
CDMTCS
Research
Report
Series

Data-completeness Tailored
Database Design with
Embedded Functional
Dependencies

Ziheng Wei
The University of Auckland

Sebastian Link
The University of Auckland

CDMTCS-537
May 2019

Centre for Discrete Mathematics and
Theoretical Computer Science

Data-completeness Tailored Database
Design with Embedded Functional

Dependencies

Ziheng Wei
The University of Auckland, New Zealand

z.wei@auckland.ac.nz

Sebastian Link
The University of Auckland, New Zealand

s.link@auckland.ac.nz

May 23, 2019

Abstract

We establish a robust schema design framework for data with missing values.
The framework is based on the new notion of an embedded functional dependency,
which is independent of the interpretation of missing values, able to express com-
pleteness and integrity requirements on application data, and capable of capturing
many redundant data value occurrences. We establish axiomatic, algorithmic, and
logical foundations for reasoning about embedded functional dependencies. These
foundations allow us to establish generalizations of Boyce-Codd and Third normal
forms that do not permit any redundancy in any future application data, or mini-
mize their redundancy across dependency-preserving decompositions, respectively.
We show how to transform any given schema into application schemata that meet
given completeness and integrity requirements and the conditions of the generalized
normal forms. Data over those application schemata are therefore fit for purpose by
design. Extensive experiments with benchmark schemata and data illustrate our
framework, and the effectiveness and efficiency of our algorithms, but also provide
quantified insight into database schema design trade-offs.
Keywords: Boyce-Codd Normal Form; Database design; Decomposition; Func-
tional dependency; Key; Missing data; Normal Form; Redundancy; Synthesis;
Third Normal Form

1 Introduction

SQL continues to be the de-facto industry standard and choice for data management.
This holds true even after several decades of use and even in the light of new application

1

data such as complex-value data, Web data, big data, or uncertain data. Nevertheless,
even the simplest extensions to the underlying relational model cause significant issues
in database practice. A prime example is the handling of incomplete data, which has
attracted continuous interest from academics and practitioners over decades. While many
advances can be celebrated, it is still unclear what a right notion of a query answer of
incomplete data constitutes. In this research we are interested in the design of database
schemata in the presence of incomplete data. SQL handles incomplete data by the use
of a null marker, denoted by ⊥, which indicates a missing data value occurrence on
an attribute. The null marker is distinguished from actual data values, and treated
differently. Different null marker occurrences, however, are treated uniformly in SQL
to avoid processing overheads. Occurrences of null markers are on the rise for modern
applications such as data integration. Indeed, in order to accommodate the integration
of data from different schemata, frequent uses of null markers are necessary to conform
to the structure of the underlying schema that integrates the data.

1.1 Desiderata

The primary aim of database design is to find a schema that facilitates the processing
of the future application workload as well as possible. The well-known database design
framework for relational databases is centered around the notion of data redundancy
[5, 24, 26]. In practice, the majority of redundant data value occurrences originate from
functional dependencies (FDs) [7]. These dependencies can express important integrity
requirements of the underlying application domain. Informally, an FD X → Y expresses
that every pair of tuples with matching values on all the attributes in X also has matching
values on all the attributes in Y . Relational database design provides a framework to
compute schemata in which the integrity requirements can be enforced efficiently during
updates. The relational framework does not accommodate real-world requirements on
the completeness of data, as no missing data is permitted to occur at all.

We will now summarize which properties an FD should have to advance database
design in practice. There has been a plethora of research on finding suitable extensions
for the notion of an FD to accommodate missing data. This has led to useful notions
such as weak and strong FDs [21,22], no information FDs [3,15], or possible and certain
FDs [18]. However, all of these notions assume that the same interpretation applies to
all occurrences of the null marker in the given data set, such as “value does not exist”,
“value exists but is unknown”, or “no information”. This sensitivity to a fixed null
marker interpretation is difficult to justify in practice. Furthermore, it is not clear why
we would want null marker occurrences to have an impact on the validity of an FD at
all. Instead, it is more sensible to make the semantics of FDs dependant on actual data
value occurrences only. This would mean the FD X → Y is satisfied whenever for every
pair of records that has no null marker occurrences in any columns in the set union
XY of X and Y , matching values on all attributes in X imply matching values on all
the attributes in Y . Indeed, this notion is robust under different interpretations of null
marker occurrences, and hence beyond guesswork.

Hence, firstly we desire a notion of an FD that is ignorant of missing data, in contrast
to all previous notions as they are sensitive to it. Secondly, for a notion of an FD to be

2

p(arent) b(enefit) c(hild)
Homer 610 Bart
Homer 610 Lisa
Homer 915 ⊥

Table 1: Sample r

p(arent) b(enefit)
Homer 610

p(arent) c(hild)
Homer Bart
Homer Lisa

Table 2: Lossless redundancy-eliminating decomposition of r from Table 1 for applica-
tions that require complete data values on c, p, and b

practically useful for schema design it should capture many redundant data value occur-
rences and facilitate lossless decompositions to eliminate them. Thirdly, applications for
real-world data have not only integrity requirements but also completeness requirements.
In contrast to previous work, we require our notion of an FD to accommodate complete-
ness requirements in addition to the integrity requirements. Fourthly, we expect that the
resulting schema design framework coincides with the well-known relational framework
for the fragment of the data that meet the completeness requirements of the applica-
tions. In fact, the point of the framework is to tailor relational schema designs to the
completeness and integrity requirements of applications.

1.2 Motivating example

We illustrate our desiderata on the simple example of Table 1. The schema collects
information about the benefit that parents receive for all their children together. As the
benefit changes, updates must be processed efficiently.

Robustness. It is easy to observe that the FD p → b does not hold, as the second
and third tuple have matching (non-null) values on p but different values on b. Since
no missing data is involved, this is true for any interpretation of null markers. Instead,
for the FD cp → b the situation is quite different. If the sole occurrence of ⊥ in r is
interpreted as “value does not exist”, then the FD should be true. If its interpretation
is “value exists but unknown”, then there are possible worlds of r (originating from the
replacement of ⊥ by actual values) that satisfy the FD and others that do not. Hence,
under this interpretation, the FD is possible but not certain to hold in r. If we interpret
⊥ as “no information”, then the FD holds because there are no tuples with matching
(non-null) values on p and c. Hence, if we do not know which interpretation applies
to a given null marker occurrence, or if different null marker occurrences have different
interpretations, then the semantics of an FD is not robust.

Data redundancy and their elimination by lossless decompositions. Under
our robust semantics, the FD cp→ b is satisfied. However, since there are no tuples with
matching (non-null) values on c and p, this FD does not capture any redundant data value
occurrences. In fact, we cannot express that the FD p → b actually holds on the subset

3

of all tuples that have no missing values on attribute c. This novel observation leads
us to the new notion of an embedded functional dependency (eFD). This is a statement
E ∶ X → Y where E is a set of attributes and X,Y ⊆ E. Indeed, E defines the subset
of tuples rE ⊆ r that have no missing data on any of the attributes in E. We require
X,Y ⊆ E to make our notion of an FD robust, as explained before. For convenience, we
sometimes simply write E −XY ∶X → Y , understanding implicitly that all attributes in
XY belong to E. We call an eFD E ∶ X → Y pure whenever E −XY is non-empty. In
our example, we obtain the eFD c ∶ p→ b, which clarifies the roles of the attributes c and
p: p functionally determine b whenever c (and p and b) have no missing values. Now, our
example shows that the eFD c ∶ p → b captures redundant data value occurrences. Each
of the two values is redundant in the classical sense [29] that every change to one of those
values to a different value will result in a violation of the eFD c ∶ p→ b. Our experiments
will show that pure eFDs cause a significant number of redundant data value occurrences
that cannot be captured by previously studied FDs, that is, eFDs of the special case
∅ ∶ X → Y . In fact, we will show that pure eFDs are frequent among those eFDs that
cause the most redundant data value occurrences on real-world benchmark data. The
ability to capture many redundant data values enables eFDs to facilitate new lossless
decompositions that can eliminate those redundancies.

Data completeness. The need to accommodate data quality requirements are an-
other driver for our notion of an eFD. An eFD E ∶ X → Y enables users to declare com-
pleteness as well as integrity requirements, and to carefully distinguish between these
two data quality dimensions. In fact, this notion now allows us to separate dependence
from completeness concerns: the attribute subsets X and Y form the actual FD X → Y
which must hold on the subset rE of all tuples that have no missing data on attributes
in X, Y , and E −XY . In fact, as rE satisfies the FD X → Y over relation schema R,
rE is the lossless join over its two projections on XY and X(R − Y). Hence, we can
eliminate all redundant data values on Y caused by the eFD E ∶ X → Y without a loss
of information for the fragment rE of our application data that meets the requirement
of having complete data values on all columns in E. This illustrates that eFDs drive
data-completeness tailored database design.

In summary, the example shows that eFDs are different from previous FDs in three
aspects: they are robust under different interpretations of missing data and accommo-
date completeness requirements, they capture redundant data values occurrences that
could not be captured before, and they facilitate lossless decompositions that eliminate
redundant values for the data that is meeting the completeness requirements. Table 2
shows a lossless decomposition for the fragment of our example relation r that meets the
requirements for tuples to be complete on c, p, and b, and eliminates the redundant data
value occurrences from r. This is not achievable for previous notions of FDs. Hence,
changes to the benefit b for a parent just require one update on the decomposed relation.
As the data evolves, more tuples may meet the completeness requirements. For example,
if the occurrence of ⊥ in r is updated to Maggie, then the resulting relation violates our
eFD c ∶ p → b. In response we may update both value occurrences of 610 on b to 915 to
reflect the new information that Homer has three children. On the decomposed schema,
this would be represented by an insertion of (Homer, Maggie) and a single update of the
value 610 on benefit to 915.

4

1.3 Contributions

We establish the first fully-fledged framework that brings forward schema designs tailored
to the data completeness requirements of applications.

� We propose the new notion of an embedded functional dependency (eFD). We
demonstrate that eFDs provide an intuitive and useful notion for database schema
design in practice.

� We develop a full design theory including axiomatic and algorithmic characteri-
zations of the implication problem for eFDs. Just like reasoning about FDs is
indispensable for relational normalization, our design theory for eFDs is essential
to our design framework.

� We establish a schema design framework that accommodates completeness and
integrity requirements of applications, based on suitable extensions of a) the notion
of redundant data values, b) Boyce-Codd normal form, and c) Third normal form.

� We show how to embed data completeness requirements into the relational normal-
ization framework without additional overheads, including BCNF decomposition
and 3NF synthesis algorithms. For data that does not meet the completeness re-
quirements, previous approaches that are sensitive to the interpretation of null
markers can be applied.

� We conduct comprehensive experiments on real-world benchmark schemata and
data. In particular, we provide insight on how many redundant data values oc-
cur in the data, rank the relevance of our eFDs by how many data redundancies
they cause, show how often schemata satisfy a normal form condition, how much
redundancy 3NF syntheses permit, how many dependencies BCNF decompositions
preserve, and how large decomposed schemata become. We consider the times of
computations, and suggest by examples how data stewards can use our ranking of
eFDs.

1.4 Organization

We explain our contributions over related work in Section 2, fix notation and propose
eFDs in Section 3. Schema design foundations are developed in Section 4, normal forms
are proposed in Section 5, and normalization is discussed in Section 6. An analysis of our
comprehensive experiments is presented in Section 7. We conclude and outline future
work in Section 8. More details, including proofs, can be found in the appendix and
here1.

2 Related Work

We review previous work to emphasize our contributions.

