
CDMTCS
Research
Report
Series

Maximal Towers and
Ultrafilter Bases in
Computability Theory

S. Lempp1, J. S. Miller1, A. Nies2,
and M. I. Soskova1

1University of Wisconsin-Madison, USA
2University of Auckland, NZ

CDMTCS-547
September 2020

Centre for Discrete Mathematics and
Theoretical Computer Science

MAXIMAL TOWERS AND ULTRAFILTER BASES
IN COMPUTABILITY THEORY

STEFFEN LEMPP, JOSEPH S. MILLER, ANDRÉ NIES, AND MARIYA I. SOSKOVA

Abstract. The tower number t and the ultrafilter number u are cardinal
characteristics from set theory based on combinatorial properties of classes of
subsets of ! and the almost inclusion relation ✓⇤ between such subsets. We
consider analogs of these cardinal characteristics in computability theory.

We say that a sequence hGnin2! of computable sets is a tower if G0 = !,
Gn+1 ✓⇤ Gn, and Gn r Gn+1 is infinite for each n. A tower is maximal if
there is no infinite computable set contained in all Gn. A tower hGnin2! is
an ultrafilter base if for each computable R, there is n such that Gn ✓⇤ R or
Gn ✓⇤ R; this property implies maximality of the tower. A sequence hGnin2!
of sets can be encoded as the “columns” of a set G ✓ !. Our analogs of t and u
are the mass problems of sets encoding maximal towers, and of sets encoding
towers that are ultrafilter bases, respectively. The relative position of a cardinal
characteristic broadly corresponds to the relative computational complexity of
the mass problem. We mainly use Medvedev reducibility to formalize relative
computational complexity, and thus to compare such mass problems to known
ones.

We show that the mass problem corresponding to ultrafilter bases is equiv-
alent to the mass problem of computing a function that dominates all com-
putable functions, and hence, by Martin’s characterization, it captures high-
ness. On the other hand, the mass problem for maximal towers is below the
mass problem of computing a non-low set. We also show that no 1-generic �0

2-
oracle computes a maximal tower. In fact, no index predictable oracle does
so. Here, index predictability of an oracle captures the ability to guess in a
limit-wise way a characteristic index for a computable set given by a Turing
reduction to the oracle.

We finally consider the mass problems of maximal almost disjoint, and of
maximal independent families. We show that they are Medvedev equivalent
to maximal towers, and to ultrafilter bases, respectively.

Contents

1. Introduction 2
2. Basics of the mass problems TB 5
3. Complexity of T and of U 6
4. Maximally independent families in computability 10

Date: September 13, 2020.
2010 Mathematics Subject Classification. Primary 03D30.
Key words and phrases. computable sets, cardinal characteristics.
Lempp was partially supported by a Simons Collaboration Grant for Mathematicians #626304.

Miller was partially supported by grant #358043 from the Simons Foundation. Nies was partially
supported by the Marsden fund of New Zealand, grant 19-UOA-346. Soskova was partially sup-
ported by NSF Grant DMS-1762648. The authors thank Jörg Brendle and Noam Greenberg for
helpful discussions with Nies during a workshop at the Casa Matemática Oaxaca in August 2019,
where this research received its initial impetus.

1

2 LEMPP, MILLER, NIES, AND SOSKOVA

5. The co-computably enumerable case 12
6. Ultrafilter bases for other Boolean algebras 16
References 18

1. Introduction

Cardinal characteristics measure how far the set-theoretic universe deviates from
satisfying the continuum hypothesis. They are natural cardinals greater than @0

and at most 2@0 . For instance, the bounding number b is the least size of a collection
of functions f : ! ! ! such that no single function dominates the entire collection.
Here, for functions f, g : ! ! !, we say that g dominates f if g(n) � f(n) for
sufficiently large n. An important program in set theory is to prove inequalities
between characteristics in ZFC, and to separate them in suitable forcing extensions.

Analogs of cardinal characteristics in computability theory were first studied by
Rupprecht [14, 15] and further investigated by Brendle, Brooke-Taylor, Ng, and
Nies [2]. The recent article by Greenberg, Kuyper, and Turetsky [7] provides a
systematic approach to the two connected settings of set theory and computabil-
ity. The relevant characteristics are given by relations, such as the domination
relation ⇤ between functions, and ordered by reducibilities that measure relative
computability. For each relation R between two types of objects, one introduces
the bounding number b(R) and the dominating number d(R), and their analogs in
computability, which are highness and being of hyperimmune degree .

In this paper, we consider cardinal characteristics not given by relations. They
are defined in the setting of subsets of ! up to almost inclusion ✓⇤ . We initiate the
study of analogs of such cardinal characteristics in computability. We study analogs
of the ultrafilter, tower, and independence number discussed shortly. A general
reference in set theory is the survey paper by Blass [1]. The recent brief survey by
Soukup [18] contains a diagram displaying the ZFC inequalities between the most
important characteristics in this setting, along with b(⇤) and d(⇤).

The ultrafilter number u is the least size of a subset of [!]! with upward closure
a nonprincipal ultrafilter on !. We note that one cannot in general require here
that the subset is linearly ordered by ✓⇤. Recall that an ultrafilter F on ! is a
P -point if for each partition hCni of ! such that Cn 62 F for each n, there is A 2 F

such that Cn \A is finite for each n. An ultrafilter with a linear base is a P -point.
Shelah has shown that the non-existence of P -points is consistent with ZFC. So a
version of u relying on linear bases would be undefined.

The tower number t is the minimum size of a subset of [!]! that is linearly ordered
by ✓⇤ and cannot be extended by adding a new element below all given elements. To
define the pseudointersection number p, the requirement in the definition of towers
that the sets in the class be linearly ordered under ✓⇤ is weakened to requiring
that every finite subset of the class has an infinite intersection). So trivially p  t.
ZFC proves that p = t as shown by Malliaris and Shelah [12] (also see [18]). It is
not hard to see that ZFC proves t  u. It is consistent that t < u (see [1] for both
statements).

A class C of subsets of ! is independent if any intersection of finitely many
sets in C or their complements is infinite. The independence number i is the least
cardinal of a maximal independent family (m.i.f.). There has been much work

MAXIMAL TOWERS AND ULTRAFILTER BASES IN COMPUTABILITY 3

recently on i in set theory, in particular, the descriptive complexity of m.i.f.’s, such
as in Brendle, Fischer and Khomskii [3].

1.1. Comparing the complexity of the analogs in computability. The main
setting for our analogy is given by the Boolean algebra of computable sets mod-
ulo finite differences. We consider maximal towers, the closely related maximal
almost disjoint sets, and thereafter ultrafilter bases and maximal independent sets.
As already demonstrated in the above-mentioned papers [14, 15, 2, 7], the rela-
tive position of cardinal characteristics corresponds to the relative computational
complexity of the associated class of objects.

Note that the usual formal definitions of computation relative to an oracle di-
rectly only apply to functions f : ! ! !, and to subsets of ! (simply called sets
from now on, and identified with their characteristic functions). The complexity
of other objects is studied indirectly, via names that are functions on ! that give
discrete representations of the object in question. A particular choice of names
has to be made. For instance, real numbers can be named by rapidly converging
Cauchy sequences of rational numbers.

