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Abstract

We present QUBO objective functions for the maximum common sub-graph
isomorphism problem, proved their correctness and illustrate them with a few toy
problems. Very small scale problems can be solved by the D-Wave 2X machine
with high enough accurate rates; however, for larger scale problems, the accurate
rate drops significantly.

1 Introduction

Quantum computing is a field of increasing interest to computer scientists that involves
taking advantage of quantum effects to perform computations that differ significantly
from those of classical computers. Certain types of problems, such as simulations of
quantum systems, which are considered to be too hard for classical computers, may be
solved by quantum computers within a reasonable time. Even though it is still debat-
able if exponential speed-up on certain types of problems can be achieved by quantum
computers, the possibility of a huge advantage still drives people to develop new types
of quantum machines. In this area, developing quantum algorithms is essential.

D-Wave computers are based on a process known as quantum annealing. These quan-
tum computers solve discrete optimisations problems like Ising problem or the Quadratic
Unconstrained Binary Optimisation (QUBO) problem. D-Wave computers take advan-
tage of quantum tunnelling to find the global minimum of objective functions. Various
problems can be reformulated as QUBOs, so they can solved by these machines [3, 18, 19].
This method has the potential to solve hard graph problems, such as the graph isomor-
phism problem [26], graph partitioning [21] and many others [8, 13, 20].
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The maximum common subgraph isomorphism problem is one of the NP-hard graph
related problems that has a wide impact in bio-informatics [4], alignment of chemi-
cal structures [14], computer vision and pattern matching [9, 12], etc. By solving this
problem, we get the largest common subgraph of the two input graphs. There are two
variations of this problem that have been studied a lot [4, 14]: the maximum common
induced subgraph isomorphism (MCISI) problem and the maximum common edge sub-
graph isomorphism (MCESI) problem.

In this paper we propose QUBO formulations for the problems MCISI and MCESI,
so we can solve them on a D-Wave computer. We first give their definitions and their
QUBO formulations. Then we prove the correctness of these formulations. Finally, we
run instances of the problems for some small organic molecules on a real D-Wave 2X
machine and analyse the experimental data.

2 QUBO formulations for the maximum common

subgraph isomorphism problem

In [6] QUBO formulations for the subgraph isomorphism problem and the induced sub-
graph isomorphism problem are provided. An improved QUBO formulation that reduces
the number of variables was proposed in [25]. Solving the graph isomorphism problem
decides whether the two graphs are isomorphic. Solving the subgraph (induced subgraph)
isomorphism problem decides whether one graph is isomorphic to a subgraph (induced
subgraph) of the other graph. A simple example of these three problems are shown in
Figure 1. In Figure 1(a), the two graphs are isomorphic to each other. In Figure 1(b),
there is an isomorphism between the left graph and an induced subgraph of the right
graph. In Figure 1(c), the left graph is isomorphic to a subgraph of the right graph.
However, the solutions of all three problems cannot show the common sub-structure
shared by two graphs of arbitrary sizes. In order to obtain this piece of information,
we can solve the maximum common subgraph isomorphism problem to determine the
largest shared sub-structure. We will build our QUBO formulation for the maximum
common subgraph isomorphism problem by extending the idea in [6]. Before we show
our QUBO formulation, we first describe the notation that we will use, then we give a
detailed definition of the problems.

2.1 Definition and notation

We denote the integers modulo n by Zn = {0, . . . , n − 1} and a repeated cross product
by

Zn × · · · × Zn︸ ︷︷ ︸
m times

= Zm
n .

A partial function f : X 99K Y is a function which is undefined for some values of
x ∈ X. The domain of f , denoted Dom(f), is all x ∈ X where f(x) is defined and the
image of f , denoted Im(f), is the set of f(x) for all x ∈ Dom(f).
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Figure 1: Examples of graph isomorphism, induced subgraph isomorphism and subgraph
isomorphism
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Definition 1. A labeled graph (adding weights to a simple graph) can be represented by
a four-tuple G = (V,E, α, β), where

• V is the set of vertices,

• E ⊆ V × V is the set of edges,

• α : V → LV is a function assigning labels to vertices,

• β : E → LE is a function assigning labels to edges.

If u, v ∈ V then we denote an edge connecting u and v by uv. Alternatively, we say
(u, v) ∈ E.

Definition 2. Given a graphG = (V,E, α, β), a subgraph ofG is a graph S = (VS, ES, αS, βS),
where

• VS ⊆ V ,

• ES ⊆ E ∩ (VS × VS),

• αS = α |VS
,

• βS = β |ES
.

