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Abstract

In this paper we provide a practically efficient QUBO formulation for the Graph
Isomorphism Problem that is suitable for quantum annealers, such as those produced
by D-Wave. After proving correctness of our new method, based on exploiting vertex
degree classes, we do some experimental work on a D-Wave 2X computer. We observe
that for all “hard” graphs of 6 vertices, we save around 50% to 95% of the number of
required qubits over the standard QUBO formulation that was given earlier by Calude
et al [13]. We also provide some theoretical analysis showing that for two random
graphs with the same degree sequence our new method substantially improves in qubit
savings as the number of vertices increases beyond 6.

1 Introduction

The Graph Isomorphism Problem is the computational problem of determining whether two
graphs are isomorphic. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), we say that G1

and G2 are isomorphic if there exists an edge-invariant vertex bijection f : V1 → V2 such that
for every pair of vertices {u, v}, we have uv ∈ E1 if and only if f(u)f(v) ∈ E2. Formally, we
define the problem below:

Graph Isomorphism Problem:

Instance: Two graphs G1 = (V1, E1) and G2 = (V2, E2) with |V1| = |V2| and |E1| = |E2|.
Question: Determine whether there exists a bijective edge-invariant

vertex mapping (isomorphism) f : V1 → V2.

We assume that the input graphs G1 and G2 are both connected graphs; if they have
multiple connected components then we can always reduce to smaller instances of the Graph
Isomorphism Problem. We will also assume G1 and G2 have the same degree sequence, they
can not be isomorphic otherwise and these cases can be decided quickly.

The Graph Isomorphism Problem has numerous applications in a variety of fields ranging
from the study of chemical compound structure [19] and computational biology [34] to secu-
rity in social networks [35]. The exact complexity of the problem has eluded researchers ever

1



since its conception for more than five decades. On one hand, the Graph Isomorphism Prob-
lem is clearly in NP; given a vertex mapping f : V1 → V2, one can easily check in polynomial
time if f is bijective and edge-invariant. On the other hand, the Graph Isomorphism Problem
seems to be neither in P nor NP-complete. The current best known classical algorithm for
the problem by [4] has a time complexity of exp

(
(log n)O(1)

)
which is quasipolynomial. If the

Graph Isomorphism Problem is NP-complete, it would have huge implication on complexity
theory. It has been proven that if the Graph Isomorphism Problem is NP-complete, then
the polynomial-time hierarchy collapses [3] which is strong evidence that P 6= NP. However,
despite the similarities between the Graph Isomorphism Problem and many NP-complete
problems [27], no one has been able to prove that the Graph Isomorphism Problem is NP-
complete. This makes the Graph Isomorphism Problem one of the most interesting problems
in complexity theory since not many other problems have the aforementioned properties.

The concept of adiabatic quantum computing is based on the Adiabatic Theorem in
physics [21, 29] which involves the process of evolving the ground state (state of minimum
energy) of a physical system [20, 21]. It has attracted much attention from both researchers
and private sectors over the last few years. One advantage of adiabatic quantum computing
over the more traditional quantum gate model is fact that a particular type of physical
device that can be used for adiabatic quantum computing, known as quantum annealer, is
relatively easier to build compared to quantum gate machines. The Canadian company D-

Wave Systems was able to manufacture the D-Wave 2000QTM with more than 2000 physical
qubits [14] which is a huge improvement when compared with state-of-the-art quantum gate
model device such as the IBM Q 20 [24], which only has 20 physical qubits. Note that physical
qubits in an adiabatic quantum computing framework are not equivalent to qubits in the
quantum gate framework. To simulate an arbitrary quantum gate computation, the adiabatic
framework requires more qubits in general [2]. Furthermore, D-Wave quantum annealers can
only support a specific type of problem structure. This means that an algorithm developed
for a given problem using a set number of logical of physical qubits has to be ‘embedded’ in
the hardware first, which normally cause the number of physical qubits required to increase
dramatically.

Motivated by the limited number of physical qubits in current hardware, we present
an improved version of the QUBO formulation given in [13] and empirically compare their
performance. Our experimental results indicate that the improved version is much more
suitable for current hardware not only in terms of better embedding but also has a higher
probability of obtaining the correct answer when run on a quantum annealer.

The rest of the paper is organized as follows. In Section 2, we will provide the necessary
mathematical background knowledge required. In Section 3, we present the improved QUBO
formulation along with a proof of correctness. In Section 4, we will first provide an overview
of experiment conducted followed by the embedding experiment on an active D-Wave 2X
hardware. We also give a brief explanation on how an D-Wave quantum annealer can be
used to solved QUBO problems followed by some comments on how to configure some of the
parameters and options supported by D-Wave 2X. A discussion of the experiment results
are provided in Section 5.
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2 Mathematical Prerequisites

In this section we introduce the mathematical and graph theory prerequisites that are useful
for this paper.

The cardinality of a set X is denoted by |X|. By lg we denote the logarithm in base 2
and Z2 = {0, 1}. The power set of X will be denoted by 2X . A partial function f : X → Y
is a function which can be undefined for some values x ∈ X. The domain of f , denoted
by dom(f) is the set of all x ∈ X for which f(x) is defined. A graph G = (V,E) consists
of a finite non-empty set of vertices V together with a set of edges E. The order of G,
denoted by n, is the number of vertices in V . In our representation vertices are labeled by
V = {vi | 0 ≤ i < n}. The set (of edges) E consists of unordered pairs of vertices u, v ∈ V ;
we denote an edge by e = uv. Note that since we only consider undirected graphs in this
paper, uv and vu represent the same edge. The number of edges, denoted by m, is called
the size of G. For a vertex v in a graph, the degree of v, denoted by deg(v) is the number of
neighbors v has. That is, deg(v) = |{u | uv ∈ E}|. A regular graph is a graph G = (V,E)
such that deg(u) = deg(v) for all u, v ∈ V . The degree sequence of a graph G = (V,E) is
the monotonic nonincreasing sequence of the vertex degrees of G.

In this paper we will only consider simple graphs, that is, graphs with no multi-edges nor
self-loops. The first condition means that for all pairs of vertices u and v, there is at most
one edge between u and v; the second condition states that for every vertex v ∈ V we have
vv /∈ E.

The following well-known theorem is also useful.

Theorem 1. Given two graphs G1 and G2. G1 and G2 are isomorphic if and only if the
complement of G1 and G2 are isomorphic.

Quadratic Unconstrained Binary Optimization (QUBO) is an NP-hard optimization
problem involving the minimization of a quadratic objective function F : Zn

2 → R that
is defined by an n× n upper-triangular matrix Q. Let x = (x0, x1, . . . , xn−1) be a vector of
n binary variables, the objective function is of the following form F (x) = xTQx. Formally
the QUBO problem is defined as follows:

x∗ = min
x

∑
i≤j

xiQ(i,j)xj, where xi ∈ Z2. (1)

Note that for notational convenience, the entries of Q are indexed from 0 (i.e. 0 ≤ i, j <
n). The goal is to find a binary value assignment of variables x = (x0, x1, . . . , xn−1) such
that the value of F (x) is minimum. We use x∗ to denote the minimum value of F (x)
and x∗ = (x∗0, x

∗
1, . . . , x

∗
n−1) to denote the set of value assignments of the n variables that

yield x∗.
Although this paper focuses on the QUBO model, some relevant knowledge of the Ising

spin glass model will also be useful since the D-Wave quantum annealers implement the Ising
model. The Ising model is a problem in physics that involves the mechanics of ferromag-
netism [10], we will not be overly concerned with the physical nature of the problem and
will only provide an abstract mathematical description of the model. Let G = (V,E) be a
graph where each vertex i ∈ V and edge ij ∈ E are associated with real values hi and J(i,j)

3



respectively. An Ising Minimization Problem with n = |V | variables has a variable vector
x = (x0, x1, . . . , xn−1) and can be defined as follows:

x∗ = min
x

∑
ij∈E

xiJ(i,j)xj +
∑
i∈V

hixi, where xi ∈ {−1, 1}. (2)

The QUBO and Ising problems are equivalent, they are both NP-hard [5, 33] and one
can easily transform one to the other with a relatively simple transformation function [16].
This paper will mainly focus on the QUBO model since binary values are more natural and
interpretive than the ±1 model.

3 QUBO Formulation for the Graph Isomorphism

Problem and Improvements

For the sake of completeness, we will first introduce the QUBO formulation for the Graph
Isomorphism Problem developed in [13]. Note that we assume that the two input graphs G1

and G2 have the same order and size. Now suppose G1 = (V1, E2) and G2 = (V2, E2) are
two graphs both of order n and size m. The objective function of [13] requires a total of n2

logical qubits, one variable xi,j for each integer pair i and j where 0 ≤ i < n and 0 ≤ j < n.
If xi,j = 1 then the vertex mapping maps vi in G1 to vj in G2. We label the collection of n2

variables by a binary vector x ∈ Zn2

2 :

x = [x0,0, x0,1, . . . x0,n−1, x1,0, x1,1, . . . , x1,n−1, . . . xn−1,0, . . . xn−1,n−1].

We also pre-compute n2 binary constants ei,j for 0 ≤ i < n and 0 ≤ j < n where ei,j = 1 if
ij ∈ E2 and ei,j = 0 if ij /∈ E2.