1https://bit.ly/2AoOis6

5

Firstly, our core objective is tailoring classical schema design to data-completeness
requirements of applications. Hence, the achievements of classical schema design are fun-
damental to our work. These achievements are handsomely summarized in surveys and
textbooks [6,24]. As our article starts research on data-quality driven database design, we
focus on the most common class of integrity constraints and source of data redundancy,
namely functional dependencies. More general constraints such as join or inclusion de-
pendencies are left for future work [9,12,23,28]. Hence, we are interested in Boyce-Codd
Normal Form (BCNF) [8, 16] and Third Normal Form (3NF) [7], with their well-known
tradeoffs [6,11,20]: Any relation schema enjoys lossless BCNF decompositions that elimi-
nate all data redundancy caused by FDs, but may not be dependency-preserving. On the
other hand, every relation schema enjoys lossless 3NF syntheses that are guaranteed to be
dependency-preserving, but may not eliminate all data redundancy. Our work subsumes
all of these results as the special case where an application requires that no data values
are missing, that is, when E = R. Important for these achievements is Vincent’s classical
notion of data redundancy [29], which we generalize to a notion of data redundancy under
data completeness requirements. This makes it possible to clearly state and demonstrate
the achievements of our normal forms. Recently, [25] described how to combine classical
FD discovery with classical BCNF-decomposition to drive schema normalization from
data. They did not consider data quality criteria, and handled nulls like any other value.

Secondly, schema design for data with missing values has been a long-standing open
problem [14,18,22]. Almost exclusively, the main focus of the research has been on suit-
able extensions of FDs to incorporate null markers. In that area there is a plethora of
research, mostly focusing on foundational aspects such as reasoning. Among those ex-
tensions, there are some approaches where null-free sub-schemata have been considered
for reasoning about FDs [3, 15]. That work is different from our approach, and focused
on reasoning rather than schema design. In particular, the approach is more restricted
because null-free sub-schemata do not permit any null marker occurrences in the columns
of the sub-schema. Instead, we do permit null marker occurrences in any columns, but let
the application requirements decide whether such records should be considered for design
decisions. An interesting FD extension are weak and strong FDs that hold in some or
all possible worlds of data sets with missing values [21, 22]. As with other extensions,
the semantics of the extended FDs depends strongly on the interpretation of the null
marker occurrences. This makes it difficult to address modern applications, such as data
integration, where different null marker occurrences may require different interpretations.
A second limitation is that the complexity of reasoning becomes often prohibitively ex-
pensive to guarantee efficient schema designs [22]. Recently, the concept of possible and
certain FDs was introduced and shown to provide suitable extensions of schema design
for data with missing values, at least in terms of BCNF [18]. The work contains a review
and comparison of FD extensions to data with missing values. We refer the interested
reader to this survey. In summary, these approaches focus on the interpretation of null
markers, aiming at their inclusion in decisions about schema design. These approaches
can be criticized in different respects. Firstly, it is doubtful whether missing information
should have an impact on schema design decisions. Secondly, modern applications such as
data integration accommodate missing data values that require different interpretations,
which makes it difficult to justify these approaches. Finally, application requirements

6

tuple id f(name) l(name) c(ity) z(ip) p(hone) d(ate register)
t1 sam anderson green level 27217 ⊥ 05/11/1940
t2 ida cheek burlington 27217 226 4848 05/11/1940
t3 effie massey burlington 27217 336 226 8544 05/11/1940
t4 peggy floyd jackson 27845 252 536 2668 06/15/1936
t5 essie warren lasker 27845 252 539 2866 05/10/1940
t6 rodney glockner wilmington 28405 910 509 3864 01/01/1930
t7 sallie blanchard rose hill 28458 910 289 3320 01/01/1930
t8 joseph cox new bern 28562 ⊥ 03/06/1935
t9 joseph cox new bern 28562 252 288 4763 03/06/1935
t10 james smith chinquapin 28521 910 285 3493 01/01/1936
t11 james smith burlington 27215 584 4202 05/06/1940
t12 dorothy faucette mebane 27302 919 563 1285 4/05/1940
t13 dorothy allred mebane 27302 563 1426 05/06/1940
t14 eloise croom kinston 28504 252 569 4436 05/02/1940
t15 ⊥ croom kinston 28504 252 569 9516 05/04/1940

Table 3: Sample snippet r from ncvoter benchmark data set

have not been considered in these approaches, even though design decisions should be
based on them. In contrast, our approach bases decisions about the design only on infor-
mation that is available. That is, we design schemata beyond guesswork by considering
complete data fragments. At the same time, application requirements become the pri-
mary focus point of our approach. In fact, the requirements can be declared as part of
the FDs.

Thirdly, embedded unique constraints (eUCs) and embedded cardinality constraints
(eCCs) have been investigated in previous work [30, 31]. Those articles investigated
primarily their implication problem. In particular, the embedded version of a unique or
cardinality constraint with embedding E holds on a data set r whenever the uniqueness
or cardinality constraint holds on the scope rE of the given data set r. Our results on
the implication problem for the combined class of eUCs and eFDs subsumes the results
of [31] on the individual class of eUCs. Neither eFDs nor data-completeness tailored
database design have been considered before.

Finally, an important extension of classical FDs are conditional FDs (cFDs) [13],
which encode data quality rules that target the cleaning of data without missing values
but not schema design for data with missing values. Specifically, eFDs encode data
completeness requirements and are a major source of E-data redundancy. This makes
them important for schema design. Note that the implication problem of general cFDs is
coNP-complete to decide [13], and already their consistency problem is NP-complete [13].
In contrast, classical FDs are always consistent and implication is linear-time decidable.
As we show, this is also achieved by eFDs, which are therefore suited for schema design
purposes from a computational point of view as well.

In summary, our work marks the first approach to tailor classical database schema
designs to data-completeness requirements of applications.

7

3 Embedded Constraints

We introduce the data model and constraints.
We begin with basic terminology. A relation schema is a finite non-empty set R

of attributes. Each attribute A of a relation schema R is associated with a domain
dom(A) which represents the possible values that can occur in column A. In order to
encompass incomplete information, the domain of each attribute contains the null marker,
denoted by ⊥. In line with SQL, and to cater for all different types of missing values, the
interpretation of ⊥ is to mean “no information” [32]. We stress that the null marker is
not a domain value. In fact, it is a purely syntactic convenience that we include the null
marker in the domain of each attribute.

For attribute sets X and Y we may write XY for their set union X ∪ Y . If X =
{A1, . . . ,Am}, then we may write A1⋯Am for X. In particular, we may write A to
represent the singleton {A}. A tuple (or record) over R is a function t ∶ R → ⋃A∈R dom(A)
with t(A) ∈ dom(A) for all A ∈ R. For X ⊆ R let t(X) denote the restriction of the tuple
t over R to X. We say that a tuple t is X-total (X-complete) if t(A) /=⊥ for all A ∈X. A
tuple t over R is said to be a total tuple if it is R-total. A relation r over R is a finite set
of tuples over R. A relation r over R is a total relation if every tuple t ∈ r is total. The
sub-set rX of X-total tuples in r is called the scope of r with respect to X, or simply the
scope of r when X is fixed. We say that two tuples t, t′ over R have matching values on
an attribute A ∈ R whenever t(A) = t′(A).

A key over R is a subset X ⊆ R. A total relation r over R satisfies the key X over
R whenever there are not any two distinct tuples in r with matching values on all the
attributes in X. A functional dependency (FD) over R is an expression X → Y with
X,Y ⊆ R. A total relation r over R satisfies the FD X → Y over R whenever every pair
of records in r with matching values on all the attributes in X has also matching values on
all the attributes in Y . The semantics of keys and FDs can be extended to relations with
missing values by adopting uniformly (that is, for all null marker occurrences) either the
⊥=⊥ or ⊥/=⊥ semantics. Under either of these semantics, ⊥ is considered to be different
from any actual domain value. Other semantics have been defined, and we refer the
interested reader to [18] for an overview of those. In a nutshell, different semantics lead
to different notions of constraints each of which is useful in different contexts. However,
in classical but even more in modern applications such as data integration, different null
marker occurrences in a relation may require different interpretations. This makes it
difficult, if not impossible, to justify any uniform interpretation of ⊥.

In this article we take a different approach. Firstly, we let the application decide which
data completeness requirements tuples must meet to be fit for use by the application.
That is, we embed the data completeness requirements in the declaration of constraints.
Secondly, the semantics of our constraints is based exclusively on the complete infor-
mation embedded in the underlying relation. In other words, we follow the principled
approach that missing values must not impact the decision whether a constraint is satis-
fied by the given relation or not. This decision is entirely determined by the actual data
values that are available.

Similar ideas motivated us [31] to introduce embedded unique constraints (eUCs).
Given a relation schema R, an embedded unique (eUC) is an expression of the form

8

E ∶ U where U ⊆ E ⊆ R holds. A relation r satisfies the eUC E ∶ U iff the scope
rE = {t ∈ r ∣ ∀A ∈ E(t(A) /=⊥)} of r with respect to E satisfies the key U . If E = U , the
eUC U ∶ U is satisfied by relation r iff the key U is satisfied by r using the ⊥/=⊥ semantics
iff the SQL unique constraint on U is satisfied by r. Of course, if E contains some
attribute that is not in U , then the semantics of eUCs cannot be captured by any other
notion of a key. The decision to require U ⊆ E ensures that the semantics of the eUC
only depends on the complete fragments embedded in the given relation. This motivates
the following definition.

Definition 1 Given a relation schema R, an embedded functional dependency (eFD) is
an expression of the form E ∶X → Y where XY ⊆ E ⊆ R holds. A relation r satisfies the
eFD E ∶X → Y if and only if the scope rE of r with respect to E satisfies the functional
dependency X → Y .

Given E ∶X or E ∶X → Y , we sometimes simply write E −X ∶X or E − (XY) ∶X →
Y , respectively, to emphasize which additional attributes apart from those in XY are
required to have no missing values. The choice of E is based on several factors, such as
completeness requirements and the target of redundant data values.

Consider our running example from Table 3 where the underlying schema R consists
of attributes c, d , f , l, p, and z. The eFD p ∶ dz → c is satisfied by r because the FD
dz → c holds on the scope rcdpz = r−{t1, t8}. In fact, all people who provided some phone
number and registered on the same day under the same zip code also used the same city
alias. However, the eFD ∅ ∶ dz → c does not hold on r because the FD dz → c does
not hold on the scope rcdz = r. In fact, there are people who registered on the same day
under the same zip code, but used different alias for the city. Similarly, the eUC p ∶ cfl
is satisfied by r because the compound key cfl is satisfied on the scope rcflp = r−{t1, t8}.
In fact, there are no two people who both provided a phone number and are registered in
the same city with the same first and last name. However, the eUC ∅ ∶ cfl is violated by
r because there are two different registrations in the same city with the same first and
last name.

Every total relation over R satisfies the FD X → R iff it satisfies the key X. This
relationship occurs in our framework as well: A relation over R satisfies the eFD R ∶X →
R iff it satisfies the eUC R ∶ X. Indeed, if a relation satisfies E ∶ X, then it also satisfies
E ∶X → E, but not necessarily vice versa. In fact, the relation in Table 3 satisfies the eFD
dpl ∶ dp → dpl, but it violates the eUC dpl ∶ dp. This observation is important, as it does
not suffice for our targeted schema design framework to consider eFDs in isolation from
eUCs. In particular, eFDs drive data redundancy, while eUCs inhibit data redundancy.
Hence, the combined class of eFDs and eUCs needs to be studied. This is different from
the special case of total relations where any key X over R (an eUC of type R ∶ X) can
be expressed by the FD X → R (an eFD of type R ∶X → R).