Definition 3. Given a graph G = (V,E, α, β), an induced subgraph of G is a graph
I = (VI , EI , αI , βI), where

• VI ⊆ V ,

• EI = E ∩ (VI × VI),

• αI = α |VI
,

• βI = β |EI
.

Definition 4. A bijective function ψ : V1 → V2 is a graph isomorphism between graphs
G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) if

• α1(v1) = α2(ψ(v1)) for all v1 ∈ V1 and α2(v2) = α1(ψ
−1(v2)) for all v2 ∈ V2,

• for any edge e1 = (v1, v
′
1) ∈ E1, there exists an edge e2 = (ψ(v1), ψ(v′1)) ∈ E2, such

that β1(e1) = β2(e2), and for any edge e2 = (v2, v
′
2) ∈ E2, there exists an edge

e1 = (ψ−1(v2), ψ
−1(v′2)) ∈ E1, such that β1(e1) = β2(e2)

Definition 5. An injective function φ : V1 → V2 is a subgraph isomorphism between
graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) if there exists a subgraph S of the
graph G2, such that φ is a graph isomorphism between G1 and S.

Definition 6. An injective function Φ : V1 → V2 is an induced subgraph isomorphism
between graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) if there exists an induced
subgraph I of the graph G2, such that Φ is a graph isomorphism between G1 and I.
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Definition 7. Given graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2), S is a com-
mon subgraph of both G1 and G2 if there exists a subgraph isomorphism between S and
G1, and a subgraph isomorphism between S and G2.

Definition 8. Given graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2), I is a com-
mon induced subgraph of both G1 and G2 if there exists an induced subgraph isomorphism
Φ between I and G1, and an induced subgraph isomorphism between I and G2.

Next, we give the definition for the maximum common subgraph isomorphism. Since
it is both meaningful to find the maximum common induced subgraph and the maximum
common subgraph, we give the definitions for both choices. For the maximum common
induced subgraph isomorphism, it is enough to maximise the number of vertices. For
the maximum common subgraph isomorphism, it is more meaningful to maximise the
number of edges, otherwise we are likely to end up with a solution that contains only
isolated vertices.

Definition 9. The maximum common induced subgraph (MCIS) is the common induced
subgraph between G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with the largest number
of vertices compared to the other common induced subgraphs of G1 and G2.

Definition 10. The maximum common edge subgraph (MCES) is the common subgraph
between G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) with the largest number of edges
compared to the other common subgraphs of G1 and G2.

Observation 1. If the graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) have a
maximum common induced subgraph I = (VI , EI , αI , βI), Φ1 is an induced subgraph iso-
morphism from I to G1 and Φ2 is an induced subgraph isomorphism from I to G2, then the
maximum common induced subgraph isomorphism (MCISI) is a bijective partial function
γ : V1 99K V2. For every v1 ∈ V1, we have

γ(v1) =

{
Φ2(Φ

−1
1 (v1)), if v1 ∈ Im(Φ1),

undefined, otherwise.
(1)

Observation 2. If the graphs G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) have a
maximum common edge subgraph S = (VS, ES, αS, βS), φ1 is a subgraph isomorphism
from S to G1 and φ2 is a subgraph isomorphism from S to G2, then the maximum common
edge subgraph isomorphism (MCESI) is a bijective partial function γ : V1 → V2. For every
v1 ∈ V1, we have

γ(v1) =

{
φ2(φ

−1
1 (v1)), if v1 ∈ Im(φ1),

undefined, otherwise.
(2)

Next we give some examples and explain when MCISI or MCESI should be used.
In Figure 2 we have two input graphs, so solving the MCISI may give us a mapping
from 0 to a, 1 to b and 3 to d, while solving the MCESI may give us a mapping from
0 to a, 1 to b, 2 to c and 3 to d. Note that the above solutions are not unique. The
solutions are different because MCISI requests the common subgraph to be an induced
subgraph of both input graphs and MCESI does not. MCISI has a tighter restriction
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due to the requirement of being induced subgraph. MCISI can be used when we are
looking for exactly same sub-structure while we will use MCESI for detecting a similar
sub-structure.
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Figure 2: An example of MCISI and MCESI.

2.2 Classical algorithms to solve the maximum common sub-
graph isomorphism problem

Since the maximum common subgraph isomorphism problem can be reduced to the max-
imal clique problem, a lot of work has been done via this reduction. A clique of a graph
is a subgraph of that graph, such that all pairs of vertices in the subgraph have an edge
to connect them. A maximal clique is a clique of the graph that has the largest number
of vertices. In order to reduce the maximum common subgraph isomorphism to the max-
imal clique problem, a compatibility graph needs to be constructed first. A compatibility
graph is a graph generated from two input graphs G1 = (V1, E1) and G2 = (V2, E2).
The vertex set is the set V1 × V2. Two vertices (v1, u1), (v2, u2), v1, u1 ∈ V1, v2, u2 ∈ V2
are adjacent when v1u1 ∈ E1 and v2u2 ∈ E2, or v1u1 /∈ E1 and v2u2 /∈ E2. Then by
solving the maximal clique problem of the compatibility graph gives us the solution for
the maximum common subgraph isomorphism problem [2, 17].

