125–129, 2008.

[14] R. Fagin. Multivalued dependencies and a new normal form for relational databases.
ACM Trans. Database Syst., 2(3):262–278, 1977.

43

[15] R. Fagin. Normal forms and relational database operators. In SIGMOD, pages
153–160, 1979.

[16] W. Fan, Y. Wu, and J. Xu. Functional dependencies for graphs. In SIGMOD, pages
1843–1857, 2016.

[17] F. Ferrarotti, S. Hartmann, and S. Link. Efficiency frontiers of XML cardinality
constraints. Data Knowl. Eng., 87:297–319, 2013.

[18] J. Grant and J. Minker. Inferences for numerical dependencies. Theor. Comput.
Sci., 41:271–287, 1985.

[19] J. Grant and J. Minker. Normalization and axiomatization for numerical dependen-
cies. Inf. Control., 65(1):1–17, 1985.

[20] N. Hall, H. Köhler, S. Link, H. Prade, and X. Zhou. Cardinality constraints on
qualitatively uncertain data. Data Knowl. Eng., 99:126–150, 2015.

[21] S. Hartmann. Reasoning about participation constraints and Chen’s constraints. In
ADC, pages 105–113, 2003.

[22] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. TANE: an efficient al-
gorithm for discovering functional and approximate dependencies. Comput. J.,
42(2):100–111, 1999.

[23] C. S. Jensen, R. T. Snodgrass, and M. D. Soo. Extending existing dependency
theory to temporal databases. IEEE Trans. Knowl. Data Eng., 8(4):563–582, 1996.

[24] V. L. Khizder and G. E. Weddell. Reasoning about uniqueness constraints in object
relational databases. IEEE Trans. Knowl. Data Eng., 15(5):1295–1306, 2003.

[25] H. Köhler. Finding faithful boyce-codd normal form decompositions. In AAIM,
pages 102–113, 2006.

[26] H. Köhler and S. Link. SQL schema design: Foundations, normal forms, and nor-
malization. In SIGMOD, pages 267–279, 2016.

[27] N. Kojic and D. Milicev. Equilibrium of redundancy in relational model for optimized
data retrieval. IEEE Trans. Knowl. Data Eng., 32(9):1707–1721, 2020.

[28] S. Kolahi and L. Libkin. An information-theoretic analysis of worst-case redundancy
in database design. ACM Trans. Database Syst., 35(1):5:1–5:32, 2010.

[29] S. Kruse and F. Naumann. Efficient discovery of approximate dependencies. Proc.
VLDB Endow., 11(7):759–772, 2018.

[30] J. Lechtenbörger and G. Vossen. Multidimensional normal forms for data warehouse
design. Inf. Syst., 28(5):415–434, 2003.

44

[31] M. Lenzerini and G. Santucci. Cardinality constraints in the entity-relationship
model. In ER, pages 529–549, 1983.

[32] M. Levene and G. Loizou. Why is the snowflake schema a good data warehouse
design? Inf. Syst., 28(3):225–240, 2003.

[33] M. Levene and M. W. Vincent. Justification for inclusion dependency normal form.
IEEE Trans. Knowl. Data Eng., 12(2):281–291, 2000.

[34] S. W. Liddle, D. W. Embley, and S. N. Woodfield. Cardinality constraints in se-
mantic data models. Data Knowl. Eng., 11(3):235–270, 1993.

[35] S. Link and H. Prade. Relational database schema design for uncertain data. Inf.
Syst., 84:88–110, 2019.

[36] Z. Liu and S. Idreos. Main memory adaptive denormalization. In SIGMOD, pages
2253–2254, 2016.

[37] D. Maier. Minimum covers in relational database model. J. ACM, 27(4):664–674,
1980.

[38] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

[39] P. Mandros, M. Boley, and J. Vreeken. Discovering reliable approximate functional
dependencies. In SIGKDD, pages 355–363, 2017.

[40] W. Y. Mok, Y. Ng, and D. W. Embley. A normal form for precisely characterizing
redundancy in nested relations. ACM Trans. Database Syst., 21(1):77–106, 1996.

[41] A. Olivé. Cardinality constraints. In Conceptual Modeling of Information Systems,
pages 83–102. Springer, 2007.

[42] T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert, J. Rudolph, M. Schönberg,
J. Zwiener, and F. Naumann. Functional dependency discovery: An experimen-
tal evaluation of seven algorithms. PVLDB, 8(10):1082–1093, 2015.

[43] T. Papenbrock and F. Naumann. A hybrid approach to functional dependency
discovery. In SIGMOD, pages 821–833, 2016.

[44] T. Papenbrock and F. Naumann. Data-driven schema normalization. In EDBT,
pages 342–353, 2017.

[45] J. Petit, F. Toumani, J. Boulicaut, and J. Kouloumdjian. Towards the reverse
engineering of denormalized relational databases. In ICDE, pages 218–227, 1996.

[46] T. Roblot, M. Hannula, and S. Link. Probabilistic cardinality constraints. VLDB
J., 27(6):771–795, 2018.

[47] S. Scherzinger and S. Sidortschuck. An empirical study on the design and evolution
of nosql database schemas. In ER, pages 441–455, 2020.

45

[48] C. Soutou. Relational database reverse engineering: Algorithms to extract cardinal-
ity constraints. Data Knowl. Eng., 28(2):161–207, 1998.

[49] M. W. Vincent. Semantic foundations of 4NF in relational database design. Acta
Inf., 36(3):173–213, 1999.

[50] Z. Wei and S. Link. Discovery and ranking of functional dependencies. In ICDE,
pages 1526–1537, 2019.

[51] J. Yoo, K. Lee, and Y. Jeon. Migration from RDBMS to nosql using column-level
denormalization and atomic aggregates. J. Inf. Sci. Eng., 34(1):243–259, 2018.

46