For our example we regard the eFD p ∶ dz → c as a meaningful constraint of our
application domain. That is, for people that provide some phone number and register
on the same day under the same zip code we will always use the same city alias. Hence,
different city alias may only be associated with the same zip code for people on different
registration dates or who prefer not to provide a phone number. In this case, there are

9

R ∶ R
E ∶ U

EE′ ∶ UU ′
(trivial ekey) (eUC extension)

E ∶XY →X

E ∶X → Y

E ∶X →XY

E ∶X → Y E′ ∶ Y → Z

EE′ ∶X → Z
(trivial eFD) (eFD extension) (eFD transitivity)

E ∶X
E ∶X → E

E ∶XY E ∶X → Y

E ∶X
(eUC to eFD) (eUC pullback)

Table 4: Axiomatizations for eUCs and eFDs

relations that exhibit data redundancy. Indeed, each of the two bold city occurrences
of ‘burlington’ in tuples t2 and t3 in Table 3 is redundant. However, such redundant
values are intrinsically linked to the requirement that the tuples must be complete on
phone, since the eFD does not apply otherwise. This link between data redundancy and
data completeness requirements is encoded explicitly in the eFDs. In what follows, we
will develop a full-fledged normalization framework that tailors classical schema design
to data completeness requirements.

4 Foundations

This section establishes axiomatic and algorithmic characterizations of the implication
problem for eUCs and eFDs. The linear-time decidability we establish is important for
the schema design framework we will develop subsequently.

Let Σ ∪ {ϕ} denote a set of eUCs and eFDs over relation schema R. We say that Σ
implies ϕ, denoted Σ ⊧ ϕ, iff every relation over R that satisfies all σ ∈ Σ also satisfies
ϕ. The implication problem for a class C of constraints is to decide, for arbitrary R
and Σ ∪ {ϕ} in C, whether Σ implies ϕ. Strictly speaking, the implication problem
we have just defined is the finite implication problem because we restrict relations to
be finite. Permitting also infinite relations would lead us to the unrestricted implication
problem. For our class of constraints, however, it is easy to see that finite and unrestricted
implication problems coincide. We will therefore speak of the implication problem.

4.1 Axiomatic Characterization

Firstly, we would like to obtain an axiomatization for eUCs and eFDs which extends the
well-known Armstrong axioms [2]. An axiomatization does not only help us understand
the interaction of the constraints, but also enables us to prove that our syntactic normal
form proposal captures precisely the semantic normal form proposal in which no redun-
dant data value can ever occur in any future database instance. This is an important
use case of axiomatizations. The definitions of inference from a system S (⊢S), as well
as the definitions of sound and complete sets of inference rules are standard [24,26].

10

X+
E,Σ E −X+

E,Σ R −E
0⋯0 0⋯0 0⋯0
0⋯0 1⋯1 ⊥ ⋯ ⊥

d z c p f l
5/11/1940 27217 burlington 226 4848 ida cheek
5/11/1940 27217 green level ⊥ ⊥ ⊥

Table 5: 2-tuples for Theorem 1 proof and sample

Table 4 shows three axiomatizations. The top box is one for eUCs alone [31], the
middle box is one for eFDs alone, and all boxes form the axiomatization E for eUCs and
eFDs together. The following rules

E ∶X → Y Z

E ∶X → Y

E ∶X → Y E ∶X → Z

E ∶X → Y Z

E ∶X → Y

EE′ ∶X → Y
(eFD decompose) (eFD union) (eFD add-on)

follow from E.

Theorem 1 E is a sound and complete axiomatization for the implication of eUCs and
eFDs.

The proof of Theorem 1 is based on the closure of an attribute set X with respect
to the data completeness requirement E and the set Σ of eUCs and eFDs: X+

E,Σ = {A ∈
E ∣ Σ ⊢E E ∶ X → A}. Indeed, the completeness proof uses the two-tuple relation from
Table 8 to show that Σ does not imply ϕ whenever ϕ cannot be inferred from Σ using E.
Hence, the implication problems for eUCs and eFDs coincide, independently of whether
we consider infinite relations, just finite relations, or even just relations with two tuples.

The rule
R ∶X → R

R ∶X
together with the (eUC to eFD)-rule with E = R express that keys are special cases of
functional dependencies in the relational model of data. The rule above can be inferred
as follows:

R ∶ R R ∶X → R

R ∶X
However, this situation does not generalize to the embedded setting. That is, the rule

E ∶X → E

E ∶X
is not sound as the following counterexample shows:

E(mployee) D(epartment) M(anager)
Sheldon Physics Siebert
Sheldon Physics ⊥

11

It satisfies ED ∶ E →D but violates ED ∶ E.

Example 1 Consider our running example where R = {c, d, f, l, p, z} and Σ = {p ∶ cfl, p ∶
dz → c}. Then Σ implies the eUC ϕ = c ∶ dflpz as the following inference shows:

cdflpz ∶ dflpz → dz p ∶ dz → c

cdflpz ∶ dflpz → c

cdflpz ∶ cdflpz cdflpz ∶ dflpz → cdflpz

cdflpz ∶ dflpz

.

However, the eFD ∅ ∶ dz → c is not implied by Σ as the two-tuple example in Table 8
constructed according to the general two-tuple relation from Table 8 shows.

4.2 Algorithmic Characterization

Reasoning efficiently about eUCs and eFDs will help us decide if a given schema meets a
normal form condition, or transform the schema into one that meets the condition. In the
relational model, FD implication can be decided in linear time. We will achieve the same
for eUCs and eFDs. Many other tasks, including data profiling, transaction processing,
and query optimization, benefit from the ability to efficiently decide implication.

Let E denote an attribute set that represents the completeness requirements of a
given application. The technical underpinning of our framework translates every set Σ
of eUCs and eFDs into a set Σ[E] of FDs. The translation makes it possible to utilized
any existing algorithms for deciding FD implication to decide implication of eUCs and
eFDs. The translation is given next by the following definition.

Definition 2 For a given set Σ of eUCs and eFDs over relation schema R, and a given
attribute set E ⊆ R, let Σ[E] ∶= {X → R ∣ ∃E′ ⊆ E(E′ ∶ X ∈ Σ)} ∪ {X → Y ∣ ∃E′ ⊆ E(E′ ∶
X → Y ∈ Σ)} denote the (E,FD)-reduct of Σ.

We illustrate the notion of an (E,FD)-reduct on our running example.

Example 2 Recall that R = {c, d, f, l, p, z} and Σ = {p ∶ cfl, p ∶ dz → c}. For E = cdflpz =
R, the (E,FD)-reduct of Σ is Σ[E] = {cfl → dpz, dz → c}.

The importance of the (E,FD)-reduct is embodied in the following algorithmic char-
acterization of the implication problem for eUCs and eFDs.

Theorem 2 Let Σ ∪ {E ∶ X,E ∶ X → Y } denote a set of eUCs and eFDs over relation
schema R. Then:

1. Σ ⊧ E ∶X → Y if and only if Σ[E] ⊧X → Y

2. Σ ⊧ E ∶ X if and only if a) E = R = X, or b) there is some E′ ∶ X ′ ∈ Σ such that
E′ ⊆ E and X ′ ⊆X+

Σ[E].

12

Here, 1. says that the eFD E ∶ X → Y is implied by the eUC/eFD set Σ if and only
if the FD X → Y is implied by the (E,FD)-reduct Σ[E] of Σ. Furthermore, 2. says
that the eUC E ∶ X is implied by the eUC/eFD set Σ if and only if the eUC E ∶ X is
the trivial eUC R ∶ R, or there is another eUC E′ ∶ X ′ in Σ such that E′ ⊆ E and the
(E,FD)-reduct Σ[E] implies the FD X →X ′.

An analysis of Theorem 2 results in the proposal of Algorithm 1 for deciding our
implication problem. If ϕ = R ∶ R, we answer yes (lines 3/4). Otherwise, standard
algorithms compute the closure X+

Σ[E] of the attribute set X given Σ[E] (lines 6/7). If

ϕ is an eUC and 2. in Theorem 2 is met, then we answer yes (lines 8/9). If ϕ is an eFD
and 1. in Theorem 2 is met, then we answer yes (lines 11/12). Otherwise, we answer no
(lines 13/14).

Algorithm 1 Deciding Implication
1: Input: Set Σ ∪ {ϕ} of eUCs and eFDs over schema R

2: Output: {
Yes , if Σ ⊧ ϕ
No , otherwise

3: if ϕ = R ∶ R then
4: return(Yes);
5: else
6: if ϕ = E ∶X or ϕ = E ∶X → Y then
7: Compute X+

Σ[E]; ▷ FD attribute set closure

8: if ϕ = E ∶X ∧ ∃E′
∶X ′

∈ Σ(E′
⊆ E ∧X ′

⊆X+
Σ[E]) then

9: return(Yes);
10: else
11: if ϕ = E ∶X → Y ∧ Y ⊆X+

Σ[E] then

12: return(Yes);
13: else
14: return(No);

The soundness of Algorithm 1 follows from Theorem 2, linear time decidability from
that of FD implication [4], and PTIME-hardness from a reduction of HORN-SAT [10,17].

Corollary 1 The implication problem of eUCs and eFDs is PTIME-complete. On input
(Σ ∪ {ϕ},R), Algorithm 1 decides the implication problem Σ ⊧ ϕ in time O(∣Σ ∪ {ϕ}∣).

Note that the PTIME-hardness means that deciding implication for eUCs and eFDs
is at least as hard as any other decision problem for which there is some deterministic
Turing machine that can decide any instance of the problem in polynomial time.

Example 3 In our running example R = {c, d, f, l, p, z} and Σ = {p ∶ cfl, p ∶ dz → c},
Σ implies ϕ = c ∶ dflpz since Σ[cdflpz] = {cfl → dpz, dz → c}, there is some eUC
E′ = cflp ∶ cfl =X ′ ∈ Σ such that E′ ⊆ E, and X ′ ⊆ (dflpz)+

Σ[cdflpz] = cdflpz, which means

2. of Theorem 2 is met. The eFD ∅ ∶ dz → c is not implied by Σ as Σ[E] = Σ[cdz] = ∅,
and dz → c is not implied by Σ[E], which means 1. of Theorem 2 is not met.

13

As a summary, our axiomatization E will enable us to formally justify the syntactic
normal form proposals we will put forward in the following section, while our algorithmic
characterizations will facilitate our normalization strategy to apply well-known relational
decomposition and synthesis approaches to the (E,FD)-reduct of an input set of embed-
ded unique constraints and embedded functional dependencies.

5 Normal Forms

Our goal is to tailor relational schema design to data completeness requirements of ap-
plications. For that purpose, we stipulate the semantic normal form condition that no
redundant data values can ever occur in any E-complete records on any relations that
satisfy a given set of eUCs and eFDs. We will characterize this condition by generalizing
the well-known Boyce-Codd normal form. Similarly, we are able to generalize the well-
known 3NF to characterize the minimization of data redundancy in E-complete records
across all dependency-preserving decompositions.

5.1 E-Redundancy Free Normal Form

Motivated by our examples, we propose notions of data redundancy that are tailored
towards the requirements of records regarding their completeness. For this, we generalize
the following classical proposal by Vincent [29]. Intuitively, a data value in a relation
that satisfies a constraint set Σ is redundant if every update to a different value results in
a relation that violates some constraint in Σ. Formally, for relation schema R, attribute
A of R, tuple t over R, and set Σ of constraints over R, a replacement of t(A) is a tuple
t̄ over R such that: i) for all Ā ∈ R − {A} we have t̄(Ā) = t(Ā), and ii) t̄(A) /= t(A).
For a relation r over R that satisfies Σ and t ∈ r, the data value occurrence t(A) in r
is redundant for Σ if for every replacement t̄ of t(A), r̄ ∶= (r − {t}) ∪ {t̄} violates some
constraint in Σ. A relation schema R is in Redundancy-Free normal form (RFNF) for
a set Σ of constraints if there are no relation r over R that satisfies Σ, tuple t ∈ r, and
attribute A ∈ R, such that the data value occurrence t(A) is redundant for Σ [29]. In
other words, we guarantee at design time that there will never be an instance over R
that satisfies Σ and has some redundant data value occurrence.