Another class of algorithms uses backtracking algorithms to solve the problem. Since
the isomorphism can be represented by vertex mappings, if we build up the mapping by
adding one vertex at a time, then a tree structure can be generated that backtracking
algorithms help reduce the time of traversal. Algorithms based on backtracking are
discussed in [7, 23].

The works above are exact solvers for the maximum common subgraph problem.
There are also heuristic solvers that are faster but only give approximate results. Genetic
algorithms are one important class in this paradigm. A genetic algorithm uses tools such
as crossover, mutation, clone, etc. to generate a new population from the old ones.
A fitness function is defined to make sure the new population has higher fitness. The
speed and performance of this approach depend on the design of the fitness function.
Different fitness functions are developed in [24, 5, 22]. Funabiki and Kitamichi [15]
have used another combinatorial optimisation method that they call two-Stage Discrete
Optimisation Method. They have used a greedy algorithm to find candidates and then
a randomised discrete method to refine the result. Simulated annealer has been used by
Barakat and Dean in [1].
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2.3 QUBO formulation for MCISI

Starting with the definition of MCISI, we will design penalty terms in the QUBO objective
function according to the features of MCISI. Let us work with the two graphs G1 =
(V1, E1, α1, β1) and G2 = (V2, E2, α2, β2). We denote the MCIS of G1 and G2 as I =
(VI , EI , αI , βI) and the MCISI from G1 to G2 as γ. That means there exists an induced
subgraph I1 = (VI1 , EI1 , αI1 , βI1) of G1 and an induced subgraph I2 = (VI2 , EI2 , αI2 , βI2)
of G2, such that:

• αI1(v1) = αI2(γ(v1)) for all v1 ∈ VI1 , and αI2(v2) = αI1(γ
−1(v2)) for all v2 ∈ VI2

(injective);

• for any edge e1 = (v1, v
′
1) ∈ EI1 , there exists an edge e2 = (γ(v1), γ(v′1)) ∈ EI2 , such

that βI1(e1) = βI2(e2), and for any edge e2 = (v2, v
′
2) ∈ EI2 , there exists an edge

e1 = (γ−1(v2), γ
−1(v′2)) ∈ EI1 , such that βI1(e1) = βI2(e2) (edge-preserving);

• if any pair of vertices (v1, v
′
1) /∈ EI1 , then (γ(v1), γ(v′1)) /∈ EI2 , and if any pair of

vertices (v2, v
′
2) /∈ EI2 , then (γ−1(v2), γ

−1(v′2)) /∈ EI1 (non-edge-preserving).

We then build the QUBO objective function of MCISI by translating those three
features into penalty terms, which are terms with positive coefficient. We design penalty
terms so that any assignments that do not fit into these features will add a positive
value into the final result; they will not be picked as solution of the problem since a D-
Wave machines will choose the assignments that give the minimum value of the objective
function. Let V1 = {u0, u1, . . . , un1−1} and V2 = {v1, v2, vn2−1}. For every u ∈ V1, v ∈ V2,
a variable xu,v is used to represent the possible vertex mapping between u and v. Let
x ∈ Zn1n2

2 with

x = (xu0,v0 , xu0,v1 , . . . , xu0,vn2−1 , xu1,v0 , . . . , xun1−1,vn2−2 , xun1−1,vn2−1).

Then we define a function τ : V1×V1×V2×V2 → Z to identify the possible mapping
between an edge in G1 to an edge in G2 with respect to the vertex labels and edge labels.
Let e1 = (u, u′), u, u′ ∈ V1 and e2 = (v, v′), v, v′ ∈ V2,

τ(u, u′, v, v′) =

{
0, α1(u) = α2(v), α1(u

′) = α2(v
′) and β1(e1) = β2(e2),

1, otherwise.
(3)

We define the objective function by

F : Zn1n2
2 → R,

F (x) = A[H(x) + P (x) +N(x)]−BM(x), A,B ∈ R+, (4)
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where

H(x) =
∑
u∈V1

∑
v∈V2

xu,v ∑
v′∈V2
v′ 6=v

xu,v′

+
∑
v∈V2

∑
u∈V1

xu,v ∑
u′∈V1
u′ 6=u

xu′,v

 , (5)

P (x) =
∑

uu′∈E1

∑
v∈V2

(
xu,v

∑
v′∈V2

xu′,v′τ(u, u′, v, v′)

)
, (6)

N(x) =
∑

uu′ /∈E1

∑
v∈V2

(
xu,v

∑
v′∈V2

xu′,v′ev,v′

)
, (7)

M(x) =
∑
u∈V1

∑
v∈V2

xu,v. (8)

We request B to be sufficiently smaller than A, which is needed in later proofs. Here
ev,v′ can be calculated by ev,v′ = 1 if vv′ ∈ E2 and ev,v′ = 0 otherwise.

