
CDMTCS
Research
Report
Series

Solving a PSPACE-complete
Problem with cP Systems

Alec Henderson
Radu Nicolescu
Michael J. Dinneen

School of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-545
July 2010

Centre for Discrete Mathematics and
Theoretical Computer Science

Solving a PSPACE-complete Problem with cP Systems

Alec Henderson∗, Radu Nicolescu and Michael J. Dinneen

School of Computer Science, University of Auckland,
Auckland, New Zealand

July 4, 2020

Abstract

There have been a few NP-hard problems solved using cP systems including the
travelling salesman problem. However, these problems are typically in NP rather than
higher in the polynomial time hierarchy. In this paper we solve QSAT (also known as
TQBF), which is a well-known PSPACE-complete problem. Compared to other extant
confluent P systems solutions, our deterministic cP solution only uses a small constant
number of custom alphabet symbols (19), a small constant number of rules (10), and a
small constant upper-limit of membrane nesting depth (6), independent of the problem
size.

1 Introduction

There are many computational complexity classes from log space to exponential and beyond.
Many of these classes are not known to be equal or not. In fact many important classes of
problems have this property. One of the millennial prize problems is dedicated to knowing if
P equals NP. The class NP has many complete problems such as the maximum independence
set, the travelling salesman, and satisfiability problems. NP is one of the lowest levels of
the polynomial time hierarchy which characterises many different classes within PSPACE.
One of the most famous PSPACE-complete problems is the Quantified Boolean Satisfiability
(QSAT) problem, also known as the True Quantified Boolean Formula (TQBF) problem.

cP systems are a variant of P systems that use high-level rewriting rules, based on
one-way first-order syntactic unification (which is similar to pattern matching in functional
programming). cP systems have been used: to solve NP-hard problems such as the travelling
salesman problem [1], to model distributed problems [2], and with recent research focused
on verification [3]. In this paper we demonstrate that cP systems can not only solve NP-
hard problems in linear time, but also PSPACE-complete problems in polynomial time, with
QSAT (i.e. TQBF) being solvable in linear time.

∗Corresponding author: ahen386@aucklanduni.ac.nz

1

Table 1: Comparison of our solution with pre-existing confluent P system solutions, where
n is the number of variables and m the number of clauses.

Solution (year) # Rule tem-
plates

Rules # Custom
alphabet sym-
bols

Membrane
nesting depth

Linear solution for
QSAT (2006) [7]

40 O(m) O(nm) O(n)

Uniform solution of
QSAT (2007) [8]

33 O(mn) O(nm) O(n)

Deterministic solution
to QSAT (2010) [5]

20 O(n) O(n) O(n)

Solving QSAT in sub-
linear nesting depth
(2018) [6]

27 O(mn) O(n log n) O(n/ log n)

QSAT cP system
(2020)

10 10 19 (also 6
states)

6

Our solution is—as far as we know—the first using cP systems; it uses 10 rules and a con-
stant custom alphabet of size 19. Our solution is deterministic, so we do not compere it here
with non-confluent solutions, such as [4] (this could be the topic of further investigations).
We note that our solution is not the first confluent solution to PSPACE-complete problems
using P systems. Previous solutions exist that follow similar ideas, such as [5, 6, 7, 8]. As
shown in Table 1, our solution substantially improves the extant results, on several crite-
ria: alphabet size, number of rules, and membrane nesting depth—all small constants,
independent of the problem size.

Rule templates are groupings of similar rules, only differing by symbol indices. When
counting rule templates and rules, we did not consider the numbers of repeated copies placed
in different membranes/neurons. If we were to include such occurrence counts, the number
of rules would increase drastically, for the other extant solutions. For example, the solution
to QSAT in [5] would have O(22n) rules, if we count the rules in every neuron. cP systems
do not have such a exponential blow-up, all these characteristics are small constants.

In Section 2 we discuss the background of this specific problem and how cP systems work.
In Section 3 we present and discuss our ruleset to solve the QSAT problem.

2 Background

In this section we cover cP systems and a brief explanation of the QSAT problem. For a
more thorough introduction to cP systems see [9].

2

2.1 QSAT

A Boolean formula is an expression involving Boolean variables and Boolean operations.
For more information on Boolean formulae see [10]. A NP-complete problem is the Boolean
satisfiability problem (SAT), which determines if the variables of a given Boolean formula
can be assigned Boolean values that evaluate the formula to true.

A Boolean formula is in conjunctive normal form (CNF) if it is expressed as a conjunction
(∧) of clauses. A clause is a disjunction (∨) of literals. A literal is a variable or its negation
(here indicated by overbars). For example, the following Boolean formula is in CNF:

(x1 ∨ x2) ∧ (x1 ∨ x̄2).

The SAT formulae assume implicit existential quantifiers on all variables. The existential
quantifier (∃) results true if one of the possible assignments of the variables allows the
formula to be true. Thus, the above formula is interpreted as:

∃x1 ∃x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2).