Definition 3 Let R denote a relation schema, E ⊆ R, Σ a set of constraints over R, A ∈
E an attribute, r a relation over R that satisfies Σ, and t a tuple in rE. An E-replacement
of t(A) is a replacement of t(A) that is E-complete. The data value occurrence t(A) is
E-redundant for Σ if and only if for every E-replacement t̄ of t(A), r̄ ∶= (r − {t}) ∪ {t̄}
violates some constraint in Σ. R is in E-Redundancy-Free normal form (E-RFNF) for
Σ if and only if there are no relation r over R that satisfies Σ, tuple t ∈ rE, and attribute
A ∈ E, such that the data value occurrence t(A) is E-redundant for Σ.

We illustrate the notion of E-redundancy next.

Example 4 Recall that R = cdflpz and Σ = {p ∶ cfl, p ∶ dz → c}. The relation in Table 3
shows that R is not in cdpz-RFNF for Σ: every cdpz-replacement for either of the bold
occurrences would violate the eFD p ∶ dz → c.

14

While E-RFNF is independent of the type of constraints, we will assume from now
on that Σ is a set of eUCs and eFDs. As our first result we characterize the E-RFNF for
Σ in terms of the RFNF for the (E,FD)-reduct Σ[E].
Theorem 3 For all sets Σ over R and all E ⊆ R, R is in E-RFNF for Σ if and only if
R is in RFNF for Σ[E].

For our example the characterization works as follows.

Example 5 For R = cdflpz, Σ = {p ∶ cfl, p ∶ dz → c} and E = cdpz, we have Σ[E] =
{dz → c}. That is, R is also not in RFNF for Σ[E].

5.2 E-BCNF

We now characterize the semantic E-RFNF by purely syntactic means. For that purpose,
we generalize the BCNF condition to accommodate completeness requirements. Recall
that a relation schema R is in BCNF for an FD set Σ iff for all X → Y ∈ Σ+

A where Y /⊆X,
X → R ∈ Σ+

A. Here, A denotes the well-known Armstrong’s axioms [2].

Definition 4 For relation schema R and E ⊆ R, R is in E-BCNF for a set Σ over R if
and only if for every eFD E ∶X → Y ∈ Σ+

E where Y /⊆X, E ∶X ∈ Σ+
E.

Our running example can be further analyzed as follows.

Example 6 For R = cdflpz and Σ = {p ∶ cfl, p ∶ dz → c}, R is not in cdpz-BCNF for Σ,
since the eFD p ∶ dz → c ∈ Σ ⊆ Σ+

E, {c} /⊆ {dz}, but dpz ∶ dz ∉ Σ+
E.

Recall that sets Σ and Θ are C-covers of one another if they imply the same constraints
in class C. Being in E-BCNF for Σ is independent of the representation of Σ. That is,
for any cover Θ of Σ, R is in E-BCNF for Σ iff R is in E-BCNF for Θ. The E-BCNF
condition for Σ can be characterized by the BCNF condition for Σ[E].
Theorem 4 Relation schema R is in E-BCNF for the set Σ if and only if R is in BCNF
for Σ[E].

Theorem 4 works as follows on our example.

Example 7 For R = cdflpz, Σ = {p ∶ cfl, p ∶ dz → c}, and E = cdpz, R is not in BCNF
for Σ[E] = {dz → c}.

5.3 E-RFNF at Application Design Time

We can now characterize the semantic E-RFNF by the syntactic E-BCNF. Extending
the relational case, schemata in E-BCNF guarantee at application design time that there
will never be an instance that contains any E-redundant data value occurrence.

Theorem 5 For all relation schemata R, all attribute subsets E ⊆ R, and all sets Σ over
R, R is in E-RFNF for Σ if and only if R is in E-BCNF for Σ.

We can apply the characterization to our example.

Example 8 For R = cdflpz and Σ = {p ∶ cfl, p ∶ dz → c}, R is in cflp-RFNF for Σ since
R is in BCNF for Σ[E] = {cfl → cflp}.

15

5.4 Efficient Testing

Due to the cover-insensitivity of the E-BCNF condition, one may wonder about the
efficiency of checking whether a given schema is in E-BCNF for a given set Σ. As in the
relational case it suffices to check some eFDs in Σ instead of checking all eFDs in Σ+

E.

Theorem 6 A relation schema R is in E-BCNF for Σ if and only if for every eFD
E′ ∶ X → Y ∈ Σ where E′ ⊆ E and Y /⊆ X, E ∶ X ∈ Σ+

E. Hence, deciding if a schema is in
E-BCNF for Σ is quadratic in Σ.

We apply the simpler characterization to our example.

Example 9 For R = cdflpz and Σ = {p ∶ cfl, p ∶ dz → c}, R is in cflp-BCNF for Σ since
there is no eFD E′ ∶X → Y ∈ Σ such that E′ ⊆ E = cflp.

5.5 E-3NF

We now introduce E-Third normal form (E-3NF) which ensures that all FDs can be
enforced locally, without the need of joining relations to check for consistency of updates.
Recall the 3NF condition [7]: R is in 3NF for an FD set Σ if for every FD X → Y ∈ Σ+

A

where Y /⊆X, X → R ∈ Σ+
A or every attribute in Y −X is prime. An attribute A is prime

if it occurs in some minimal key of R for Σ. An attribute subset X of R is a key of R
for Σ if X → R ∈ Σ+

A. A key X of R is minimal for Σ if every proper subset Y ⊂X is not
a key of R for Σ. We extend these concepts to handle data completeness requirements.
For E ⊆ R and an eUC/eFD set Σ, an eUC E ∶K ∈ Σ+

E is E-minimal for Σ if and only if
there is no E-key E ∶ K ′ ∈ Σ+

E for Σ such that K ′ ⊂ K. An attribute A is E-prime for Σ
if and only if A ∈K for some E-minimal key E′ ∶K ∈ Σ+

E.

Definition 5 A relation schema R is in E-3NF for Σ if and only if for every non-trivial
eFD E ∶X → Y ∈ Σ+

E with E′ ⊆ E, E ∶X ∈ Σ+
E or every attribute in Y −X is E-prime.

We can check this condition on our running example.

Example 10 For R = cdflpz and Σ = {p ∶ cfl, p ∶ dz → c}, we have seen that c ∶ dflpz
is an R-minimal key for Σ, the other R-minimal key being dpz ∶ cfl. That is, every
attribute in R is R-prime. Hence, R is in R-3NF. However, R is not in cdpz-3NF as
eFD p ∶ dz → c ∈ Σ, c ∉ {d, z}, cp ∶ dz ∉ Σ+

E, and c is not cdpz-prime.

Similar to E-BCNF and BCNF, we can check that R is in E-3NF for Σ by testing
that R is in 3NF for Σ[E].

Theorem 7 For all relation schemata R, all E ⊆ R, and all sets Σ over R, R is in
E-3NF for Σ if and only if R is in 3NF for Σ[E].

Example 11 In our running example R = cdflpz, Σ = {p ∶ cfl, p ∶ dz → c} and E = R,
Σ[E] = {cfl → dpz, dz → c}. The two minimal keys are cfl and dflpz. As every attribute
is prime, R is in 3NF for Σ[E].

16

Finally, E-3NF can be validated by checking the relevant conditions for just the input
Σ, rather than its closure Σ+

E.

Theorem 8 R is in E-3NF for a set Σ of eUCs and eFDs over R if and only if for
every eFD E′ ∶ X → Y ∈ Σ where E′ ⊆ E and Y /⊆ X, E ∶ X ∈ Σ+

E or every attribute in
Y −X is E-prime.

This translates to our running example as follows.

Example 12 For R = cdflpz, Σ = {p ∶ cfl, p ∶ dz → c}, E = R and p ∶ dz → c ∈ Σ, c ∈ R is
E-prime. By Theorem 8 this suffices to establish that R is in E-3NF for Σ.

5.6 Hardness of Normal Form Criteria

As relational normalization occurs as the special case where E = R, checking normal form
criteria is hard in general.

Theorem 9 Deciding whether a sub-schema of a given schema is in E-BCNF for a given
set Σ is coNP-complete. Deciding whether a given schema is in E-3NF for a given set
Σ is NP-complete.

6 Tailoring Normalization

We now establish algorithms to design relational database schemata that are tailored
to the completeness requirements of applications. For that purpose, we normalize a
given schema R for the given set Σ of eUCs and eFDs. The completeness requirements
are consolidated in an attribute subset E ⊆ R, expressing that the application only
handles E-complete records. The choice of E determines the set Σ[E] of traditional FDs
that are used to normalize R. For each E we pursue i) lossless BCNF decompositions
that are redundancy-free but potentially not dependency-preserving, and ii) lossless 3NF
syntheses that are dependency-preserving but potentially not redundancy-free.

6.1 E-BCNF Decomposition

We recall terminology from relational databases. A decomposition of relation schema R is
a set D = {R1, . . . ,Rn} of relation schemata such that R1∪⋯∪Rn = R. For Rj ⊆ R and FD
set Σ over R, ΣRj

= {X → Y ∣ X → Y ∈ Σ+
A and X,Y ⊆ Rj} denotes the projection of Σ

onto Rj. A decomposition D of R with FD set Σ is lossless if every relation r over R that
satisfies Σ is the join of its projections on the elements of D, that is, r = &Rj∈Dr[Rj]. Here,
r[Rj] = {t(Rj) ∣ t ∈ r}. A BCNF decomposition of R with FD set Σ is a decomposition
D of R where every Rj ∈ D is in BCNF for ΣRj

. Theorem 4 motivates a definition of an
E-lossless BCNF decomposition.

Definition 6 An E-lossless BCNF decomposition of a schema R for a set Σ of eUCs
and eFDs over R is a lossless BCNF decomposition of R for Σ[E].

17

Instrumental to Definition 6 is the following decomposition theorem. It covers the
classical decomposition theorem [27] as the special case where E = R. Data completeness-
tailored normalization does not loose any records by following a hybrid decomposition
approach. Given E, a relation is decomposed horizontally into its application-relevant
part rE of E-complete records, and its application-irrelevant part r − rE of records with
missing data on E. Classical vertical decomposition can then be applied to rE.

Theorem 10 Let E ∶X → Y be an eFD that satisfies the relation r over relation schema
R. Then the set of E-complete records of r is the lossless join of its projections on XY
and X(R − Y), that is, rE = rE[XY] & rE[X(R − Y)]. Also, r is the disjoint union of
the set of E-complete records of r, and the set of records of r with missing data on some
column in E, that is, r = rE ⊍ (r − rE).

Hence, an E-lossless BCNF decomposition for a set Σ of eUCs and eFDs can simply
be obtained by a classical lossless BCNF decomposition for the (E,FD)-reduct Σ[E] of
Σ.

PROBLEM: E-BCNF Decomposition
INPUT: Relation Schema R

Set Σ of eUCs and eFDs over R
Attribute subset E ⊆ R

OUTPUT: E-lossless BCNF decomposition
of R for Σ

METHOD: Perform a lossless BCNF decomposition
of R for Σ[E]

We illustrate the decomposition on our running example.

