8888888

CDMTCS
Research
Report
Series

Automated Reasoning about
the Entity Integrity of Big
Data in Possibilistic SQL

Ilya Litvinenko
The University of Auckland

Ziheng Wei
The University of Auckland

Sebastian Link
The University of Auckland

CDMTCS-541
January 2020

Centre for Discrete Mathematics and
Theoretical Computer Science

Automated Reasoning about the Entity
Integrity of Big Data in Possibilistic SQL

ILYA LITVINENKO
The University of Auckland, New Zealand
11it8740@aucklanduni.ac.nz

ZIHENG WEI
The University of Auckland, New Zealand
z.wei@auckland.ac.nz

SEBASTIAN LINK
The University of Auckland, New Zealand
s.link@auckland.ac.nz

January 23, 2020

Abstract

SQL is the de-facto industry standard for data management. Besides relational
data, SQL has been extended to also manage object-relational and Web-based data.
It is likely that many instances of big data will also be managed by extensions of the
current SQL standard. We introduce the classes of keys and functional dependen-
cies over possibilistic databases with duplicate and missing information. Our main
contribution is to equip SQL with reasoning capabilities about the semantics of big
data that may feature the volume, variety, and veracity dimensions. These capa-
bilities are fundamental to reason about entity integrity and essential for database
design as functional dependencies are sources of data redundancy, and keys prevent
data redundancy. Since SQL controls the occurrences of missing information with
NOT NULL constraints, we also include possibilistic extensions of this constraint in
our investigation. We illustrate applications, and establish axiomatic, algorithmic,
and logical characterizations to the PTIME-complete implication problem associ-
ated with the combined class of these integrity constraints. Specifically, we show
that keys behave just like goal clauses and FDs just like definite clauses in Boolean
propositional Horn logic, and we can therefore apply linear resolution to reason
about them.

Keywords: Axiomatization; Big data; Duplicates; Functional dependency; Horn
clause; Implication problem; Key; Missing values; Null markers; Possibility theory;

SQL;

1 Introduction

Database management systems model some domain of the real-world within a database
system. For that purpose, they use a specific structure in which the data is organized, but
also integrity constraints that restrict the database instances to those that are considered
meaningful for the underlying domain [23]. SQL has been the de-facto industry standard
for the management of data since the 1980s. Originally introduced by Codd for applica-
tion domains where data can be governed by the rigid structure of relations [5], modern
applications demand more flexibillity. Big data is often characterized by at least three
dimensions, including data volume, variety, and veracity. It means that large volumes of
data must be handled that originate from heterogeneous sources (variety) with different
degrees of uncertainty (veracity) [25]. Given the mature and popular technology that
SQL provides it is not surprising that many organizations will also use SQL to manage
big data, at least in one form or another. Of course, other data models will continue
to arise for handling big data but history for object-relational and Web-based data have
shown that SQL will evolve (to NewSQL) to take the best out of both worlds [20].

In this article we will introduce the class of keys and functional dependencies over
possibilistic SQL data, with the aim to provide capabilities to efficiently reason about the
entity integrity of big data that accommodates the volume, variety and veracity dimen-
sions. Codd, the inventor of the relational model, stipulated entity integrity as one of the
three major integrity principles in databases [5],. Here, entity integrity refers to the prin-
ciple of representing each entity of the application domain uniquely within the database.
Violations of this (and other) principle(s) are very common in database practice, result-
ing in their own fields of research including entity resolution [4], data de-duplication [19],
data cleaning [10], or consistent query answering [3]. Keys and functional dependencies
(FDs) are fundamental to entity integrity as they stipulate uniqueness of rows on a given
set of columns, or uniquely determine the values on some columns given the values on
some other columns. Both classes are also essential to logical and physical database
design since FDs may cause data redundancy, while keys prevent them, and therefore
balance the trade-off between efficient queries (based on redundant data values) and ef-
ficient updates (based on the absence of redundant values). As a consequence, efficient
reasoning about keys and FDs is the foundation for effective data management [23].

While concepts such as keys and FDs have unique and unchallenged definitions in the
relational model of data, simple extensions of the relational model introduce opportunities
to define these concepts differently to accommodate different applications [23]. SQL, for
example, provides simple means to accommodate missing information. In fact, it permits
occurrences of a so-called null marker, denoted by L, to say that there is no information
about the value of this row on this column [12,26]. Moreover, columns can be defined
to be NOT NULL, which means that no occurrences of the null marker are permitted to
occur in such columns. The interpretation of L is deliberately kept as simple as possible
to uniformly accommodate many types of missing information, including values that
do not exist or values that exist but are currently unknown [26]. While a distinction
of such information is possible in principle, it would lead to an application logic that
has been identified as being too complex to accommodate in database practice [6]. In
modern applications, for example data integration, null marker occurrences are heavily

(mng:'Shaun’, dpt: 'CS', emp: 'Mike', emp: 'Tom')
website (emp:'John', dpt: '"Music', mng: 'Scott') (emp: 'Derek’, dpt: 'Physics')
(emp: 'Andy', {mng: 'Sofia', mng: 'Sam'}) (emp: 'John', dpt: "Music', mng: 'Scott')

Figure 1: JSON data from different information sources

used by SQL to fit data - originating from heterogeneous sources - within a uniform
table. This is essentially SQL’s answer to the variety dimension of big data. Another
interesting difference between SQL and the relational model is the duplication of rows.
While the relational model has set semantics, SQL has based on a multiset semantics.
If T denotes a given set of attributes, the key u(X) is satisfied by a set of rows if and
only if the FD X — T is satisfied by the set of rows. This is no longer true for multisets
of rows as the multiset of two rows with matching values on all the columns in 7" will
violate any key and satisfy any FD [14]. Hence, for SQL we need to study the combined
class of keys and FDs. The idea behind the veracity dimension is that not all data
are equal and should therefore not have the same weight in data analysis and decision
making. Probabilistic databases have been investigated in depth over recent years and
have led to various different probabilistic data models [22]. An orthogonal approach are
so-called possibilistic databases. For a detailed comparison we refer the reader to [9,21],
but remark that probabilistic databases offer continouous degrees of uncertainty but real
probability distributions are hard to come by and maintain, while possibilistic databases
offer discrete degrees of uncertainty and are simpler to come by and maintain.

Contributions and Organization. After introducing our running example in Sec-
tion 2, we define our possibilistic SQL data model in Section 3. As our first main contri-
bution we introduce the classes of keys, FDs, and NOT NULL constraints in possibilistic
SQL in Section 4. The implication problem and its centrality for data management
are explained in Section 5. In Sections 6 and 7, respectively, we establish axiomatic
and linear-time algorithmic characterizations for the associated implication problem. As
a logical characterization, we show in Section 8 that the implication problem of our
combined class is equivalent to propositional HORNSAT, showing that the implication
problem is PTIME-complete but also solvable with linear resolution. Hence, we can
reason about the entity integrity of big data very efficiently and with the help of very
familiar tools. We conclude in Section 9. Note that our presentation focuses on the main
results and their illustration on examples. We also include the main ideas for the proofs
of our results in the main body, but the full proofs and additional results are only made
available in the appendix.

2 The Running Example

As a simple running example consider Figure 1 that shows some JSON data, harvested
from different information sources. JSON is the de-facto standard for data exchange due
to its capability to accommodate different information structures [18]. In our example,
the information origins from three sources: payroll data, web data, and blog data. As
the data stewards associate different levels of trust with these sources, they would like

to attribute these levels of trust to the data elements originating from the sources. Our
company is using an SQL-based database management system, and the data stewards
have transformed the JSON data into SQL-compliant format as shown in Table 1.

Table 1: A University Employment Table

row || emp dpt mng | p-degree interpretation origin
1 L Math | Simon o fully possible payroll
2 L Stats | Simon o fully possible payroll
3 Mike CS Shaun o fully possible payroll
4 Tom CS Shaun Qq fully possible payroll
5 Derek | Physics iE o fully possible payroll
6 John | Music | Scott o fully possible payroll
7 John | Music | Scott Qs quite possible website
8 Andy 1 Sofia Q9 quite possible website
9 Andy il Sam Q9 quite possible website
10 Bob | Biology | Susan Qs somewhat possible blog
11 Bob Arts Susan as somewhat possible blog

In particular, the null marker | has been used whenever no information was available
for a data element for a given attribute. For instance, no information is available for any
employee working in the Math or Stats departments. Moreover, an extra column p-
degree has been introduced to accommodate the levels of trust associated with the data
elements. Here, the highest p-degree a; is assigned to data from the payroll, as to web
data, and a3 to blog data. We will use this application scenario to illustrate our concepts
and results throughout the article.

3 Possibilistic SQL Tables

This section summarizes basic notions from [12] to introduce SQL table schemata and
tables, before generalizing them to possibilistic ones.

An SQL table schema, denoted by T', is a finite non-empty set of attributes. Each
attribute A € T has a domain dom(A), which is a countably infinite set of values. Each
domain contains the null marker as a distinguished element, which we denote by L.
As a running example, we use the table schema WORK={emp,dpt,mng} which collects
information about employees that work in departments under managers. The domain of
each attribute is STRING. Next we assign a semantics to table schemata, which tells us
what database instances we consider.