The objective function in [13] is of the following form:

F (x) = H(x) +
∑
ij∈E1

Pi,j(x), (3)

where

H(x) =
∑

0≤i<n

(
1−

∑
0≤i′<n

xi,i′

)2

+
∑

0≤i′<n

(
1−

∑
0≤i<n

xi,i′

)2

, (4)

and

Pi,j(x) =
∑

0≤i′<n

(
xi,i′

∑
0≤j′<n

xj,j′(1− ei′,j′)

)
. (5)

Now suppose x∗ and x∗ are the optimal value and its corresponding binary variable assign-
ment of Equation (3), one can decide if whether G1 and G2 are isomorphic and compute the
edge-invariant, if it exists, efficiently. See [13] for the proof of correctness and more details.

Clearly, if G1 and G2 are indeed isomorphic then an edge-invariant vertex mappings
can only map vertices in G1 to vertices of the same degree in G2 (i.e. if u = f(v) then
deg(u) = deg(v)). Based on this fact, we can quickly eliminate unnecessary logical variables
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which can not have value 1. This is important from a practical point of view since the current
D-Wave hardware only have a limited number of physical qubits and couplers available, hence
reducing the number of required logical qubits means that we can solve larger instances of the
Graph Isomorphism Problem. This also makes the problem easier to embed in the hardware.

The improved QUBO formulation still requires O(n2) qubits in the worst case but sub-
stantially less in practice; the exact number depends on the degree sequence of the input
graphs. Formally, for each vertex pair (vi, vj) where vi ∈ V1 and vj ∈ V2, we define a binary
variable xi,j if deg(vi) = deg(vj). For readability, we define a set S = {(i, j) | deg(vi) =
deg(vj) for vi ∈ V1 and vj ∈ V2} and the collection of all binary variables can be indexed by
a binary vector x = [xi,j | (i, j) ∈ S]. Formally, the objective function is of the following
form:

F (x) = H(x) +
∑
ij∈E1

Pi,j(x), (6)

where

H(x) =
∑

0≤i<n

1−
∑

(i,i′)∈S

xi,i′

2

+
∑

0≤i′<n

1−
∑

(i,i′)∈S

xi,i′

2

, (7)

and

Pi,j(x) =
∑

(i,i′)∈S

xi,i′ ∑
(j,j′)∈S

xj,j′(1− ei′,j′)

 . (8)

As in [13], assume that x∗ = minx F (x). Then, the mapping f can be ‘decoded’ from
the values of the variables xi,i′ using an additional partial function D. Let F be the set of

all bijections between V1 and V2. Then D : Z|x|2 → F is a partial ‘decoder’ function that
re-constructs the vertex mapping f from the vector x, if such f exists. The domain of D
contains all vectors x ∈ Z|x|2 that can be ‘decoded’ into a bijective function f :

dom(D) =

{
x ∈ Z|x|2

∣∣∣∣∣ ∑
0≤i′<n

xi,i′ = 1, for all 0 ≤ i < n and (i, i′) ∈ S

and
∑

0≤i<n

xi,i′ = 1, for all 0 ≤ i′ < n and (i, i′) ∈ S

}
,

and

D(x) =

{
f, if x ∈ dom(D),

undefined, otherwise,

where f : V1 → V2 is a bijection such that f(vi) = vi′ if and only if xi,i′ = 1.
Although Equation (6) is very similar to the objective function presented in [13], we

present a proof of correctness here for the sake of completeness.

Lemma 2. For every x ∈ Z|x|2 , H(x) = 0 if and only if D(x) is defined (in this case D(x)
is a bijection).
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Proof. Fix x ∈ Z|x|2 . The term H(x) has two components,

∑
0≤i<n

1−
∑

(i,i′)∈S

xi,i′

2

and
∑

0≤i′<n

1−
∑

(i,i′)∈S

xi,i′

2

.

Since both components consist of only quadratic terms, we have H(x) = 0 if and only if
both components are equal to 0.

First,

∑
0≤i<n

1−
∑

(i,i′)∈S

xi,i′

2

= 0 (9)

if and only if for each 0 ≤ i < n, exactly one variable in the set {xi,i′ | (i, i′) ∈ S} has value 1,
that is, every vertex v ∈ V1 has an image.

Second, with the same argument,

∑
0≤i′<n

1−
∑

(i,i′)∈S

xi,i′

2

= 0 (10)

if and only if for each 0 ≤ i′ < n, exactly one variable in the set {xi,i′ | (i, i′) ∈ S} has
value 1, hence the function vi 7→ vi′ is surjective.

Together the conditions (9) and (10) are equivalent with the property that every vertex
vi ∈ V1 is mapped to a unique vertex vi′ ∈ V2, and since the orders of G1 and G2 are same,
the mapping vi 7→ vi′ is bijective.

The second lemma stated below ensures that the mapping f , if bijective, is also edge-
invariant.

Lemma 3. Let x ∈ Z|x|2 and assume that D(x) is a bijective function. Then,
∑

ij∈E1
Pi,j(x) =

0 if and only if the mapping f = D(x) is edge-invariant.

Proof. Fix x ∈ Z|x|2 . Note that Pi,j(x) from Equation (6) does not contain cubic terms, so,
as all ei′,j′ are constants, Pi,j(x) contains only quadratic terms; consequently, Pi,j(x) ≥ 0,
for all ij ∈ E1.

Furthermore,
∑

ij∈E1
Pi,j(x) = 0 if and only if Pi,j(x) = 0, for all ij ∈ E1.

After expanding Equation (8), we get

Pi,j(x) =
∑

(i,i′)∈S

xi,i′
(
xj,j′0(1− ei′,j′0) + xj,j′1(1− ei′,j′1) + · · ·+ xj,j′k(1− ei′,j′k)

)
for each (j, j′) ∈ S.

Since f is a bijection, for every edge ij ∈ E1, in the set {xi,i′ | (i, i′) ∈ S} there is a unique
variable, denoted by x∗i,i′ , with value 1, and in the set {xj,j′ | (j, j′) ∈ S} there is exactly one
variable, denoted by x∗j,j′ , with value 1.

Assume that
∑

ij∈E1
Pi,j(x) 6= 0, i.e. for some ij ∈ E1 we have Pi,j(x) 6= 0. It is easy to

see that Pi,j(x) 6= 0 if and only if x∗i,i′x
∗
j,j′(1− ei′,j′) 6= 0, or equivalently, ei′,j′ = 0. The last
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equality violates the condition of an edge-invariant mapping as ei′,j′ = 0 implies that there
is no edge between the vertices vi′ and vj′ in G2.

Conversely, if
∑

ij∈E1
Pi,j(x) = 0, then Pi,j(x) = 0 for all ij ∈ E1, hence x∗i,i′x

∗
j,j′(1 −

ei′,j′) = 0 which implies ei′,j′ = 1. This means that for all ij ∈ E1, f(i)f(j) ∈ E2. Since
f is bijective and |E1| = |E2|, every edge ij ∈ E2 must also have a corresponding edge
f−1(i)f−1(j) ∈ E1, so f is edge-invariant.

Theorem 4. For all x ∈ Z|x|2 , F (x) = 0 if and only if the mapping f : V1 → V2 defined by
f = D(x) is an isomorphism.

Proof. Since both H(x) and
∑

ij∈E1
Pi,j(x) contain only quadratic terms, we have F (x) = 0

if and only if both H(x) = 0 and
∑

ij∈E1
Pi,j(x) = 0.

Assume F (x) = 0. Then by Lemmas 2 and 3, f must be bijective and edge-invariant.
On the other hand, if F (x) 6= 0, then either H(x) 6= 0 or

∑
ij∈E1

Pi,j(x) 6= 0. If H(x) 6= 0,
then f is not bijective by Lemma 2. If H(x) = 0 and

∑
ij∈E1

Pi,j(x) 6= 0, then by Lemma 3
the mapping is not edge-invariant.

3.1 An example: the graph P3

Recall the example given in [13]. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs of
order 3, where V1 = V2 = {0, 1, 2} and E1 = {{0, 1}, {1, 2}} and E2 = {{0, 1}, {0, 2}}. The
standard QUBO from [13] has nine variables and the binary variable vector is

x = (x0,0, x0,1, x0,2, x1,0, x1,1, x1,2, x2,0, x2,1, x2,2).

The complete QUBO matrix is given in Table 1. Note that we always ignore constant terms
in Equation (3) and (6) when using the matrix based representation, removing constant
values will not affect the optimality of x∗ and x∗. Now, there is only one vertex of degree 2
in either graph, vertex 1 in G1 has to be mapped to vertex 0 in G2 and it can be verified that
the only two optimal solutions are x1 = (0, 1, 0, 1, 0, 0, 0, 0, 1) and x2 = (0, 0, 1, 1, 0, 0, 0, 1, 0).
See [13] for the complete set of constraints for this particular example.

Table 1: Standard QUBO matrix for P3

Variables x0,0 x0,1 x0,2 x1,0 x1,1 x1,2 x2,0 x2,1 x2,2
x0,0 -2 2 2 3 0 0 2 0 0
x0,1 -2 2 0 3 1 0 2 0
x0,2 -2 0 1 3 0 0 2
x1,0 -2 2 2 3 0 0
x1,1 -2 2 0 3 1
x1,2 -2 0 1 3
x2,0 -2 2 2
x2,1 -2 2
x2,2 -2

The objective function (6) takes advantage of the fact that vertex 1 in G1 has to be
mapped to vertex 2 in G2 by an edge-invariant vertex mapping. See Table 2 for the improved
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QUBO matrix. According to the QUBO formulation given in Equation 6, the set S consists
of the following 2-tuples of five binary variables:

S = {(0, 1), (0, 2), (1, 0), (2, 1), (2, 2)}

and so the binary variable vector is now

x = (x0,1, x0,2, x1,0, x2,1, x2,2).