A quantified Boolean formula is a Boolean formula where variables can be explicitly and
independently quantified, with existential or universal quantifiers. The universal quantifier
(∀) results true if every possible assignment of the variables results in the formula being
true.

Without loss of generality, we use a restricted version of quantified Boolean formulae,
that are assumed to be in fully quantified prenex normal form. Prenex normal form (PNF)
means that the quantified variables are all factored out before the Boolean formula. Fully
quantified means that every variable in the Boolean formula has a quantifier. This leads to
the problem TQBF, as presented in [10]:

TQBF = {φ | φ is a true fully quantified Boolean formula in PNF}.

As shown in [11] TQBF is a PSPACE-complete problem. Without loss of generality, here
we only use Boolean formulae which are also in CNF form, a further restricted version which
is still PSPACE-complete. This problem is usually referred to as QSAT, where [5, 6, 7, 8]
also make the same assumptions.

For example, the following two formulae are fully quantified Boolean formulae in CNF
and PNF:

∀x1 ∃x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2). (1)

∃x1 ∀x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2). (2)

Solving QSAT for a given formula φ can be done, as shown in [10], with the recursive
algorithm (pseudocode) presented here in Table 2, slightly adapted, where we separate φ

3

Table 2: Recursive algorithm for QSAT: q = quantifiers; p = variables; f = unquantified
Boolean expression.

l et rec QSAT q p f =
i f q = () then

eval f // no more quantifiers in prefix, all variables assigned

else
let y , x = pop q , pop p
l et v′ = QSAT q p f [x := 0]
l et v′′ = QSAT q p f [x := 1]
l et v = i f y = ∀ then v′ ∧ v′′ else v′ ∨ v′′
v

// sample calls, for Formulae (1, 2)
l et v = QSAT (∀, ∃) (x1, x2) (x1 ∨ x2) ∧ (x1 ∨ x̄2) // fa l se
let v = QSAT (∃, ∀) (x1, x2) (x1 ∨ x2) ∧ (x1 ∨ x̄2) // true

in three components: q—the stack of quantifiers ; p—the stack of variables ; f—the Boolean
expression itself (the unquantified matrix).

The given algorithm systematically explores all possible combinations of variable assign-
ments and evaluates the formula according to the given quantifiers. In the top-down pass,
expressions f [x := 0], f [x := 1] indicate substitutions in f of x by 0 (i.e. false), respectively
by 1 (i.e. true). In the bottom-up pass, (∃) is associated with (∨), and (∀) with (∧), as
straightforward arguments indicate.

The solutions of Formulae (1, 2) can be visualised on the trees shown in Figures 1, 2: (a)
lists the quantified variables, top-down, one per tree layer; (b) is the top-down construction
of the tree, showing variable assignments; and (c) is the bottom-up evaluation of the tree,
applying ∨ for ∃ and ∧ for ∀.

A sequential execution of the recursive solution makes a preorder traversal of the complete
tree, using O(n) space and O(2n) runtime steps, where n is the number of quantifiers (or
variables) in the prefix, and also the number of tree levels below the root.

Note that Formulae (1, 2) only differ in quantifiers. Thus Figures 1, 2 differ only in their

0 1

0 101

0

0 1

0 110

∀x1

∃x2

(a) (b) (c)

∨

∧

∨

Figure 1: QSAT tree for Formula (1): ∀x1 ∃x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2).

4

0 1

0 101

1

0 1

0 110

∃x1

∀x2

(a) (b) (c)

∧

∨

∧

Figure 2: QSAT tree for Formula (2): ∃x1 ∀x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2).

quantifiers lists (a) and evaluation results in otherwise isomorphic tress (c); while trees (b)
are identical.

The recursion of the algorithm in Table 2 can be unrolled by straightforward techniques.
The non-recursive solution in Table 3 creates each layer of the tree successively, whilst
implicitly discarding the previous layer. Variables in p are processed during the top-down
pass, so p is simply successively popped. Quantifiers in q are required during the bottom-up
pass, so, during the top-down pass, q is successively reversed into q′.

F is an ordered list of Boolean expressions, corresponding to the nodes of the correspond-
ing layer in the underlying virtual tree. Initially, F = (f), a singleton list containing the
formula given by the problem. F changes 2n+ 1 times, by way of the higher-order function
map: (i) During the n top-down steps, each expression f ∈ F is replaced by the substitu-
tions pair f [x := 0], f [x := 1]; (ii) At the leaves level, when all variables have been assigned,
each f is replaced by its evaluated Boolean value; (iii) During the n bottom-up steps, each
consecutive pair of Boolean values is replaced by either an ∧ or ∨ result, depending on the
corresponding quantifier, ∀ or ∃ (this quantifier was saved in q′ during the top-down pass).

Assuming that enough processing elements are available, a parallel execution of this non-
recursive solution trades space for time, running in O(n) time and using O(2n) space. Our
cP solution follows the same process as the non-recursive solution in Table 3.