The function H(x) is designed to ensure that the mapping is injective. P (x) en-
sures that the mapping is edge-preserving. Penalties are only applied to impossible-edge
mappings with respect to both the vertex label and the edge label. With the help of τ ,
some of the entries of the QUBO matrix may be updated to zero. N(x) ensures that the
mapping is non-edge-preserving. M(x) ensures that the number of vertices is maximised.
All these claims will be showed in later proofs.

The following part is to show that this objective function indeed solves the maximum
common induced subgraph isomorphism problem. We define F to be the set of all
common subgraph isomorphisms between G1 and G2. We now specify a decoder function

D : Zn1n2
2 99K F ,

the purpose of which is to interpret the isomorphism encoded in x so that we can obtain
a vertex mapping. The domain of D contains all vectors x ∈ Zn1n2

2 that can be ‘decoded’
into such functions. That is

Dom(D) =

{
x ∈ Zn1n2

2

∣∣∣∣∣ ∑
v∈V2

xu,v ≤ 1, for all u ∈ V1

and
∑
u∈V1

xu,v ≤ 1, for all v ∈ V2

}

and

D(x) =

{
ψ, if x ∈ Dom(D),

undefined, otherwise.

Here ψ : V1 99K V2 is a partial function that for every u ∈ V1, ψ(u) = v, u ∈ V1 and
v ∈ V2, if and only if xu,v = 1.

Lemma 1. For all x ∈ Zn1n2
2 , H(x) = 0 if and only if D(x) is injective.

8



Proof. We first show that if H(x) = 0, then D(x) is injective.
Since H(x) only contains sum of products of two binary variables, which are non-

negative, H(x) = 0 if and only if all products have value zero.

The first part ofH(x),
∑

u∈V1

∑
v∈V2

(
xu,v

∑
v′∈V2
v′ 6=v

xu,v′

)
= 0 if and only if all products

have value zero. For every fixed u, the products can only be in the following three cases:

1. all elements of {xu,v|v ∈ V2} have value zero;

2. exactly one element of {xu,v|v ∈ V2} has value one;

3. more than one element of {xu,v|v ∈ V2} have value one.

In the first case:
∑

v∈V2

(
xu,v

∑
v′∈V2
v′ 6=v

xu,v′

)
= 0, since all elements {xu,v | v ∈ V2}

have value zero. In the second cases: since v′ 6= v and there is only one xu,v can have value
one, xu,v and xu,v′ cannot simultaneously have value one. That means every product in∑

v∈V2

(
xu,v

∑
v′∈V2
v′ 6=v

xu,v′

)
has value zero. In the third case: since at least two elements

of {xu,v | v ∈ V2} have value one, there exists an xu,v = 1 and an xu,v′ = 1 while v 6= v′.

We then have at least one product in
∑

v∈V2

(
xu,v

∑
v′∈V2
v′ 6=v

xu,v′

)
has value one.

In order to have H(x) = 0, for every u ∈ V1, the variables’ assignment should be in
either the first case or the second one. If it is in the first case, then that u is mapped to
no vertex in V2. If it is in the second case, then that u is mapped to exactly one vertex
in V2.

Similarly, we have the second part of H(x) = 0 if and only if no two elements of V1
is mapped to the same element in V2 by D(x). That means x ∈ Dom(D). Therefore, we
have if H(x) = 0, then D(x) is injective.

We then show that if D(x) is injective, then H(x) = 0.
Let us assume D(x) is injective. Then for each u ∈ V1, the value of all elements of

{xu,v|v ∈ V2} will fall into the first two cases. Hence, the sum of all these products are
zero. That means H(x) = 0.

Therefore, H(x) = 0 if and only if D(x) is injective.

Lemma 2. If H(x) = 0 then P (x) = 0 if and only if D(x) is edge-preserving.

Proof. Assume H(x) = 0 and let ψ = D(x), we know that ψ is an injective function by
Lemma 1. For brevity, define

Pu,u′(x) =
∑
v∈V2

(
xu,v

∑
v′∈V2

xu′,v′τ(u, u′, v, v′)

)
.