A row (or tuple) over table schema T is a function r : T — Ugerdom(A) that assigns
to every attribute a value from the attribute’s domain. The image r(A) of a row r on
attribute A is called the value of r on A. For X C T, we say that a row r over T is
X-total, if r(A) #1L for all A € X. We say that row r is total, if it is T-total.

Note that rows accommodate incomplete information: the “value” of a row may be
1. Throughout the thesis we adopt Zaniolo’s interpretation of the null marker L as
“no information” [26]. More concisely, the occurrence r(A) =L is interpreted as having

4

available no information about the value of row r on attribute A. In particular, it
may indicate that there is no value at all, or that there is a value which is currently
unknown, but we do not know which interpretation holds. Note that SQL adopts this
interpretation. The interpretation has been used in several previous papers on incomplete
databases, including [13,15,26].

Besides partiality, our data model also accommodates duplicate rows as we define
tables to be multisets of rows. An SQL table over table schema T is a finite multi-
set t of rows over T. For X C T we say that the table ¢ is X-total, if every row
r € t is X-total. We say that t is total, if ¢ is T-total. A total table is some-
times called a bag. Table 2 shows an example of a table over table schema WORK.
The third row has value Derek on emp, value
Physics on dpt, and marker | on mng. The first and
second row are total, and the third and fourth row,
as well as the table itself are {emp, dpt}-total. The
first and second row, as well as the third and fourth
row, respectively, constitute duplicate tuples, since
they have matching values on all attributes.

Relational databases and SQL tables were de-
veloped to manage data that is fully certain. As a
consequence, there is no mechanism to distinguish between different degrees of uncer-
tainty. For example, all tuples of a table occur with full certainty and one cannot say
that tuple (Derek, Physics, L) is less likely to occur than tuple (John, Music, Scott).

We will now extend the data model by assigning degrees of possibilities (p-degrees)
to tuples, also extending the possibilistic data model introduced in [16,17] over the pure
relational model of data. In our running example the p-degrees result from the source
the tuples originate from. In fact, the tuples in Table 1 about university employees have
been integrated from payroll data, data found on websites, and blogs. In the application,
payroll data is considered to be ‘fully possible’, website data to be ‘quite possible’, and
blog data to be ‘somewhat possible’, while other potential tuples not in the database
instance are viewed to be ‘impossible’ to occur at the moment. In general, p-degrees can
have different interpretations and origins, and we will simply denote them by abstract
symbols ayq, ..., ax, agy1. Here, p-degrees form a finite linear order. Table 1 shows an
instance in which tuples have been assigned p-degrees.

The table includes meta-data: the column ‘row’ assigns a unique identifier to each
tuple, and the columns ‘interpretation’ and ‘origin’ show the interpretation of the p-
degrees, as well as the source where the tuples originate from.

A possibility scale is a strict finite linear order S, = (S,, >,), denoted by oy >, -+ >
ap >, apt1, where k is at least one. The elements o; of S, are called possibility degrees
(p-degrees). The top degree oy is reserved for rows which are ‘fully possible’, while the
bottom degree oy is reserved for rows which are ‘impossible’.

In Table 1 of our running example we have k = 3 for the underlying possibility scale.
The fully possible rows appear at the top with the p-degree oy, while the least possible
ones appear at the bottom with the p-degree a3. The scale also includes the p-degree
ar+1 = a4. However, this degree corresponds to ‘impossible’ rows, or all the rows which
could potentially be constructed from the corresponding domains, but are not included

Table 2: Table over WORK
emp dpt mng
John | Music | Scott
John | Music | Scott

Derek | Physics 1L

Derek | Physics €

in Table 1. SQL tables with such a possibility scale give us additional information about
the rows enabling us to make use of the uncertainty associated with the scale. It should
be noted that non-possibilistic tables form the special case of possibilistic ones where
k = 1. These comments and our example motivate the following definitions.

A possibilistic SQL table schema (or p-SQL table schema) is a pair (7', S,), where T
is a table schema and S, is a possibility scale. Possibilistic SQL tables are SQL tables in
which each row is assigned a non-bottom p-degree. Rows that do not belong to the table
are associated with the bottom p-degree. A possibilistic SQL table (or p-SQL table)
over the possibilistic table schema (7, S,) consists of a table t over T, and a function
Poss; that maps each row r € t to a p-degree Poss;(r) # agy1 in the p-scale S,. The
p-SQL table of our running example is shown in Table 1. It consists of an SQL table
over WORK in which every row is assigned a p-degree from aq, ay or ag. P-SQL tables
enjoy a well-founded possible world semantics. Indeed, the possible worlds form a linear
chain of k£ SQL tables in which the i-th possible world contains tuples with p-degree «; or
higher. Given a possibilistic SQL table ¢ over the possibilistic SQL table schema (7', S,,),
the possible world ¢; associated with t is defined by t; = {r € t | Poss,;(r) > «;}, that is,
t; is an SQL table of those rows in ¢ that have a p-degree «; or higher.

It should be noted that ¢;.; is not considered to be a possible world as it would
contain impossible tuples. Continuing our running example, Table 3 shows the possible
worlds of the possibilistic SQL table from Table 1. Indeed, the possible worlds of ¢ form a
linear chain t; C t, C t3. While the chain is strict here, this does not need to be the case
in general as there may be non-bottom p-degrees which are not assigned to any tuples.

Table 3: Possible Worlds for the Possibilistic SQL Table from Table 1

tl tg t3

emp dpt mng emp dpt mng emp dpt mng
1 Math | Simon 1 Math | Simon 1 Math | Simon
il Stats | Simon L Stats | Simon 1L Stats | Simon
Mike CS Shaun Mike CS Shaun Mike CS Shaun
Tom CS Shaun Tom CS Shaun Tom CS Shaun

Derek | Physics 1 Derek | Physics 1 Derek | Physics il

John | Music | Scott John | Music | Scott John | Music | Scott
John | Music | Scott John | Music | Scott

Andy L Sofia Andy L Sofia

Andy L Sam Andy L Sam

Bob | Biology | Susan
Bob Arts Susan

The linear order of the p-degrees a; > ---

> qy, results in a reversed linear order

of possible worlds associated with a p-SQL table t: t; C --- C t,. We point out the
distinguished role of the top p-degree «y. Every row that is fully possible belongs to
every possible world. Therefore, every fully possible row is also fully certain. This
explains why p-SQL tables subsume SQL tables as a special case.

4 Possibilistic SQL Constraints

We introduce possibilistic keys, FDs, and NOT NULL constraints to restrict SQL tables to
those that actually occur in an application domain.

SQL Constraints. We recall the definitions of SQL functional dependencies and NOT
NULL constraints [12,13]. Keys have previously not been investigated in this context,
but are essential to entity integrity and cannot be expressed by FDs, in contrast to the
special case where multisets of partial rows reduce to sets of complete rows.

Intuitively, a key is a collection of attributes which can separate different rows by
their values on the key attributes. The following definition adopts the semantics for the
SQL constraint UNIQUE and separates different rows whenever they are total on all the
key attributes. A key over an SQL table schema T is an expression u(X) where X C T.
An SQL table t over T is said to satisfy the key u(X) over T, denoted by = w(X) if for
all r, 79 € t the following holds: if 7 (X) = r5(X) and 71,79 are X-total, then r; = 7.
For example, the possible world ¢; of Table 3 satisfies u(emp), while ¢ and ¢3 violate this
key.

The following semantics of FDs goes back to Lien [15]. A functional dependency (FD)
over an SQL table schema T is an expression X — Y where XY C T. An SQL table ¢
over T is said to satisfy the FD X — Y over T, denoted by =, X — Y if for all 1,7y € ¢
the following holds: if r1(X) = ro(X) and rq,re are X-total, then r(Y) = r(Y). For
example, the possible world ¢y of Table 3 satisfies the FDs emp — dpt and dpt — mng,
while t3 satisfies the FD dpt — mng, but not the FD emp — dpt.

SQL NOT NULL constraints offer a convenient mechanism to control occurrences of

the null marker. They have been studied in combination with FDs and also multivalued
dependencies [13]. A NOT NULL constraint over an SQL table schema T is an expression
n(X) where X C T. An SQL table t over T is said to satisfy the NOT NULL constraint
n(X) over T, denoted by =, n(X), if t is X-total. For a given set ¥ of constraints over
Twecall Ty ={AeT|3In(X) € XA Ae X} the null-free subschema (NFS) over T. If
T, =T, we also call T" a bag schema, because all instances over T are bags. For example,
n(dpt) is satisfied by the possible world ¢; in Table 3, but not by ¢, or t3.
Possibilistic SQL Constraints. We will now extend our semantics of SQL constraints
to possibilistic SQL tables. Following the same approach as in [16], we use the p-degrees of
rows to specify with which certainty an SQL constraint holds. Similar to how «a; denotes
p-degrees of rows, (3; denotes c-degrees by which constraints hold. Before introducing the
formal semantics, we will look at some constraints in the context of our running example.
Let us consider the following SQL constraints: dpt — mng, emp — dpt, u(emp), and
n(emp), and inspect the possible worlds t1, t5, t3 in Table 3.

e dpt — mng : The constraint is satisfied by the largest possible world 3, and
therefore in ¢5 and ¢; as well. Since the constraint is satisfied by every possible
world, we can say that it is ‘fully certain’ to hold, denoted by f;.

e emp — dpt : The constraint is satisfied by the second largest possible world ¢, and
therefore by t;, but it is not satisfied by t3. Since the constraint is only violated
by the ‘somewhat possible’ world t3, we can say that it is ‘quite certain’ to hold,
denoted by [s.

e u(emp) : The constraint is satisfied by the smallest possible world t;, but it is
not satisfied by ¢, and therefore not by t5. Since the smallest possible world that
violates the constraint is ‘quite possible’, we can say that it is ‘somewhat certain’

to hold, denoted by [s.

e n(emp) : The constraint is not even satisfied in the ‘fully possible’ world ¢;. We
can therefore say that it is ‘not certain at all’ to hold, denoted by f;.