2.2 cP systems

P systems, also known as membrane computing, is a generic framework for designing compu-
tational models inspired by biology. Similar to many other P systems variants, cP systems
(i) assume access to unbounded resources, such as space and computing power; (ii) organ-
ise top-level cells into digraph-like structures; and (iii) evolve by applying formal multiset
rewriting rules, with additional messaging primitives between top-cells.

cP top-cells contain multisets of atoms and labelled sub-cells, which are compound ob-
jects similar to ground terms used in logic programming (Prolog). However, unlike Prolog
terms, cP terms are strictly multiset based, thus totally unordered and allowing repetitions.
Collectively, cP cells (top-cells and sucb-cells) correspond to cells or membranes used by
other P system variants.

cP rules are high-level, supporting one-way first-order syntactic unification (which is

5

Table 3: Non-recursive pseudocode—layer-by-layer in both sequential and parallel mode:
q = quantifiers; p = variables; F = list of unquantified Boolean expressions.

l et QSAT q p F =
l et q′ = ()
while q 6= () do // top-down pass

l et x = pop p
do push q′ (pop q) // reverse q onto q′

l et F = map F (f → f [x := 0], f [x := 1])

// e.g. F = (0 ∨ 0) ∧ (0 ∨ 0̄), (0 ∨ 1) ∧ (0 ∨ 1̄), (1 ∨ 0) ∧ (1 ∨ 0̄), (1 ∨ 1) ∧ (1 ∨ 1̄)

l et F = map F (f → eval f)

// e.g. F = 0, 0, 1, 1

while q′ 6= () do // bottom-up pass
l et y = pop q′

l et F = map F (v, v′ → i f y = ∀ then v′ ∧ v′′ else v′ ∨ v′′)
v

// sample calls, for Formulae (1, 2)
l et v = QSAT (∀, ∃) (x1, x2) (x1 ∨ x2) ∧ (x1 ∨ x̄2) // fa l se
let v = QSAT (∃, ∀) (x1, x2) (x1 ∨ x2) ∧ (x1 ∨ x̄2) // true

6

similar to pattern matching in functional programming). Unlike other P systems variants,
only cP top-cells have rewriting rules. Sub-cells in cP systems do NOT have own rules and
are only used to represent local data.

We now present a brief overview of cP systems, only focusing on the details needed here,
specifically ignoring the inter-top-cell relations and messaging rules, as our solution here
consists of one single top-cell.

Using a BNF-like notation, Tables 4 and 5 describe basic structures of cP systems, as
used in this paper. The grammar presented in Table 4 describes the contents for top-cells
and sub-cells, i.e. how data is stored in cP multisets. The grammar presented in Table 5
describes the high-level rewriting rules for cP systems.

We use standard conventions: the symbol λ denotes the empty multiset; dots (‘. . .’)
represents zero or more repetitions; atoms are denoted by lower case characters (letters or
other symbols); and variables are denoted by uppercase letters, except the special discard
variable, denoted by an underscore ().

Top-cells have states and contain multisets of literal atoms and recursively nested com-
pound terms called sub-cells. Functors are sub-cell labels, and their multiset arguments are
enclosed in parentheses ‘()’. Top-cell contents are all ground, i.e. cannot contain variables.

Rules are applied in state-based weak priority order, and contain compound terms called
vterms, which are similar to the sub-cell terms, but with one critical distinction: vterms may
also include variables. State-based weak priority order enable simple but powerful application
flow control, specifically branching (if then else) and various looping constructs.

As already mentioned, rules are applied using pattern matching unification between
terms, and specifically unification between variables and other terms (atom or compound).
Rules can be applied in two modes: in exactly-once (1) or max-parallel mode (+).

As usually, before a rule can be applied, it must match, by way of unification, all con-
ditions specified by its left-hand-side, and its promoter and inhibitor constraints. There are
two cases: (i) vterm arguments enclosed in round parentheses ’()’ require complete match;
(i) vterm arguments enclosed in curly braces ’{}’ require partial match, of only the specified
contents. The second feature is not frequently needed, but enables partial sub-cell transfor-
mations similar to those of other P system variants, without locking the whole sub-cell; this
is further described under the title microsurgery.

We emphasise that cP terms and vterms are strictly based on multisets. However, we
can straightforwardly emulate other structures, such as numbers and even ordered lists.
Essentially, numbers can be represented as multisets solely consisting of repeated occurrences
of a designated unary digit, typically 1. We do not use lists here, so this topic is not discussed.

Terms with repeated arguments seem to require an order concept. However, we consider
that these are just convenient shorthands to nested multiset-based labelled terms. For ex-
ample, the term a(bc)(de) is actually a shorthand for a(bc · (de)), where the dot functor (·)
is system provided. Thus, if a is a sub-cell at nesting depth 1, then b and d are at nesting
depths 2 and 3, respectively.

We conclude this subsection by noting that, unlike most other P system variants, cP terms
and rules allow crisp algorithm descriptions, with constant-size alphabets, constant-size rule-

7

Table 4: BNF grammar for cP top-cells.