Example 13 In our running example R = cdflpz, Σ = {p ∶ cfl, p ∶ dz → c}, and E = R, R
is not in E-BCNF for Σ. In fact, R is not in BCNF for Σ[E] = {cfl → dpz, dz → c}. A
BCNF decomposition yields R1 = cdz with Σ1 = {dz → c} and R2 = dflpz with Σ2 = ∅. For
the relation r from Table 3, the projection of rE on the decomposed schema is as follows,
except for the last row in both tables because tuple t15 has a null marker occurrences on
column f name.

c(ity) z(ip) d(ate register)
burlington 27217 05/11/1940

jackson 27845 06/15/1936
lasker 27845 05/10/1940

wilmington 28405 01/01/1930
rose hill 28458 01/01/1930
new bern 28562 03/06/1935

chinquapin 28521 01/01/1936
burlington 27215 05/06/1940

mebane 27302 4/05/1940
mebane 27302 05/06/1940
kinston 28504 05/02/1940
kinston 28504 05/04/1940

18

f(name) l(name) z(ip) p(hone) d(ate register)
ida cheek 27217 226 4848 05/11/1940
effie massey 27217 336 226 8544 05/11/1940
peggy floyd 27845 252 536 2668 06/15/1936
essie warren 27845 252 539 2866 05/10/1940

rodney glockner 28405 910 509 3864 01/01/1930
sallie blanchard 28458 910 289 3320 01/01/1930
joseph cox 28562 252 288 4763 03/06/1935
james smith 28521 910 285 3493 01/01/1936
james smith 27215 584 4202 05/06/1940

dorothy faucette 27302 919 563 1285 4/05/1940
dorothy allred 27302 563 1426 05/06/1940
eloise croom 28504 252 569 4436 05/02/1940
⊥ croom 28504 252 569 9516 05/04/1940

All E-redundant data value occurrences from r have been eliminated. However, the
eUC p ∶ cfl was not preserved.

Recall that a decomposition D of schema R with FD set Σ is dependency-preserving
whenever Σ+

A = (∪Rj∈DΣ[Rj])+A.

Definition 7 An E-dependency-preserving decomposition of a schema R for the eUC/eFD
set Σ is a dependency-preserving decomposition of R for Σ[E].

6.2 E-3NF Synthesis

3NF synthesis guarantees dependency-preservation, but may exhibit data value redun-
dancy caused by FDs. It was shown recently that 3NF exhibits minimal levels of data
redundancy when achieving dependency-preservation [1, 19]. Hence, we will equip our
new framework with an appropriate 3NF synthesis strategy. Recall that a 3NF decom-
position of a relation schema R for an FD set Σ is a decomposition D of R where every
Rj ∈ D is in 3NF for ΣRj

. Theorem 7 motivates the following definition.

Definition 8 An E-dependency-preserving, E-lossless 3NF decomposition of a schema
R for the set Σ of eUCs and eFDs is a dependency-preserving, lossless 3NF decomposition
of R for Σ[E].

Following Theorem 10, an E-dependency-preserving, E-lossless 3NF synthesis for a
set Σ of eUCs and eFDs can simply be obtained by a classical dependency-preserving
lossless 3NF synthesis for the (E,FD)-reduct Σ[E] of Σ.

PROBLEM: E-3NF Synthesis
INPUT: Relation schema R

Set Σ of eUCs and eFDs over R
Attribute subset E ⊆ R

OUTPUT: E-dependency-preserving, E-lossless
3NF decomposition of R wrt Σ

METHOD: Perform a dependency-preserving, lossless
3NF synthesis of R for Σ[E]

19

We illustrate the synthesis on our running example.

Example 14 In our running example R = cdflpz, Σ = {p ∶ cfl, p ∶ dz → c}, R is indeed
in R-3NF for Σ. For E = cdpz, however, R is not in E-3NF for Σ. In fact, R is not
in 3NF for Σ[E] = {dz → c}. A 3NF synthesis yields R1 = cdz with Σ1 = {dz → c}
and to ensure E-losslessness we add the E-minimal key R2 = dflpz with Σ2 = ∅. For
the relation r from Table 3, the projection of rE onto the decomposed schema is the
same as in Example 13 but inclusive of the last row in both tables because of the looser
data-completeness requirements.

Summary. We have tailored the entire relational schema design framework to data-
completeness requirements of applications. We allow data stewards to declare these
requirements as an extension to the familiar concept of a functional dependency. The
results show that extensions of the familiar BCNF (3NF) normal form achieve an elimi-
nation (minimization across dependency-preserving decompositions) of data values that
may occur redundantly in records that meet the completeness requirements. As an opti-
mal result for database practice, schemata can be automatically transformed into these
normal forms by applying relational normalization algorithms to a set of relational FDs
that emerge from the set of extended FDs and the data-completeness requirements. The
next section illustrates what our framework achieves when applied to real-world schemata
and data.

7 Experiments

We report on experiments with our framework using real-world benchmark schemata and
data, available for download here2. We provide insight on how many E-redundant data
values occur in the data, rank the relevance of our eFDs by how many data redundan-
cies they cause, show how often schemata satisfy a normal form condition, how much
redundancy E-3NF permits, how many dependencies E-BCNF preserves, and how large
decomposed schemata become. We consider the times of computations, and suggest how
data stewards can use our ranking of eFDs, using the example of our two applications
from the introduction. All our experiments are run on an Intel Xeon 3.6 GHz, 256GB
RAM, Windows 10 Dell workstation.

7.1 E-redundancy and eFD Ranking

Table 6 lists for each incomplete benchmark data set the number #complete of data oc-
currences that are complete, the number #red of those that are redundant, the percentage
%red of redundant data value occurrences in the data set, and the time in seconds to
compute all the redundant occurrences given the data set and given the canonical cover
of the eUCs and eFDs that hold on the data set. The canonical covers can be computed
by some algorithms that will be discussed in a separate article. The sheer number and
percentage of redundant occurrences clearly motivates our research, and the time taken

2https://bit.ly/2AoOis6

20

data set #complete #red %red time (s)
horse 6,795 4,775 70.27 8.075
bridges 1,327 411 30.97 0.002
hepatitis 2,933 1,695 57.79 0.179
breast 7,585 712 9.39 0.005
echo 1,584 489 30.87 0.002
plista 39,431 28,827 73.11 18.415
flight 57,062 48,414 84.84 86.585
ncvoter 16,137 3,170 19.64 0.047
china 4,313,980 2,131,677 49.41 412.867
uniprot 11,600,704 1,413,038 12.18 1,777.245
diabetic 1,017,738 543,935 53.45 3,273.183

Table 6: Redundant data value occurrences in benchmarks, and the time in seconds to
compute all of them

to compute them shows that this insightful analysis is efficient on even large data sets
with large numbers of constraints. Of course, if a team of domain experts selects the
meaningful eUCs and eFDs for an application, then the redundant occurrences will likely
be fewer and can be computed more efficiently.

Guiding data stewards in their selection of meaningful eFDs from the canonical cover,
we can rank the relevance of an eFD by the number of redundant data value occurrences
it causes. Figure 1 shows the number of eFDs in a canonical cover that cause not more
than a given number of redundant data value occurrences in the data set. The labels
on the x-axis indicate the maximum values for 0, 2.5, 5, 10, 15, 20, 40, 60, 80, and 100
percent of the maximum redundant occurrences any eFD causes. The figure illustrates
clearly that most eFDs cause few data redundancies, which makes it possible for data
stewards to focus their attention to select few eFDs of higher rank.

7.2 Pure eFDs

As indicated in our introduction, pure eFDs occur frequently in real-world data, cause
many redundant data value occurrences, and also occur frequently among those eFDs
that cause most redundant data value occurrences. This is illustrated on our benchmark
data sets in Table 7. Here, we list the percentage of pure eFDs among all eFDs in the
canonical covers we computed, the average loss of redundant data value occurrences in
percent when transforming a pure eFD E ∶ X → Y into a non-pure eFD ∅ ∶ E − Y → Y ,
and the percentage of pure eFDs among those eFDs that ranked within the top-10%
according to the number of redundant data values they cause.

7.3 Quality of Decompositions

For the following experiments we created inputs as outlined next. For each fixed size ∣E∣
of the completeness requirements, we created different sets of eUCs and eFDs by picking
up to 1,000 unique attribute sets E of the fixed size, and then selecting all eUCs and

21

Figure 1: Numbers of eFDs in canonical covers (y-axis) that cause not more than the
given number of redundant occurrences (x-axis)

22

data set %pure red loss %pure top-10%
breast 0 0 0
bridges 29.58 62.85 69.23
china 18.83 81.32 60.08
diabetic 54.02 57.79 64.68
echo 20.32 65.24 46.67
flight 17.73 44.50 16.46
hepatitis 53.21 77.56 67.62
horse 94.25 20.60 94.38
ncvoter 16.35 66.88 50.00
plista 74.18 8.14 69.92
uniprot 512k 30c 50.73 63.50 92.55
ncvoter128k 34.00 45.80 45.89
ncvoter256k 39.88 50.14 58.86
ncvoter512k 40.30 46.57 44.13
ncvoter1024k 39.46 49.20 48.54

Table 7: Statistics on pure eFDs in benchmark data

eFDs that hold on the data set and whose embeddings are subsets of E. Figure 2 shows
for each data set and each size of E, the percentage of all input sets that are in E-BCNF
and E-3NF, respectively.

Figure 3 shows the average percentages of i) the E-complete data value occurrences
that are redundant (blue line), ii) those after E-3NF decomposition (orange line) and iii)
eliminated redundancies after E-3NF synthesis (yellow line) all plotted against the LHS
vertical axis, and iv) dependencies preserved during E-BCNF decomposition (red dotted
line) plotted against the RHS vertical axis. In general, there is no control about the num-
ber of E-redundant data values that an E-3NF decomposition must tolerate to preserve
all relevant dependencies. Vice versa, there is no control on how many relevant dependen-
cies will be lost to eliminate all E-redundant data values during E-BCNF decomposition.
For instance, E-3NF may duplicate non-trivial eFDs across schemata, causing a blow-up
of the E-redundancies (orange above blue line), see diabetic and china weather.

7.4 Size and time of decompositions

Figure 4 illustrates the impact of the size of E on the cardinality of the decompositions,
that is, their total number of attributes (LHS y-axis) and the computation time in seconds
(RHS y-axis). Boldly speaking, the larger the decompositions the more updates (less
redundancy) and the less queries (more joins required) will be efficient.

7.5 Qualitative analysis

For qualitative insight, we consider two applications for the data set ncvoter with 19
columns and 1000 records. The first application has attribute set E1 with full phone num,

23

Figure 2: Average percentage of schemata in E-3NF and E-BCNF, respectively, by given
size of E

24

Figure 3: Elimination of E-redundancy by E-3NF (vertical LHS), and E-preservation by
E-BCNF (vertical RHS)

25

Figure 4: Average cardinality of decompositions and time (s) taken to compute them

26

Figure 5: NCVoter applications

Figure 6: Ranking of some eFDs for application E1

street address, register date, last name, first name, city, and zip code, while the second
application uses the attribute set E2 ⊇ E1 plus birthplace, ethnic, race, gender, and age.
From the canonical cover we then selected only those eFDs E ∶X → Y where E contained
E1 or E2, respectively.

Our rankings help identify eFDs relevant for normalization and pinpointing dirty
data. Figure 5 shows the distribution of eFDs in percentiles of the redundant values
they cause based on E1 and E2, respectively. For growing ∣E∣ typically more eFDs
need consideration. Here, our ranking offers a convenient measure of relevance for data
stewards.

A view that might be particularly useful for data stewards is to fix a column in E, and
list the minimal LHSs that functionally determine that column, ranked by the relevance
of the corresponding eFD. This is illustrated in Figures 6 and 7, where we list all minimal
LHSs for the columns city and zip code based on the two completeness requirements E1

and E2, respectively.
Finally, a data steward can view the records in which the redundant data values

actually occur. This helps them decide if the eFD is meaningful for the application,
holds just accidentally, or identify records with dirty data. Figure 8 shows some records
with E1-redundant data values.

An inspection of these records reveals some dirty data: i) Hazel and Homer Hargis

27

Figure 7: Ranking of some eFDs for application E2

Figure 8: E1-redundancies caused by eFD full phone num ∶ last name,city,register date →

zip code

28

live at the same street address, and their phone numbers are different, and ii) Vivian and
John Etheridge share the same phone number, but their street address is different. For
i) the inconsistency can easily be resolved by giving the full phone number, while for ii)
it is more likely that Vivian indicated the correct street number.
Summary. Our experiments illustrate on benchmark schemata and data that eFDs
provide effective declarative means to capture and reason about redundant data value
occurrences that are fit for application requirements. Our ranking guides data stewards in
their selection of eFDs that are relevant for normalization purposes given the application
requirements. Our normalization strategies result in a wide spectrum of schemata with
clear achievements in terms of the elimination of pertinent data redundancies or the
preservation of pertinent dependencies, accommodating tradeoffs between update and
query efficiency. More experiments on perfect decompositions and an analysis of our
experiments on horizontal fragments on ncvoter are available in the appendix.