We can see from the examples above how the p-degrees of rows result in degrees of
certainty (c-degrees) with which constraints hold on p-SQL tables. Essentially, if the
smallest world that violates a constraint has p-degree «; (this world is impossible only
when all possible worlds satisfy the constraint), then the constraint holds with c-degree
Br+o—i. For example, the p-key u(emp) holds with c-degree f3 in the p-SQL table ¢
of Table 1, meaning that the smallest possible world that violates u(emp) is to which
is ‘quite possible’, or in other words, u(emp) is ‘somewhat certain’ to hold in ¢. The
following definition introduces the certainty scale that is derived from a given possibility
scale.

Let (T,S,) denote a p-SQL table schema where the bottom p-degree of S, is k + 1.
The certainty scale SpT associated with (7, S,) is the strict finite linear order 51 >, --- >,
Br >p Brt1. The top c-degree [3; is reserved for constraints that are ‘fully certain’, while
the bottom c-degree (51 is reserved for constraints that are ‘not certain at all’.

Next we define by which c-degree a given SQL constraint holds on a given p-SQL
table. Similar to the concept of a marginal probability in probability theory, we call this
c-degree the marginal certainty. In traditional SQL tables an SQL constraint either holds
or does not hold. In a p-SQL table, an SQL constraint always holds with some c-degree.

Definition 1 (Marginal certainty) Let o denote an SQL key, F'D or NOT NULL con-
straint over table schema T. The marginal certainty c¢,(o) by which o holds in the p-SQL
table t over (T, S,) is the c-degree By+2—; that corresponds to the p-degree o; of the smallest
possible world t; of t in which o is violated, that is,

ct(a):{ﬁ1 Cif Fuoo

min{ Sgro_i| ¥+, 0}, else;

For example, when ¢ denotes the p-SQL table of Table 1, then ¢, (dpt — mng) = B,
ci(emp — dpt) = Ba, c;(ulemp)) = B3, and ¢, (n(emp)) = Bs4.

The primary use of constraints is to specify the semantics of an application domain,
that is, to stipulate which databases are regarded as meaningful in the context of the
application and which are not. According to this view, we classify a possibilistic SQL
table as meaningful whenever it satisfies a given set of possibilistic constraints. For that
purpose, a possibilistic constraint (o,) (key, FD, NOT NULL constraint) allows us to
stipulate the minimum marginal c-degree 5 by which the constraint ¢ must hold in every
p-SQL table that is considered to be meaningful in the application domain.

Definition 2 (Possibilistic constraints) Let (T, Sp) denote a p-SQL table schema. A
possibilistic SQL key, possibilistic SQL FD, or possibilistic NOT NULL constraint is a pair

(0, B) where o denotes an SQL key, FD or NOT NULL constraint over the table schema
T, respectively, and 3 denotes a c-degree from Sk. The p-constraint (o, 3;) is said to be
satisfied by a p-SQL table t over (T, Sp) if and only if the marginal c-degree of o int is
B; or higher, that is, c,(0) > [;.

For example, when t denotes the p-SQL table of Table 1, then the following examples
of p-constraints are satisfied by ¢: (dpt — mng, B3) since ¢;(dpt — mng) = (1 > [s,
(emp — dpt, By) since ¢;(emp — dpt) = Ps > Po, and (u(emp), By) since ¢, (u(emp)) =
B3 > P4. In other words, t satisfies these three constraints. On the other hand, ¢
violates (i.e. does not satisfy) any of the following p-constraints: (emp — dpt, 51) since
ci(emp — dpt) = By < Bi, (u(emp), B2) since ¢;(u(emp)) = B3 < Ba2, and (n(emp), fBs)
since ¢;(n(emp)) = B4 < fs.

5 Motivating the Core Reasoning Problems

We illustrate the centrality of the implication problem based on the two most common
database tasks: updates and queries.

5.1 Efficient updates

Consider our p-table schema (WORK, oy > g > a3 > ay) and suppose a design team
has specified the set ¥; of the following p-constraints that shall be enforced by our
database system: (emp — dpt, Bs), (dpt — mng, 51), (u(emp), Bs3), (n(dpt,mng), 51), and
(u(mng), B2). Since p-tables are typically large, it is important not to delay any insertions
into the table without good reason. Since the database system must validate that the
updated table does not violate any of the p-constraints in ¥;, we want to ensure that none
of these checks are redundant. For example, validating that (u(emp), B3) is redundant if
we already know that the updated table satisfies all the other constraints in »;. Here,
redundancy means that o = (u(emp), 83) is implied by ¥; — {o}: every p-table that
satisfies 31 — {0} also satisfies 0. Hence, if we can decide at design time whether a
given set of p-constraints implies another p-constraint, then we can avoid any redundant
validation checks at run time of the database. This saves more time the more rows our
table contains.

5.2 Query optimization

Consider the same p-table schema (WORK,a; > ay > a3 > a4) and our set ¥ of p-
constraints: (emp — dpt, 5s), (dpt — mng, 1), (u(emp), f3). The SQL query @; on
the left of Table 4 selects all distinct employees from rows with p-degree as. When
evaluated on the p-table ¢ in Table 1, then the answers ‘John’ and ‘Andy’ are returned.
Removing the keyword DISTINCT from the query), would lead to the following collection
of answers: ‘John’, ‘Andy’, and ‘Andy’, in which duplicate answers are not removed. In
general, duplicate removal must be explicitly specified by users of SQL as the default is
not to remove duplicates. The reason is that duplicates are important for aggregation

Table 4: SQL Queries Q1, Q2, and Q)

SELECT DISTINCT emp SELECT DISTINCT emp SELECT emp
FROM WORK FROM WORK FROM WORK
WHERE p-degree="a’ WHERE p-degree="‘cv;’ WHERE p-degree="cv;’

queries, and duplicate removal is an expensive operation. Now consider the SQL query
(2 in the middle of Table 4 which selects all distinct employees from rows with p-degree
ay. Here, the clause DISTINCT is redundant. That is, the query @), on the right of Table 4
returns the same answers as Qo over every legal table. Here, legal means that the table
satisfies the given constraints in 3. However, ()} is potentially more efficient to run than
Q2 as the latter will (without any chance of success) attempt to look for duplicates and
remove them. The reason is the p-key (u(emp), f3), which says that there are no two
different rows with p-degree «; that have matching non-null values on emp. Hence, a
query optimizer that can infer the maximum c-degree by which a given p-constraint is
implied by a given set of p-constraints is able to optimize SQL queries. In our example,
the maximum c-degree by which u(emp) is implied by 3 is (3, meaning that ()5 can be
rewritten into the equivalent query @, but removal of DISTINCT from (); will result in a
non-equivalent query. Again, this highlights the centrality of the implication problem.

5.3 The implication problem

Broadly stated, the (finite) implication problem for a class C of constraints is to decide
for any given finite set ¥ U {¢} in C whether ¥ (finitely) implies . That is, whether
every (finite) database instance that satisfies all constraints in ¥ also satisfies ¢. For
our purposes, the given set ¥ of constraints will always be defined over a single p-SQL
table schema, and as the p-scale is finite, so is ¥. Furthermore, in our context we are
interested in the class C of p-SQL keys, FDs, and NOT NULL constraints. For this class,
the finite implication problem and the implication problem coincide. In particular, if
there is an infinite p-SQL table that satisfies all elements of > but violates ¢, then - by
the semantics of our constraints - there must be two rows in that table that violate ¢.
However, those two rows satisfy all elements of X, so there is also a finite p-SQL table
showing that > does not finitely imply ¢. In the remainder we will therefore speak of the
implication problem. We write ¥ |= ¢, if 3 implies ¢. The problem is defined as follows:

PROBLEM: IMPLICATION
INPUT: P-SQL table schema (7, a1 > -+ > ag41)

Set X U {p} of p-SQL keys, FDs and NOT NULL constraints
OUTPUT: Yes, if ¥ = ¢

No, otherwise

Consider the p-SQL table schema (WORK, a; > ay > a3 > «a4) with the following set
Y of p-constraints: (dpt — mng, B1), (emp — dpt, 53), and (u(emp), B3). Then ¥ does
not imply (emp — mng, B2), as Table 1 shows. If © results from ¥ by adding the NOT
NULL constraint (n(dpt), 53), then © still does not imply (emp — mng, B2), as rows 8

10

Table 5: Axiomatization p&S of p-SQL keys, FDs, and NOT NULL constraints

(XY — X, 5;)
(FD reflexivity)

(X =Y. 8) (X = Z,5)

(X —=YZ05)
(FD union)

(Ju 57,)

(Ua 6i+1)
(submodel)

Y C XT!