The witnesses for cardinal characteristics are always uncountable. In contrast,
in our setting, the analogous objects are countable. They will be considered as
sequences of sets rather than unordered collections. A single set X can be used as
a name for a sequence of sets: Let X

[n] denote the “column” {u : hu, ni 2 X}.1 To
every set X, we can associate a sequence hXnin2! in a canonical way by setting
Xn = X

[n]. (When introducing terminology, we will sometimes ignore the difference
between hXnin2! and X.)

With this naming system, one can now use sequences as oracles in computations.
We view the combinatorial classes of sequences as mass problems. To measure their
relative complexity, we compare them via Medvedev reducibility s: Let C and D
be sets of functions on !, also known as mass problems. We say that C is Medvedev
reducible to D and write C s D if there is a Turing functional ⇥ such that ⇥g 2 C
for each g 2 D. One also says that a function g 2 D uniformly computes a function
in C. We will also refer to the weaker Muchnik reducibility: C w D if each function
g 2 D computes a function in C.

With subsequent research in mind, we will set up our framework to apply to
general countable Boolean algebras rather than merely the Boolean algebra of the
computable sets. Throughout, we fix a countable Boolean algebra B of subsets of !
closed under finite differences. Our basic objects will be sequences of sets in B. We
will obtain meaningful results already when we fix a countable Turing ideal I and
let B be the sets with degree in I. We mainly study the case that B consists of
the computable sets, but will also consider the case of K-trivial sets, and even the
primitive recursive sets at the end of the paper.

1.2. The mass problem T of maximal towers.

Definition 1.1. We say that a sequence hGnin2! of sets in B is a B-tower if
G0 = !, Gn+1 ✓⇤

Gn, and Gn � Gn+1 is infinite for each n. If B consists of the
computable sets, we use the term tower of computable sets.

1For definiteness, we employ the usual computable Cantor pairing function hx, ni. Note that
hx, ni � x, n. This property is useful in simplifying notation in some of the constructions below.

4 LEMPP, MILLER, NIES, AND SOSKOVA

Definition 1.2. We say that a function p is associated with a tower G if p is
increasing and p(n) 2

T
in Gi for each n.

The following fact is elementary.

Fact 1.3. A tower G uniformly computes a function p associated with it.

Proof. Let � be the Turing functional such that �G(0) = min(G0), and �G(n+1) is
the least number in

T
in+1 Gi greater than �G(n). This � establishes the required

Medvedev reduction. ⇤

Definition 1.4. Given a countable Boolean algebra of sets B, the mass problem
TB is the class of sets G such that hGnin2! is a B-tower that is maximal, i.e., such
that for each infinite set R 2 B, there is n such that R�Gn is infinite.

Clearly, this implies that no associated function is computable. In particular,
a maximal tower is never computable. (Note that towers by definition start with
G0 = !, and so our notion of maximality only requires that the tower cannot be
extended from below, in keeping with our set-theoretic analogy.)

1.3. The mass problem UB of ultrafilter bases. We define the mass problem
UB corresponding to the ultrafilter number. Since all filters of our Boolean algebras
are countable, any base will compute a linearly ordered base by taking finite inter-
section. So we can restrict ourselves to linearly ordered bases. In the set theory
setting this is not possible as discussed in the introduction.

Definition 1.5. Given a countable Boolean algebra of sets B, let UB be the class
of sets F such that F is a B-tower as in Definition 1.1 and for each set R 2 B, there
is n such that Fn ✓⇤

R or Fn ✓⇤
R. We will call a set F in UB a B-ultrafilter base.

Each ultrafilter base is a maximal tower. In the cardinal setting, one has t 
u. Correspondingly, since UB ✓ TB, we trivially have TB s UB via the identity
reduction. The following indicates that for many natural Boolean algebras, the
former notion is much stronger.

Proposition 1.6. Suppose that the degrees of sets in B form a Turing ideal K.
Then for each B-ultrafilter base F and associated function p in the sense of Defini-
tion 1.2, the function p is not dominated by a function with Turing degree in K.

Proof. Assume that there is a function f � p in K. The conditions n0 = 0 and
nk+1 = f(nk) + 1 define a sequence that is computable from some oracle in K, and
for every k we have that [nk, nk+1) contains an element of

T
ik Fi. So the set

E =
[

i

[n2i, n2i+1)

is in K. Clearly Fn 6✓⇤
E and Fn 6✓⇤

E for each n. So F is not a B-ultrafilter
base. ⇤

Again in the cardinal setting, t < u is consistent with ZFC. We will prove that
UB 6w TB in the case that B consists of the computable sets: We will show in
Theorem 3.1 below that each non-low set computes a set in TB. Since non-low
oracles can be computably dominated, there must be a member of TB that does not
compute any member of UB.

MAXIMAL TOWERS AND ULTRAFILTER BASES IN COMPUTABILITY 5

2. Basics of the mass problems TB
2.1. The equivalent mass problems TB and AB. Recall that in set theory, the
almost disjointness number, denoted a, is the least possible size of a maximal almost
disjoint (MAD) family of subsets of !. In our analogous setting, we call a sequence
hFnin2! of sets in B almost disjoint (AD) if each Fn is infinite and Fn \Fk is finite
for distinct n and k.

Definition 2.1. In the context of a Boolean algebra of sets B, the mass problem
AB is the class of sets F such that hFnin2! is a maximal almost disjoint (MAD)
family in the computable sets. Namely, the sequence is AD, and for each infinite
set R 2 B, there is n such that R \ Fn is infinite.

Fact 2.2. AB s TB s AB.

Proof. We suppress the subscript B. To check that A s T , given a set G, let
Di↵(G) be the set D such that Dn = Gn�Gn+1. Clearly, the operator Di↵ can be
seen as a Turing functional. If G is a maximal tower then D = Di↵(G) is MAD.
For, if R is infinite computable, then R�Gn is infinite for some n, and hence R\Di

is infinite for some i < n.
For T s A, given a set F , let G = Cp(F) be the set such that

x 2 Gn $ 8i < n [x 62 Fn].

Again, Cp is a Turing functional. If F is AD, then G is a tower, and if F is MAD,
then G is a maximal tower. ⇤

Recall that a maximal tower is not computable. Hence no MAD set is com-
putable. (This corresponds to the cardinal characteristics being uncountable.)

2.2. Descriptive complexity and index complexity for maximal towers.
For the rest of this section, as well as the subsequent two sections, we will mainly
be interested in the case that B is the Boolean algebra of all computable sets. We
will omit the parameter B when we name the mass problems. In the final section,
we will consider other Boolean algebras.

Besides looking at the relative complexity of mass problems such as T and U ,
one can also look at the individual complexity of their members (as sets encoding
sequences). Recall that a characteristic index for a set M is a number e such that
�M = 'e. The following two questions arise:

(1) How low in the arithmetical hierarchy can the set be located?
(2) How hard is it to find characteristic indices for the sequence members?

(1) Arithmetical complexity.

Fact 2.3. No maximal tower G is c.e. No MAD set is co-c.e.

Proof. For the first statement, note that otherwise there is a computable function p

associated with G. The range of p would extend the tower G.
For the second statement, note that the reduction Cp, introduced above to show

that T s A, turns a co-c.e. set F into a c.e. set G. ⇤
We will return to Question (1) in Section 5, where we show that c.e. MAD sets

exist in every nonzero c.e. degree, and that an ultrafilter base can be co-c.e.
(2) Complexity of finding characteristic indices for the sequence members.
In several constructions of towers hGnin2! below, such as in Corollary 5.4 and

6 LEMPP, MILLER, NIES, AND SOSKOVA

Theorem 5.5, the oracle ;00 is able to compute, given n, a characteristic index
for Gn. The oracle ;0 does not suffice by the following

Proposition 2.4. Suppose that G is a maximal tower. The oracle ;0 is not able to
compute, from input n, a characteristic index for Gn.