8 Conclusion and Future Work

Schema design for data with missing values has been an open problem since the 1980s.
Previous work has focused on finding suitable extensions of functional dependencies to ac-
commodate different interpretations of null markers. In contrast, we introduced the class
of embedded functional dependencies (eFDs) that is only dependant on complete data,
can express completeness and integrity requirements of applications, and captures many
redundant data values. This has enabled us to establish a fully-fledged normalization
framework that is robust under different interpretations of null markers, tailors relational
schema design to data-completeness requirements, and generalizes the achievements of
classical BCNF and 3NF to applications with missing data. Extensive experiments on
real-world benchmark schemata and data exemplify the effectiveness of our framework,
the efficiency of our algorithms, and the achievements of our new normal form proposals.
In particular, we illustrated the impact of the completeness requirements on trade-offs
between data redundancy elimination and dependency-preservation. Next steps include
an in-depth investigation into the discovery problem of embedded uniqueness constraints
and functional dependencies from given relations. The discovery is important for data
profiling and its applications, but can also help identify business rules. For that purpose,
the ranking of eFDs can provide effective guidance. Furthermore, an extension of our
framework to other data quality dimensions and other classes of data dependencies is
important. The ability to declare data accuracy or data timeliness requirements as part
of functional and multivalued dependencies would lift important data quality dimensions
to first-class citizens that impact schema design considerations based on rich sources of
data redundancy.

References

[1] M. Arenas. Normalization theory for XML. SIGMOD Record, 35(4):57–64, 2006.

29

[2] W. W. Armstrong. Dependency structures of data base relationships. In IFIP
Congress, pages 580–583, 1974.

[3] P. Atzeni and N. M. Morfuni. Functional dependencies and constraints on null values
in database relations. Information and Control, 70(1):1–31, 1986.

[4] P. A. Bernstein. Synthesizing third normal form relations from functional depen-
dencies. ACM TODS, 1(4):277–298, 1976.

[5] J. Biskup. Achievements of relational database schema design theory revisited. In
Semantics in Databases, pages 29–54, 1995.

[6] J. Biskup. Achievements of relational database schema design theory revisited. In
L. Libkin and B. Thalheim, editors, Semantics in Databases, volume 1358 of Lecture
Notes in Computer Science, pages 29–54. Springer, 1998.

[7] J. Biskup, U. Dayal, and P. A. Bernstein. Synthesizing independent database
schemas. In SIGMOD, pages 143–151, 1979.

[8] E. F. Codd. Further normalization of the database relational model. In Courant
Computer Science Symposia 6: Data Base Systems, pages 33–64, 1972.

[9] C. J. Date and R. Fagin. Simple conditions for guaranteeing higher normal forms in
relational databases. ACM Trans. Database Syst., 17(3):465–476, 1992.

[10] W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability
of propositional horn formulae. J. Log. Program., 1(3):267–284, 1984.

[11] R. Fagin. The decomposition versus synthetic approach to relational database design.
In VLDB 1977, pages 441–446, 1977.

[12] R. Fagin. Multivalued dependencies and a new normal form for relational databases.
ACM TODS, 2(3):262–278, 1977.

[13] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional depen-
dencies for capturing data inconsistencies. ACM TODS, 33(2), 2008.

[14] S. Greco, C. Molinaro, and F. Spezzano. Incomplete Data and Data Dependencies in
Relational Databases. Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2012.

[15] S. Hartmann and S. Link. The implication problem of data dependencies over SQL
table definitions: Axiomatic, algorithmic and logical characterizations. ACM Trans.
Database Syst., 37(2):13:1–13:40, 2012.

[16] I. J. Heath. Unacceptable file operations in a relational data base. In SIGFIDET
Workshop, pages 19–33, 1971.

[17] N. D. Jones and W. T. Laaser. Complete problems for deterministic polynomial
time. Theor. Comput. Sci., 3(1):105–117, 1976.

30

[18] H. Köhler and S. Link. SQL schema design: Foundations, normal forms, and nor-
malization. In SIGMOD, pages 267–279, 2016.

[19] S. Kolahi. Dependency-preserving normalization of relational and XML data. J.
Comput. Syst. Sci., 73(4):636–647, 2007.

[20] S. Kolahi and L. Libkin. An information-theoretic analysis of worst-case redundancy
in database design. ACM Trans. Database Syst., 35(1):5:1–5:32, 2010.

[21] M. Levene and G. Loizou. Axiomatisation of functional dependencies in incomplete
relations. Theor. Comput. Sci., 206(1-2):283–300, 1998.

[22] M. Levene and G. Loizou. A guided tour of relational databases and beyond. Springer,
1999.

[23] M. Levene and M. W. Vincent. Justification for inclusion dependency normal form.
IEEE TKDE, 12(2):281–291, 2000.

[24] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

[25] T. Papenbrock and F. Naumann. Data-driven schema normalization. In EDBT,
pages 342–353, 2017.

[26] R. Ramakrishnan and J. Gehrke. Database management systems. McGraw-Hill,
2003.

[27] J. Rissanen. Independent components of relations. ACM TODS, 2(4):317–325, 1977.

[28] M. W. Vincent. A corrected 5NF definition for relational database design. Theor.
Comput. Sci., 185(2):379–391, 1997.

[29] M. W. Vincent. Semantic foundations of 4NF in relational database design. Acta
Inf., 36(3):173–213, 1999.

[30] Z. Wei and S. Link. Embedded cardinality constraints. In CAiSE, pages 523–538,
2018.

[31] Z. Wei, S. Link, and J. Liu. Contextual keys. In ER, pages 266–279, 2017.

[32] C. Zaniolo. Database relations with null values. J. Comput. Syst. Sci., 28(1):142–
166, 1984.

A More experiments

We comment on some additional experiments we have conducted with the benchmark
schemata and data. These include an analysis of obtaining perfect E-decompositions,
as well as an analysis of the eFDs, E-redundancies, and E-normalization for the ncvoter
benchmark with different numbers of rows.

31

A.1 Chances for a Perfect Decomposition

A decomposition is perfect when all its schemata are in E-RFNF and all relevant de-
pendencies have been preserved. A perfect decomposition can be obtained by an E-3NF
synthesis in which all schemata are actually in E-BCNF, or by an E-BCNF decomposition
that is E-dependency-preserving. It is therefore an interesting question to ask what the
chances are of obtaining a perfect decomposition by following either of these strategies.
Figure 9 shows the outcome of this analysis as average percentages over all the exper-
iments we run on our benchmarks with respect to different sizes of data completeness
requirements.

A.2 E-Redundancies on ncvoter Fragments

It is interesting to apply our previous analyses to various horizontal fragments of the
same data set. In this subsection we include such experiments on the ncvoter benchmark
with numbers of rows varying from 2i thousand records for i = 0, ...,10. Figure 10 shows
the ranking percentiles of eFDs discovered on those fragments, as well as the times in
seconds to compute all the E-redundant data value occurrences.

A.3 E-Normalization on ncvoter Fragments

Figure 11 shows for the different horizontal fragments of ncvoter, the average percentages
of i) the E-complete data value occurrences that are redundant (blue line), ii) those after
E-3NF decomposition (orange line) and iii) eliminated redundancies after E-3NF synthe-
sis (yellow line) all plotted against the LHS vertical axis, and iv) dependencies preserved
during E-BCNF decomposition (red dotted line) plotted against the RHS vertical axis.
It is very interesting to see how stable the results are across the vastly varying numbers
of rows in the horizontal fragments.

A.4 Schema design quality

Finally, we quantitatively analyze the impact of the size of E on the average ratio of
schemata in an E-3NF decomposition that are in E-BCNF, which we call the BCNF-
ratio, and on the average ratio of dependencies that have been preserved in an E-BCNF
decomposition, which we call the Preservation-ratio. It tells us about the chances of find-
ing an optimum decomposition that is free from E-data redundancy and E-dependency-
preserving using either E-BCNF decomposition or E-3NF synthesis.

A.5 Quality of Decompositions

For the following experiments we created inputs as outlined next. For each fixed size ∣E∣
of the completeness requirements, we created different sets of eUCs and eFDs by picking
up to 1,000 unique attribute sets E of the fixed size, and then selecting all eUCs and
eFDs that hold on the data set and whose embeddings are subsets of E. Figure 2 shows

32

Figure 9: Average Percentages of E-3NF-decompositions in E-BCNF, and of E-BCNF
decompositions that are E-dependency-preserving

33

Figure 10: Ranking percentiles of eFDs in canonical cover for different fragments of
ncvoter and time to compute all redundancies in seconds

34

Figure 11: Elimination of E-redundancy by E-3NF (vertical LHS), and E-preservation
by E-BCNF (vertical RHS) by horizontal fragments of ncvoter

35

Figure 12: Comparison of Preserving-ratio and BCNF-ratio

Figure 13: Numbers of eFDs in canonical covers (y-axis) that cause not more than the
given number of redundant occurrences (x-axis)

36

Figure 14: Average percentage of schemata in E-3NF and E-BCNF, respectively, by
given size of E

for each data set and each size of E, the percentage of all input sets that are in E-BCNF
and E-3NF, respectively.

Figure 3 illustrates the average percentage of the E-complete data value occurrences
that are redundant (blue line), the average percentage of redundant occurrences after
E-3NF synthesis, and the average percentage of dependencies that have been preserved
during E-BCNF decomposition. In general, there is no control about the number of
E-redundant data values that an E-3NF synthesized decomposition must tolerate to
preserve all relevant dependencies. Vice versa, there is no control on how many relevant
dependencies will be lost in order to eliminate all E-redundant data values during E-
BCNF decomposition. In bad cases, for example, E-3NF may duplicate non-trivial eFDs
across various schemata, resulting in an actual blow-up of the E-redundancies that the
eFDs cause, see diabetic and china weather.

A.6 Size/time of decompositions

Figure 4 illustrates the impact of the size of E on the cardinality of the decompositions,
that is, their total number of attributes. Boldly speaking, the larger the decompositions
the more efficient updates (less redundancy) and the less efficient queries (more joins
required) we have.

37

Figure 15: Elimination of E-redundancy by E-3NF (vertical LHS), and E-preservation
by E-BCNF (vertical RHS)

Figure 16: Average cardinality of decompositions and time (s) taken to compute them

38

B Logical Characterization

We establish a logical characterization showing that eUCs and eFDs interact just like
goal and definite clauses in Boolean propositional logic. As a consequence, we can apply
linear resolution to reason about eUCs and eFDs, and know that the implication problem
is PTIME-complete.
Horn clauses. Let L denote a finite set of propositional variables, and let L∗ ⊇ L
denote the propositional language over L. An interpretation of L is a total function
ω ∶ L→ {F,T}. Any interpretation ω of L can be lifted to a total function Ω ∶ L∗ → {F,T}
by:

1. Ω(ϕ̄) = ω(ϕ̄), if ϕ̄ ∈ L,

2. Ω(¬ϕ̄) = T if and only if Ω(ϕ̄) = F, and

3. Ω(ϕ̄ ∨ ψ̄) = T if and only if Ω(ϕ̄) = T or Ω(ψ̄) = T.