Y C XT!

(X =Y, 5) (X = Z,B)
(FD decomposition) (null FD transitivity)
(uX, Bi) (X =Y, B) (uY,)
(X =Y, 5) (uX, B;)

(key weakening)

(0, Br+1)
(triviality)

(null pullback)

and 9 of Table 1 show. However, if () results from > by adding the NOT NULL constraint
(n(dpt), Ba), then Q does imply (emp — mng, 52).

6 Axiomatic Characterization

We will now present an axiomatic, algorithmic, and logical characterization for the im-
plication problem of our p-constraint class, illustrate them by examples, and highlight
important consequences. For their detailed proofs we need to establish additional results
about the non-possibilistic class. The details of the proofs and the additional results can
be found in a technical report.

The set ¥* = {¢ | ¥ = ¢} denotes the semantic closure of ¥, that is, the set of all
(p-)constraints that are implied by X. In principle, the definition of the semantic closure
does not tell us whether we can compute it, nevermind how. It is a core reasoning
task to investigate whether/how a semantic notion can be characterized syntactically.
In fact, we determine the semantic closure ¥* of a set ¥ of (p-)constraints by applying

premise .
— condition. For a set R of inference rules
_ conclusion])
let ¥ Fx ¢ denote the inference of ¢ from X by PR. That is, there is some sequence

o1,...,0, such that o, = ¢ and every o; is an element of ¥ or is the conclusion that
results from an application of an inference rule in R to some premises in {oy,...,0;_1}.
Let X = {¢© | X Fx ¢} be the syntactic closure of ¥ under inferences by R. R is
sound (complete) if for every (p-)SQL table schema, and for every set ¥ of (p-)SQL
constraints over this schema we have ¥ C ¥* (X* C ©f). The (finite) set 2R is a (finite)
axiomatization if R is both sound and complete.

Our first main result is that the set p& of inference rules from Table 5 forms a finite
axiomatization for the implication problem of our combined class of p-SQL keys, FDs,
and NOT NULL constraints. For the set of inference rules we assume that X,Y, Z denote
attribute subsets of T' from the given p-SQL table schema (7,07 > --- > ag41), and
for i = 1,...,k, T¢ denotes the attribute subset of 7' whose elements belong to some
(nX, ;) where j < i, that is, the attributes declared NOT NULL with c-degree f3; or

inference rules or axioms of the form

11

Table 7: Axiomatization & of SQL keys, FDs, and NOT NULL constraints

X=YZ X=>YY =27

I Y C XT;
XY - X X =Y X —
(FD reflexivity) (FD decomposition) (null FD transitivity)

XY X7 uX X —=>Yuy

Y C XT;
X —=YZ X =Y U
(FD union) (key weakening) (null pullback)

higher: T! ={A €T |3(nX,3;) e EANAe€ X ANj<i}. Then I | (nX, ;) if and only
if X C T?. Finally, 0 may denote any SQL key or FD over 7.

Theorem 1 The set p&S forms a finite axiomatization for the implication problem of the
combined class of p-SQL keys, FDs, and NOT NULL constraints.

The main ideas for the proof of Theorem 1 are as follows. Firstly, we establish the first
axiomatization & for SQL keys, FDs, and NOT NULL constraints in the
non-possibilistic case. The rules in & results
from those in p& by removing submodel and
triviality, removing the p-degrees [3; from all
remaining rules in &, and replacing 77 by T in
the conditions of null FD transitivity and null

Table 6: Axiomatization B of keys and
FDs over bag schemata

pullback. The rules of & are shown in Table 7.
The completeness proof for & uses the com- XY 5 X

pleteness of the existing axiomatization 8 from (FD reflexivity)
Table 6 for the class of keys and FDs over bag Yy YSYY 2
schemata (table schemata where all columns XS Xy X5 7
are NOT NULL) [14]. Indeed, we can show that (FD extension) (FD transitivity)
every SQL key ¢ = uX and every SQL FD
=X — Y that is implied by a set ¥ of SQL uX X =V uy
keys and FDs over the table schema T with (key)v(ve;kg;ing) (pufﬁ))gck)
NFS Ty, ¢ is also implied by the XT§-guarded
FD set

YXT] = {V-oWeX|VCXT}u{uW eX |V CXT,}

over the bag schema 7. The completeness of B entails that X[XT}] g ¢ holds, and we
can show that this implies ¥ Fg ¢, establishing completeness of &. Secondly, we can
establish the completeness of p& by the completeness of & using the [;-cut

Yi={o |30, 8) e AP = Bi}

for a p-constraint set . Indeed, given a set 3 U {(¢, 5;)} of p-SQL keys, functional
dependencies, and NOT NULL constraints over a p-SQL table schema (T, > + -+ > ayy1)
where 1 < i < k, we can show that X = (¢, ;) if and only if ¥; = . Consequently,
given a p-SQL key or p-SQL FD ¢ = (o, ;) that is implied by a set ¥ of p-SQL keys,

12

p-SQL FDs, and p-SQL NOT NULL constraints over p-SQL schema T, it follows that the
SQL key 0 = uX or SQL FD ¢ = X — Y is implied by the SQL key/FD set ¥; over
SQL table schema T with NFS T¢. By the completeness of & we obtain ¥; kg o, and
we can then show that also ¥ g (0, ;) = . This shows the completeness of p&.
Consider the p-table schema (WORK, a1 > ay > ag > «4) with the following set
Y of p-constraints: (dpt — mng, £1), (emp — dpt, B2), and (u(emp), B3). Table 1, in
particular rows 8 and 9, shows that ¥ does not imply ¢ = (emp — mng, B2). However,
if results from 3 by adding the NOT NULL constraint (n(dpt), 53), then Q does imply
(emp — mng, B3). Using Theorem 1 this is equivalent to showing that (emp — mng, B2)
can be inferred from € using p&. Indeed, we can apply the submodel rule to (dpt —
mng, 51) to infer (dpt — mng, 52). Subsequently, we can apply the null FD transitivity
rule to (emp — dpt, Bs), (dpt — mng, B2), and T? = {dpt} to infer (emp — mng, Bs).

7 Algorithmic Characterization

We use the main proof arguments outlined after Theorem 1 to reduce the possibilistic
implication problem to the standard computation of an attribute set closure in the rela-
tional model of data. This constitutes a clean solution that makes effective use of already
existing research, and, as an outcome, results in an efficient computation in linear time.

As usual, for an attribute subset X C T and an FD set 3, let Xif = {A €T | X
X — A} be the attribute set closure of X under 3 [7]. The final reduction is achieved
by the FD reduct S[FD] ={V =W |V =W e 2} U{V = T | uV € £} for a set X of
keys and FDs over bag schema T'. Given these definitions we can now state the following
result.

Theorem 2 Let Y denote a set of p-SQL keys, FDs, and NOT NULL constraints over
p-SQL table schema (T, > -+ > ayy1). For all (X — Y, 5;), (uX,B;) and (nX, ;)
over (Tyoy > -+« > agy1) the following hold:

1. X (X =Y, 05) if and only if Y C X;-[XTi}[FD]'

2. ¥ &= (uX, B3) if and only if X =T and there is some uZ € ¥;[XT!].

i XTE][FD]
3. Y E (nX,B) if and only if X C T,

Consider the p-SQL table schema (WORK, ag > ag > a3 > o) with the previous set
Q of p-constraints. While Q2 does imply (emp — mng, 52), Q does not imply (u(emp), Bs).
Indeed, Qs[emp,dpt] = {emp — dpt, dpt — mng}. Hence, empgﬂemp)dpt] = WORK, but
there is no uY € Qs[emp,dpt]. Indeed, rows 6 and 7 from Table 1 form a two-row table
that satisfies 2 but not (u(emp), B2).

According to Theorem 2 deciding instances of the possibilistic implication problem are
effectively reduced to the standard computation of the attribute set closure X;i (XTH[FD]
under the set X;[XTY][FD] of FDs. Algorithms that work in linear input time for this
computation are well-known [7]. As a summary of our reductions, we present here Algo-
rithm 1 that computes Xgi[XT?][FD as the attribute set closure CLOSURE(T, ¥, i, X) of
X with respect to the set X ofsp—S&)L keys, FDs and NOT NULL constraints.

13

Algorithm 1 CLOSURE(T, 3,4, X) - Attribute Set Closure
Require: p-SQL table schema 7', set ¥ of p-SQL keys, FDs, and NOT NULL constraints
over T', c-degree [3;, set X C T
Ensure: Attribute set closure X;i[XT;i][FD]
1: Closure < X,
2: FDList + List of FDs in X;[XT!|[FD];
3: repeat
4: OldClosure < Closure;
5: Remowve all attributes in Closure from LHS of FDs in FDlist,
6
7
8
9

of X wrt set 3;[XT!][FD] of FDs over T

for all {() — Y} € FDList do
Closure < Closure UY,;
FDList < FDList — {0 — Y};

. until Closure = OldClosure or FDList = () or Closure =T
10: return Closure

Algorithm 1 shows that each attribute that occurs in the input is visited at most once.
We therefore obtain the following linear-time complexity, which follows from results in [7].
Here, we define the size ||X|| of a set 3 of p-constraints as the total number of attribute
occurrences in ..