Proof. Assume the contrary. Then there is a computable function f such that
'lims f(n,s) is the characteristic function of Gn. Let bG be defined as follows. Given n

and x, compute the least s > x such that 'f(n,s),s(x) #. If the output is not 0, put x
into bGn. Clearly bG is computable and Gn =⇤ bGn for each n. So bG is a maximal
tower, contrary to Fact 2.3. ⇤

3. Complexity of T and of U

In this section, we compare our two principal mass problems, maximal towers
and ultrafilter bases, to well-known benchmark mass problems: non-lowness, and
highness. We also define index predictability. No index predictable oracle computes
a maximal tower. We show that each 1-generic �0

2-set is index predictable.
As we said above, we restrict ourselves to the case that B is the Boolean algebra

of computable sets.

3.1. Maximal towers, non-lowness, and index predictability. We now show
that each non-low oracle computes a set in T . The result is uniform in the sense
of mass problems. Let NonLow denote the class of oracles X such that X

0 6T ;0.

Theorem 3.1. T s NonLow.

Proof. In the following, x, y, and z denote binary strings; we identify such a string x

with the number whose binary expansion is 1x. For example, the string 000 is
identified with 8, the number with binary representation 1000. Define a Turing
functional ⇥ for the Medvedev reduction as follows: Set ⇥Z = G, where for each n,

Gn = {x : n  s := |x| ^ Z
0
s � n = x� n}.

Here Z
0 denotes the jump of Z, which is computably enumerated relative to Z in

some standard way. Note that, for each n, for sufficiently large s, the string Z
0
s � n

settles. So it is clear that for each n, we have Gn+1 ✓⇤
Gn and Gn � Gn+1 is

infinite. Also Gn is computable.
Suppose now that R is an infinite set such that R ✓⇤

Gn for each n. Then for
each k,

Z
0(k) = lim

x2Gk,|x|>k
x(k) = lim

x2R,|x|>k
x(k),

and hence Z
0 T R

0. So if Z 2 NonLow then R cannot be computable, and hence
⇥Z 2 T . ⇤
Remark 3.2. The proof above yields a more general result. Suppose K is a count-
able Turing ideal and B is the Boolean algebra of sets with degree in K. Then
TB s NonLowK, where NonLowK := {Z : 8R 2 K [Z 0 6T R

0]}.

We next introduce a property of oracles we call index predictability, which implies
that the oracle does not compute a maximal tower. As usual, let h�eie2! be an
effective list of the Turing functionals with one input, and write 'e for �;

e. Note
that for a �0

2-oracle L, ;00 can compute from e a characteristic index for �L
e in case

that the function �L
e is computable. To be index predictable means that ;0 suffices.

MAXIMAL TOWERS AND ULTRAFILTER BASES IN COMPUTABILITY 7

Definition 3.3. We call an oracle L index predictable if ;0 can compute from e

an index for �L
e whenever �L

e is a computable function. In other words, there is a
functional � such that

�L
e is computable) �L

e = '�(;0;e).
No assumption is made on the convergence of �(;0; e) in case �L

e is not a computable
function.

Clearly, being index predictable is closed downward under T . A total function is
computable iff its graph is computable, in a uniform way. So for index predictability
of L, it suffices that there is a Turing functional � such that �(;0; e) provides an
index for �L

e in case it is a computable {0, 1}-valued function.
Every index predictable oracle D is low. To see this, for i 2 !, let Bi =

{t : JD
t (i) #}. If i 2 D

0 then Bi is cofinite, otherwise Bi = ;. There is a com-
putable function g such that �D

g(i) is the characteristic function of Bi. To show
that D

0 T ;0, on input i, let ;0 compute a characteristic index r(i) for Bi. Now
use ;0 again to determine limk 'r(i)(k), which equals D

0(i).
By Proposition 2.4, an index predictable oracle D does not compute a maximal

tower. The following provides examples of such oracles.

Theorem 3.4. If L is �0
2 and 1-generic, then L is index predictable.

Proof. Suppose F = �L
e and F is a computable set. Let Se be the c.e. set of

strings � above which there is a �e-splitting in the sense that

Se = {� : 9p(9⌧1 � �)(9⌧2 � �) [�⌧1
e (p) 6= �⌧2

e (p)]}.
Suppose that Se is dense along L. Then we claim that the set

Ce = {⌧ : 9p [�⌧
e (p) 6= F (p)]}

is also dense along L, i.e., for every k, there is some ⌧ ⌫ L � k such that ⌧ 2 Ce.
Indeed, let � ⌫ L � k be a member of Se and let p, ⌧1 and ⌧2 witness this. Let ⌧i

for i = 1 or 2 be such that �⌧i
e (p) 6= F (p). Then ⌧i ⌫ L � k is in Ce. The set Ce is

c.e. and hence L meets Ce, contradicting our assumption that F = �L
e .

It follows that Se is not dense along L. In other words, there is some least ke

such that there is no splitting of �e above L � ke. On input e, the oracle ;0 can
compute ke and L � ke. This allows ;0 to find an index for F , given by the following
procedure: To compute F (p), find the least ⌧ ⌫ L � ke such that �⌧

e (p) # (in |⌧ |
many steps). Such a ⌧ exists because �L

e (p) #. By our choice of ke, it follows that
�⌧

e (p) = �L
e (p) = F (m). ⇤

We summarize the known implications:
1-generic �0

2-) index predictable) computes no maximal tower) low.
The last arrow doesn’t reverse by Theorem 5.2 below; the others might. In particu-
lar, we ask whether the converse of the implication “index predictable) computes
no maximal tower” holds. This would also strengthen Theorem 3.1. Note that the
following potential weakening of index predictability of L still implies that the ora-
cle computes no maximal tower: For each S T L such that each Sn is computable,
there is binary computable f such that Sn = 'lims f(n,s) for each n.
Aside. We pause briefly to mention a potential connection of our topic to com-
putational learning theory. One says that a class S of computable functions is
EX-learnable if there is a total Turing machine M such that lims M(f � s) exists

8 LEMPP, MILLER, NIES, AND SOSKOVA

for each f 2 S and is an index for f . For an oracle A, one says that S is EX[A]-
learnable if there is an oracle machine M that is total for each oracle and such that
lims M

A(f � s) exists for each f 2 S and is an index for f . One calls an oracle A

EX-trivial if EX = EX[A]. Slaman and Solovay [16] showed that A is EX-trivial
iff A is 1-generic and �0

2. This used an earlier result of Haught that the Turing
degrees of the 1-generic �0

2-sets are closed downward.

3.2. Ultrafilter bases and highness. Let Tot = {e : 'e is total}. Let DomFcn
denote the mass problem of functions h that dominate every computable function
and also satisfy h(s) � s for all s. Note that a set F is high iff Tot T F

0. To
represent highness by a mass problem in the Medvedev degrees, one can equiv-
alently choose the set of functions dominating each computable function, or the
set of approximations to Tot, i.e., the {0, 1}-valued binary functions f such that
lims f(e, s) = Tot(e). This follows from the next fact; we omit the standard proof.
Fact 3.5. DomFcn is Medvedev equivalent to the mass problem of approximations
to Tot = {e : 'e is total}.