After expanding Equation (7), we get

H(x) = (1− (x0,1 + x0,2))
2 + (1− x1,0)2 + (1− (x2,1 + x2,2))

2

+ (1− x1,0)2 + (1− (x0,1 + x2,1))
2 + (1− (x0,2 + x2,2))

2 .

Using the definition of Equation (6), we need to pre-compute the following binary constants
ei,j: e0,0 = 0, e0,1 = 1, e0,2 = 1, e1,0 = 1, e1,1 = 0, e1,2 = 0, e2,0 = 1, e2,1 = 0, e2,2 = 0. By
substituting these constants into Equation (8), we obtain the following two constraints:

P0,1(x) = (x0,1x1,0(1− e1,0)) + (x0,2x1,0(1− e2,0)) ,

P1,2(x) = x1,0 (x2,1(1− e0,1) + x2,2(1− e0,2)) .

Note that both penalties terms completely vanish if we substitute the corresponding value
of ei,j into them.

Once again, it is fairly easy to verify that the two optimal solutions are now x1 =
(0, 1, 1, 1, 0) and x2 = (1, 0, 1, 0, 1).

Table 2: Degree sequence mapped QUBO matrix for P3

Variables x0,1 x0,2 x1,0 x2,1 x2,2
x0,1 -2 2 0 2 0
x0,2 -2 0 0 2
x1,0 -2 0 0
x2,1 -2 2
x2,2 -2

4 Experiments

We conducted numerous experiments on a D-Wave 2X quantum annealer. The hardware
structure of the D-Wave computers are called Chimera graphs, indexed by three integers
(M,N,L), they consist of M by N blocks of interconnected KL,L (complete bipartite graphs
of order 2L). A more detailed specification of the Chimera graph can be found in [1]. We
experimentally compare the efficiency of the QUBO formulation in Section 3 and of [13]
by embedding the QUBO instances of both formulation on actual D-Wave hardware and
experimentally test the solvability of both formulation on the quantum annealer. In this
section, we will first provide an overview followed by a summary of the experiments.
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4.1 Test cases and minor embeddings

We experimentally measured the improvement of the QUBO formulation given in Section 3
on graphs of small order. It is common knowledge that the number of labeled graphs of

order n is 2(n
2) which becomes intractable very quickly when n > 7. For example, see

http://oeis.org/A000088 for the number of graphs with order up to 19. However, not all
graphs are difficult; for example, consider an instance of the Graph Isomorphism Problem
when the input graphs have multiple connected components then we can reduce it to several
smaller instances of the Graph Isomorphism Problem and combine their solutions to solve
the original instance. Furthermore, the Graph Isomorphism Problem is in P if G1 and G2 are
trees (since the Tree Isomorphism Problem is in logspace [25]). Together with Theorem 1,
it means that the Graph Isomorphism Problem can be efficiently solved if either G1 and G2

or their complements are trees. As a result, we tested all the graphs G with the following
properties: 1) both G and its complement are connected; 2) neither G nor its complement
is a tree. We also filtered out degree sequences that only corresponds to one unique graph
under these two conditions.

Our Script A is a Sage [32] program that enumerates all degree sequences of graphs of
order 6, it then filters out graphs as described in the previous paragraph and outputs all
selected graphs. Now, say a given degree sequence has k graphs selected G0, G1, . . . , Gk−1.
For each 0 ≤ i < k, we generate several instances of the Graph Isomorphism Problem by
doing the following: first, we select Gi as the input graph G1 of the Graph Isomorphism
Problem and then, for each j in range i ≤ j < k, we then randomly permute the vertex
labels of Gj and use it as input graph G2 (see Script B).

In order to compare the improvement of the QUBO instances, we generate two QUBOs
for each graph pair, one based on the QUBO formulation given in [13] and one based on
Equation (6). The Python Script C contains the implementation of both QUBO formula-
tions. We then tested the embeddings of the QUBOs on a D-Wave 2X quantum computer.
The hardware structure of this particular model is a 12 × 12 × 4 Chimera graph which
consists of 12 by 12 grids of interconnected complete bipartite graphs K4,4. Note that the
actual device we used has 54 inactive qubits. The minor embedding algorithm is provided
by the software package developed by D-Wave [15], the same algorithm used in [13]. More
details about the embedding algorithm can be found in [11]. Note that some of our Python
programs use NetworkX [22] as well.

Since the embedding algorithm used here is probabilistic and heavily relies on an initial
random vertex selection, it is fairly difficult to predict its behavior. Hence each test case is
embedded five times and Tables 3 and 4 contain these embeddings results. Each test case is
indexed by three integers i, j and k. The first integer is the degree sequence index generated
using the Sage degree sequence generator (see Script A). The other two integers j and k cor-
respond to the indices of selected graphs in the degree sequence (see Script B). For example,
seq 0 0 1 corresponds to the first degree sequence where G1 and G2 were chosen to be the
first and the second graph outputed by Script A, corresponding to that degree sequence. The
column labeled ‘Logical Qubits’ is the number of logical variables required by the QUBO
formulation, the QUBOs generated by the standard QUBO formulation [13] (Table 3) all
require n2 = 62 = 36 logical qubits whereas the improved degree sequence mapping QUBOs
(Table 4) each requires a different number depending on the degree sequence. With respect
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to the minor embedding, the two most important factors are the total number of physical
qubits used and the map size (number of physical qubits each logical qubit is mapped to),

so the average map size
(

no. physical qubits
no. logical qubits

)
is also computed and presented in Tables 3

and 4.

4.2 D-Wave experiments

Several experiments were ran on an actual D-Wave 2X hardware to test the quality of the
QUBO instances generated. Since we only have limited access to the quantum computer, it
is not possible to test the viability of all QUBO instances in combination with all different
embeddings. Previous experimental works such as [1, 18] and [30]1 suggest that large map
size in general will lead to a low probability of solving the QUBO instance with a quantum
annealer. Therefore each QUBO instance was executed with an embedding that has the
lowest average map size. Note that due to the random nature of the embedding algorithm,
the embeddings selected are not likely to be the best embeddings (i.e. other embeddings
with a smaller average map size may exist) and different embeddings could affect the result
drastically.

Recall the definition of objective function (6) and Theorem 4. If G1 and G2 are not
isomorphic, then the value of the optimal solution of F (x) is meaningless. As a result,
only isomorphic pairs of graphs are used in the experiment (these are test cases labeled by
seq i j k where j = k). The correctness of the D-Wave answers can be verified efficiently for
these test cases as well, one only need to compute F (x) and if F (x) = 0 then x is the correct
optimal solution.

The D-Wave quantum annealing hardware uses the Ising model so the QUBO instances
has to be converted to their corresponding Ising form. The transformation operation is
relatively straightforward so we will omit the details here (see [16] for the details). This
function is implemented in the D-Wave software package [15] and so all QUBO instances
are converted to Ising form before D-Wave hardware is used to solve the Ising instance. See
Script D for the complete implementation, the Python program reads a QUBO in the format
outputed by Script B, convert the QUBO instance to an Ising. It then embeds the Ising
instance on the hardware structure of the D-Wave 2X, note that the actual embeddings used
in the experiment are not included in this paper since these precomputed embeddings are
unlikely to be reusable as each current D-Wave computer has a different set of faulty physical
qubits.

1Note that this publication refers to map size as ‘chain length’ which could be somewhat misleading since
the set of physical qubits is not necessarily a path.
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Table 3: Standard QUBO embedding result (1 of 2).