Theorem 3 The instance (X, @) of the implication problem for the class of p-SQL keys,
FDs, and NOT NULL constraints over p-SQL table schema (T, a1 > -+- > ayy1) can be
decided in time in O(max{|T|,||X U {¢}|}). [

8 Logical Characterization via HornSAT

In this section we put our and previous results together to realize that we can reason about
p-keys and p-FDs over possibilistic SQL tables very efficiently and with very familiar
tools. Hence, our formalizations of keys and FDs as well as those of the variety and
veracity dimensions of big data have led us to a framework where we can express integrity
constraint for entities in big data sets, and can reason about these entities confidently
and efficiently.

Following the outline of the main proof arguments after Theorem 1, we have reduced
instances X |= (o, ;) for keys 0 = uX or FDs 0 = X — Y of the implication problem for
our class of p-constraints to instances 3;[XT?] |= o for the implication problem of keys
and FDs over bag schemata. For the latter it is known that keys behave like propositional
goal clauses and FDs behave like propositional definite clauses [8,14].

More formally, we map a key o0 = wu(A;y,...,A,) over T to the goal clause o/ =
—A} V.- =AL over the set T = {A’ | A € T'} of propositional variables that correspond
to attributes in T, and we map an FD o = Ay,..., A, — A to a definite clause ¢/ =

—Aj V= AL v A over the set T, If =5 denotes classical propositional entailment, then
it is known that ¥ |= ¢ if and only if ¥’ = {0’ | 0 € £} = ¢'.

Theorem 4 The implication problem of p-SQL keys, FDs, and NOT NULL constraints is
PTIME-complete and equivalent to HORNSAT. |}

14

Concluding our illustrations on our running example, reconsider the instances Q =
(emp — mng, P2) and Q | (u(emp),By) of the implication problem over
p-SQL table schema WORK. Recall that Qs[emp,dpt] =

{emp — dpt,dpt — mng}. Consequently, possibilistic
(Qu[emp,dpt]) = {—emp’ Vv dpt',—~dpt' V mng'}. Ap- tables

plying linear resolution, for example, it is easy to p/‘:_’;:;ir?es ? beta-cuts
see that the Horn formulae set (Qy]emp,dpt]) U tables

{emp', =mng} is unsatisfiable, while the Horn formu- variety ? XTo-guard
lae set (Qu[emp,dpt]) U {emp'} is satisfiable by inter- ™" NOTNH

preting all atoms as true. Indeed, the latter propo- volume oo

sitional model corresponds to the two-row table with duplicates ? F reduct
row 6 and 7 from Table 1, which shows that €2 does relations

not imply (u(emp), B2). This is also an illustration of big data dimension _type of type of

the fact that our correspondence does not just hold
between the implication problems of constraints and
Horn clauses, but extends to counter-example two-
row tables and truth assignments.

Figure 2: Summary

9 Conclusion

We have established a comprehensive toolbox for automated reasoning about the data
integrity of real-world entities in big data sets, including axiomatic, algorithmic and
logical characterizations. These rely on specific formalizations of integrity constraints,
the variety and the veracity dimension of big data. As an underlying data model we chose
a possibilistic extension of the de-facto industry standard SQL for data management.
With adequate definitions it turns out that automated reasoning can be done by applying
off-the-shelf tools, such as linear resolution for propositional HORNSAT.

Our work suggests a whole landscape of future work. Here, different approaches
should be applied to the big data dimensions, such as probabilistic approaches to the
veracity dimension, different approaches of handling missing information to the variety
dimension, and different approaches to the formalization of entity integrity such as key
sets [11] or embedded keys and FDs [24].

References

[1] P. Atzeni and N. M. Morfuni. Functional dependencies and constraints on null values
in database relations. Information and Control, 70(1):1-31, 1986.

[2] C. Beeri and P. A. Bernstein. Computational problems related to the design of
normal form relational schemas. ACM Trans. Database Syst., 4(1):30-59, 1979.

[3] L. E. Bertossi. Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2011.

15

[4] V. Christophides, V. Efthymiou, and K. Stefanidis. Entity Resolution in the Web of
Data. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan &
Claypool Publishers, 2015.

[5] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13(6):377-387, June 1970,

[6] C.J. Date. A critique of the SQL database language. SIGMOD Record, 14(3):8-54,
1984.

[7] J. Diederich and J. Milton. New methods and fast algorithms for database normal-
ization. ACM Trans. Database Syst., 13(3):339-365, 1988.

[8] W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability
of propositional horn formulae. J. Log. Program., 1(3):267-284, 1984.

[9] D. Dubois, H. Prade, and S. Schockaert. Generalized possibilistic logic: Foundations
and applications to qualitative reasoning about uncertainty. Artif. Intell., 252:139—
174, 2017.

[10] V. Ganti and A. D. Sarma. Data Cleaning: A Practical Perspective. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2013.

[11] M. Hannula and S. Link. Automated reasoning about key sets. In Automated
Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
pages 47-63, 2018.

[12] S. Hartmann and S. Link. When data dependencies over SQL tables meet the logics
of paradox and S-3. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2010, June 6-11,
2010, Indianapolis, Indiana, USA, pages 317-326, 2010.

[13] S. Hartmann and S. Link. The implication problem of data dependencies over SQL
table definitions: Axiomatic, algorithmic and logical characterizations. ACM Trans.
Database Syst., 37(2):13:1-13:40, 2012.

[14] H. Kohler and S. Link. Armstrong axioms and boyce-codd-heath normal form under
bag semantics. Inf. Process. Lett., 110(16):717-724, 2010.

[15] Y. E. Lien. On the equivalence of database models. J. ACM, 29(2):333-362, 1982.

[16] S. Link and H. Prade. Possibilistic functional dependencies and their relationship
to possibility theory. IEEE Trans. Fuzzy Systems, 24(3):757-763, 2016.

[17] S. Link and H. Prade. Relational database schema design for uncertain data. Inf.
Syst., 84:88-110, 2019.

16

[18]

Z. H. Liu, B. C. Hammerschmidt, and D. McMahon. JSON data management:
supporting schema-less development in RDBMS. In International Conference on
Management of Data, SIGMOD 201/, Snowbird, UT, USA, June 22-27, 2014, pages
1247-1258, 2014.

F. Naumann and M. Herschel. An Introduction to Duplicate Detection. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2010.

A. Pavlo and M. Aslett. What’s really new with NewSQL? SIGMOD Record,
45(2):45-55, 2016,

O. Pivert and H. Prade. Handling uncertainty in relational databases with possibility
theory - A survey of different modelings. In Scalable Uncertainty Management - 12th
International Conference, SUM 2018, Milan, Italy, October 3-5, 2018, Proceedings,
pages 396-404, 2018.

D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2011.

B. Thalheim. Dependencies in relational databases. Teubner, 1991.

Z. Wei and S. Link. Embedded functional dependencies and data-completeness
tailored database design. PVLDB, 12(11):1458-1470, 2019.

S. Yin and O. Kaynak. Big data for modern industry: Challenges and trends.
Proceedings of the IEEE, 103(2):143-146, 2015.

C. Zaniolo. Database relations with null values. J. Comput. Syst. Sci., 28(1):142—
166, 1984.

17

A SQL Constraints

In this section of the appendix we will develop axiomatic and algorithmic characteriza-
tions for the implication problem of the combined class of SQL keys, FDs and NOT NULL
constraints.

A.1 Axiomatic Characterization

Our first goal is to show that the set & of inference rules in Table 7 form an axiomatization
for the combined class of keys, FDs and NOT NULL constraints. F'D reflexivity axiom, FD
decomposition, null FD transitivity, and FD union rule are the familiar rules from Atzeni
and Morfuni’s axiomatization of FDs under the ‘no information’ interpretation of null
marker occurrences [1,13]. The key weakening rule says that every SQL table that satisfies
a key uX also satisfies any FD with left-handed side X. Furthermore, the null pullback
rule captures additional non-trivial interactions of keys and FDs over SQL tables with
an NFS. We show first that these rules are sound.

Lemma 1 The inference rules in & are sound for the implication of keys and FDs over

SQL tables with NFSs.

Proof We exhibit the soundness for each of the six rules.

For FD reflerivity let t be an arbitrary SQL table over T', and XY — X an FD
over T'. Trivially, any two rows ry,r, € t that have matching non-null values on all the
columns in X and Y also have matching values on all the columns in X.

For FD decomposition let t be an arbitrary SQL table over T" such that ¢ violates the
FD X — Y over T. Hence, there are two rows r1,ry € t that have matching non-values
on all the attributes in X but non-matching values on some attribute in Y. Consequently,
t1,to € r have matching non-values on all the attributes in X but non-matching values
on some attribute in Y Z. Consequently, ¢ also violates the FD X — Y Z over T.

For null FD transitivity let t be an arbitrary SQL table over T" such that ¢ violates
the FD X — Z over T, satisfies the FD X — Y over T and satisfies the condition
Y C XT, where nfs(T;) is an NFS over T'. Hence, there are two rows r1,79 € t that have
matching non-null values on all the attributes in X but non-matching values on some
attribute in Z. Since t satisfies the FD X — Y, 1,75 € t must have matching values on
all the attributes in Y. However, since ¢ satisfies Y C XT5, it even follows that r{,ry € ¢
must have matching non-null values on all the attributes in Y. Since ry,79 € t have
non-matching values on some attribute in Z, we conclude that ¢ violates the FD Y — Z.