Then
P (x) =

∑
uu′∈E1

Pu,u′(x).
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Now τ(u, u′, v, v′) is a pre-computed constant that is either 0 or 1. Therefore Pu,u′(x) is a
linear combination of non-negative terms and is thus non-negative. Then it follows that

P (x) = 0 if and only if Pu,u′(x) = 0, for all uu′ ∈ E1.

Let us assume that P (x) = 0. We know that Pu,u′(x) = 0 and we can expand Pu,u′(x) to
obtain

Pu,u′(x) =
∑
v∈V2

xu,v

(
xu′,v0τ(u, u′, v, v0) + xu′,v1τ(u, u′, v, v1) + · · ·

+ xu,vn2−1τ(u, u′, v, vn2−1)

)
= 0.

Because ψ is injective we have two cases:

1. xu,v = 0 for all v ∈ V2, so uu′ is not an edge in the common subgraph.

2. there exists a unique element x∗u,v with value one in {xu,v | v ∈ V2} and similarly
we have x∗u′,v′ in {xu′,v′ | v′ ∈ V2}.

It then follows that we have

Pu,u′(x) = x∗u,v

(
xu′,v0τ(u, u′, v, v0) + xu′,v1τ(u, u′, v, v1) + · · ·

+ xu,vn2−1τ(u, u′, v, vn2−1)

)
= x∗u,v

(
x∗u′,v′τ(u, u′, v, v′))

)
= τ(u, u′, v, v′).

We know Pu,u′(x) = 0, thus τ(u, u′, v, v′) = 0. From the definition of τ(u, u′, v, v′) = 0,
we know a possible edge mapping exists between uu′ and vv′ for all uu′ ∈ E1. Similarly,
a possible edge mapping exists between uu′ and vv′ for all vv′ ∈ E2. Thus D(x) is
edge-preserving.

Conversely, assume that D(x) is edge-preserving and H(x) = 0 while P (x) 6= 0. Since
H(x) = 0, ψ is injective and we have the same two cases as above. There then exists a
uu′ that is an edge of the common subgraph, such that Pu,u′(x) 6= 0. Because it is in the
second case, we have

Pu,u′(x)⇔ x∗u,vx
∗
u′,v′τ(u, u′, v, v′) 6= 0⇔ τ(u, u′, v, v′) 6= 0.

It follows that there exists no vv′ ∈ E2, such that a possible edge mapping exists between
uu′ and vv′. Hence ψ is not edge-preserving. A contradiction arises.

Therefore we have P (x) = 0 if and only if D(x) is edge-preserving.

Lemma 3. If H(x) = 0 then N(x) = 0 if and only if D(x) is non-edge-preserving.
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Proof. An analogue of the proof of Lemma 2 proves this lemma.

Corollary 1. For all x ∈ Zn1n2
2 , A[H(x) + P (x) +N(x))] = 0 if and only if D(x) is an

injective, edge-invariant function.

Proof. All three components, H(x), P (x), N(x) are non-negative. We also know from
Lemma 1 and 2 that H(x) = 0 if and only if D(x) is injective and P (x) = 0 if and only
if D(x) is edge-preserving. Lemma 3 shows N(x) = 0 if and only if D(x) is non-edge-
preserving. Hence for all x ∈ Zn1n2

2 , A[H(x) + P (x) + N(x))] = 0 if and only if D(x) is
an injective, edge-invariant function.

Lemma 4. min(Im(F )) ≤ 0.

Proof. If x = (0, . . . , 0), then F (x) = 0. Hence min(Im(F )) ≤ 0.

Lemma 5. If x = min
x
F (x) then D(x) is an edge-invariant injection.

Proof. Assume F (x) is the minimum value of F . By Lemma 4, we have F (x) ≤ 0.
Suppose that D(x) is not an injective, edge-invariant function. That is, A[H(x)+P (x)+
N(x)] > 0. For B sufficiently smaller than A we have F (x) > 0. A contradiction arises.
Therefore, we have D(x) is an edge-invariant injection.

Theorem 1. If x = min
x
F (x) then D(x) is a solution to MCISI.

Proof. By Lemma 5 we know that D(x) is an injective, edge-invariant function. Suppose
that D(x) is not a solution to MCISI and instead we have an x′ such that D(x′) is. Since
D(x′) is a solution of MCISI, it must be an injective, edge-invariant function. Hence
A[H(x′) +P (x′) +N(x′)] = 0. However, M(x′) > M(x) as D(x′) is a solution to MCISI
and thus the corresponding common induced subgraph of D(x)′ has more vertices than
the corresponding common induced subgraph of D(x). So we obtain F (x′) < F (x).
However, this is not possible, since F (x) is the minimal value of F . Hence D(x) is a
solution to MCISI.