<top−c e l l> : := <s ta te> <term> . . .
<s ta te> : := <atom>
<term> : := <atom> | <sub−c e l l>
<sub−c e l l> : := <compound−term> . . .
<compound−term> : := <functor> <args> . . .
<functor> : := <atom>
<args> : := ‘ (’ <term> . . . ‘) ’

Table 5: BNF grammar for rules, here omitting inter-cell messaging.

<ru le> : := <lhs> →a <rhs> <promoters> < i n h i b i t o r s>
<lhs> : := <s ta te> (<vterm>). . .
<rhs> : := <s ta te> (<vterm>). . .
<promoters> : := (‘ | ’ <vterm−or−eq>). . .
< i n h i b i t o r s> : := (‘¬ ’ <vterm−or−eq>). . .
<vterm−or−eq> : := <vterm> | <vterm> ‘= ’ <vterm>
<vterm> : := <var i ab l e> | <atom> | <compound−vterm>
<compound−vterm> : := <functor> <vargs> . . .
<vargs> : := ‘ (’ <vterm> . . . ‘) ’ | ‘{ ’ <vterm> . . . ‘ } ’

sets, and bounded membrane nesting, independent of the size of the problem and number of
cells in the system. The cP semantics will be further clarified in the following subsection, by
way of examples.

2.3 Examples of cP rules

We now present a few simple but typical rules for cP systems.

1. Change state from s0 to s1 and rewrite one pair of a and b into one c, provided that
at least one p is present (and will stay unchanged in the cell):

s0 a b →1 s1 c | p

2. Change state from s0 to s1 and rewrite all a, b pairs into c’s, in the max-parallel mode,
provided that at least one p is present:

s0 a b →+ s1 c | p

3. Change state from s0 to s1, rewrite one compound symbol a() by adding one 1 to its
contents; variable X is unified to the actual contents of a.

s0 a(X) →1 s1 a(X1)

If the current a already has two copies of 1, i.e. a(11), then the result will be an
updated copy with three 1’s, i.e. a(111)—thereby incrementing its base 1 contents.

8

4. Conditionally change state from s0 to s1, rewrite one compound symbol a() by removing
one 1 from its contents, if there is at least one 1 among its contents.

s0 a(Y 1) →1 s1 a(Y)

For example, if the current a already has three copies of 1, i.e. a(111), the result will
be an updated copy with two 1’s, i.e. a(11)—thereby decrementing its base 1 contents.
The rule does NOT apply if the cell does not contain at least one 1.

5. A complex operation, highlighting the weak priority order, with resulting state depend-
ing on the current cell contents.

s0 a →1 s1 e (1)
s0 b →1 s2 f (2)
s0 c →1 s1 g (3)

(a) If the cell contains a and c, then rules (1) and (3) apply; new state: s1, new
contents: e and g.

(b) If the cell contains b and c, then only rule (2) applies; new state: s2, new contents:
f and c. Rule (3) is NOT applicable, because rule (2) has already set the target
state to s2.

(c) If the cell contains a, b and c, then only rules (1) and (3) apply; new state: s1, new
contents: e, b, and g. Rule (2) is NOT applicable, because rule (1) has already
set the target state to s1.

6. Microsurgery is denoted by curly braces { } instead of round parentheses () and
enables processing of parts of the inner contents, without locking the rest [12]. Micro-
surgery allows us to use sub-cells in the same style as we use our own top-cells, and
also independent cells in other P systems variants. Without microsurgery, this will
NOT be possible, because sub-cells do NOT have own rules—instead, their contents
need to be manipulated solely by rules of their containing top-cells.

For example, the rules:

s0 x{a} →+ x{b}
s0 x{c} →+ x{d}

applied to the term x(a a c c c e) will in one single step result in x(b b d d d e). Without
microsurgery, this requires more steps and more complex rules.

Note that microsurgical applications are already the default for top-cells, where we do
apply partial matching, without locking all the contents. However, for simplicity, we
do not use explicit curly braces for the outermost top-cell. For example, these two
rules would in fact be equivalent:

s0 a → s0 b ≡ s0 {a} → s0 {b} ,

9

Table 6: Cells y form a lookup table for Boolean identity and negation operations: V = if
S=+ then K else K̄.

K S V y cells contents
0 + 0 y(0)(+)(0)
0 − 1 y(0)(−)(1)
1 + 1 y(1)(+)(1)
1 − 0 y(1)(−)(0)

3 cP Solution and Examples

In this section we discuss our cP system for solving QSAT for n ≥ 1, and we illustrate its
evolution on Formulae (1, 2), recalled here:

∀x1 ∃ x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2) (1)
∃x1 ∀ x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2) (2)

We only use one single top-level cell and we closely follow the parallel pseudocode al-
gorithm listed in Table 3: a layer-by-layer sweep over a virtual tree, in two passes—first
top-down, then bottom-up.