For the union rule let t be an arbitrary SQL table over 1" such that ¢ violates the FD
X — Y Z over T. Hence, there are two rows 71,7y € t with matching non-null values on
all the attributes in X but non-matching values on some attribute in Y Z. Consequently,
r1,72 € t have non-matching values on some attribute Y or non-matching values on some
attribute in Z. Thus, ¢t violates the FD X — Y or the FD X — Z.

For key weakening let t be an arbitrary SQL table over T such that ¢ violates the
FD X — Y over T. Hence, there are two rows ry,7s € t with matching non-null values
on all the attributes in X and non-matching values on some attribute in Y. The latter

18

condition implies that r; and 75 must be different rows. Hence, the key uX is violated
by t.

For null pullback let t be an arbitrary SQL table over 7" such that t violates the
key uX over T, satisfies the FD X — Y over T" and satisfies the condition ¥ C XT,
where nfs(Ts) is an NFS over 7. Hence, there are two different rows ry,ro € ¢ that have
matching non-null values on all the attributes in X. Since ¢ satisfies the FD X — Y, the
rows 71,9 € t have matching values on all the attributes in Y. However, since ¢ satisfies
Y C XTi, it even follows that the rows 71,7y € t have matching non-null values on all
the attributes in Y. We conclude that t violates the key uY .

Let § consist of FD reflexivity, FD decomposition, null FD transitivity, and FD union
from Table 7. For the reason of being self-contained we provide a completeness proof here.

We use a classical proof technique to establish the completeness of § for the implication
of FDs over SQL tables with an NFS.

Theorem 5 The set § is a finite axiomatization for the implication of FDs over SQL
tables with an NF'S.

Proof Let T be an SQL table schema, ¥ a set of FDs and nfs(T;) an NFS over T'. Let
X — Y ¢ % We establish the completeness of § by showing that X — Y ¢ X7,
That is, we construct an SQL table t over T' that is T,-total, satisfies ¥ and violates
X =Y. Let Xy ={AeT|Xr; X - A}. Consequently, Y Z X and there is some
Ap €Y — XI. Indeed, if Y € X, then X — Y € X1 by FD union. Let t := {ry, 7} be
the SQL table over T" where rq, 75 are defined by:

Xg NXT, (T —X;)AO Otherwise
0---0 0---0 1.1
0---0 1...1 1ol

The table t violates the FD X — Y since Ay € Y. Furthermore, t is T,-total. It remains
to show that t satisfies ¥. Let U — V € ¥ and let rq, 7, have matching non-null values
on all the attributes in U. By construction, U C X¢ ¥ Hence, X — U € Z+ holds by
the definition of X7. Furthermore, by constructlon U C XT,. From X —> Uext,
U—V e, and U C XTj, it follows by null FD transitivity that X — V € Ef
Thus, V C X; . In particular, Ay ¢ V since otherwise A, € Xg by FD decomposition.
This means that rq, 7y have matching values on all the attributes in V. Consequently, ¢
satisfies U — V € X.

Next we establish the completeness of & for the implication of the combined class of
keys and FDs over SQL tables with NFS by a reduction to the completeness of §. Two
preparatory lemmata are required first.

For a set ¥ of keys and FDs over SQL table schema T let

S[FD]={X 5 T|uX e S}U{X 5 Y | X - Y e x}

denote the FD-reduct of ¥. Our first lemma says that an FD is implied by a key/FD-set
if and only if it is implied by the FD-reduct of the set.

19

Lemma 2 Let X U{X — Y} be a set of keys and FDs, and nfs(Ts) an NES over table
schema T. Then ¥ =7, X — Y if and only if X[FD] E=r, X — Y.

Proof If ¥[FD] 1, X = Y, then ¥ =7, X — Y because key weakening is sound.

If X[FD] fe7, X — Y, then consider the two-row table ¢ from the completeness proof
of Theorem 5. In particular, t satisfies X[FD], ¢ is Ts-total and ¢ violates X — Y.
Moreover, t satisfies every key uZ € 3: otherwise, the two rows 71,7y € t would be
duplicates as Z — T € X[FD] is satisfied by ¢, and ¢ would also satisfy X — Y, a
contradiction. Consequently, ¢ shows that ¥}, X — Y.

Our second lemma says that a key uX is implied by a key/FD set if and only if the
key attributes functionally determine all attributes by the FD-reduct and some key exists
in the key/FD set where all of its attributes cannot contain a null marker occurrences or
belong to X.

Lemma 3 Let X U{uX} be a set of keys and FDs, and nfs(Ts) an NFS over SQL table
schema T. Then ¥ =1, uX if and only if X[FD] E=r, X — T and there is some uZ € 3
such that Z C XTs.

Proof Suppose L[FD] =7, X — T and there is some uZ € ¥ such that Z C XT,. The
soundness of FD decomposition shows that X[FD] =7, X — Z. The soundness of null
pullback shows that X[FD| =1, uX. Finally, the soundness of key weakening shows that
b):Ts uX.

Suppose that ¥ =1, uX. The soundness of key weakening means that ¥ =7, X — T
holds, too. From Lemma 2 we conclude that X[FD] =7, X — T holds. It remains to
show that if ¥ =7, uX holds, then there is some uZ € ¥ such that Z C XT,. We show
the contraposition: if Z € X7 holds for all uZ € 3, then ¥ [~ uX. Indeed, let ¢ be
the SQL table consisting of the following two rows:

Trivially, ¢’ satisfies every FD and is T,-total. For any uZ € ¥ we know that Z € XT;
holds. Hence, t’ also satisfies every key in X, and thereby, 3 itself. Since ¢’ violates uX,
it follows that 3 r, uX.

We can now establish the completeness of &.

Theorem 6 The set G is a finite ariomatization for the implication of keys and FDs in
the presence of an NFS.

Proof Let XU{p} be a set of keys and FDs, and nfs(T;) an NFS over SQL table schema
T. We exploit Lemmata 2 and 3 and Theorem 5 to show directly that ¥ =7, ¢ entails
Y Fg ¢ holds.

Suppose that ¢ denotes the FD X — Y. From Lemma 2 we conclude that X[FD] =r,
X — Y holds. As § is complete for the implication of FDs over SQL tables with

20

NEFS, it follows that X[FD] 3z X — Y holds. Since § C & we conclude further that
Y[FD] Fg X — Y holds. Finally, key weakening guarantees that ¥ kg o holds for all
o € X[FD]. Hence, ¥ ¢ X — Y.

Suppose now that ¢ denotes the p-key uX. From Lemma 3 we conclude that
Y[FD] =1, X — T holds, and that there is some uZ € ¥ where Z C XT; holds.
As in the previous case, it follows that > g X — T holds, and the decomposition rule
shows ¥ Fg X — Z. An application of null pullback infers that ¥ Fg ©.X. This concludes
the proof.

We write ¥ o7, ¢ to say that ¢ is implied by ¥ and nfs(Ts) over two-row tables.
That is, ¥ =2 1, ¢ denotes an instance of the implication problem in the world of two-row
tables: every two-row table t over T' that is Ts-total and satisfies every element of X also
satisfies . It is a consequence of our previous arguments that ¥ =o 7, ¢ if and only if
Y 1, ¢ holds. This is an interesting model-theoretic property of our class of constraints.
It is a core enabler for establishing a logical characterization of the associated implication
problem.

Corollary 1 For all SQL table schemata T, for all sets XU {p} of keys and FDs over
T and for all NFSs nfs(Ty) over T, ¥ =1, ¢ if and only if ¥ =1, ©.

Proof Obviously, if there is some two-row SQL table ¢ over R that is T,-total, satisfies
every element of ¥, and violates ¢, then ¥ |7, ¢. Vice versa, if ¥ A7, ¢, then the proofs
of Theorem 5 and Lemma 3 show how to construct a two-row SQL table ¢ over T' that is
T,-total, satisfies every element of ¥, and violates ¢.

Example 1 Consider the relation schema WORK with attributes emp, dpt and mng,
NFS WORK; = {dpt, mng}, and

Y = {emp — dpt, dpt — mng, u(mng)}.

Then ¥ Ework, wlemp). Indeed, one may apply null FD transitivity to the two FDs of &
to infer the FD emp — mng. One may then apply null pullback to this FD and the key
from X to infer the key u(emp). |

Example 2 Consider the SQL table schema WORK with attributes emp, dpt and mnyg,
NFS WORK; = {dpt, mng}, and

Y = {emp — dpt, dpt — mng}.

Then ¥ Fwork, u(emp), as the SQL table

emp dpt mng
Dilbert IT Gates
Dilbert T Gates

over WORK with NFS nfs(WORK;) shows. Note that this SQL table follows the con-
struction in the proof of Lemma 3. |}

21

Example 3 Consider the SQL table schema WORK with attributes emp, dpt and mng,
NFS WORK; = {dpt}, and

Y = {emp — dpt, dpt — mng, u(mng)}.
Then ¥ Fwork, u(emp), as the SQL table

emp dpt mng
Dilbert 1T 1
Dilbert 1T 1

over WORK with NFS nfs(WORK;) shows. Note that this SQL table follows the con-
struction in the proof of Theorem 5. |}

A.2 Algorithmic Characterization

Given a table schema T', an NFS nfs(7T) and a set ¥ of keys and FDs over T, the inference
system & determines the semantic closure X7, . This can take time exponential in the size
of the input. In practice, however, knowledge about all elements of the semantic closure
is not always required. Instead, it often suffices to know whether some fixed key or FD ¢
is an element of 37, . In this case one must decide the instance ¥ =7, ¢ of the associated
implication problem. For that purpose the computation of ¥% is too expensive. In this
section, we develop an algorithm that decides the implication problem efficiently.