Recall that literals are formulae in L∗ that are either variables or negations of variables.
Clauses are disjunctions of literals. A literal is negative if it is the negation of a variable,
and positive otherwise. A clause is a goal clause if none of its disjuncts is positive. A
clause is a definite clause if precisely one of its disjuncts is positive. A clause is Horn
if at most one of its disjuncts is positive. An interpretation ω is a model of a set Σ̄ of
L-formulae if Ω(σ̄) = T holds for every σ̄ ∈ Σ̄. We say that Σ̄ implies an L-formula ϕ̄,
denoted by Σ̄ ⊧L ϕ̄, if every model of Σ̄ is also a model of ϕ̄.
Equivalence. Firstly, we define the fragment of L-formulae that corresponds to eUCs
and eFDs over a given relation schema R with respect to E ⊆ R. Let φ ∶ E → L denote
a bijection between E and the set L = {Ā ∣ A ∈ E} of propositional variables that
corresponds to E. The set L{F,T} consists of all interpretations over L, but if L consists
of the variables that correspond to the full set R of attributes, then we exclude the
interpretation from L{F,T} that assigns T to all variables.

We now extend φ to a mapping Φ from the set of eUCs and eFDs over R. For
an eUC E′ ∶ X ′ over R with E′ ⊆ E = {A1, . . . ,An}, let Φ(E′ ∶ X ′) denote the goal
clause ¬Ā1 ∨ ⋯ ∨ ¬Ān. For an eFD E′ ∶ B1, . . . ,Bm → B over R with E′ ⊆ E, let
Φ(E′ ∶ B1, . . . ,Bn → B) denote the definite clause ¬B̄1 ∨ ⋯ ∨ ¬B̄n ∨ B̄. Without loss
of generality, eFDs have only a single attribute on their right-hand side. As usual,
disjunctions over zero disjuncts are interpreted as F. In what follows, we may simply
denote Φ(ϕ) = ϕ̄ and Φ(Σ) = {σ̄ ∣ σ ∈ Σ[E]} = Σ̄ where ΣE = {E′ ∶ X ′ ∣ E′ ∶ X ′ ∈ Σ ∧E′ ⊆
E} ∪ {E′ ∶X ′ → A′ ∣ E′ ∶X ′ → A′ ∈ Σ ∧E′ ⊆ E}.

Our aim is to show that for every relation schema R, for every set Σ ∪ {ϕ = E ∶ ϕ′}
of eUCs and eFDs, there is some E-complete R-relation r that satisfies Σ and violates
ϕ if and only if there is a model ωr ∈ L{F,T} of Σ̄ that is not a model of ϕ̄. For arbitrary
relations r it is not obvious how to define the interpretation ωr. However, for deciding
the implication problem Σ ⊧ E ∶ ϕ′, it suffices - by Corollary 3 - to examine two-tuple
relations that are E-complete. For two-tuple relations {t1, t2} that are E-complete, we
define the special interpretation ω{t1,t2} ∈ L{F,T} by

ω{t1,t2}(Ā) = { F , if t1(A) /= t2(A)
T , otherwise

39

for all Ā ∈ L. In particular, if {t1, t2} is E-complete, then ω{t1,t2} is an interpretation
over L. For example, if E = R, then the two tuples have non-matching values on some
attribute and, consequently, ω{t1,t2} does not assign T to all variables in L. The definition
of the special interpretation is further justified semantically by the following lemma.

Lemma 1 For all relation schemata R, for all two-tuple relations r = {t1, t2} over R
that are E-complete, and for all eUCs and all eFDs ϕ over R with embedding E′ ⊆ E, r
satisfies ϕ if and only if ωr is an L-model of ϕ̄.

Proof We show first that if r satisfies ϕ, then ωr is a model of ϕ̄. If ϕ denotes the eUC
E′ ∶ {A1, . . . ,An} with E′ ⊆ E, then ϕ̄ = ¬Ā1 ∨ ⋯ ∨ ¬Ān. Since r is E-complete, E′ ⊆ E,
and r satisfies ϕ, it cannot be that for all i = 1, . . . , n, t1(Ai) = t2(Ai) hold. Therefore,
it cannot be that for all i = 1, . . . , n, ωr(¬Ā) = F holds. Hence, ωr is a model of ϕ̄. If ϕ
denotes the eFD E′ ∶ A1⋯An → A where E′ ⊆ E, then ϕ̄ = ¬Ā1 ∨ ⋯ ∨ ¬Ān ∨ A. Since r
satisfies ϕ it cannot be that for all i = 1, . . . , n, t1(Ai) = t2(Ai) and t1(A) /= t2(A) holds,
too. Therefore, it cannot be that for all i = 1, . . . , n, ωr(¬Āi) = F hold and ωr(¬Ā) = F
holds, too. Hence, ωr is a model of ϕ̄.

We show next that if ωr is a model of ϕ̄, then r satisfies ϕ. If ϕ̄ denotes the goal
clause ¬Ā1 ∨ ⋯ ∨ ¬Ān, then ϕ denotes the eUC E′ ∶ {A1, . . . ,An} for some E′ ⊆ E.
Since ωr is a model of ¬Ā1 ∨ ⋯ ∨ ¬Ān it cannot be that for all i = 1, . . . , n, ωr(¬Āi) = F
holds. Consequently, it cannot be that for all i = 1, . . . , n, t1(Ai) = t2(Ai) hold. Hence, r
satisfies the eUC E′ ∶ {A1, . . . ,An}. If ϕ̄ denotes the definite clause ¬Ā1 ∨ ⋯ ∨ ¬Ān ∨ Ā,
then ϕ denotes the eFD E′ ∶ A1, . . . ,An → A for some E′ ⊆ E. Since ωr is a model of
¬Ā1 ∨⋯ ∨ ¬Ān ∨ Ā it cannot be that for all i = 1, . . . , n, ωr(¬Āi) = F hold and ωr(Ā) = F
holds, too. Consequently, it cannot be that for all i = 1, . . . , n, t1(Ai) = t2(Ai) hold and
t1(A) /= t2(A) holds, too. Hence, r satisfies the eFD ϕ. This concludes the proof.

The following corollary follows directly from the proof of Theorem 1.

Corollary 2 Finite, unrestricted, and two-tuple implication problems for eUCs and eFDs
coincide.

Proof For any given set Σ ∪ {ϕ} of eUCs and eFDs over relation schema R, the proof
of Theorem 1 shows that there is always a two-tuple relation that satisfies all elements
in Σ and violates ϕ whenever ϕ is not implied by Σ. Here, implication may refer to
unrestricted or finite implication.

Our main result relies on Corollary 3 and Lemma 1.

Theorem 11 Let Σ∪ {ϕ} be a set of eUCs and eFDs over the relation schema R where
ϕ = E ∶ ϕ′ with E ⊆ R. Let L denote the set of propositional variables that corresponds to
E, and Σ̄ ∪ {ϕ̄} the set of goal and definite clauses over L that corresponds to Σ ∪ {ϕ}.
Then Σ ⊧ ϕ if and only if Σ̄ ⊧L ϕ̄.

40

Proof According to Corollary 3 it suffices to show that Σ ⊧2 ϕ if and only if Σ̄ ⊧L ϕ̄.
We show first that if Σ̄ ⊧L ϕ̄ holds, then Σ ⊧2 ϕ holds as well. For this purpose suppose

that Σ ⊧2 ϕ does not hold. Consequently, there is some E-complete two-tuple relation r
over R that satisfies Σ but violates ϕ. Following Lemma 1, ωr is an interpretation that
satisfies Σ̄ and violates ϕ̄. Hence, Σ̄ ⊧L ϕ̄ does also not hold.

It now remains to show that if Σ ⊧2 ϕ holds, then Σ̄ ⊧L ϕ̄ holds as well. For this
purpose, suppose that Σ̄ ⊧L ϕ̄ does not hold. Consequently, there is some interpretation
ω that is a model of Σ̄ but not a model of ϕ̄. Let r = {t1, t2} over R be defined as
follows: for all A ∈ R let t1(A) ∈ dom(A) − {⊥}, and let t2(A) = t1(A), if ω(Ā) = T, let
t2(A) ∈ dom(A) − {t1(A),⊥}, if ω(Ā) = F, and let t2(A) =⊥, if A ∉ E. It follows that
ωr = ω. Since ωr = ω, Lemma 1 guarantees that r satisfies all elements E′ ∶ σ′ ∈ Σ where
E′ ⊆ E, and r violates ϕ. However, r also satisfies all E′ ∶ σ′ ∈ Σ where E′ /⊆ E holds since
rE

′ = {t1} is a singleton in that case. We conclude that Σ /⊧2 ϕ.

We analyze our running example from Theorem 11.

Example 15 As before, R = {f, l, p, d} and Σ = {fld ∶ fld, d ∶ p → l}. For ϕ = l ∶ dfp
we obtain ΣE = Σ and Σ̄ = {¬f̄ ∨ ¬l̄ ∨ ¬d̄,¬p̄ ∨ l̄}. To show that Σ̄ does not logically
imply ϕ̄ = ¬d̄∨¬p̄∨¬f̄ , we show that Σ̄∪{d̄, p̄, f̄} is unsatisfiable. Indeed, applying linear
resolution we derive the empty clause. For ϕ = f ∶ p → l we obtain ΣE = ∅ and need to
show that Σ̄ = ∅ does not logically imply ϕ̄ = ¬p̄ ∨ l̄. Any interpretation ω with ω(p) = T
and ω(l) = F shows that.

As a final result, we remark that the implication problem for eUCs and eFDs is
complete for PTIME. In particular, hardness follows from the satisfiability problem for
Horn clauses [10,17], while membership follows from Corollary 1.

Theorem 12 The implication problem for the class of eUCs and eFDs is PTIME-
complete.

Proof PTIME-hardness follows that the satisfiability problem for Horn clauses [10, 17],
the closure of PTIME under complements, and Theorem 11.

The implication problem is in PTIME follows from the part of Corollary 1 where we
establish the linear-time decidability of the implication problem.

C Proofs

We will provide the proofs for all of our results.

C.1 Axiomatization

Lemma 2 The rules in E are sound for the implication of eUCs and eFDs.

41

Proof We show soundness for each rule of E in turn.
The (trivial key)-rule is sound since the scope rR of every relation r over relation

schema R with respect to R is a relation, and can therefore not contain two different
tuples with matching values on all the attributes in R.

For the soundness of the (eUC extension)-rule assume that a relation r over relation
schema R violates the eUC EE′ ∶ UU ′. That is, there are two different EE′-total tuples
t, t′ ∈ rEE′ such that t(UU ′) = t′(UU ′) holds. Since rEE′ ⊆ rE and U ⊆ UU ′ hold, it
follows that there are two different E-total tuples t, t′ ∈ rE such that t(U) = t′(U) holds.
Consequently, the relation r also violates the eUC E ∶ U .

The (trivial eFD)-rule is sound since the scope rE of every relation r over relation
schema R with respect to E satisfies the trivial FD XY → Y . Note that the latter
statement follows from the soundness of the reflexivity rule for traditional functional
dependencies.

The (eFD extension)-rule is sound since the scope rE of every relation r over relation
schema R with respect to E satisfies the FD X → XY whenever it satisfies the FD
X → Y . The latter statement follows from the soundness of the extension rule for
traditional functional dependencies.

For the soundness of the (eFD transitivity)-rule assume that a relation r over relation
schema R violates the eFD EE′ ∶ X → Z. That is, there are two different EE′-total
tuples t, t′ ∈ rEE′ such that t(X) = t′(X) and t(Z) /= t′(Z) hold. Due to the soundness of
the transitivity rule for traditional functional dependencies, it follows that rEE′ violates
the FD X → Y or the FD Y → Z. Since rEE′ ⊆ rE and rEE′ ⊆ rE′ hold, it follows that rE

violates the FD X → Y or rE
′

violates the FD Y → Z. Consequently, r violates the eFD
E ∶X → Y or the eFD E′ ∶ Y → Z.