We use six states, {s1, s2, ..., s6}, where s1 is the initial state, and s6 is the final. The
ruleset is shown in two listings: the top-down pass in Table 9, and the bottom-up pass in
Table 11. The evolution corresponding to Formula (1) is illustrated in the following tables:
Table 8 shows the initial cell contents and state; then Table 10 traces the top-down evolution;
and Table 12 traces the bottom-up evolution. Table 13 traces the bottom-up evolution of the
slightly different Formula (2).

Lookup tables

For efficiency, our cP solution uses two read-only “tables”. Four sub-cells y()()() form a
lookup table for Boolean identity and negation operations. Table 6 shows their contents and
their interpretation.

Eight sub-cells w()()()() form a lookup table for Boolean ∧ and ∨ operations, the actual
operation being selected on the corresponding quantifier. Table 7 shows their contents and
their interpretation.

Prefixes and tree levels

During the top-down pass, sub-cell ν() is a counter that indicates the tree level depth;
initially ν(n), where n is the actual number of quantifiers (or variables).

Sub-cells p()(), q()() form 1-based associative arrays, that encode the given prefix: p()()
contains variables, q()() contains quantifiers. These sub-cells are used as “horizontal” (not
nested) stacks, where the top is indicated by the current value of counter ν(). During the top-
down pass, the top elements of p()() are temporarily popped into h(), and q()() is reversed

10

Table 7: Cells w form a lookup table for Boolean ∨ and ∧ operations: V = if Q=∀ then V ′

∧ V ′′ else V ′ ∨ V ′′.

Q V ′ V ′′ V w cells contents
∀ 0 0 0 w(∀)(0)(0)(0)
∀ 0 1 0 w(∀)(0)(1)(0)
∀ 1 0 0 w(∀)(1)(0)(0)
∀ 1 1 1 w(∀)(1)(1)(1)
∃ 0 0 0 w(∃)(0)(0)(0)
∃ 0 1 1 w(∃)(0)(1)(1)
∃ 1 0 1 w(∃)(1)(0)(1)
∃ 1 1 1 w(∃)(1)(1)(1)

into a similar “horizontal” stack, q′()(), whose top is indicated by counter µ()— stack q′()()
will be used in the bottom-up pass.

Stacks p()(), q()(), q′()() closely match their namesake variables used in the Table 3.
Together with their associated counters, ν()andµ(), these play the role of global variables
controlling the two passes.

Literals encoding and formula sub-cells

Formula literals, i.e. variables and their negations, are given via sub-cells x()(). We use
shorthand notations, that closely match the mathematical expression and keep our expression
crisp:

x1 ≡ x(1)(+)
x̄2 ≡ x(11)(−)

This is just a notation convenience, our rules actually assume the longer version when
being matched.

Clauses are given via sub-cells c(), having literals as contents, with implicitly assumed
Boolean or’s. For example:

(x1 ∨ x̄2) ≡ c(x1x̄2) ≡ c(x(1)(+) x(11)(−))

The contents of c()’s are multisets, thus the order of literals is irrelevant, but we usually
keep it in our listings, for more readablity.

Unquantified formulae are given via sub-cells f(). Initially, sub-cells f() contain just
multisets of clauses. For example, at the root of the virtual tree, the unquantified part of
Formula (1) is encoded as:

f(c(x1 x2) c(x1 x̄2))

11

Table 8: Initial state for Formula (1, ∀ ∃): ∀x1 ∃x2 (x1 ∨ x2) ∧ (x1 ∨ x̄2)
.

s1 ν(11) µ()
p(11)(x1) p(1)(x2) h()
q(11)(∀) q(1)(∃)
f(c(x1 x2) c(x1 x̄2))

y(0)(+)(0) y(0)(−)(1) y(1)(+)(1) y(1)(−)(0) // y lookup table

w(∀)(0)(0)(0) w(∀)(0)(1)(0) w(∀)(1)(0)(0) w(∀)(1)(1)(1) // w lookup table
w(∃)(0)(0)(0) w(∃)(0)(1)(1) w(∃)(1)(0)(1) w(∃)(1)(1)(1)

The contained clauses are partially evaluated during the top-down pass, and new contents
appear in f(), that indicate the path to the root and the final value.

Sub-cells a()() form a 1-based associative array that indicates a complete path to the root,
and are used as “horizontal” (not nested) stacks, with the top indicated by the contents of
counter ν()—similar to the above mentioned global q′()() sub-cells. For example, ignoring
its other contents, a formula associated to the node on left-most path 01 looks like this:

f(... a(11)(1) a(1)(0))

The contents inside the first parentheses indicate the depths (here 2 and 1), while the
content inside the second parentheses indicate the assigned values (here 1 and 0).

Note that the layers are processed in the order of variables given by the prefix—this will
be discussed shortly. This need not be in increasing order, but usually is. Thus, the above
a()’s may indicate the tree node for x1 = 0, x2 = 1, cf. Figures 1, 2.