We show that exactly the high oracles compute ultrafilter bases, and that the
reductions are uniform. By the Fact 3.5, it suffices to show that U ⌘s DomFcn. We
will obtain the two Medvedev reductions through separate theorems, with proofs
that are unrelated.
Theorem 3.6. Every ultrafilter base uniformly computes a dominating function.
In other words, U �s DomFcn.

Our proof is directly inspired by a proof of Jockusch [8, Theorem 1, (iv) =) (i)],
who showed that any family of sets containing exactly the computable sets must
have high degree.
Lemma 3.7. There is a uniformly computable sequence P0, P1, . . . of nonempty
⇧0

1-classes such that for every e,
• if 'e is total, then Pe contains a single element, and
• if 'e is not total, then Pe contains only bi-immune elements.

Proof. Note that each Martin-Löf (or even Kurtz) random set is bi-immune: For
an infinite computable set R, the class of sets containing R is a ⇧0

1 null class and
hence determines a Kurtz test. A similar fact holds for the class of sets disjoint
from R.

For each s, let ns be the largest number such that 'e converges on [0, ns). We
build the ⇧0

1-class Pe in stages, where Pe,s is the nonempty clopen set we have
before stage s of the construction. Let Pe,0 = 2!.

Stage 0. Start constructing Pe as a nonempty ⇧0
1-class containing only Martin-

Löf random elements.
Stage s. If ns = ns�1, continue the construction that is currently underway,

which will produce a nonempty ⇧0
1-class of random elements.

On the other hand, if ns > ns�1, fix a string � such that [�] ✓ Pe,s and |�| > s.
Let Pe,s+1 = [�]. End the construction that we have been following and start a
new construction for Pe, starting at stage s + 1, as a nonempty ⇧0

1-subclass of [�]
containing only Martin-Löf random elements.

It is clear that if 'e is total, then Pe will be a singleton. Otherwise, there will
be a final construction of a nonempty ⇧0

1-class of randoms which will run without
further interruption. ⇤

MAXIMAL TOWERS AND ULTRAFILTER BASES IN COMPUTABILITY 9

Of course, when Pe is a singleton, its lone element must be computable.

Proof of Theorem 3.6. Let F be an ultrafilter base. Then, for any set C, let PC =
{X 2 2! : C ✓ X}. Note that if C is computable (or even merely c.e.), then PC

is a ⇧0
1-class. Let Qe = {X : X 2 Pe} be the ⇧0

1-class of complements of elements
of Pe. Now we have that

'e is total () (9i)(9n) [Fi � [0, n] is a subset of some
X 2 Pe or its complement]

() (9i)(9n) [Pe \ PFi�[0,n] 6= ; or Qe \ PFi�[0,n] 6= ;]

Nonemptiness of a ⇧0
1-class is a ⇧0

1-property, hence Tot = {e : 'e is total} is ⌃0
2[F].

Note that the ⌃0
2-index does not depend on F . Since Tot is also ⇧0

2, it is �0
2[F]

via a fixed pair of indices, and hence Turing below F
0 via a fixed reduction. One

direction of the usual proof of the (relativized) Limit Lemma now shows that we
can uniformly compute an approximation to Tot from F . Hence, from F we can
uniformly compute a dominating function by Fact 3.5. ⇤
Theorem 3.8. Every dominating function uniformly computes an ultrafilter base.
In other words, U s DomFcn.

Proof. Let h eie2! be an effective listing of the {0, 1}-valued partial computable
functions defined on an initial segment of !. Let Ve,k = {x : e(x) = k} so that
h(Ve,0, Ve,1)i is an effective listing that contains all pairs of computable sets and
their complements.

Let T = {0, 1, 2}<1. Uniformly in ↵ 2 T , we will define a set S↵. We first
explain the basic idea and the modify it to make it work. The basic idea is that
S↵bk = S↵\Ve.k for k = 0, 1, that is, we split S↵ according to the listing above. We
then consider the leftmost path h so that Sg�e is infinite for each e. A dominating
function h can eventually discover each initial segment of this path and uses this
to compute a set F such that Fe =⇤

Sg�e for each e.
The problem is that both S↵ \ Ve,0 and S↵ \ Ve,1 could be finite (because e is

not a proper index of a computable set). In this case we still need to make sure
that Fn \ Fe+1 is infinite. So the rightmost option at level n is a set S↵b2 = eS↵

which simply removes every other element from S↵. The sets S↵bk for k  1 will
be subsets of eS↵.

We now provide the details. The set S↵ is enumerated in increasing fashion and
possibly finite. So each S↵ is computable, but not uniformly in ↵. All the sets and
functions defined below can be interpreted at stages.

Let S;,s = [0, s). If we have defined (at stage s) the set S↵ = {r0 < . . . < rk},
let eS↵ contain the numbers of the form r2i. Let S↵b2 = eS↵ (this redundancy
is convenient to conform with notation in the proof of the related Theorem 5.5
below). Let S↵bk = eS↵\Ve,k for k = 0, 1, e = |↵|. We define a uniform list of Turing
functionals �e so that the sequence

⌦
�h
e (t)

↵
t2!

is nondecreasing for each e and each
oracle function h such that h(s) � s for each s. We will let Fe = {�h

e (t) : t 2 !}.
Definition of �e. Given an oracle function h, we will write as for �h

e (s). Let a0 = 0.
Suppose s > 0 and as�1 has been defined.

Check if there is ↵ 2 T of length e such that |S↵,h(s)| � s. If there is no
such ↵, let as = as�1. Otherwise, let ↵ be leftmost such. If maxS↵,h(s) > as�1, let
as = maxS↵,h(s). Otherwise, again let as = as�1.

10 LEMPP, MILLER, NIES, AND SOSKOVA

Note that the sequence {as}s<! is unbounded because for the rightmost string
↵ 2 T of length e, the set S↵,t consists of the numbers in [0, t) divisible by 2e. We
may combine the functionals �e to obtain a functional such that (h)e = Fe for
each h with h(s) � s for each s.

Claim 3.9. If h 2 DomFcn then F = h 2 U .

To verify this, let g 2 2! denote the leftmost path in {0, 1, 2}! such that the set
Sg�e is infinite for every e. Note that g is an infinite path, because for every ↵, if
the set S↵ is infinite then so is S↵b2.

Fix e and let ↵ = g � e. Let p(s) be the least stage t such that S↵,t has at least s
elements. Since h dominates the computable function p, we will eventually always
pick ↵ in the definition of as = �he (s). Hence Fe =⇤

S↵, and so, in particular, Fe is
computable.

Clearly, if S↵ is infinite then S↵ �1 S� for ↵ � �. So Fe+1 ⇢1 Fe.
Let R be a computable set. Pick e such that R = Ve,0 and R = Ve,1. If g(e) = 0,

then Sg�e+1 ✓⇤
Ve,0 and hence Fe+1 ✓⇤

R. Otherwise, Sg�e+1 ✓⇤
Ve,1 and hence

Fe+1 ✓⇤
R. ⇤

4. Maximally independent families in computability

In this short section, we determine the complexity of the computability-theoretic
analog of the independence number i for the Boolean algebra of computable sets. It
turns out that maximally independent families behave within the computable sets
similarly to ultrafilter bases.