2.4 QUBO formulation for MCESI

Following a similar path, we will design penalty terms in the QUBO objective function
according to the features of MCESI. Let us work with the two graphs G1 = (V1, E1, α1, β1)
and G2 = (V2, E2, α2, β2). We denote the MCES of G1 and G2 as S = (VS, ES, αS, βS) and
the MCESI fromG1 toG2 as γ. This means there exists a subgraph S1 = (VS1 , ES1 , αS1 , βS1)
of G1 and a subgraph S2 = (SS2 , ES2 , αS2 , βS2) of G2, such that:

• αS1(v1) = αS2(γ(v1)) for all v1 ∈ VS1 , and αS2(v2) = αS1(γ
−1(v2)) for all v2 ∈ VS2

(injective);

• for any edge e1 = (v1, v
′
1) ∈ ES1 , there exists an edge e2 = (γ(v1), γ(v′1)) ∈ ES2 ,

such that βS1(e1) = βS2(e2), and for any edge e2 = (v2, v
′
2) ∈ ES2 , there exists an

edge e1 = (γ−1(v2), γ
−1(v′2)) ∈ ES1 , such that βS1(e1) = βS2(e2) (edge-preserve).

11



Then we use the same variable system and function τ to encode these features into the
QUBO objective function. We define the objective function of MCESI as

F : Zn1n2
2 → R,

F (x) = A[H(x) + P (x)]−BM(x), A,B ∈ R+, (9)

by

H(x) =
∑
u∈V1

∑
v∈V2

xu,v ∑
v′∈V2
v′ 6=v

xu,v′

+
∑
v∈V2

∑
u∈V1

xu,v ∑
u′∈V1
u′ 6=u

xu′,v

 , (10)

P (x) =
∑

uu′∈E1

∑
v∈V2

(
xu,v

∑
v′∈V2

xu′,v′τ(u, u′, v, v′)

)
, (11)

M(x) =
∑

uu′∈E1

∑
vv′∈E2

(
xu,vxu′,v′

)
. (12)

We request B to be sufficiently smaller than A.
The function H(x) is designed to add penalty when the mapping is not injective.

P (x) adds penalty when the mapping is not edge-preserving. M(x) adds penalty when
the number of edges is not maximised.

We then prove the correctness of this objective function.

Corollary 2. For all x ∈ Zn1n2
2 , A[H(x)+P (x))] = 0 if and only if D(x) is an injective,

edge-preserving function.

Proof. Both H(x) and P (x) are non-negative functions. We also know from Lemma 1
and 2 that H(x) = 0 if and only if D(x) is injective and P (x) = 0 if and only if D(x)
is edge-preserving. Hence it follows that A[H(x) + P (x)] = 0 if and only if D(x) is an
injective, edge-preserving function.

Lemma 6. If x = min
x
F (x) then D(x) is an edge-preserving injection.

Proof. Assume F (x) is the minimum value of F . By Lemma 4, we have F (x) ≤ 0.
Suppose that D(x) is not an injective, edge-preserving function. That is, A[H(x) +
P (x)] > 0. For B sufficiently smaller than A we have F (x) > 0. A contradiction arises.
Therefore, we have D(x) is an edge-preserving injection.

Theorem 2. If x = min
x
F (x) then D(x) is a solution to MCESI.

Proof. By Lemma 6 we know that D(x) is an injective, edge-preserving function. Suppose
that D(x) is not a solution to MCESI and instead we have an x′ such that D(x′) is.
Since D(x′) is a solution of MCESI, it must be an injective, edge-preserving function.
Hence A[H(x′) + P (x′)] = 0. However, M(x′) > M(x) as D(x′) is a solution to MCESI
and thus the corresponding common edge subgraph of D(x′) has more edges than the
corresponding common edge subgraph of D(x). So we obtain F (x′) < F (x). However,
this is not possible, since F (x) is the minimal value of F . Hence D(x) is a solution to
MCESI.
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3 Experiments on a D-Wave 2X computer

We have used a D-Wave 2X system to test the performance of our QUBO formulations.
We first used a classical solver to find the optimal answers for the QUBO matrices and
decode them into the solutions of corresponding maximum common subgraph isomor-
phism problems. Then we compared them with the solutions from a classical maximum
common subgraph isomorphism solver. After these checks, we run these instances on a
D-Wave 2X system and collected data for further analysis.

D-Wave 2X systems use Chimera graph architecture, an example is showed in Fig-
ure 3. It is not a complete graph. Therefore, we used the default minor-embedding
algorithm that D-Wave company provides in their user interface [11] to find a subgraph
of the machine’s hardware graph, such that the QUBO graph is a graph minor of it.
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Figure 3: Chimera architecture example.