Graph name Logical Qubits Physical 1 Average 1 Physical 2 Average 2 Physical 3 Average 3 Physical 4 Average 4 Physical 5 Average 5
seq 0 0 0 36 516 14.33 482 13.39 682 18.94 399 11.08 515 14.31
seq 0 0 1 36 532 14.78 480 13.33 501 13.92 467 12.97 514 14.28
seq 0 1 1 36 506 14.06 538 14.94 453 12.58 480 13.33 424 11.78
seq 1 0 0 36 587 16.31 464 12.89 462 12.83 463 12.86 506 14.06
seq 1 0 1 36 511 14.19 454 12.61 539 14.97 483 13.42 472 13.11
seq 1 0 2 36 432 12.0 483 13.42 442 12.28 525 14.58 480 13.33
seq 1 1 1 36 399 11.08 544 15.11 478 13.28 502 13.94 461 12.81
seq 1 1 2 36 496 13.78 460 12.78 502 13.94 450 12.5 464 12.89
seq 1 2 2 36 531 14.75 546 15.17 441 12.25 504 14.0 559 15.53
seq 2 0 0 36 471 13.08 514 14.28 478 13.28 483 13.42 506 14.06
seq 2 0 1 36 472 13.11 482 13.39 490 13.61 554 15.39 484 13.44
seq 2 0 2 36 574 15.94 557 15.47 479 13.31 533 14.81 476 13.22
seq 2 0 3 36 609 16.92 472 13.11 487 13.53 465 12.92 461 12.81
seq 2 1 1 36 486 13.5 490 13.61 498 13.83 444 12.33 383 10.64
seq 2 1 2 36 454 12.61 442 12.28 475 13.19 395 10.97 472 13.11
seq 2 1 3 36 557 15.47 576 16.0 411 11.42 531 14.75 502 13.94
seq 2 2 2 36 495 13.75 499 13.86 422 11.72 472 13.11 423 11.75
seq 2 2 3 36 440 12.22 497 13.81 517 14.36 521 14.47 498 13.83
seq 2 3 3 36 459 12.75 451 12.53 535 14.86 496 13.78 498 13.83
seq 3 0 0 36 574 15.94 495 13.75 445 12.36 542 15.06 447 12.42
seq 3 0 1 36 512 14.22 493 13.69 459 12.75 518 14.39 501 13.92
seq 3 0 2 36 536 14.89 571 15.86 454 12.61 465 12.92 493 13.69
seq 3 0 3 36 436 12.11 515 14.31 566 15.72 425 11.81 505 14.03
seq 3 1 1 36 512 14.22 472 13.11 485 13.47 539 14.97 472 13.11
seq 3 1 2 36 517 14.36 417 11.58 460 12.78 521 14.47 425 11.81
seq 3 1 3 36 420 11.67 580 16.11 485 13.47 531 14.75 485 13.47
seq 3 2 2 36 475 13.19 457 12.69 429 11.92 492 13.67 568 15.78
seq 3 2 3 36 372 10.33 560 15.56 613 17.03 412 11.44 505 14.03
seq 3 3 3 36 513 14.25 449 12.47 452 12.56 567 15.75 482 13.39
seq 4 0 0 36 481 13.36 573 15.92 573 15.92 477 13.25 448 12.44
seq 4 0 1 36 495 13.75 549 15.25 486 13.5 440 12.22 460 12.78
seq 4 1 1 36 415 11.53 508 14.11 535 14.86 527 14.64 362 10.06
seq 5 0 0 36 373 10.36 473 13.14 566 15.72 462 12.83 571 15.86
seq 5 0 1 36 426 11.83 433 12.03 477 13.25 520 14.44 510 14.17
seq 5 1 1 36 434 12.06 476 13.22 513 14.25 509 14.14 541 15.03
seq 6 0 0 36 484 13.44 418 11.61 401 11.14 402 11.17 527 14.64
seq 6 0 1 36 469 13.03 604 16.78 507 14.08 471 13.08 611 16.97
seq 6 0 2 36 492 13.67 528 14.67 486 13.5 477 13.25 490 13.61
seq 6 0 3 36 474 13.17 482 13.39 547 15.19 446 12.39 437 12.14
seq 6 1 1 36 499 13.86 547 15.19 490 13.61 499 13.86 595 16.53
seq 6 1 2 36 464 12.89 581 16.14 518 14.39 557 15.47 492 13.67
seq 6 1 3 36 472 13.11 493 13.69 495 13.75 599 16.64 528 14.67
seq 6 2 2 36 563 15.64 484 13.44 498 13.83 471 13.08 550 15.28
seq 6 2 3 36 507 14.08 481 13.36 474 13.17 460 12.78 473 13.14
seq 6 3 3 36 532 14.78 526 14.61 521 14.47 487 13.53 508 14.11
seq 7 0 0 36 512 14.22 550 15.28 505 14.03 632 17.56 491 13.64
seq 7 0 1 36 547 15.19 539 14.97 467 12.97 453 12.58 403 11.19
seq 7 0 2 36 478 13.28 467 12.97 504 14.0 538 14.94 490 13.61
seq 7 0 3 36 518 14.39 474 13.17 513 14.25 540 15.0 485 13.47
seq 7 1 1 36 509 14.14 479 13.31 475 13.19 480 13.33 498 13.83
seq 7 1 2 36 463 12.86 383 10.64 504 14.0 516 14.33 517 14.36
seq 7 1 3 36 452 12.56 475 13.19 567 15.75 543 15.08 478 13.28
seq 7 2 2 36 532 14.78 492 13.67 467 12.97 593 16.47 448 12.44
seq 7 2 3 36 581 16.14 468 13.0 574 15.94 456 12.67 532 14.78
seq 7 3 3 36 452 12.56 537 14.92 511 14.19 456 12.67 549 15.25
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Table 3: Standard QUBO embedding result (2 of 2).

Graph name Logical Qubits Physical 1 Average 1 Physical 2 Average 2 Physical 3 Average 3 Physical 4 Average 4 Physical 5 Average 5
seq 8 0 0 36 519 14.42 546 15.17 547 15.19 602 16.72 462 12.83
seq 8 0 1 36 556 15.44 428 11.89 508 14.11 447 12.42 502 13.94
seq 8 0 2 36 641 17.81 516 14.33 459 12.75 500 13.89 531 14.75
seq 8 0 3 36 456 12.67 514 14.28 469 13.03 514 14.28 446 12.39
seq 8 1 1 36 582 16.17 596 16.56 511 14.19 537 14.92 512 14.22
seq 8 1 2 36 509 14.14 487 13.53 453 12.58 546 15.17 530 14.72
seq 8 1 3 36 577 16.03 516 14.33 521 14.47 539 14.97 504 14.0
seq 8 2 2 36 522 14.5 560 15.56 534 14.83 513 14.25 469 13.03
seq 8 2 3 36 399 11.08 528 14.67 531 14.75 524 14.56 483 13.42
seq 8 3 3 36 460 12.78 553 15.36 429 11.92 500 13.89 532 14.78
seq 9 0 0 36 492 13.67 507 14.08 428 11.89 483 13.42 468 13.0
seq 9 0 1 36 511 14.19 471 13.08 522 14.5 499 13.86 495 13.75
seq 9 0 2 36 528 14.67 524 14.56 495 13.75 426 11.83 545 15.14
seq 9 0 3 36 513 14.25 444 12.33 466 12.94 464 12.89 439 12.19
seq 9 1 1 36 416 11.56 446 12.39 445 12.36 392 10.89 564 15.67
seq 9 1 2 36 486 13.5 492 13.67 498 13.83 549 15.25 483 13.42
seq 9 1 3 36 570 15.83 516 14.33 418 11.61 440 12.22 502 13.94
seq 9 2 2 36 477 13.25 508 14.11 496 13.78 467 12.97 471 13.08
seq 9 2 3 36 550 15.28 563 15.64 508 14.11 508 14.11 446 12.39
seq 9 3 3 36 454 12.61 457 12.69 493 13.69 505 14.03 472 13.11
seq 10 0 0 36 416 11.56 629 17.47 513 14.25 473 13.14 456 12.67
seq 10 0 1 36 471 13.08 517 14.36 479 13.31 493 13.69 454 12.61
seq 10 0 2 36 424 11.78 468 13.0 513 14.25 517 14.36 453 12.58
seq 10 0 3 36 495 13.75 401 11.14 430 11.94 513 14.25 498 13.83
seq 10 1 1 36 464 12.89 338 9.39 431 11.97 455 12.64 516 14.33
seq 10 1 2 36 442 12.28 482 13.39 488 13.56 484 13.44 528 14.67
seq 10 1 3 36 572 15.89 445 12.36 466 12.94 446 12.39 543 15.08
seq 10 2 2 36 508 14.11 564 15.67 481 13.36 539 14.97 491 13.64
seq 10 2 3 36 467 12.97 525 14.58 465 12.92 502 13.94 525 14.58
seq 10 3 3 36 477 13.25 479 13.31 518 14.39 463 12.86 443 12.31
seq 11 0 0 36 475 13.19 536 14.89 486 13.5 493 13.69 464 12.89
seq 11 0 1 36 495 13.75 446 12.39 472 13.11 463 12.86 405 11.25
seq 11 1 1 36 417 11.58 418 11.61 458 12.72 506 14.06 455 12.64
seq 12 0 0 36 595 16.53 529 14.69 484 13.44 472 13.11 493 13.69
seq 12 0 1 36 478 13.28 469 13.03 510 14.17 467 12.97 552 15.33
seq 12 0 2 36 476 13.22 459 12.75 546 15.17 472 13.11 486 13.5
seq 12 0 3 36 465 12.92 520 14.44 421 11.69 452 12.56 511 14.19
seq 12 1 1 36 548 15.22 540 15.0 488 13.56 560 15.56 482 13.39
seq 12 1 2 36 585 16.25 459 12.75 539 14.97 381 10.58 487 13.53
seq 12 1 3 36 423 11.75 481 13.36 493 13.69 454 12.61 470 13.06
seq 12 2 2 36 487 13.53 527 14.64 507 14.08 474 13.17 465 12.92
seq 12 2 3 36 494 13.72 433 12.03 609 16.92 466 12.94 432 12.0
seq 12 3 3 36 435 12.08 527 14.64 579 16.08 411 11.42 374 10.39
seq 13 0 0 36 524 14.56 483 13.42 558 15.5 536 14.89 500 13.89
seq 13 0 1 36 465 12.92 488 13.56 392 10.89 459 12.75 497 13.81
seq 13 0 2 36 369 10.25 469 13.03 480 13.33 439 12.19 468 13.0
seq 13 1 1 36 484 13.44 444 12.33 584 16.22 478 13.28 578 16.06
seq 13 1 2 36 456 12.67 538 14.94 464 12.89 438 12.17 440 12.22
seq 13 2 2 36 477 13.25 494 13.72 524 14.56 498 13.83 541 15.03
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Table 4: Improved (degree mapping) QUBO embedding result (1 of 2).