Given a sequence hFnin2!, for each binary string � we write

(1) F� =
\

�(i)=1

Fi \
\

�(i)=0

F i.

We call (a set F encoding) such a sequence independent if each set F� is infinite.

Definition 4.1. Given a Boolean algebra of sets B, the mass problem IB is the
class of sets F such that hFnin2! is a family that is maximally independent, namely,
it is independent, and for each set R 2 B, there is � such that F� ✓⇤

R or F� ✓⇤
R.

We abbreviate maximally independent family by m.i.f.

In the following, we let B be the Boolean algebra of computable sets, and we
drop the parameter B as usual. An easy modification of the proof of Theorem 3.6
yields the following

Theorem 4.2. Every m.i.f. F uniformly computes a dominating function. In other
words, I �s DomFcn.

Proof. Define the ⇧0
1-classes Pe as in Lemma 3.7. As before let Qe = {X : X 2 Pe}

be the ⇧0
1-class of complements of elements of Pe. Recall that for any set C, we let

PC = {X 2 2! : C ✓ X}. Now we have that
'e is total () (9�)(9n) [F� � [0, n] is a subset of some

X 2 Pe or its complement]
() (9�)(9n) [Pe \ PF��[0,n] 6= ; or Qe \ PF��[0,n] 6= ;]

As before, this shows that from F one can uniformly compute a dominating func-
tion. ⇤

MAXIMAL TOWERS AND ULTRAFILTER BASES IN COMPUTABILITY 11

Theorem 4.3. Every dominating function h uniformly computes a maximally in-
dependent family. In other words, I s DomFcn.

In fact, we will prove that a dominating function h uniformly computes a set F

such that the equivalence classes of the sets Fe freely generate the Boolean algebra
of computable sets modulo finite sets.

Proof. As in the proof of Theorem 3.8, let h eie2! be an effective listing of the
{0, 1}-valued partial computable functions defined on an initial segment of !, and
let Ve,k = {x : e(x) = k} for k = 0, 1.

In Phase e of the construction, we will define a computable set Fe such that
Fe = ⇥h

e for a Turing functional ⇥e determined uniformly in e. Suppose we have
defined ⇥i for i < e, and thereby the sets F� defined in (1), where � is a string of
length e.

The idea for building Fe is to try to follow Ve,0 while maintaining independence
from the previous sets. We apply this strategy separately on each F�. We define in-
ductively a sufficiently fast growing increasing sequence hrenin2! computable from h

and carry out the attempts on intervals [ren, ren+1). If Ve,0 appears to split F� on the
current interval, then we follow it; otherwise, we merely make sure that Fe remains
independent from F� on the interval by putting one number in and leaving another
one out. To decide which case holds, we consult the dominating function.

We now provide the details for Phase e. As e is fixed, we drop the superscripts e.
By � we will always denote a string of length e. Let r0 = 0. If rn has been defined,
let rn+1 > rn be the least number r such that for each �

(a) |[rn, r) \ F�| � 2, and
(b) if there are u,w 2 dom(e,h(rn))\F� with rn  u < w such that e(u) = 1

and e(w) = 0, then r > w for the least such w.
We define Fe(x) = ⇥h

e (x) for x 2 [rn, rn+1) as follows. For each �,
• if condition (b) holds and e is defined on [rn, rn+1), then let Fe(x) =
 e(x);

• otherwise, if x = min([rn, rn+1) \ F�), let Fe(x) = 1, else let Fe(x) = 0.
Verification. By induction on e, one verifies that F� is infinite for each � with
|�| = e, and that the sequence hrenin2! defined in Phase e of the construction is
infinite. Thus ⇥h

e is total for each function h. So F T h where Fe = ⇥h
e , and F

is an independent family.

Claim 4.4. Each set Fe is computable.

We verify this by induction on e. Suppose it holds for each i < e. So F� is
computable for |�| = e.

First assume that e is partial. Then for sufficiently large n, condition (b) does
not apply, and so the sequence hrnin2! and hence Fe are computable.

Now assume that e is total. Let

De = {� : |�| = e ^ |F� \ Ve,0| = |F� \ Ve,1| = 1}.
Define a function p by letting p(m) be the least stage s such that for each � 62 D,
condition (a) holds with rn = m, r = s, and for each � 2 De, there are u,w 2
dom(e,s) such that m  u < w as in condition (b). (Let p(m) = 0 if m is not
of the form rn.) Since F� is computable for each � of length e, the function p is
computable. Since h dominates p, for sufficiently large n, we will define rn+1 by

12 LEMPP, MILLER, NIES, AND SOSKOVA

checking e at a stage h(rn) � p(rn); since we chose the witnesses minimal, rn+1

is determined by stage p(rn). So we might as well check e at that stage and don’t
need h. Hence the sequence hrnin2! and therefore Fe are computable.

Claim 4.5. Suppose that e is total. Then for each string ⌧ = �ba of length e+1,
F⌧ ✓⇤

Ve,0 or F⌧ \ Ve,0 =⇤ ;.

If � 62 De, then this is immediate since F� ✓⇤
Ve,i for some i. Otherwise, Phase e

of the construction ensures that F�b0 =⇤
F� \ Ve,0.

By the last claim, the =⇤-equivalence classes of the Fe freely generate the Boolean
algebra of the computable sets modulo finite sets. In particular, F is a maximally
independent family. ⇤

We don’t know at present whether there is a “natural” Medvedev equivalence
between the two mass problems U and I. This would require direct conceptual
proofs avoiding the detour via the mass problem of dominating functions.

5. The co-computably enumerable case

Recall from Fact 2.3 that no tower, and in particular no ultrafilter base, can be
computably enumerable. In contrast, in this section we will see that even ultrafilter
bases can have computably enumerable complement.

Recall that a coinfinite c.e. set A is called simple if it meets every infinite c.e.
(or, equivalently, computable) set; A is called r-maximal if A ✓⇤

R or A ✓⇤
R for

each computable set R. Each r-maximal set is simple. For more background, see,
e.g., Soare [17].

We note that to some extent, the co-c.e. maximal towers behave like the comple-
ments of simple sets, and the co-c.e. ultrafilter bases behave like the complements
of r-maximal sets. Firstly, from a co-c.e. tower one can canonically obtain a set
of the required kind, namely, an infinite co-c.e. (but usually noncomputable) set
extending the tower, as we will show shortly in Proposition 5.1. Secondly, our con-
structions of co-c.e. towers with the respective properties resemble constructions of
such sets. However, our constructions add “more detail”, namely, structure inside
the simple set.

Proposition 5.1. (i) From a co-c.e. tower G, one can uniformly compute an
infinite co-c.e. set B such that B ✓⇤

Gn for each n. Moreover, the index for B is
also obtained uniformly.
(ii) If G is a maximal tower, then B is immune.
(iii) If G is an ultrafilter base, then B is r-cohesive, and hence B is r-maximal.

Proof. (i) We may assume that Gn ◆ Gn+1 for each n. We have Gn =
T

s Gn,s

where the Gn,s are uniformly cofinite sets given by strong indices, descending in s,
and Gn,s ◆ Gn+1,s for all n and s. Let �n,s be the n-th element of Gn,s. Clearly,
the double sequence h�n,si is computable, monotonic in s, and strictly monotonic
in n. Let �n = lims �n,s. The set B = {�n : n 2 !} is as required.