Recall the completeness proof of Theorem 5 where we defined the attribute set closure

Xi={AeT|St; X — A}

for an attribute set X, and a set ¥ of FDs over table schema 7" with NFS nfs(T5). Note
that Theorem 5 guarantees that X7 = X3, ;. where

Xip = {A€T | g X — A}

Lemmata 2 and 3 allow us to reduce the implication problem for the combined class of
keys and FDs over table schemata with NFSs to the computation of attribute set closures
with respect to FDs and an NFS only.

Corollary 2 Let X be a set of keys and FDs over table schema T with NFS nfs(Ty).
Then the following holds:

1. Y, X =Y if and only if Y C X5y 7., and

2. % Er, uX if and only if X;][FD],TS = T and there is some uZ € % such that
Z C XT,.

Corollary 2 motivates Algorithm 2 that computes the attribute set closure Xg[FD]’TS
for a given attribute set X with respect to a given set L[FD] of FDs over a given table
schema T" with given NFS nfs(T5).

We show first that Algorithm 2 works correctly, that is, computes indeed the closure
of the given attribute set with respect to the given set of FDs and NFS. Note that the
proof relies on the completeness of the axiomatization §.

22

Algorithm 2 Closure(X, Ty, X[FD], T')
Require: Attribute set X, nfs(7T}), set 3[FD] of FDs over T'
Ensure: Attribute set closure X3 7,
1. Closure +— X
2: FDList < List of FDs in X[FD]
3: repeat
4: OldClosure <— Closure
5: for all A € Closure N XT, do
6
7
8
9

for all Z — Y in FDList do
Replace Z — Y in FDList by Z —{A} = Y;

for all) — Y in FDList do
: Closure < Closure JY
10: FDList < FDList — {0 — Y’}

11: until Closure =T or Closure = OldClosure or FDList = |]
12: return(Closure)

Theorem 7 Oninput (X, T, %, T), Algorithm 2 computes the attribute set closure X3, ¢,
of X with respect to the FD set . over table schema T with NFS nfs(T5).

Proof Let Closure denote the output of Algorithm 2. It needs to be shown that
Closure = X% p,. Since X§, = X7, this is the same as showing that Closure = X
holds. For that purpose we proceed in two stages, first showing that Closure C X; .

We proceed by induction on the number j of runs through the repeat loop between
lines 3-11 of Algorithm 2. If j = 0, then line 1 set Closure to X and we have X C X;
due to the reflexivity axiom. Let j > 0. The hypothesis tells us that after j runs we
have Closure C Xg“ . Consider now the j + 1st run which adds all attributes of Y to
Closure whenever there is some FD Z — Y € ¥ where Z C Closure and Z C XT,. From
X — Closure) € E; and Z C Closure we obtain X — Z € E; by the decomposition
rule. From X — Z € X1, Z - Y € ¥ and Z C XT, we conclude X — Y € X1 by
an application of the null transitivity rule. That is, also after the j + 1st run we have
Closure C Xgr)

It remains to show that X; C Closure holds as well. For this purpose, consider the

chain
Y=%CXC...Co=X%F

where X; results from »;_; by application of a single inference rule from §, for j =
1,..., k. We will use induction on j to show the following

it Z =Y e€X; and Z C Closure N X7y, then Y C Closure.

Then we conclude for 7 = k that Y C Closure follows from Z — Y € Eér and Z C
Closure N XTy. Hence, Xg C Closure follows for Z = X and Y = X;.

We proceed by induction on j. If j =0, then Z — Y € ¥. If Z C Closure N X7,
then) — Y is in FDList due to line 5-7, and Y will be added to Closure in line 9. Hence,
Y C Closure. If j > 0, then the FD Z — Y € ¥; —3;_; has been inferred by application

23

of one of the four inference rules in §. If Z — Y results from the reflexivity axiom,
then Y C Z C Closure, where Z C Closure follows from the induction hypothesis.
If Z — Y results from applying the decomposition rule to Z — YU € ¥, 4, then
Y C YU C Closure, where YU C Closure follows from the induction hypothesis. If
Z — Y results from applying the union rule to Z — U € ¥,y and Z = V € ¥,_4,
then Y = UV C Closure, where UV C Closure follows from the induction hypothesis. If
Z — Y results from applying the null transitivity rule to Z — U € ¥,y and U = Y €
-1, then U C ZT,. In particular, if Z C Closure N XTj, then the hypothesis tells us
that U C Closure and U C ZT, C XT;. Applying the hypothesis to U — Y € ¥,_; and
U C Closure N XTy results in Y C Closure. This concludes the proof.

We now establish the worst-case linear time complexity of deciding the implication
problem for keys and FDs over table schemata with a null-free subschema. For that
purpose, we first define the sizes of the measures we use. The size || of a key or FD ¢
is the total number of attributes occurring in ¢, and the size ||3|| of ¥ is the sum of |o]|
over all elements o € Y. Further, let

U ={V >WeX|VCUIU{uV eX |V CU}
define the U-guard of 3.

Theorem 8 The problem whether a key o = uX or FD ¢ = X —'Y s implied by a set
Y of keys and FDs over table schema T with NFS nfs(Ts) can be decided in O(||Z|| +
IZ[XTJU{p}]) time.

Proof Corollary 2 shows how to reduce the implication problem to the computation of
the attribute closure with respect to X[FD] and nfs(Ts). Algorithm 2 can be sped up by
first computing the set X[X T} by a single pass over X, given ¢ = uX or ¢p = X — Y,
and nfs(Ts). The test for attributes to be in Closure N XT of line 5 in Algorithm 2 then
reduces to a test for attributes to be in Closure. Every attribute in X[XTi] U {¢} is then
used at most once during the repeat loop.

Corollary 3 Let ¥ U {¢} denote a set of SQL keys and FDs over table schema T with
NFS nfs(Ts), where ¢ denotes either the key uX or FD X — Y. Then the following are
equivalent:

1. ¥ =, X =Y if and only if S[XT|[FD| X =Y
2. ¥ =1, uX if and only if S[XT|[FD] = X — T and uZ € X[XTj).

Proof The first equivalence follows from the correctness of Algorithm 2, and its equiv-
alence to the standard computation of the attribute set closure X;[XT,][FD] with respect
to the FD set X[XT}|[F D] that only contains FDs V' — W where V C XT5.

The second equivalence follows from the second equivalence of Corollary 2, and the
first equivalence we have just established.

We conclude this section by analyzing the examples from the previous section from
an algorithmic point of view.

24

Example 4 Consider the relation schema WORK with attributes emp, dpt and mng,
NFS WORK, = {dpt, mng}, and

Y. = {emp — dpt, dpt — mng, u(mng)}.
Then ¥ FEwork, ulemp). Indeed, Algorithm 2 computes
{emp}*E[FD],WORKS = {emp, dpt, mng}

and w(mng) € ¥ where {mng} C {emp} U WORK;. Corollary 2 tells us therefore that
Y Ework. u(emp). |

Example 5 Consider the relation schema WORK with attributes emp, dpt and mng,
NFS WORK, = {dpt, mng}, and

Y = {emp — dpt, dpt — mng}.
Then ¥ FEwork, ulemp). Indeed, Algorithm 2 computes
{u(emp)}g[FD],WORKs = {emp, dpt, mng}
but there is no key in X. Therefore, Corollary 2 tells us that ¥ Fwork, uw(lemp). |}

Example 6 Consider the relation schema WORK with attributes emp, dpt and mng,
NFS WORK; = {dpt}, and

Y. = {emp — dpt, dpt — mng, u(mng)}.
Then ¥ FEwork, ulemp). Indeed, Algorithm 2 computes
{emp}*E[FD],WORKS = {emp, dpt, mng}

but for u(mng) € ¥ we have {mng} {emp} U WORK;. Therefore, Corollary 2 tells us
that ¥ Fwork, ulemp). |}

B Possibilistic SQL Constraints

We will now describe how to reduce the implication problem of p-SQL constraints to the
implication problem of traditional SQL constraints. Therefore, we define the cuts X; of
a set X of p-SQL constraints as the set of traditional SQL constraints that appear in X
with c-degree (; or higher.

Definition 3 Let X denote a set of p-SQL keys, possibilistic functional dependencies and
possibilistic NOT NULL constraints over a p-SQL table schema (T,S,). For every c-degree
Bi < Bri1 we define the B;-cut 3; as the set of SQL keys, functional dependencies and NOT
NULL constraints o over table schema T for which there is some p-constraint (o,) € X
such that 8 > j3;, that is,

Yi={o|(0,f) €eXAB=pi}.