Graph name Logical Qubits Physical 1 Average 1 Physical 2 Average 2 Physical 3 Average 3 Physical 4 Average 4 Physical 5 Average 5
seq 0 0 0 14 29 2.07 33 2.36 28 2.0 30 2.14 35 2.5
seq 0 0 1 14 35 2.5 31 2.21 35 2.5 31 2.21 32 2.29
seq 0 1 1 14 43 3.07 35 2.5 32 2.29 57 4.07 33 2.36
seq 1 0 0 18 78 4.33 85 4.72 89 4.94 87 4.83 88 4.89
seq 1 0 1 18 83 4.61 91 5.06 73 4.06 85 4.72 99 5.5
seq 1 0 2 18 86 4.78 101 5.61 83 4.61 75 4.17 86 4.78
seq 1 1 1 18 87 4.83 81 4.5 86 4.78 80 4.44 89 4.94
seq 1 1 2 18 80 4.44 84 4.67 91 5.06 86 4.78 94 5.22
seq 1 2 2 18 87 4.83 95 5.28 98 5.44 77 4.28 91 5.06
seq 2 0 0 12 16 1.33 18 1.5 16 1.33 15 1.25 22 1.83
seq 2 0 1 12 36 3.0 40 3.33 20 1.67 41 3.42 50 4.17
seq 2 0 2 12 30 2.5 27 2.25 29 2.42 46 3.83 27 2.25
seq 2 0 3 12 26 2.17 27 2.25 34 2.83 24 2.0 22 1.83
seq 2 1 1 12 19 1.58 23 1.92 25 2.08 22 1.83 27 2.25
seq 2 1 2 12 32 2.67 20 1.67 23 1.92 29 2.42 31 2.58
seq 2 1 3 12 32 2.67 29 2.42 29 2.42 30 2.5 22 1.83
seq 2 2 2 12 25 2.08 24 2.0 32 2.67 24 2.0 22 1.83
seq 2 2 3 12 28 2.33 32 2.67 25 2.08 35 2.92 26 2.17
seq 2 3 3 12 24 2.0 24 2.0 20 1.67 23 1.92 21 1.75
seq 3 0 0 12 24 2.0 26 2.17 25 2.08 25 2.08 25 2.08
seq 3 0 1 12 38 3.17 27 2.25 35 2.92 30 2.5 27 2.25
seq 3 0 2 12 29 2.42 27 2.25 35 2.92 27 2.25 27 2.25
seq 3 0 3 12 27 2.25 31 2.58 29 2.42 31 2.58 28 2.33
seq 3 1 1 12 29 2.42 25 2.08 27 2.25 30 2.5 25 2.08
seq 3 1 2 12 29 2.42 28 2.33 30 2.5 25 2.08 32 2.67
seq 3 1 3 12 27 2.25 32 2.67 30 2.5 28 2.33 31 2.58
seq 3 2 2 12 26 2.17 28 2.33 29 2.42 30 2.5 29 2.42
seq 3 2 3 12 28 2.33 27 2.25 27 2.25 37 3.08 36 3.0
seq 3 3 3 12 30 2.5 28 2.33 29 2.42 33 2.75 30 2.5
seq 4 0 0 10 14 1.4 12 1.2 12 1.2 10 1.0 14 1.4
seq 4 0 1 10 13 1.3 13 1.3 14 1.4 14 1.4 13 1.3
seq 4 1 1 10 17 1.7 15 1.5 15 1.5 15 1.5 16 1.6
seq 5 0 0 10 12 1.2 16 1.6 18 1.8 17 1.7 13 1.3
seq 5 0 1 10 13 1.3 13 1.3 12 1.2 13 1.3 13 1.3
seq 5 1 1 10 12 1.2 14 1.4 10 1.0 12 1.2 12 1.2
seq 6 0 0 20 94 4.7 91 4.55 93 4.65 88 4.4 98 4.9
seq 6 0 1 20 112 5.6 103 5.15 107 5.35 100 5.0 97 4.85
seq 6 0 2 20 116 5.8 107 5.35 115 5.75 89 4.45 89 4.45
seq 6 0 3 20 101 5.05 112 5.6 109 5.45 110 5.5 108 5.4
seq 6 1 1 20 99 4.95 100 5.0 99 4.95 90 4.5 108 5.4
seq 6 1 2 20 112 5.6 125 6.25 109 5.45 125 6.25 112 5.6
seq 6 1 3 20 105 5.25 116 5.8 104 5.2 115 5.75 93 4.65
seq 6 2 2 20 106 5.3 128 6.4 108 5.4 105 5.25 118 5.9
seq 6 2 3 20 108 5.4 109 5.45 116 5.8 125 6.25 94 4.7
seq 6 3 3 20 106 5.3 113 5.65 115 5.75 108 5.4 109 5.45
seq 7 0 0 14 39 2.79 41 2.93 44 3.14 45 3.21 32 2.29
seq 7 0 1 14 47 3.36 44 3.14 48 3.43 48 3.43 39 2.79
seq 7 0 2 14 48 3.43 44 3.14 47 3.36 47 3.36 54 3.86
seq 7 0 3 14 43 3.07 51 3.64 39 2.79 35 2.5 36 2.57
seq 7 1 1 14 32 2.29 44 3.14 34 2.43 37 2.64 43 3.07
seq 7 1 2 14 44 3.14 39 2.79 45 3.21 45 3.21 42 3.0
seq 7 1 3 14 36 2.57 35 2.5 41 2.93 40 2.86 44 3.14
seq 7 2 2 14 52 3.71 34 2.43 35 2.5 34 2.43 43 3.07
seq 7 2 3 14 40 2.86 33 2.36 45 3.21 39 2.79 39 2.79
seq 7 3 3 14 45 3.21 36 2.57 67 4.79 42 3.0 36 2.57
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Table 4: Improved (degree mapping) QUBO embedding result (2 of 2).

Graph name Logical Qubits Physical 1 Average 1 Physical 2 Average 2 Physical 3 Average 3 Physical 4 Average 4 Physical 5 Average 5
seq 8 0 0 14 41 2.93 30 2.14 43 3.07 45 3.21 42 3.0
seq 8 0 1 14 39 2.79 58 4.14 42 3.0 49 3.5 43 3.07
seq 8 0 2 14 35 2.5 59 4.21 37 2.64 40 2.86 40 2.86
seq 8 0 3 14 43 3.07 60 4.29 37 2.64 62 4.43 64 4.57
seq 8 1 1 14 40 2.86 33 2.36 38 2.71 38 2.71 40 2.86
seq 8 1 2 14 38 2.71 39 2.79 37 2.64 40 2.86 42 3.0
seq 8 1 3 14 44 3.14 47 3.36 43 3.07 45 3.21 48 3.43
seq 8 2 2 14 33 2.36 37 2.64 44 3.14 42 3.0 33 2.36
seq 8 2 3 14 40 2.86 55 3.93 51 3.64 49 3.5 50 3.57
seq 8 3 3 14 48 3.43 37 2.64 39 2.79 42 3.0 46 3.29
seq 9 0 0 12 26 2.17 30 2.5 25 2.08 29 2.42 30 2.5
seq 9 0 1 12 25 2.08 26 2.17 25 2.08 26 2.17 34 2.83
seq 9 0 2 12 28 2.33 32 2.67 27 2.25 31 2.58 28 2.33
seq 9 0 3 12 25 2.08 34 2.83 27 2.25 32 2.67 29 2.42
seq 9 1 1 12 28 2.33 26 2.17 25 2.08 23 1.92 26 2.17
seq 9 1 2 12 25 2.08 27 2.25 25 2.08 28 2.33 27 2.25
seq 9 1 3 12 27 2.25 29 2.42 28 2.33 28 2.33 29 2.42
seq 9 2 2 12 30 2.5 30 2.5 38 3.17 28 2.33 25 2.08
seq 9 2 3 12 29 2.42 29 2.42 28 2.33 28 2.33 26 2.17
seq 9 3 3 12 30 2.5 29 2.42 26 2.17 29 2.42 28 2.33
seq 10 0 0 12 22 1.83 25 2.08 20 1.67 21 1.75 22 1.83
seq 10 0 1 12 33 2.75 25 2.08 30 2.5 26 2.17 30 2.5
seq 10 0 2 12 27 2.25 38 3.17 38 3.17 22 1.83 25 2.08
seq 10 0 3 12 22 1.83 22 1.83 20 1.67 22 1.83 23 1.92
seq 10 1 1 12 26 2.17 30 2.5 25 2.08 28 2.33 28 2.33
seq 10 1 2 12 37 3.08 34 2.83 30 2.5 43 3.58 29 2.42
seq 10 1 3 12 30 2.5 31 2.58 25 2.08 21 1.75 19 1.58
seq 10 2 2 12 26 2.17 28 2.33 19 1.58 41 3.42 24 2.0
seq 10 2 3 12 22 1.83 34 2.83 20 1.67 24 2.0 27 2.25
seq 10 3 3 12 23 1.92 31 2.58 33 2.75 24 2.0 26 2.17
seq 11 0 0 14 30 2.14 34 2.43 30 2.14 30 2.14 29 2.07
seq 11 0 1 14 38 2.71 40 2.86 43 3.07 39 2.79 42 3.0
seq 11 1 1 14 32 2.29 36 2.57 41 2.93 34 2.43 34 2.43
seq 12 0 0 20 88 4.4 95 4.75 96 4.8 109 5.45 93 4.65
seq 12 0 1 20 104 5.2 105 5.25 89 4.45 92 4.6 92 4.6
seq 12 0 2 20 96 4.8 86 4.3 107 5.35 98 4.9 99 4.95
seq 12 0 3 20 113 5.65 108 5.4 97 4.85 95 4.75 95 4.75
seq 12 1 1 20 115 5.75 103 5.15 105 5.25 110 5.5 111 5.55
seq 12 1 2 20 107 5.35 111 5.55 128 6.4 114 5.7 105 5.25
seq 12 1 3 20 111 5.55 105 5.25 107 5.35 102 5.1 116 5.8
seq 12 2 2 20 101 5.05 114 5.7 101 5.05 116 5.8 134 6.7
seq 12 2 3 20 102 5.1 96 4.8 90 4.5 100 5.0 87 4.35
seq 12 3 3 20 104 5.2 99 4.95 102 5.1 99 4.95 101 5.05
seq 13 0 0 18 81 4.5 87 4.83 80 4.44 92 5.11 82 4.56
seq 13 0 1 18 82 4.56 93 5.17 95 5.28 79 4.39 98 5.44
seq 13 0 2 18 93 5.17 109 6.06 90 5.0 93 5.17 93 5.17
seq 13 1 1 18 81 4.5 80 4.44 91 5.06 72 4.0 81 4.5
seq 13 1 2 18 78 4.33 90 5.0 93 5.17 91 5.06 74 4.11
seq 13 2 2 18 77 4.28 71 3.94 91 5.06 80 4.44 91 5.06
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Table 5: Probability of obtaining optimal solution with 5000 samples