(ii) and (iii) follow from the definitions. E.g., for (iii), clearly B ✓⇤
R or B ✓⇤

R

for each computable set R. ⇤

5.1. Computably enumerable MAD sets, and co-c.e. towers. We will show
that there is a co-c.e. maximal tower G Turing reducible to any given noncom-
putable c.e. set A. Given that it is more standard to build c.e. rather than co-c.e.

MAXIMAL TOWERS AND ULTRAFILTER BASES IN COMPUTABILITY 13

sets, it will be convenient to first build a MAD set F T A. We employ a priority
construction with requirements that act only finitely often.

Theorem 5.2. For each noncomputable c.e. set A, there is a MAD c.e. set F T A.

Proof. As mentioned above, the construction is akin to Post’s construction of a
simple set. In particular, it is compatible with permitting.

Let hMeie2! be a uniformly c.e. sequence of sets such that M2e = We and
M2e+1 = ! for each e. We will build an auxiliary c.e. set H T A and let the c.e.
set F T A be defined by F

[e] = H
[2e] [H

[2e+1]. The role of the M2e+1 is to make
the sets H [2e+1], and hence the F

[e], infinite. The construction also ensures that H,
and hence F , is AD, and that

S
n H

[n] is coinfinite.
As usual, we will write He for H [e]. We provide a stage-by-stage construction to

meet the requirements

Pn : Me �
[

i<n

Hi infinite) |He \Me| � k, where n = he, ki.

At stage s, we say that Pn is satisfied if |He,s \Me,s| � k.
Construction.
Stage s > 0. For each n < s such that Pn is not satisfied where n = he, ki, if there
is x 2 Me,s �

S
i<n Hi,s such that

x > max(He,s�1), x � 2n and As � x 6= As�1 � x,

then put hx, ei into H (i.e., put x into He).
Verification. Each He is enumerated in increasing fashion and hence computable.

Each Pn is active at most once. This ensures that
S

e He is coinfinite: for each N ,
if x < 2N enters this union, then this is due to the action of a requirement Pn with
n  N , so there are at most N many such x.

To see that a requirement Pn for n = he, ki is met, suppose that its hypothesis
holds. Then there are potentially infinitely many candidates x that can go into He.
Since A is noncomputable, one of them will be permitted.

Now, by the choice of M2e+1, each H2e+1, and hence each Fe, is infinite. By
construction, for e < m, we have |He \Hm|  m. So the family described by H,
and therefore also the one described by F , is almost disjoint.

To show that F is MAD, it suffices to verify that if Me is infinite then Me \ Fp

is infinite for some p. If all the Pe,k are satisfied during the construction, we let
p = e. Otherwise, we let k be least such that Pn is never satisfied where n = he, ki.
Then its hypothesis fails, so Me ✓⇤ S

i<n Hi. ⇤
Since an index predictable set computes no MAD set, we obtain the following

Corollary 5.3. No noncomputable, c.e. set L is index predictable.

Downey and Nies have given a direct proof of this fact, see [6].

Corollary 5.4. For each noncomputable c.e. set A, there is a co-c.e. set G T A

such that G 2 T , i.e., hGnin2! is a maximal tower.

Proof. Let F be the MAD set obtained above. Recall the Turing reduction Cp
showing T s A in Fact 2.2. The set G = Cp(F), given by

x 2 Gn $ 8i < n [x 62 Fn]

is as required. ⇤

14 LEMPP, MILLER, NIES, AND SOSKOVA

5.2. Co-c.e. ultrafilter bases. To build a co-c.e. ultrafilter base F we can’t simply
adapt the Friedberg construction of a maximal set. If we did so, for each c.e. set W ,
we would have Fn ✓⇤

W or Fn ✓⇤
W for some n. However, this fails when W = B,

where B is the set obtained in Prop. 5.1(i). Instead, we need to make use of the fact
that we are given a c.e. index for a computable set and also one for its complement.
This will be apparent in the proof below.

Theorem 5.5. There is a co-c.e. ultrafilter base F .

Proof. We adapt the construction from the proof of the main result in [11], which
states that there is an r-maximal set A such that the index set CofA = {e : We [
A =⇤

!} is ⌃0
3-complete. Our proof can also be viewed as a variation on the proof

of Theorem 3.8 in the setting of co-c.e. sets. We remark that by standard methods,
one can extend the present construction to include permitting below a given high
c.e. set.

We build a co-c.e. tower F by providing uniformly co-c.e. sets Fe for e 2 ! that
form a descending sequence with Fe �1 Fe+1. . We agree that whenever we
remove x from Fe at a stage s, we also remove it from all Fi for i > e. Furthermore,
no element is ever removed from F0, so F0 = !.

Let h(Ve,0, Ve,1)i
e2!

be an effective listing of all pairs of disjoint c.e. sets as
defined in the proof of Theorem 3.8. The construction will ensure that the following
requirements are met.

Me : Fe \ Fe+1 is infinite.

Pe : Ve,0 [Ve,1 = !) Fe+1 ✓⇤
Ve,0 _ Fe+1 ✓⇤

Ve,1.

This suffices to establish that F is an ultrafilter base.
The tree of strategies is T = {0, 1, 2}<1. Each string ↵ 2 T of length e is

associated with Me and also with Pe. We write ↵ : Me and ↵ : Pe to indicate that
we view ↵ as a strategy of the respective type.

Streaming. For each string ↵ 2 T with |↵| = e, at each stage of the construction,
we have a set S↵, thought of as a stream of numbers used by ↵. Each time ↵ is
initialized, S↵ is is removed from Fe+1, and S↵ is reset to be empty. Also, S↵ is
enlarged only at stages at which ↵ appears to be on the true path. We will verify
the following properties:

(1) S; = !;
(2) if ↵ is not the empty node then S↵ is a subset of S↵� (where ↵

� is the
immediate predecessor of ↵);

(3) at every stage, S� \ S� = ; for incomparable strings � and �;
(4) at the time a number x first enters S↵, x is in Fe+1; and
(5) if ↵ is along the true path of the construction then S↵ is an infinite com-

putable set.
Note that S↵ can be thought of as a set that is d.c.e. uniformly in ↵. The set S↵

is finite if ↵ is to the left of the true path of the construction; S↵ is an infinite
computable set if S↵ is along the true path; and S↵ is empty if ↵ is to the right of
the true path.

The intuitive strategy ↵ : Pe. Only strategies associated with a string of length
 e can remove numbers from Fe. A strategy ↵ : Pe thins out S↵ by removing some
of its elements from Fe+1. It regards the set of remaining numbers as its private

MAXIMAL TOWERS AND ULTRAFILTER BASES IN COMPUTABILITY 15

version of Fe+1. It has to make sure that no strategies � to its right remove numbers
from Fe+1 that it wants to keep. On the other hand, it can only process a number x
once it knows whether x is in Ve,0 or Ve,1. The solution to this conflict is to reserve
a number x, which by initialization withholds it from any action of such a �. It
then waits until all numbers  x are in Ve,0 [Ve,1. If that never happens for some
reserved x, then ↵ is satisfied finitarily with eventual outcome 2. Otherwise, it will
eventually process x: If x 2 Ve,0, it continues its attempt to build Fe+1 inside Ve,0;
else it builds Fe+1 inside Ve,1. It takes outcome 0 or 1, respectively, according to
which case applies. Each time the apparent outcome is 0, the content of the output
stream based on the assumption that the true outcome is 1 is removed from Fe+1.
So if 0 is the true outcome, then indeed Fe+1 ✓⇤

Ve,0.
The strategy ↵ : Me simply removes every other element of S↵ from Fe+1. Then

↵ : Pe actually only works with the stream of remaining numbers. There is no
further interaction between the two types of strategies. (Note here that making Fe+1

smaller is to the advantage of Pe.)