25

Consider the p-table schema (WORK, oy > ag > a3 > a4) with the following set 3
of p-constraints: (dpt — mng, B1), (emp — dpt, B2), and (u(emp), 53). Then the [-cuts
of ¥ are: ¥y = {dpt — mng}, Yo = {dpt — mng,emp — dpt}, and X3 = {dpt —
mng, emp — dpt, u(emp)}. The importance of 5-cuts results from the following theorem.
Hence, we can decide instances ¥ = (¢, 5;) of implication problems for p-SQL constraints
by deciding instances 3; = ¢ of implication problems for traditional SQL constraints.

Theorem 9 Let XU {(p, 5;)} denote a set of p-SQL keys, functional dependencies, and
NOT NULL constraints over a p-SQL table schema (T, oy > -+ > apyq) where 1 <i < k.

Then ¥ = (v, Bi) if and only if 3; | .

Proof We first show that ¥; |= ¢ is sufficient for ¥ = (¢, ;) to hold. Let us assume that
Y = (¢, B;) does not hold. We will show that ¥; = ¢ does also not hold. Based on our
assumption there is some p-table (¢, Poss;) that violates (¢, ;) and satisfies all (o, 5) € .
By definition, ?;41-,; violates ¢, and for all 3; > ; it follows that ¢,,_; satisfies every
o € Y;. From B; > f; it follows t511-; C tx41—;. Consequently, by soundness of the
submodel rule we conclude that ¢, ; violates ¢, and t;,,_; satisfies every o € ¥;. We
conclude that ¥; = ¢ does not hold.

We now show that ¥; |= ¢ is necessary for 3 |= (¢, 5;) to hold. Let us assume that
Y | ¢ does not hold. We will show that ¥ = (¢, 8;) does also not hold. Based on our
assumption there is some table ¢ that violates ¢ and satisfies ;. We will now construct a
p-table ¢ from ¢ that violates (¢, ;) and satisfies 3. If ¢ is a NOT NULL constraint, then ¢
contains some row ry that violates . Otherwise, ¢ contains two rows rg, r; that violate ¢.
If ¢ contains at least two rows, then ¢ := {rg, 71} and we assign to ro the p-degree a; and
to r1 the p-degree 1. If t = {r1}, then ¢t := {rg,r;} for a new row ro with non-null
domain values that do not occur in r; and assign the p-degree a; to rg and the p-degree
Qp+1-; to 1. The p-table ¢ has the property that for every 5 < 8; < Bi, thr1-; = {10},
and for every 8; > B;, txr1-i = {ro,r1}. Consequently, the p-table (, Poss;) satisfies ¥
but violates (¢, 5;). That is, X = (¢, 5;) does not hold.

Consider the p-table schema (WORK,a; > as > a3 > a4) with the following set
Y of p-constraints: (dpt — mng, 51), (emp — dpt,[53), and (u(emp), 53). We have
seen that ¥ does not imply (emp — mng, f3). Using Theorem 9 this is equivalent to
noting that >s does not imply emp — mng. We have also seen
that if © results from ¥ by adding the NOT NULL constraint
(n(dpt), Bs), then O still does not imply (emp — mng, Bs). Using Table 8: SQL Exam-
Theorem 9 this is equivalent to noting that ©, does not im- Pl
ply emp — mng. This is shown by Table 8. Finally, we had _ ¢ dpt | mng
seen that if Q) results from ¥ by adding the NOT NULL constraint Andy | L | Sofia
(n(dpt), B2), then Q does imply (emp — mng, B2). Using Theo- Andy | L | Sam
rem 9 this is equivalent to noting that €2 does imply emp — mnyg.

B.1 Axiomatic Characterization

Theorem 10 (Theorem 1 restated) The set pS forms a finite axiomatization for the
implication problem of the combined class of p-SQL keys, FDs, and NOT NULL constraints.

26

Proof We first show the soundness of the inference rules. The soundness of the submodel
rule follows from the following: if the world ¢;,;_; satisfies o, then so does t;_; C tx11_;.
The soundness of the triviality axiom is a consequence of the definition: a constraint al-
ways holds with bottom c-degree. The soundness of the remaining rules follows from The-
orem 9 and the soundness of the corresponding inference rules from the non-possibilistic
SQL case, as proven in Lemma 1.

It remains to show the completeness of the inference rules. Here, we derive the
completeness directly from the completeness of the inference rules in & for the implication
of SQL keys, FDs and NOT NULL constraints, and Theorem 9. Indeed, assume that we
have 3 = (¢, 8;) for some arbitrarily given set ¥ U {(p, 3;)} of p-constraints over p-SQL
table schema (T,aq > +-+ > agy1). If 5; = Bry1, then we can infer (p, 5;) directly by a
single application of the triviality axiom. Otherwise, 5; > (1. In this case, Theorem 9
shows that 3; = ¢ holds. By completeness of the inference rules & from Table 7, we
conclude that ¥ kg ¢. Now, we define the set 3¢ = {(c, ;) | 0 € X;}. Next, we obtain
the inference X bye (¢, 3;) from the inference X g ¢ by replacing each application of an
inference rule in & with an application of the corresponding inference rule in p&, simply
by augmenting each constraint o with the c-degree [5; and the condition Y C X7, with
the condition Y C XT!. From X! F,g (p,5;) we finally obtain ¥ by (¢, 3;) since for
every (o, 3;) € Xt there is some (o, 3;) € ¥ such that 8; > ; and we can successively
apply the submodel rule to (o, ;) to derive (o, ;). This concludes the proof.

Consider the p-table schema (WORK, a3 > s > a3 > «4) with the following set X
of p-constraints: (dpt — mng, 81), (emp — dpt, Bs), and (u(emp), 53). We have seen that
Q = X U {(n(dpt), B2)} implies (emp — mng, 52). Indeed, Qs = {dpt — mng, emp —
dpt, n(dpt)}, and an application of null FD transitivity results in Qs Fg emp — mng.

B.2 Algorithmic Characterization

Theorem 11 (Theorem 2 restated) Let X denote a set of p-SQL keys, FDs, and NOT
NULL constraints over p-SQL table schema (T, a1 > -+ > agy1). For all (X = Y, 5),
(uX, B;) and (nX, B;) over (T, > -+ > agy1) the following hold:

1. S = (X =Y, 8) if and only if Y C X{:

Si[XTE[FD]

2. ¥ = (uX, B;) if and only if X;i =T and there is some uZ € ¥;[XT!].

[(XTZ][FD]

3. Y E (nX,B) if and only if X C T
Proof We show each of the properties in turn.

1. By Theorem 9, ¥ |= (X — Y, ;) holds if and only if ¥; =r: X — Y. However,
from the first equivalence of Corollary 3 it follows that ¥ = (X — Y, ;) holds
if and only if 3,[XT/[FD] = X — Y holds. It is a classical result [2] that

Y[XTH[FD] E X — Y holds if and only if Y C X;)ri[XT?][FD]'

27

2. By Theorem 9, ¥ |= (uX, 3;) holds if and only if ¥; =7: uX holds. However, from
the second equivalence of Corollary 3 it follows that X; |=r; uX holds if and only
if X[XT![FD] = X — T holds and there is some uZ € ¥;[XTY]. Tt is a classical

result [2] that X[XT;][FD] = X — T holds if and only if X§ 1y mp) =T

3. By Theorem 9, ¥ |= (nX, ;) holds if and only if ¥; = nX holds. However, ¥; = nX
holds if and only if X C T holds.

B.3 Logical Characterization

Consider the p-table schema (WORK, a1 > ay > ag > a4) with the following set © of
p-constraints: (dpt — mng, 1), (emp — dpt, 52), (u(emp), f3), and (n(dpt), B3). We have
seen that © does not imply the p-FD (¢ = emp — mng, 52). Indeed, ©ylemp| = {emp —
dpt}, so the translation into Horn formulae would result in (©yemp]) = {—emp’ V dpt'}
and ¢’ = —emp’ V mng. Now the set

{=emp’ vV dpt', emp', —~mng'}

of Horn formulae is satisfiable, confirming that © does not imply the p-FD (emp —
mng, Ba).

Theorem 12 (Theorem 4 restated) The implication problem of p-SQL keys, FDs,
and NOT NULL constraints is PTIME-complete and equivalent to HORNSAT. |}

Proof Based on the first two equivalences in Theorem 2 and the soundness of key weak-
ening in B from Table 6, it follows that:

1. X (X =Y, 3) if and only if 3;[XTY] = X — Y, and
2. ¥ E (uX, B;) if and only if ;[XT!] | X — T and there is some uZ € ;[XT7].

Note that %;[XTY] is a set of keys and FDs over bag schemata. Indeed, the condition
Y[XTH E X — T and there is some uZ € ¥;[XT?] is equivalent to ;[XT!] = uX by
soundess of the pullback rule in B from Table 6.

Hence, we have reduced instances ¥ = (o, 5;) for keys 0 = uX and FDs o = X — Y
of the implication problem for our class of p-constraints to instances ¥;[XT?] |= o for the
implication problem of keys and FDs over bag schemata. For the latter it is known that
keys behave like propositional goal clauses and FDs behave like propositional definite
clauses [14].

In fact, it is well-known that the implication problem of Boolean propositional Horn
formulae is PTIME-complete and equivalent to HORNSAT [8], the problem of deciding
satisfiability for a set of propositional Boolean Horn formulae. The latter can be solved
by using linear resolution.

28