Graph name
Solution probability

Improved QUBO
seq 0 0 0 0.9986
seq 0 1 1 0.999
seq 1 0 0 0.3016
seq 1 1 1 0.0102
seq 1 2 2 0.9724
seq 2 0 0 1.0
seq 2 1 1 1.0
seq 2 2 2 1.0
seq 2 3 3 1.0
seq 3 0 0 1.0
seq 3 1 1 0.9988
seq 3 2 2 1.0
seq 3 3 3 0.9964
seq 4 0 0 1.0
seq 4 1 1 1.0
seq 5 0 0 1.0
seq 5 1 1 1.0
seq 6 0 0 0.9892
seq 6 1 1 0.9512
seq 6 2 2 0.3754
seq 6 3 3 0.684
seq 7 0 0 0.9968
seq 7 1 1 0.8734

Graph name
Solution probability

Improved QUBO
seq 7 2 2 0.9962
seq 7 3 3 1.0
seq 8 0 0 1.0
seq 8 1 1 0.9982
seq 8 2 2 0.9998
seq 8 3 3 0.9952
seq 9 0 0 0.9992
seq 9 1 1 1.0
seq 9 2 2 0.9792
seq 9 3 3 0.851
seq 10 0 0 1.0
seq 10 1 1 0.9968
seq 10 2 2 1.0
seq 10 3 3 1.0
seq 11 0 0 0.9976
seq 11 1 1 0.9998
seq 12 0 0 0.7818
seq 12 1 1 0.5208
seq 12 2 2 0.8864
seq 12 3 3 0.1164
seq 13 0 0 0.0
seq 13 1 1 0.0448
seq 13 2 2 0.2154
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4.2.1 Parameter and option settings

Each different model of D-Wave quantum computers supports a different range of h and J
values of Equation (2) for the Ising problem submitted. The particular model used for this
experiment (D-Wave 2X) have a h value range of [−2, 2] and a J value range of [−1, 1]. All
instances submitted to the hardware will have all entries scaled to the full available value
range that is supported by the hardware if the ‘auto-scale’ parameter is set to true (default).
The D-Wave user manual [17] states that one should avoid having J < −0.8 for some types
of problems. Although the exact reason for this advice is not given in [17], we suspect that
this effect is mainly caused by Integrated Control Errors (ICEs) in the D-Wave quantum
annealers which are systematic errors in the hardware (see [17] for details on the different
types of ICEs D-Wave hardware may have). Since these ICEs are difficult to approximate
and unavoidable in general, the ‘auto-scale’ option is turned off and all entries of the Ising
instance are scaled by a factor s to ensure that all J entries are greater than −0.8. See
Python Script D for the implementation.

Another setting the D-Wave software package [15] provides to mitigate the effects of ICEs
is the spin reversal setting. The physical process of adiabatic quantum computing can be
described by the Adiabatic Theorem [21], which states that the spins (±1) of all qubits will
converge to the minimum energy state (ground state) of the system with high probability
if the system is let to evolve slow enough. The ground state of the system in this case is
defined by the Ising objective function (2) which is dictated by h and J values. Due to
systematic errors in the hardware, when physical qubits and couplers in the D-Wave are
being programmed, the actual value set for each qubit (h) and coupler (J) may have some
positive or negative bias. This essentially means that the Ising instance being solved by
the hardware is not a hundred percent accurately described by the Ising model (2). This
behavior can be modeled by the following Ising problem:

x∗ = min
x

∑
ij∈E

xi(J(i,j) + δJ(i,j))xj +
∑
i∈V

(hi + δhi)xi. (11)

In Equation (11), δh and δJ are the offset bias values. Depending on how big these biases are,
they will affect the probability of getting the optimal solution of the original Ising instance
to a different degree. What makes this issue difficult to deal with is the fact that these bias
values are not constant but rather depend on h and J values [17]. Once again, there is no
definitive way of calculating these biases in theory and we do not have enough resource to
empirically measure them for all the different test cases we have. The spin reversal setting
provides an alternative. It takes a random subset of all qubits say S = {x0, x1, . . . xn} used
and set:

xi → x′i = −xi
hi → h′i = −hi

J(x,y) → J ′(x,y) = J(x,y) if x = i or y = i

For each xi ∈ S. This operation does not change the energy level of any state of the
system and only interprets +1 spins as −1 spins and vice versa. The basic idea is that
by doing this, we would essentially be introducing a different set of bias values which may
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have a less effect on the entire system as a whole then the original errors. Note that this
operation does not guarantee better solution quality (one may get a new set of biases that
are even worse), and once again, we do not have the resource to determine the best spin
reversal setting for each test case. And therefore the recommended value of 2 [17](default
value is 0) is used in Script D. This means rather than submitting one Ising instance to
the hardware, two different instances are being created each with a different set of biases.
And then the two new instances are executed on the D-Wave quantum annealer separately.
The manual [17] does not contain any details on how the random subset S is determined.
The spin reversal transformation also avoids (at least to a higher probability) potential
programming errors. The D-Wave hardware have a less than 10% probability of not having
physical qubits programmed correctly [17]. By setting spin reversal number to 2, the chance
of error occurring in both trials are reduced to less than 1%.

Before other parameter settings can be discussed, one needs to understand the basic pro-
cedure of how D-Wave quantum annealers generate samples. After the Ising instance is pro-
grammed into the hardware, there will be a short wait time known as the post-programming
thermalization time. Its purpose is to let the chipset cool down as much as it can since the
smallest amount of heat could affect the system. The default value of 1000 microseconds is
used in this experiment, the user manual [15] states that smaller values will potentially lower
the quality of samples. Then the sampling cycle begins. The system will evolve for some
time, this is known as the annealing time. During annealing, the states of all physical qubits
will converge towards the ground state of the system. The default time of 20 microseconds is
used here. In theory, the longer the annealing time (the longer the system is let to evolve),
the higher the probability it will end up in the ground state of the system [6]. However,
in practice, the longer annealing takes place, the more susceptible the system becomes to
noise due to heat leakage. As a result, a short annealing time is much suitable for current
hardware and so we used the minimum annealing time of 20 microseconds (default) as sug-
gested by previous experimental work such as [1, 18, 28, 31]. The state of each qubits will
be read at the end of annealing and this counts as one sample. The system will also take
some extra time after reading one sample to properly cool down again and this is known
as the post-readout thermalization time. Once again, the user manual [15] mentions that
lower values of this parameter will reduce solution quality so a value of 100 microseconds
is used instead of the default value which is 0 microseconds. Note that, this default time
is not referenced in the user manual [15], since this number seems to be different for each
model [15, 17]. This default value can be found by using an API call to the actual D-Wave
2X hardware. The annealing cycle is only done once by default, this makes estimating the
probability of obtaining the optimal solution impossible to calculate. Therefore in Script D,
the process is set to repeat 5000 times, generating 5000 samples for each test case. Note
that since the number of spin reversal is set to 2, 5000/2 = 2500 samples are taken for each
of the two transformed instances.

After obtaining the samples for an Ising instance, it is then mapped back into the cor-
responding solutions to the original QUBO instance. This function used to do so is the one
implemented in the D-Wave API [15]. Recall that the embedding maps each logical qubit
of the QUBO problem to a set of connected physical qubits in the hardware. Sometimes,
the set of physical qubits for a single logical qubit does not have a consistent answer (i.e. a
combination of +1 and −1 spins). In this case, a majority vote is taken among the physical
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qubits to determine the final value for the logical qubit. There is also a post-processing
optimization option available, it will attempt to optimize the sample obtained using certain
classical algorithm, the manual [15, 16] does not have much detail on exactly what type of
algorithm is used and it does not seem to affect the overall probability of getting the optimal
solution much based on previous experimental work [1, 18, 28].

5 Discussion and Conclusions

As mentioned in Section 4.2.1, 5000 samples are generated for each instance of our tests. The
number of correct optimal solution for each instance is then calculated and the probabilities
are given in Table 5. Note that only the probabilities for the improved QUBOs are given.
For all the standard QUBOs, the D-Wave 2X we used failed to find any optimal solutions
with 5000 samples hence making the estimating the probabilities impossible. Note we did
verify the correctness of the QUBOs via a classical algorithm using the CPLEX library [23]
(see [26] for the implementation).

As can be seen in the Table 5, the improved QUBOs have consistently high probabilities
of obtaining the optimal solution for most test cases. There are also a few exceptions, see the
highlighted entries in Table 5. The embeddings of these highlighted test cases are at least
on par with the rest, but the probability of obtaining the optimal solution is significantly
lower the rest of the test cases. While we do not have a definitive answer that explains this
result, we suspect it may have been caused by some unexpected sudden background noise at
the time of the experiment. The test cases were executed on the hardware in batches over
several days so it is very difficult to pinpoint exactly what was causing the problem (see [17]
for a summary of potential sources).