Construction.
Stage 0. Let �0 be the empty string. Let Fe = ! for each e.
Stage s+ 1. Let S;,s = [0, s).
Substage e < s. We suppose that ↵ = �s+1 � e and S↵ have been defined.

As mentioned above, the strategy ↵ : Me removes every other element of S↵ from
Fe+1. We let eS↵ denote the set of remaining numbers. More precisely, if at the
current stage we have S↵ = {r0 < . . . < rk} and rk is new, then it puts rk into eS↵

iff k is even.

The strategy ↵ : Pe picks the first applicable case below.
Case 1: Each reserved number of ↵ has been processed: If there is a number x

from eS↵ greater than ↵’s last reserved number (if any) and greater than s0, pick x

least and reserve it. Initialize ↵b2. Let ↵b2 be eligible to act next.
Note that if Case 1 doesn’t apply then ↵ has a reserved, unprocessed number x.
Case 2: [0, x] ✓ Ve,0 [Ve,1 and x 2 Ve,0: Let s0 be the greatest stage < s at

which ↵ was initialized. Add x to S↵b0 and remove from Fe+1 all numbers in the
interval (s0, x) which are not in S↵b0. Declare that ↵ has processed x. Let ↵b0 be
eligible to act next.

Case 3: [0, x] ✓ Ve,0 [Ve,1 and x 2 Ve,1: Let s0 be the greatest stage < s at
which ↵ was initialized or ↵b0 was eligible to act. Add x to S↵b1 and remove from
Fe+1 all numbers in the interval (s0, x) which are not in S↵b1. Declare that ↵ has
processed x. Let ↵b1 be eligible to act next.

Case 4: Otherwise: Let s0 be the greatest stage < s at which ↵ was initialized
or ↵b2 was eligible to act. Let S↵b2 = eS↵ \ (s0, s). Let ↵b2 be eligible to act next.

We define �s+1(e) = i where ↵bi, 0  i  2, has been declared eligible to act
next.

Verification. By construction and our convention above, Fe is co-c.e., and Fe ◆
Fe+1 for each e.

Let g 2 2! denote the true path, namely, the leftmost path in {0, 1, 2}! such
that 8e91s [g � e � �s]. In the following, given e, let ↵ = g � e, and let s↵ be the
largest stage s such that ↵ is initialized at stage s. We verify a number of claims.

Claim 5.6. The “streaming properties” (1)-(5) hold.

16 LEMPP, MILLER, NIES, AND SOSKOVA

(1) and (2) hold by construction.
(3) Assume this fails for incomparable � and �, so x 2 S� \ S� at stage s. We

may as well assume that � = ↵bi and � = ↵bk where i < k. By construction, k  1
is not possible, so k = 2. Since x 2 S↵bi and i  1, x was reserved by ↵ at some
stage t  s. So x can never enter S↵b2 by the initialization of ↵b2 when x was
reserved.

(4) is true by construction.
(5) holds by the definition of the true path and because S↵ is enumerated in

increasing fashion at stages � s↵.

Claim 5.7. Fe =⇤
S↵.

The claim is verified by induction on e. It holds for e = 0 because F0 = S; = !.
Suppose the claim is true for e. To verify it for e+ 1, let � = g � (e+ 1), and let s�
be the largest stage s such that � is initialized at stage s.

First, we verify that Fe+1 ✓⇤
S� . Suppose x 2 Fe+1. Then x 2 Fe, so inductively

x 2 S↵ for almost all such x. By construction, any element x that isn’t promoted
to S� is also removed from Fe+1 unless x is the last element ↵ reserves. However, in
that case, necessarily � = ↵b2, so this leads to at most one new element in Fe+1\S� .

Next, we verify that S� ✓⇤
Fe+1. Suppose x 2 S� . Then x 2 S↵, so inductively

x 2 Fe for almost all such x. At stage s � s� , an element x of S↵ cannot be
removed from Fe+1 by a strategy � >L ↵ because S� \ S↵ = ; by (3) as verified
above and since � can only remove elements from S� . So x can only be removed
by ↵ : Me or ↵ : Pe.

If ↵ : Me removes x from Fe+1, then x 62 eS↵, contradiction. So, by construction,
the only way x can be removed from Fe+1 is by a strategy ↵ : Pe, which for a
sufficiently large x means that x is not promoted to S� , either.

Claim 5.8. Each requirement Me is met, namely, Fe \ Fe+1 is infinite.

To see this, recall that ↵ = g � e. By the foregoing claim, the action of ↵ : Me

removes infinitely many elements of S↵ ✓ Fe from Fe+1.

Claim 5.9. Each requirement Pe is met.

Suppose the hypothesis of Pe holds. Then every number that ↵ reserves is
eventually processed. So either g(e) = 0, in which case Fe+1 ✓⇤

Ve,0 by Claim 5.7,
or g(e) = 1, in which case Fe+1 ✓⇤

Ve,1, also by Claim 5.7. ⇤

6. Ultrafilter bases for other Boolean algebras

As mentioned in the introduction, we have set up our framework to apply to
general countable Boolean algebras rather than merely the Boolean algebra of the
computable sets, but mainly with subsequent research in mind. In this last section
of our paper, we provide two results on more general Boolean algebras of sets.

Recall that K(x) denotes the prefix-free complexity of a string x, and that a
set A ✓ ! is K-trivial if 9c8nK(A � n)  K(0n) + c. For more background on
K-trivial sets, see, e.g., Nies [13, Ch. 5] or [5]. Note that by combining results of
various authors, the K-trivial degrees form a Turing ideal in the �0

2-degrees (see,
e.g., Nies [13, Sections 5.2, 5.4]).

Theorem 6.1. There is a �0
2-ultrafilter base for the Boolean algebra of the K-

trivial sets.

MAXIMAL TOWERS AND ULTRAFILTER BASES IN COMPUTABILITY 17

Proof. Kučera and Slaman [10] noted that there is a �0
2-function h that dominates

all functions that are partial computable in some K-trivial set. We use h in a
variation of the proof of Theorem 3.8.

Let hVe,0, Ve,1ie2! be a uniform listing of the K-trivials and their complements
given by wtt-reductions to ;0; such a listing exists by Downey, Hirschfeldt, Nies and
Stephan [4] (also see [13, Theorem 5.3.28]). Let T = {0, 1}<1.

For each ↵ 2 T , we define a (possibly finite) K-trivial set S↵. Let S; = !.
Suppose we have defined the set S↵ = {r0 < r1 < . . .}. Let eS↵ contain the numbers
of the form r2i. Let S↵bk = eS↵ \ Ve,k for e = |↵| and k = 0, 1. (Note that all these
sets are K-trivial since the K-trivials form a Turing ideal.)