The a()()’s are created during the top-down pass and effectively used during the bottom-
up pass, to properly match sibling nodes.

At the tree leaves level, the formulae are completely evaluated and their values are stored
in v() sub-cells. For example, under the above mentioned sample assumptions:

f(v(0)... a(11)(1) a(1)(0))
⇐⇒ (x1 ∨ x2) ∧ (x1 ∨ x̄2)[x1 := 0, x2 := 1] ≡ (0 ∨ 1) ∧ (0 ∨ 1̄) ≡ 0

To help an efficient top-down formula substitution split, such as [xi = 0] vs [xi := 1], we
also use temporary variants of f with two distinct arguments, f()().

Cells f() closely match their namesake variables used in the Table tab:para.

Top-down pass

The rules for the top-down pass are listed in Table 9. Essentially, we have a three steps
loop (s1 → s2 → s3 → s1) that is repeated n times and a subsequent one step evaluation
(s1 → s4). These steps closely follow the top-down pass of the parallel algorithm presented
in Table 3.

12

Table 9: Top-down rules. The three steps loop s1 → s2 → s3 → s1 is repeated n times,
followed by the exit s1 → s4.

s1 ν(1N) h() p(1N)(X) →1 s2 ν(N) h(X) µ(1M) q′(1M)(Q) (1)
q(1N)(Q) µ(M)

s1 f(c() Z) →+ s4 f(v(0) Z) (2)

s1 f(c(1) Z) →+ s4 f(v(1) Z) (3)

s2 f(Z) →+ s3 f(0)(Z a(M)(0)) (4)
f(1)(Z a(M)(1))

| µ(M)

s3 f(K) {c(x(I)(S) Y)} →+ s1 f{c(Y)} (5)
| h(x(I)(+))
| y(K)(S)(0)

s3 f() {c(x(I)(S) Y)} →+ s1 f{c(1)} (6)
| h(x(I)(+))
| y(K)(S)(1)

Rules (1, 2, 3) form an if then else construct. If we haven’t yet processed all quantifiers
and variable, condition detected by a non-empty ν() counter, then rule (1) applies, resetting
our global control variables and starting one more loop iteration (s1 → s2). Sub-cell h() is
updated to the current variable to be substituted, say h(xi), and its associated quantifier is
popped into stack q′()(), to be used in the bottom-up pass.

Otherwise, if the quantifiers and variables stacks are empty, we exit the loop via rules (2,3),
applied in max parallel mode. Formulae f() that after partial evaluations are false, detected
by at least one empty c() clause, are tagged by one v(0) sub-cell. The other formulae, which
are true, are tagged by one v(1) sub-cell.

Together, rules (4,5,6) form the main body of the top-down loop (s2 → s3 → s1). They
run in max parallel mode and create the next level down the tree, discarding the current level.
Each formula f() is split into two children formulae, by two substitutions, xi := 0, xi := 1,
and new a()() sub-cells are created, to record the corresponding tree paths. These paths
tags a()(), will be essentially used during the bottom-up pass, when these two children will
be recognised as siblings and merged together (despite being here thrown into an unordered
multiset).

Using the lookup table y()()(), rules (5,6) also perform straightforward partial evalua-
tions, based on the values that are assigned to variable xi.

Table 10 illustrate this top-down pass by traces for Formula (1), starting from the initial
state shown in Table 8.

13

Table 10: Top-down traces for Formula (1, ∀ ∃). Continued from Table 8. Cf. tree (b) in
Figures 1.

s1
ν(11) h() p(11)(x1) p(1)(x2) q(11)(∀) q(1)(∃) µ()

f(c(x1 x2) c(x1 x̄2))

(1)⇒ s2
ν(1) h(x1) p(1)(x2) q(1)(∃) µ(1) q′(1)(∀)

(4)⇒ s3
f(0)(c(x1 x2) c(x1 x̄2) a(1)(0)) f(1)(c(x1 x2) c(x1 x̄2) a(1)(1))

(5)⇒ s1
f(c(x2) c(x̄2) a(1)(0)) f(c(1) c(1) a(1)(1))

(1)⇒ s2
ν() h(x2) µ(11) q′(11)(∃) q′(1)(∀)

(4)⇒ s3
f(0)(c(x2) c(x̄2) a(11)(0) a(1)(0)) f(1)(c(x2) c(x̄2) a(11)(1) a(1)(0))
f(0)(c(x2) c(x̄2) a(11)(0) a(1)(1)) f(1)(c(x2) c(x̄2) a(11)(1) a(1)(1))

(5)⇒ s1
f(c() c(1) a(11)(0) a(1)(0)) f(c(1) c() a(11)(1) a(1)(0))
f(c(1) c(1) a(11)(0) a(1)(1)) f(c(1) c(1) a(11)(1) a(1)(1))

(2, 3)⇒ s4
f(v(0) c(1) a(11)(0) a(1)(0)) f(v(0) c(1) a(11)(1) a(1)(0))
f(v(1) c(1) a(11)(0) a(1)(1)) f(v(1) c(1) a(11)(1) a(1)(1))