Based on the embedding results in Table 3 and 4, we have calculated the ratio of improve-
ment in terms of the number of qubits required. Let qubitsimp and qubitsstd be the number

of qubits required by Equation (6) and (3) respectively, we define the ratio of improvement

as 1−
qubitsimp
qubitsstd

. The ratio of improvement of both logical and physical qubits for each test

cases in these tables are shown in Figure 1 in the same order as they are listed in Table 3
and 4. Note that we only used the best embedding (one with minimum average map size)
when calculating the ratio of improvements for physical qubits. As can be seen, there are
very clear clusterings in both figures. Test cases with the same degree sequence will have
the exactly same number of logical qubits and since there are only fourteen different degree
sequences, the clusterings are expected. Another thing to note is that the improvement ratio
post-embedding is in general a lot higher. It has been shown in [9] that it requires O(n2)
physical qubits to embed a complete graph of order n in the Chimera architecture. This
means that any small improvement in the number of logical qubits should be magnified after
embedding hence the increased ratio of improvement, as we see here.

It is interesting to see how the ratio of improvement scales with much larger graphs so
we also computed the expected ratio of improvement for random graphs. There are several
different models to generate random graphs, we consider the case where the edges in the
graph are chosen independently each with probability p, that is, the probability of an edge
existing between two vertices vi and vj is p for some 0 < p ≤ 1. See [7, 8] for more details
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Figure 1: Ratio of improvement in QUBO variables.

about this model. The graphs we consider here will be too large to be embedded in current
D-Wave computer. So only the expected improvement ratio for logical qubits are computed.
Given a random graph G = (V,E) with order n and a vertex v ∈ V , the probability of
deg(v) = k can be calculated by the following formula from [7]

f(n, k) =

(
n− 1

k

)
pk(1− p)n−1−k.

Intuitively, vertex v has k neighbors, chosen from n − 1 vertices, each with independent
probability p and hence the formula follows. See [7] for a more detailed discussion. Note
that to randomly choose k neighbors each with probability p is the same as to randomly
choose n−k−1 non-neighbors each with probability 1−p, so the value of f(n, k) is identical
for p1 and p2 if p1 = 1− p2.

Since the degree of a vertex can range from 0 to n−1, if u and v are two vertices, then the
probability of deg(u) = deg(v) can be expressed as

∑n−1
k=0 f(n, k)2. If deg(u) = deg(v) 6= 0

then we would need one binary variable xu,v and so the expected number of variables we need
is n2

∑n−1
k=1 f(n, k)2. Formula (3) always require n2 binary variables, so the expected ratio of

improvement is exactly 1−
∑n−1

k=1 f(n, k)2. We calculated the expected ratio of improvement
for n up to 1000 along with different values of p, see Figure 2. The degree of a vertex can
range from 0 to n − 1 and the distribution of the degrees should be the most uniform at
p = 0.5. A more uniform distribution of degrees suits Formula (6) better since there will
be less vertices pairs of the same degree and hence the highest ratio of improvement we
see in Figure 2. Overall, the result is very positive for large random graphs. The ratio of
improvement increases as n goes up and exceeds 95% very quickly at around n = 130, 160 and
360 for p = 0.5, 0.3 and 0.1 respectively. And it is reasonable to assume it will be even better
post-embedding (recall that the number of qubits scales quadratically post-embedding).

In summary, compared to the standard QUBO formulation in [13], the improved version
given in Section 3 requires only a small amount of classical computation overhead. See
Script C and the appendix of [12] for a comparison of the implementation of the two QUBO
formulations. The payoff of this classical preprocessing overhead is paramount. Not only
does the improved version works a lot better with current hardware, the scaling behavior
shown in Figure 2 also demonstrates that this approach is very suitable for hardware of
much larger scale. Furthermore, there are other similar approach to boost the performance
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Figure 2: Expected ratio of improvement for graphs of order n up to 1000.

even more. For example, by Theorem 1, to check if G1 and G2 are isomorphic, we can
check whether the complement of G1 and G2 are isomorphic instead. So it is relatively
straightforward to see that we can generate two different QUBO instances for each test case,
and use whichever gives a better embedding in practice. We plan to study some of these
properties further in the future.
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A Sage Script to Generate All Graphs of Order 6

import sys
n = 6
seq count = 0

# i t e r a t e a l l degree sequences o f l ength 6
f o r seq in DegreeSequences (n) :

l i s t o f g r a p h s = graphs (n , degree sequence = seq )
num chosen graphs = 0
# count the number o f graphs s e l e c t e d as t e s t ca s e s
f o r graph in l i s t o f g r a p h s :

i f graph . i s c o n n e c t e d ( ) and graph . complement ( ) . i s c o n n e c t e d ( ) :
i f ( not ( graph . i s t r e e ( ) ) ) and ( not graph . complement ( ) . i s t r e e ( ) ) :

num chosen graphs += 1
i f num chosen graphs > 1 :

l i s t o f g r a p h s = graphs (n , degree sequence = seq )
p r i n t s t r ( seq ) , ”#” , seq count
p r i n t s t r ( num chosen graphs )

f o r graph in l i s t o f g r a p h s :

i f ( not ( graph . i s t r e e ( ) ) ) and ( not graph . complement ( ) . i s t r e e ( ) ) :
i f graph . i s c o n n e c t e d ( ) and graph . complement ( ) . i s c o n n e c t e d ( ) :

p r i n t s t r ( graph . order ( ) )
f o r i in graph . v e r t i c e s ( ) :

f o r j in graph . ne ighbors ( i ) : p r i n t j ,
p r i n t

seq count += 1

listings/ds sage.sage

B Python Script to Generate the QUBOs

# usage : t h i s program takes the output generated by S c r i p t A f o r one degree
sequence from the standard input stream

import sys , random
import networkx as nx
import g r a p h u t i l as u t i l
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# get the degree sequence and the number o f graphs that corresponds to i t
seq = eva l ( sys . s td in . r e a d l i n e ( ) )
p r i n t seq
num graphs = i n t ( sys . s td in . r e a d l i n e ( ) . s t r i p ( ) )
p r i n t num graphs

# get a l l graphs correspond to the degree sequence
g r a p h l i s t = [ ]
f o r i in range ( num graphs ) :

n = i n t ( sys . s td in . r e a d l i n e ( ) . s t r i p ( ) )
G = nx . empty graph (n , c r e a t e u s i n g = nx . Graph ( ) )
f o r u in range (n) :

ne ighbors = sys . s td in . r e a d l i n e ( ) . s p l i t ( )
f o r v in ne ighbors :

G. add edge (u , i n t ( v ) )
g r a p h l i s t . append (G)

# generate a l l qubos per graph pa i r
f o r i in range ( num graphs ) :

G 1 = g r a p h l i s t [ i ]
f o r j in range ( i , num graphs ) :

G 2 = g r a p h l i s t [ j ]

# generate random vertex permutation
perm = l i s t ( range ( G 2 . order ( ) ) )
random . s h u f f l e ( perm )

# permute G 2
G 2 = u t i l . ver tex permutat ion (G 2 , perm )

# qubo generated us ing the standard formula
(Q, n , v a r s d i c t ) = u t i l . generate s tandard qubo (G 1 , G 2 )
u t i l . pr int qubo (Q, n)
p r i n t ’ perm = ’ , perm
pr in t ’ vars = ’ , v a r s d i c t

# qubo generated us ing the improved formula
(Q, n , v a r s d i c t ) = u t i l . generate deg map qubo (G 1 , G 2 )
u t i l . pr int qubo (Q, n)
p r i n t ’ perm = ’ , perm
pr in t ’ vars = ’ , v a r s d i c t

listings/generate all qubo.py

C Python Utility Script

import networkx as nx
import sys

de f ver tex permutat ion (G, p) :
n = G. order ( )
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GP = nx . empty graph (n , c r e a t e u s i n g=nx . Graph ( ) )
f o r (u , v ) in G. edges ( ) :

GP. add edge (p [ u ] , p [ v ] )
r e turn GP

def pr int qubo (Q, n) :
p r i n t n
f o r i in range (n) :

f o r j in range (n) :
p r i n t Q[ i , j ] ,

p r i n t

de f generate s tandard qubo (G1, G2) :
n1 = G1 . order ( )
n2 = G2 . order ( )
i f not ( n1 == n2 ) :

p r i n t ’ Order o f graphs not the same ’
re turn

varsDict , edgeDict = {} , {}
f o r i in range ( n2 ) :

f o r j in range ( n2 ) :
i f ( ( i , j ) in G2 . edges ( ) ) or ( ( j , i ) in G2 . edges ( ) ) :

edgeDict [ i , j ] , edgeDict [ j , i ] = 1 ,1
e l s e :

edgeDict [ i , j ] , edgeDict [ j , i ] = 0 ,0
index = 0
f o r i in range ( n1 ) :

f o r j in range ( n2 ) :
varsDict [ ( i , j ) ] = index
index += 1

# i n i t i a l i z e Q
Q = {}
f o r i in range ( n1∗n2 ) :

f o r j in range ( n1∗n2 ) :
Q[ i , j ] = 0

a = 2
b = 3
# HA part 1
# −2 sum xi , i ’
f o r i in range ( n1 ) :

f o r ipr ime in range ( n2 ) :
index = varsDict [ ( i , ipr ime ) ]
Q[ index , index ] −= 2∗a

f o r ipr ime1 in range ( n2 ) :
f o r ipr ime2 in range ( n2 ) :

index1 = varsDict [ ( i , ipr ime1 ) ]
index2 = varsDict [ ( i , ipr ime2 ) ]
Q[ index1 , index2 ] += 1∗a