Uniformly recursively in ;0, we build sets Fe, given by nondecreasing unbounded
sequences of numbers a

e
0  a

e
1  Suppose we have defined a

e
k�1. Let ↵ 2 T be

the leftmost string of length e such that S↵ has at least k + 1 elements less than
h(k). If ↵ exists let a

e
k be the k-th element of S↵, unless this is less than a

e
k�1, in

which case we let a
e
k = a

e
k�1.

Let g 2 2! denote the leftmost path in {0, 1}! such that for every e the set Sg�e
is infinite. Fix e and let ↵ = g � e. Let p(k) be the (k+1)-st element of S↵. Since h

dominates the function p, eventually in the definition of Fe we will always pick ↵.
Hence Fe =⇤

S↵. In particular, Fe is K-trivial. Also, the sequences haekik2! are
unbounded for each e, so F is �0

2. Clearly, if S↵ is infinite then S↵ �1 S� for
↵ � �. So Fe+1 ⇢1 Fe.

To verify that F is an ultrafilter base for the K-trivials, let R be a K-trivial set.
Pick e such that R = Ve,0 and R = Ve,1. If g(e) = 0 then Sg�e+1 ✓⇤

Ve,0, and hence
Fe+1 ✓⇤

R. Otherwise Sg�e+1 ✓⇤
Ve,1, and hence Fe+1 ✓⇤

R. ⇤

Finally we consider a Boolean algebra of sets in the subrecursive setting. By the
techniques of Jockusch and Stephan [9] we have the following

Theorem 6.2. An oracle C computes an ultrafilter base for the primitive recursive
sets iff C

0 is of PA degree relative to ;0.

Proof.): Suppose C computes an ultrafilter base F for the primitive recursive
sets. Let g T F be a function associated with F as in Definition 1.2. Then the
range S of g is p-cohesive in the sense of [9], namely, S is cohesive for the primitive
recursive sets. Hence S

0 and therefore C
0 is PA relative to ;0 by [9, Theorem 2.1].

(: We follow the proof of [9, Theorem 2.1], making the necessary modifications.
Let hAiii2! be a uniformly recursive list of all the primitive recursive sets. We call i
a primitive recursive index for Ai (index, in brief). By hypothesis on C, there is a
function g T C

0 such that

|Ai \An| < |Ai \An|) g(i, n) = 0

|Ai \An| < |Ai \An|) g(i, n) = 1

(because the conditions on the left are both ⌃0
2, and so C

0 computes a separating
set for them).

We inductively define a C
0-computable sequence of indices henin2!. Let e0 be

an index for !. If en has been defined and Aen = {r0 < r1 < . . .} (possibly finite),
let e

0
n be an index, uniformly obtained from en, such that Ae0n = {r0, r2, . . .}. Now

let

Aen+1 = Ae0n \An if g(e0n, n) = 0, and

18 LEMPP, MILLER, NIES, AND SOSKOVA

Aen+1 = Ae0n \An if g(e0n, n) = 1.

By induction on n, one verifies that Aen is infinite and Aen+1 ⇢1 Aen . Since
g T C

0, the numbers en have a uniformly C-computable approximation hen,xix2!.
Let the ultrafilter base F T C be given by Fn(x) = Aen,x(x). Then Fn =⇤

Aen

is primitive recursive. Since Fn+1 ✓⇤
An or Fn+1 ✓⇤

An for each n, the set F is an
ultrafilter base for the primitive recursive sets. ⇤

References

[1] Andreas R. Blass. Combinatorial cardinal characteristics of the continuum. In: Matthew
Foreman and Akihiro Kanamori, editors, Handbook of Set Theory, volume 1, pages 395–489.
Springer, Dordrecht Heidelberg London New York, 2010.

[2] Jörg Brendle, Andrew D. Brooke-Taylor, Keng Meng Ng, and André O. Nies. An analogy
between cardinal characteristics and highness properties of oracles. In: Proceedings of the
13th Asian Logic Conference: Guangzhou, China, pages 1–28. World Scientific, 2013. http:
//arxiv.org/abs/1404.2839.

[3] Jörg Brendle, Vera V. Fischer, and Yurii D. Khomskii. Definable maximal independent fam-
ilies. Proceedings of the American Mathematical Society, 147(8):3547–3557, 2019.

[4] Rodney G. Downey and Denis R. Hirschfeldt and André O. Nies, and Frank Stephan. Trivial
reals. In Proceedings of the 7th and 8th Asian Logic Conferences, pages 103–131, Singapore,
2003. Singapore University Press.

[5] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic randomness and complexity.
Springer-Verlag, Berlin, 2010. 855 pages.

[6] André O. Nies (editor). Logic Blog 2019. Available at http://arxiv.org/abs/2003.03361,
2019.

[7] Noam Greenberg, Rutger Kuyper, and Daniel D. Turetsky. Cardinal invariants, non-lowness
classes, and Weihrauch reducibility. Computability, 8(3-4):305–346, 2019.

[8] Carl G. Jockusch, Jr. Degrees in which the recursive sets are uniformly recursive. Canad. J.
Math., 24:1092–1099, 1972.

[9] Carl G. Jockusch, Jr. and Frank Stephan. A cohesive set which is not high. Math. Log. Quart.,
39:515–530, 1993.

[10] Antonín Kučera and Theodore A. Slaman. Low upper bounds of ideals. J. Symbolic Logic,
74:517–534, 2009.

[11] Steffen Lempp, André O. Nies, and D. Reed Solomon. On the filter of computably enumerable
supersets of an r-maximal set. Archive for Mathematical Logic, 40(6):415–423, 2001.

[12] Maryanthe Malliaris and Saharon Shelah. General topology meets model theory, on ?? and
?? Proceedings of the National Academy of Sciences, 110(33):13300–13305, 2013.

[13] André O. Nies. Computability and Randomness, volume 51 of Oxford Logic Guides. Oxford
University Press, Oxford, 2009. 444 pages. Paperback version 2011.

[14] Nicholas A. Rupprecht. Effective correspondents to cardinal characteristics in Cichoń’s dia-
gram. PhD thesis, University of Michigan, 2010.

[15] Nicholas A. Rupprecht. Relativized Schnorr tests with universal behavior. Arch. Math. Logic,
49(5):555–570, 2010.

[16] Theodore A. Slaman and Robert M. Solovay. When oracles do not help. In Proceedings of the
fourth annual workshop on Computational learning theory, pages 379–383. Morgan Kaufmann
Publishers Inc., 1991.

[17] Robert I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical
Logic, Omega Series. Springer–Verlag, Heidelberg, 1987.

[18] David Soukup. Two infinite quantities and their surprising relationship. arXiv preprint
arXiv:1803.04331, 2018.

(Nies) Department of Computer Science, University of Auckland, Private bag
92019, Auckland, New Zealand

E-mail address: andre@cs.auckland.ac.nz

http://arxiv.org/abs/1404.2839
http://arxiv.org/abs/1404.2839
http://arxiv.org/abs/2003.03361

MAXIMAL TOWERS AND ULTRAFILTER BASES IN COMPUTABILITY 19

(Lempp, Miller, Soskova) Dept. of Mathematics, University of Wisconsin–Madison,
480 Lincoln Dr., Madison, WI 53706, USA

E-mail address: lempp@math.wisc.edu
E-mail address: jmiller@math.wisc.edu
E-mail address: msoskova@math.wisc.edu