Since our QUBO formulation for both MCISI and MCESI needs to have a logical
variable for each possible vertex mapping and the QUBO matrix is quite dense, we do
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not have enough resources (qubits) to run for large graphs. Hence, only small graphs
that represent some small organic molecules are used to generate instances for the D-
Wave 2X system. We represent some simple molecules as graphs in Figure 4. All these
molecules are very small; they contain no more than nine atoms. Different atoms are
given different labels, such as C, O and H. Different covalent bonds are labelled as single
lines and double lines.

C

H

H

H

O H

(a) Methanol

C C

H H

H H

H H

(b) Ethane

CO O

O

H H

(c) Carbonic acid

C C

O O

O OH H

(d) Oxalic acid

C

H

H

H

H

(e) Methane

C CH

H

H

H

H

O H

(f) Ethanol

Figure 4: Input graphs

We have used the QUBO formulations in Section 2 to generate the corresponding
QUBO matrices for MCISI and MCESI corresponding to the chosen graphs. Then the
QUBO matrices were used by the default embedding program from D-Wave to generate
the corresponding embedding. We repeated this process for all possible pairs of graphs
in list in Figure 4. Finally, we have sent the batch of problems to the D-Wave computer
for processing. The following table shows the performance of the D-Wave 2X runs.

In the experiments, we used the majority voting feature that the D-Wave API pro-
vides. When a broken chain appears, it will force the qubits in the same chain to have
the same value as that of more than half the qubits. The tables show how effective the
algorithm works on D-Wave 2X. The first column shows which pair of molecule graphs
was used as input. The second column shows the length of the max chain after we have
performed minor embedding. The third column shows the average chain length of all
logical variables. The fourth column is the count of correct solutions (compare with the
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input pair max chain average chain count of correct count of correct answers
of graphs length length answers with post-process without post-process

CarbonicAcid CarbonicAcid 4 2.57 4855 3070
CarbonicAcid Ethane 4 3.14 0 532
CarbonicAcid Ethanol 6 4.47 0 1
CarbonicAcid Methane 3 2.44 0 11
CarbonicAcid Methanol 3 2.41 5000 4505

CarbonicAcid OxalicAcid 6 4.61 0 0
Ethane CarbonicAcid 5 3.64 1 12

Ethane Ethane 16 12.05 0 0
Ethane Ethanol 14 10.77 0 0
Ethane Methane 8 6.5 402 255
Ethane Methanol 9 7.03 0 0

Ethane OxalicAcid 5 3.75 2820 533
Ethanol CarbonicAcid 6 4.35 0 0

Ethanol Ethane 18 12.17 0 0
Ethanol Ethanol 18 13.41 0 0
Ethanol Methane 9 7.19 53 86
Ethanol Methanol 12 7.74 0 0

Ethanol OxalicAcid 6 5.3 6 0
Methane CarbonicAcid 3 2.44 4955 4662

Methane Ethane 9 6.42 0 0
Methane Ethanol 9 7.11 0 0
Methane Methane 5 3.58 1371 545
Methane Methanol 5 3.94 499 506

Methane OxalicAcid 4 3.1 4466 3744
Methanol CarbonicAcid 5 3.25 5000 3423

Methanol Ethane 9 7.11 0 0
Methanol Ethanol 10 7.51 0 0
Methanol Methane 5 3.70 179 55
Methanol Methanol 5 4.05 12 14

Methanol OxalicAcid 5 4.0 4952 3763
OxalicAcid CarbonicAcid 7 5.0 0 0

OxalicAcid Ethane 5 3.81 7 21
OxalicAcid Ethanol 6 5.05 1 3
OxalicAcid Methane 3 2.7 0 28
OxalicAcid Methanol 6 4.35 3609 1132

OxalicAcid OxalicAcid 9 7.25 0 0

Figure 5: Maximum common induced subgraph isomorphism results.
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input pair max chain average chain count of correct count of correct answers
of graphs length length answers with post-process without post-process

CarbonicAcid CarbonicAcid 6 3.28 308 217
CarbonicAcid Ethane 3 2.71 5000 4998
CarbonicAcid Ethanol 4 3.11 0 8
CarbonicAcid Methane 2 1.66 5000 4978
CarbonicAcid Methanol 3 2.25 24 1196

CarbonicAcid OxalicAcid 7 4.22 0 0
Ethane CarbonicAcid 4 3.64 4004 3513

Ethane Ethane 19 11.67 0 0
Ethane Ethanol 14 10.32 0 0
Ethane Methane 10 7.53 0 0
Ethane Methanol 8 6.61 0 0