# HA part 2
f o r ipr ime in range ( n2 ) :

f o r i in range ( n1 ) :
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index = varsDict [ ( i , ipr ime ) ]
Q[ index , index ] −= 2

f o r i 1 in range ( n1 ) :
f o r i 2 in range ( n1 ) :

index1 = varsDict [ ( i1 , ipr ime ) ]
index2 = varsDict [ ( i2 , ipr ime ) ]
Q[ index1 , index2 ] += 1

# Pi j
f o r ( i , j ) in G1 . edges ( ) :

f o r ipr ime in range ( n2 ) :
x i i p r ime = varsDict [ ( i , ipr ime ) ]
f o r jpr ime in range ( n2 ) :

x j jp r ime = varsDict [ ( j , jpr ime ) ]
Q[ x i ipr ime , x j jp r ime ] += b∗(1− edgeDict [ iprime , jpr ime ] )

# Making Q uppe r t r i angu la r
f o r i in range ( n1∗n2 ) :

f o r j in range ( n1∗n2 ) :
i f ( i > j ) and ( not (Q[ i , j ]==0) ) :

Q[ j , i ] += Q[ i , j ]
Q[ i , j ] = 0

return Q, n1∗n2 , varsDict

de f generate deg map qubo (G1, G2) :
n1 = G1 . order ( )
n2 = G2 . order ( )
i f not ( n1 == n2 ) :

p r i n t ’ Order o f graphs not the same ’
re turn

varsDict , edgeDict = {} ,{}
f o r i in range ( n2 ) :
f o r j in range ( n2 ) :

i f ( ( i , j ) in G2 . edges ( ) ) or ( ( j , i ) in G2 . edges ( ) ) :
edgeDict [ i , j ] , edgeDict [ j , i ] = 1 ,1

e l s e :
edgeDict [ i , j ] , edgeDict [ j , i ] = 0 ,0

index = 0
tota l num var = 0
f o r i in range ( n1 ) :

f o r j in range ( n2 ) :
i f G1 . degree ( i ) == G2. degree ( j ) :

varsDict [ ( i , j ) ] = index
index += 1
tota l num var += 1

# i n i t i a l i z e Q
Q = {}
f o r i in range ( tota l num var ) :

f o r j in range ( tota l num var ) :
Q[ i , j ] = 0
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a = 2
b = 3
# HA part 1
# −2 sum xi , i ’
f o r i in range ( n1 ) :

f o r ipr ime in range ( n2 ) :
i f ( i , ipr ime ) in varsDict :

index = varsDict [ ( i , ipr ime ) ]
Q[ index , index ] −= 2∗a

f o r ipr ime1 in range ( n2 ) :
f o r ipr ime2 in range ( n2 ) :

i f ( i , ipr ime1 ) in varsDict and ( i , ipr ime2 ) in varsDict :
index1 = varsDict [ ( i , ipr ime1 ) ]
index2 = varsDict [ ( i , ipr ime2 ) ]
Q[ index1 , index2 ] += 1∗a

# HA part 2
f o r ipr ime in range ( n2 ) :

f o r i in range ( n1 ) :
i f ( i , ipr ime ) in varsDict :

index = varsDict [ ( i , ipr ime ) ]
Q[ index , index ] −= 2

f o r i 1 in range ( n1 ) :
f o r i 2 in range ( n1 ) :

i f ( i1 , ipr ime ) in varsDict and ( i2 , ipr ime ) in varsDict :
index1 = varsDict [ ( i1 , ipr ime ) ]
index2 = varsDict [ ( i2 , ipr ime ) ]
Q[ index1 , index2 ] += 1

# Pi j
f o r ( i , j ) in G1 . edges ( ) :

f o r ipr ime in range ( n2 ) :
i f ( i , ipr ime ) in varsDict :

x i i p r ime = varsDict [ ( i , ipr ime ) ]
f o r jpr ime in range ( n2 ) :

i f ( j , jpr ime ) in varsDict :
x j jp r ime = varsDict [ ( j , jpr ime ) ]
Q[ x i ipr ime , x j jp r ime ] += b∗(1− edgeDict [ iprime , jpr ime ] )

# Making Q uppe r t r i angu la r
f o r i in range ( tota l num var ) :

f o r j in range ( tota l num var ) :
i f ( i > j ) and ( not (Q[ i , j ]==0) ) :

Q[ j , i ] += Q[ i , j ]
Q[ i , j ] = 0

return Q, total num var , varsDict

listings/graph util.py
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D Python Script to Solve QUBO Using D-Wave 2X

import sys , time , math , t raceback
from dwave sapi2 . remote import RemoteConnection
from dwave sapi2 . u t i l import get hardware adjacency
from dwave sapi2 . embedding import embed problem , unembed answer
from dwave sapi2 . u t i l import qubo to i s i ng , i s i n g t o q u b o
from dwave sapi2 . core import s o l v e i s i n g
from sys import e x c i n f o

# read input

l i n e=sys . s td in . r e a d l i n e ( ) . s t r i p ( ) . s p l i t ( )
p r i n t ( ’ header : ’ , l i n e )
n=i n t ( l i n e [ 0 ] )

#Q = d e f a u l t d i c t ( i n t )
Q = {}
f o r i in range (n) :

l i n e=sys . s td in . r e a d l i n e ( ) . s t r i p ( ) . s p l i t ( )
f o r j in range (n) :

t = f l o a t ( l i n e [ j ] )
i f t==0: cont inue
i f i <= j : Q[ ( i , j ) ]=Q. s e t d e f a u l t ( ( i , j ) , 0 )+t
e l s e : Q[ ( j , i ) ]=Q. s e t d e f a u l t ( ( j , i ) , 0 )+t

p r in t ( ’Q=’ ,Q)

(H, J , i s i n g o f f s e t ) = q u b o t o i s i n g (Q)

p r in t sys . s td in . r e a d l i n e ( ) . s t r i p ( )
p r i n t sys . s td in . r e a d l i n e ( ) . s t r i p ( )

embedding=eva l ( sys . s td in . r e a d l i n e ( ) )
p r i n t ’ embedding=’ , embedding
qub i t s = sum( l en ( embed) f o r embed in embedding )
p r i n t ’ Phys i ca l qub i t s used= %s ’ % qub i t s

# c r e a t e a remote connect ion us ing u r l and token and connect to s o l v e r
#

pr in t ( ’ Attempting to connect to network . . . ’ )
t ry :

remote connect ion = RemoteConnection ( ur l , token )
s o l v e r = remote connect ion . g e t s o l v e r ( so lver name )

except :
p r i n t ( ’ Error : %s %s %s ’ % sys . e x c i n f o ( ) [ 0 : 3 ] )
t raceback . p r i n t e x c ( )

#pr in t ( ’ So lve r p r o p e r t i e s :\n%s \n ’ % s o l v e r . p r o p e r t i e s )
A = get hardware adjacency ( s o l v e r )

# Embed problem in to hardware
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( h0 , j0 , jc , new emb ) = embed problem (H, J , embedding , A)
#pr in t ’ new emb= ’ ,new emb
a s s e r t new emb==embedding

# compute s c a l e s so in range [ − . 8 , 1 ]
p r i n t ”min h0 , j 0 ” , min ( h0 ) /2 . 1 , min ( j0 . va lue s ( ) )
p r i n t ”max h0 , j 0 ” ,max( h0 ) /2 . 1 ,max( j0 . va lue s ( ) )
maxH=0.0
i f l en ( h0 ) : maxH=max( abs ( min ( h0 ) ) , abs (max( h0 ) ) )
maxJ=max( abs ( min ( j 0 . va lue s ( ) ) ) , abs (max( j0 . va lue s ( ) ) ) )
maxV=max(maxH/2 .0 , maxJ)
s = 0 .8/maxV

h1= [ va l ∗ s f o r va l in h0 ]
j 1 = {}
f o r ( key , va l ) in j 0 . i t e r i t e m s ( ) :

j 1 [ key ]= va l ∗ s

p r i n t ’d−wave I s i n g ’
p r i n t ’ h1=’ , h1
p r in t ’ j 1=’ , j 1

p r i n t ”min h1 , j 1 ” , min ( h1 ) , min ( j1 . va lue s ( ) )
p r i n t ”max h1 , j 1 ” ,max( h1 ) ,max( j1 . va lue s ( ) )
a s s e r t max( h1 ) <= 2.01
a s s e r t min ( h1 ) >= −2.01
a s s e r t max( j1 . va lue s ( ) ) <= 1.01
a s s e r t min ( j1 . va lue s ( ) ) >= −0.81

j1 . update ( j c )

f o r sp in s in [ 2 ] : # [ [ 2 , 4 , 8 , 1 6 ] :
#break
annealT , progT , readT =20 ,1000 ,100
p r in t ’ annealT=’ , annealT , ’ progT=’ , progT , ’ readT=’ , readT , ’ sp in s=’ , sp in s
r e s u l t = s o l v e i s i n g ( so lve r , h1 , j1 , num reads =5000 , annea l ing t ime=annealT

,\
programming thermal izat ion=progT , r eadout the rma l i z a t i on=readT ,

po s tp roc e s s=’ opt imiza t i on ’ ,\
num sp in r eve r sa l t r an s f o rms=spins , a u t o s c a l e=False )

p r i n t ’ r e s u l t : ’ , r e s u l t

newresu l t = unembed answer ( r e s u l t [ ’ s o l u t i o n s ’ ] , new emb , broken cha ins=’ vote
’ , h=H, j=J )

p r in t ’ newresu l t : ’ , newresu l t

listings/preembedIsoDegScale.py
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E Drawings of Test Graphs
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