14

Table 11: Bottom-up rules. One step loop s5 → s5 repeated n times.

s4 f{ c() } →+ s5 f{ } (7)

s5 f(v(V ′) a(M)(0) A) →+ s5 f(v(V) A) (8)
f(v(V ′′) a(M)(1) A) | µ(M)

| q′(M)(Q)
| w(Q)(V ′)(V ′′)(V)

s5 µ(1M) q(1M)() →1 s5 µ(M) (9)

s5 f(v(V)) µ() ν() h() →1 s6 v(V) (10)

Bottom-up evaluation

The rules for the top-down traversal pass are listed in Table 11. Essentially, we have a one
step transition from the top-down pass (s4 → s5), followed by a one step loop (s5 → s5)
that is repeated n times, and a one step exit to the final state (s5 → s6). These steps closely
follow the bottom-up pass of the parallel algorithm presented in Table 3.

Rule (7) runs in max parallel mode and performs a clean up step (s4 → s5), removing
unwanted material from all sub-cells f().

Rules (8,9,10) form a repeat until bottom-up loop, with the exit condition checked by
rules (9,10). This works, as we assume that n ≥ 1.

Rule (8) forms the main body of this bottom-up loop, s5 → s5, that is repeated n times,
and runs in max parallel mode. This rule creates the next level up the tree, discarding the
current level.

Each pair of sibling formulae f() are merged and evaluated, using the corresponding
quantifier from stack q′()() (which was saved during the top-down pass). From all f()()’s in
the current multiset content, siblings are grouped together according to their path to root
records, given by their contained a()()’s. The evaluation is performed with help from the
look-up table w()()()().

Rules (9,10) form an if then else loop end check. If we are not yet at the root level,
condition detected by a non-empty counter µ, then rule (9) resumes the loop, s5 → s5.
Otherwise, rule (10) applies and exits, cleaning all remaining stuff, and recording the final
value in v().

Table 12 illustrate this bottom-up pass by traces for Formula (1, ∀ ∃), starting from
the end state shown in Table 12. The evolution for the related Formula (2, ∃ ∀) are only
marginally different, but still significantly in the bottom-up pas, when we actually use quan-
tifiers; its bottom-up traces are shown in Table 13.

15

Table 12: Bottom-up traces for Formula (1, ∀ ∃). Continued from Table 10. Final result is
false. Cf. tree (c) in Figure 1.

s4
µ(11) q′(11)(∃) q′(1)(∀) // ν() h(x2)

f(v(0) c(1) a(11)(0) a(1)(0)) f(v(0) c(1) a(11)(1) a(1)(0))
f(v(1) c(1) a(11)(0) a(1)(1)) f(v(1) c(1) a(11)(1) a(1)(1))

(7)⇒ s5
f(v(0) a(11)(0) a(1)(0)) f(v(0) a(11)(1) a(1)(0))
f(v(1) a(11)(0) a(1)(1)) f(v(1) a(11)(1) a(1)(1))

(8, 9)⇒ s5
f(v(0) a(1)(0))
f(v(1) a(1)(1))

µ(1) q′(1)(∀) // ν() h(x2)

(8, 9)⇒ s5
f(v(0))

// µ() ν() h(x2)

(10)⇒ s6
v(0) // false

Table 13: Bottom-up traces for Formula (2, ∃ ∀). Continued from Table 10, with different
q′()()’s. Final result is true. Cf. tree (c) in Figure 2.

s4
µ(11) q′(11)(∀) q′(1)(∃) // ν() h(x2)

f(v(0) c(1) a(11)(0) a(1)(0)) f(v(0) c(1) a(11)(1) a(1)(0))
f(v(1) c(1) a(11)(0) a(1)(1)) f(v(1) c(1) a(11)(1) a(1)(1))

(7)⇒ s5
f(v(0) a(11)(0) a(1)(0)) f(v(0) a(11)(1) a(1)(0))
f(v(1) a(11)(0) a(1)(1)) f(v(1) a(11)(1) a(1)(1))

(8, 9)⇒ s5
f(v(0) a(1)(0))
f(v(1) a(1)(1))

µ(1) q′(1)(∃) // ν() h(x2)

(8, 9)⇒ s5
f(v(1))

// µ() ν() h(x2)

(10)⇒ s6
v(1) // true

16

Analysis

Proposition 1. Custom alphabet size of 19.

The state alphabet is {s1, s2, s3, s4, s5, s6}.
Our custom alphabet is {∃,∀,+,−, 0, 1, f, c, q, q′, p, x, h, y, w, ν, µ, a, v}.

Proposition 2. Ruleset contains 10 rules.

Top-down pass uses 6 rules (Table 9) and bottom-up pass uses 4 (Table 11), making a
total of 10 rules.

Proposition 3. Total runtime is 4n+ 3.