Ethane OxalicAcid 5 4.43 1821 1170
Ethanol CarbonicAcid 5 4.23 58 1

Ethanol Ethane 14 10.82 0 0
Ethanol Ethanol 18 11.0 0 0
Ethanol Methane 10 6.34 26 10
Ethanol Methanol 10 7.59 0 0

Ethanol OxalicAcid 7 4.55 0 0
Methane CarbonicAcid 4 2.55 4995 4966

Methane Ethane 10 8.03 0 0
Methane Ethanol 9 7.42 0 0
Methane Methane 6 4.70 167 20
Methane Methanol 6 4.58 99 287

Methane OxalicAcid 4 2.7 5000 4978
Methanol CarbonicAcid 4 2.91 3559 147

Methanol Ethane 10 6.92 0 0
Methanol Ethanol 10 7.66 0 0
Methanol Methane 6 4.64 34 253
Methanol Methanol 5 4.27 22 2

Methanol OxalicAcid 6 3.42 1012 53
OxalicAcid CarbonicAcid 5 3.83 62 3

OxalicAcid Ethane 10 3.0 5000 3259
OxalicAcid Ethanol 8 3.15 0 0
OxalicAcid Methane 2 1.6 5000 4963
OxalicAcid Methanol 5 2.57 1384 550

OxalicAcid OxalicAcid 9 5.70 0 0

Figure 6: Maximum common edge subgraph isomorphism results.
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results from a classical QUBO solver) out of 5000 rounds with post-processing. The
fifth column is the count of correct solutions (compare with the results from a classical
QUBO solver) out of 5000 rounds without post-processing. Figure 5 and Figure 6 show
that when both the maximum chain length and average chain length are small enough,
the performance is quite good: a majority of the graph pairs have a high count of correct
answers. However, when chain length grows, the performance drops significantly. This
is consistent with other experiments [16].

D-Wave API provides a post-process function that classically optimises the quantum
machine’s output [10]. According to this document, a D-Wave computer will break the
embedded graph into several low tree-width subgraphs, then it will run local search for
those subgraphs and combine the results to update the global result. Since the embedded
graph contains all constraints for the problem, while the subgraphs only contain part of
the constraints, it is possible that the post-processing may give a wrong answer. We run
the same examples with the post-processing on and off to see whether this explanation
makes sense. Figure 5 and Figure 6 show that when the chain length is long but not
too long, without post-optimisation, we may get a bit more correct answers. However,
when the chain length is short, the post-processing improves the quality of the answers.
These facts give some support to the explanation. More importantly, one has to be
careful about when to turn the post-processing on. For the current problem, verifying
answers is as difficult as finding them. Therefore, even when we know that some of the
correct answers may be discarded by the post-processing, we may still want to apply
the post-processing, as it is too time consuming to investigate when the post-processing
makes mistakes. However, for the problems like integer factoring, where it is hard to find
the answers, but very easy to verify them, the situation is different. For such cases it is
advisable to turn the post-processing off to avoid discarding correct answers.

It would be interesting to compare the run times obtained with the quantum solution
with those obtained with the state of art heuristic classical solvers. However, the com-
parison would not make much sense unless larger scale problems could be solved on the
quantum annealing machine (the heuristic classical solvers mentioned in Section 2.2 are
capable of solving much larger scale problems).

4 Conclusion and future work

We have proposed QUBO formulations for the problems MCISI and MCESI, proved
their correctness, Section 2, then solved instances of the problems for some small organic
molecules that on a real D-Wave computer and analyse the experimental data, Section 3.
Very small scale problems can be solved by the D-Wave 2X machine with high enough
accurate rates; however, for larger scale problems, the accurate rate drops significantly.
With 5,000+ qubits and a 15-way qubit connectivity for its Pegasus architecture, the
D-Wave Advantage can embed larger scale problems and has a better technology of
managing the broken chain. The accuracy of the results reported in this paper could be
better on this quantum computer.

In the current version of our algorithm, we have set no restrictions on the connec-
tivity of the common subgraphs. The density of a graph can be defined as the ratio
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of the size of the graph (number of edges) and the size of the complete graph with the
same order (number of vertices). Since we are investigating the common sub-structure
shared by two graphs, a denser common subgraph may have a better chance to give the
relevant information. Therefore, one possible future step is to add in some constrains
that will force the answer to be denser. We could also investigate methods that require
fewer logical variables and/or fewer interactions among the logical variables. The former
may help to extract the information of interest and the latter may improve chances to
solve larger problems on the same machine. If larger scale problems could be solved on
future quantum annealing machines, then meaningful comparisons between the proposed
quantum algorithms and the state of art heuristic classical ones would be possible.
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