Top-down runtime (Table 9): The top-down loop s1 → s2 → s3 → s1 runs n times. The
transition s1 → s4 runs once, making this pass take 3n+ 1 steps.

Bottom-up runtime (Table 11): The transitions s4 → s5 and s5 → s6 run once. The
bottom-up loop s5 → s5 runs n times, making this pass take n+ 2 steps.

Thus, the total runtime is O(n) = 4n+ 3.

Proposition 4. The evolution of our ruleset is totally deterministic.

Rules that applicable exactly once (→1) use singleton terms and do not allow any pos-
sible choice. Rules that applicable in the max parallel mode (→+) make the same multiset
transformations, regardless of any hypothetical application order.

Proposition 5. Maximum membrane nesting depth is 6.

The largest nesting depth in Table 10 occurs in:

f(0)(c(x2) c(x̄2) a(11)(0) a(1)(0)) ≡ f(0)(c(x(11)(+)) c(x(11)(−)) a(11)(0) a(1)(0))

and other similar cells. Denoting nesting depth by δ, we have: δ(f) = 1, δ(c) = 3, δ(x) = 4,
δ(+) = 6. This example is for n = 2; however, for larger n, the nesting depth will NOT
increase, but rather the “horizontal” number of cells at one given level.

4 Conclusion and future work

We have presented an efficient deterministic cP solution to QSAT, that runs in 4n+3 = O(n)
steps, at same order of magnitude as the other P system solutions. However, in contrast to
other confluent P system solutions, our cP solution uses a small constant alphabet size (19),
a small constant number of rules (10), and very small constant membrane nesting depth (6),
independent on the problem size.

We conclude by noting the following open problems, which may need further investiga-
tions:

17

• Is it possible to design an equivalent cP system, still deterministic, with reduced nesting
depth?

• How would non-confluent designs affect the power of cP systems?

• Are cP system inhibitors really needed? We note that our solution does not use any,
and the presence of inhibitors will likely negatively affect the simulation runtime on
existing hardware and software platforms.

• Is a sub-linear runtime solution possible, using cP systems and/or another P systems
variant? We note this can be viewed as seeing whether cP systems agree with the
parallel computation thesis [11]. This also leads to the question on whether or not
cP systems are polynomial equivalent to the other P system variants.

18

References

[1] J. Cooper and R. Nicolescu, “The Hamiltonian cycle and travelling salesman problems
in cP systems,” Fundamenta Informaticae, vol. 164, no. 2-3, pp. 157–180, 2019.

[2] A. Henderson and R. Nicolescu, “Actor-like cP Systems,” in Membrane Computing,
vol. 11399 of Lecture Notes in Computer Science, pp. 160–187, Springer, 2019.

[3] Y. Liu, R. Nicolescu, and J. Sun, “Formal verification of cP systems using PAT3 and
ProB,” Journal of Membrane Computing, vol. 2, no. 2, pp. 80–94, 2020.

[4] A. Leporati, L. Manzoni, G. Mauri, A. Porreca, and C. Zandron, “Characterizing
PSPACE with shallow non-confluent P systems,” Journal of Membrane Computing,
vol. 1, no. 2, pp. 75–84, 2019.

[5] T.-O. Ishdorj, A. Leporati, L. Pan, X. Zeng, and X. Zhang, “Deterministic solutions to
QSAT and Q3SAT by spiking neural P systems with pre-computed resources,” Theo-
retical Computer Science, vol. 411, no. 25, pp. 2345–2358, 2010.

[6] A. Leporati, L. Manzoni, G. Mauri, A. E. Porreca, and C. Zandron, “Solving QSAT in
sublinear depth,” in International Conference on Membrane Computing, pp. 188–201,
Springer, 2018.

[7] M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and F. J. Romero-Campero, “A Linear
Solution for QSAT with Membrane Creation,” in Membrane Computing (R. Freund,
G. Păun, G. Rozenberg, and A. Salomaa, eds.), pp. 241–252, Springer, 2006.

[8] A. Alhazov and M. J. Pérez-Jiménez, “Uniform solution of QSAT using polarization-
less active membranes,” in International Conference on Machines, Computations, and
Universality, pp. 122–133, Springer, 2007.

[9] R. Nicolescu and A. Henderson, “An introduction to cP Systems,” in Enjoying Natural
Computing: Essays Dedicated to Mario de Jesús Pérez-Jiménez on the Occasion of His
70th Birthday (C. Graciani, A. Riscos-Núñez, G. Păun, G. Rozenberg, and A. Salomaa,
eds.), vol. 11270 of Lecture Notes in Computer Science, pp. 204–227, Springer, 2018.

[10] M. Sipser, Introduction to the Theory of Computation. Cengage Learning, 2012.

[11] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer, “Alternation,” J. ACM, vol. 28,
p. 114–133, Jan. 1981.

[12] R. Nicolescu, “Parallel thinning with complex objects and actors,” in International
Conference on Membrane Computing, pp. 330–354, Springer, 2014.

19