For the soundness of the (eUC to eFD)-rule assume that a relation r over relation
schema R violates the eFD E ∶ X → E. That is, there are two E-total tuples t, t′ ∈ rE
such that t(X) = t′(X) and t(E) /= t′(E) hold. In particular, t and t′ are different tuples.
Consequently, there are two different E-total tuples t, t′ ∈ rE such that t(X) = t′(X)
holds. That is, the relation r over relation schema R violates the eUC E ∶X.

For the soundness of the (eUC pullback)-rule assume that a relation r over relation
schema R violates the eUC E ∶X. That is, there are two different E-total tuples t, t′ ∈ rE
such that t(X) = t′(X) holds. If r violates the eFD E ∶ X → Y , then we are done.
Otherwise, rE satisfies the FD X → Y . In particular, t(Y) = t′(Y) and therefore we have
two different E-total tuples t, t′ ∈ rE such that t(XY) = t′(XY) holds. Hence, the eUC
E ∶XY is violated, too.

Lemma 3 The following rules are sound for the implication of eUCs and eFDs.

E ∶X → Y Z

E ∶X → Y

E ∶X → Y E ∶X → Z

E ∶X → Y Z
(eFD decompose) (eFD union)

E ∶X → Y

EE′ ∶X → Y
(eFD add-on)

42

X+
E,Σ E −X+

E,Σ R −E
0⋯0 0⋯0 0⋯0
0⋯0 1⋯1 ⊥ ⋯ ⊥

Table 8: Counterexample relation from the proof of Theorem 1

Proof The (eFD decompose)-rule can be inferred from the rules in E as follows:

E ∶X → Y Z E ∶ Y Z → Y

E ∶X → Y

and the (eFD union)-rule can be inferred from the rules in E as follows:

E ∶XY →X E ∶X → Z

E ∶XY → Z

E ∶X → Y E ∶XY →XY Z E ∶XY Z → Y Z

E ∶X →XY E ∶XY → Y Z

E ∶X → Y Z

The (eFD add-on)-rule can be inferred from the rules in E as follows:

E ∶X → Y EE′ ∶ Y → Y

EE′ ∶X → Y

Theorem 13 (Theorem 1 restated) E is a sound and complete axiomatization for
the implication of eUCs and eFDs.

Proof The soundness of the rules in E has been established in Lemma 2. It remains
to show completeness. For this purpose we proceed classically by contraposition, and
assume for arbitrarily given relation schema R, and an eUC and eFD set Σ∪{ϕ} over R
that ϕ ∉ Σ+

E holds. We need to show that ϕ ∉ Σ∗
E holds, too. For that purpose, we will

construct a relation r over R such that r satisfies all eUCs and eFDs in Σ, but does not
satisfy ϕ.

Let ϕ denote either the eUC E ∶X or the eFD E ∶X → Y . In either case, let

X+
E,Σ = {A ∈ E ∣ Σ ⊢E E ∶X → A}

denote the attribute set closure of X with respect to E and Σ. The soundness of the
(eFD-union)-rule, established in Lemma 3, shows that E ∶X →X+

E,Σ ∈ Σ+
E holds.

Let r ∶= {t, t′} be a relation over R such that t(A) ∶= 0 for all A ∈ R and t′(A) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 , if A ∈X+
E,Σ

1 , if A ∈ E −X+
E,Σ

⊥ , if A ∈ R −E
The relation r is shown in Table 8.

Case 1. Here, ϕ = E ∶ X. If E = R and X+
E,Σ = R, then R ∶ R and R ∶ X → X+

E,Σ =
R ∶ X → R ∈ Σ+

E, and thus also R ∶ X = E ∶ X ∈ Σ+
E. This would be a contradiction to

43

our assumption that E ∶ X ∉ Σ+
E. Hence, E ⊂ R or X+

E,Σ ⊂ R. That is, R − E /= ∅ or
(E −X+

E,Σ /= ∅ if E = R). That is, t /= t′ and r is guaranteed to be a two-tuple relation by
construction.

Since X ⊆X+
E,Σ holds and rE = r, it follows from the construction of r that r violates

E ∶X. It therefore remains to show in this case that r satisfies every eUC and every eFD
in Σ. Let σ denote such an element of Σ.
Case 1.a) Here, σ denotes the eUC E′ ∶X ′ ∈ Σ. Assume, to the contrary, that r violates
σ. It follows from the construction of r that E′ ⊆ E and X ′ ⊆X+

E,Σ both hold. Applying
the (eUC-extension)-rule to E′ ∶ X ′ ∈ Σ gives us E ∶ X+

E,Σ ∈ Σ+
E. Since E ∶ X → X+

E,Σ ∈ Σ+
E

holds, we can apply the (eUC pullback)-rule to infer E ∶ X ∈ Σ+
E. This is a contradiction

to our assumption that ϕ = E ∶ X ∉ Σ+
E. Consequently, our assumption that r violates σ

must have been wrong, and we conclude that r satisfies σ in this case.
Case 1.b) Here, σ denotes the eFD E′ ∶ X ′ → Y ′ ∈ Σ. Assume again, to the contrary,
that r violates σ. It follows from the construction of r that E′ ⊆ E, X ′ ⊆ X+

E,Σ, and
Y ′ ∩ (E − X+

E,Σ) /= ∅ all hold. From E ∶ X → X+
E,Σ ∈ Σ+

E and X ′ ⊆ X+
E,Σ we infer

E ∶ X → X ′ ∈ Σ+
E by applying the (eFD-decompose)-rule from Lemma 3. Applying the

(eFD-transitivity)-rule to E ∶X →X ′ ∈ Σ+
E and E′ ∶X ′ → Y ′ ∈ Σ, we infer EE′ ∶X → Y ′ ∈

Σ+
E. Since E′ ⊆ E, we actually have E ∶ X → Y ′ ∈ Σ+

E. According to the definition of the
attribute set closure, we must then have that Y ′ ⊆X+

E,Σ. This, however, is a contradiction
to Y ′ ∩ (E −X+

E,Σ) /= ∅. Consequently, our assumption that r violates σ must have been
wrong, and we conclude that r satisfies σ in this case.
Case 2. Here, ϕ = E ∶ X → Y . If X+

E,Σ = R, then E = R and E ∶ X → X+
E,Σ ∈ Σ+

E

would mean that R ∶ X → R ∈ Σ+
E. The (trivial eFD)-rule means that R ∶ R → Y ∈ Σ+

E,
and applying the (eFD transitivity)-rule to R ∶ X → R ∈ Σ+

E and R ∶ R → Y ∈ Σ+
E,

we infer R ∶ X → Y ∈ Σ+
E. Since E = R, we would then derive the contradiction that

ϕ = E ∶ X → Y ∈ Σ+
E. Consequently, X+

E,Σ ⊂ R. Hence, E −X+
E,Σ /= ∅ or (R − E /= ∅ if

E =X+
E,Σ). Thus, t /= t′ and r is a two-tuple relation in this case, too.

If Y ⊆X+
E,Σ, then E ∶X → Y ∈ Σ+

E contrary to our assumption. Hence, Y ∩(E−X+
E,Σ) /=

∅. Since X ⊆ X+
E,Σ, Y ∩ (E −X+

E,Σ) /= ∅ and rE = r, it follows from the construction of r
that r violates E ∶X → Y . It therefore remains to show in this case that r satisfies every
eUC and every eFD in Σ. Let σ denote such an element of Σ.
Case 2.a) Here, σ denotes the eUC E′ ∶X ′ ∈ Σ. Assume, to the contrary, that r violates
σ. It follows from the construction of r that E′ ⊆ E and X ′ ⊆X+

E,Σ both hold. Applying
the (eUC-extension)-rule to E′ ∶ X ′ ∈ Σ gives us E ∶ X+

E,Σ ∈ Σ+
E. Since E ∶ X → X+

E,Σ ∈ Σ+
E

holds, we can apply the (eUC pullback)-rule to infer E ∶ X ∈ Σ+
E. From the (eUC to

eFD)-rule we can then infer E ∶X → E ∈ Σ+
E, and since E ∶ E → Y ∈ Σ+

E, we can apply the
(eFD transitivity)-rule to E ∶ X → E ∈ Σ+

E and E ∶ E → Y ∈ Σ+
E to infer the contradiction

that E ∶X → Y ∈ Σ+
E. Hence, our assumption must have been wrong, and r satisfies σ in

this case.
Case 2.b) Here, σ denotes the eFD E′ ∶ X ′ → Y ′ ∈ Σ. Assume again, to the contrary,
that r violates σ. It follows from the construction of r that E′ ⊆ E, X ′ ⊆ X+

E,Σ, and
Y ′ ∩ (E − X+

E,Σ) /= ∅ all hold. From E ∶ X → X+
E,Σ ∈ Σ+

E and X ′ ⊆ X+
E,Σ we infer

E ∶ X → X ′ ∈ Σ+
E by applying the (eFD-decompose)-rule from Lemma 3. Applying the

(eFD-transitivity)-rule to E ∶X →X ′ ∈ Σ+
E and E′ ∶X ′ → Y ′ ∈ Σ, we infer EE′ ∶X → Y ′ ∈

Σ+
E. Since E′ ⊆ E, we actually have E ∶ X → Y ′ ∈ Σ+

E. According to the definition of the

44

attribute set closure, we must then have that Y ′ ⊆X+
E,Σ. This, however, is a contradiction

to Y ′ ∩ (E −X+
E,Σ) /= ∅. Consequently, our assumption that r violates σ must have been

wrong, and we conclude that r satisfies σ in this case.
This concludes the completeness proof.

Corollary 3 Finite, unrestricted, and two-tuple implication problems for eUCs and eFDs
coincide.

Proof For any given set Σ ∪ {ϕ} of eUCs and eFDs over relation schema R, the proof
of Theorem 1 shows that there is always a two-tuple relation that satisfies all elements
in Σ and violates ϕ whenever ϕ is not implied by Σ. Here, implication may refer to
unrestricted or finite implication.

C.2 Algorithmic characterization

Theorem 14 (Theorem 2 restated) Let Σ∪{E ∶X,E ∶X → Y } denote a set of eUCs
and eFDs over relation schema R. Then:

1. Σ ⊧ E ∶X → Y if and only if Σ[E] ⊧X → Y

2. Σ ⊧ E ∶ X if and only if a) E = R = X, or b) there is some E′ ∶ X ′ ∈ Σ such that
E′ ⊆ E and X ′ ⊆X∗

Σ[E].

Proof We start by proving (1), and show first that Σ ⊧ E ∶ X → Y implies Σ[E] ⊧
X → Y . For that purpose we proceed by contraposition, assuming that Σ[E] /⊧ X → Y .
Consequently there is some total two-tuple relation r = {t, t′} over R such that r violates
X → Y and r satisfies every FD in Σ[E]. We now define the E-complete two-tuple
relation rE ∶= {t, t′E} over R where, for all A ∈ R,

t′E(A) ∶= { t′(A) , if A ∈ E
⊥ , otherwise

Since r violates X → Y , it follows that rEE = rE violates X → Y since X,Y ⊆ E and the
tuple t is unchanged and t′E(A) = t′(A) for all attributes A ∈ E. It remains to show that
rEE = rE satisfies every σ ∈ Σ. For all E′ ⊆ R where E′ −E /= ∅ it follows that rE

′

E = {t},
and it therefore follows that rE satisfies every σ ∈ Σ where σ = E′ ∶X ′ or σ = E′ ∶X ′ → Y ′

for E′ ⊆ R with E′ −E /= ∅. If σ = E′ ∶ X ′ → Y ′ with E′ ⊆ E, then X ′ → Y ′ ∈ Σ[E]. In
this case, however, rE satisfies σ since r satisfies X ′ → Y ′. This leaves us to consider the
case where σ = E′ ∶X ′ with X ′ ⊆ E′ ⊆ E. If rE violates σ, then t(X ′) = t′E(X ′). However,
X ′ → R ∈ Σ[E] holds in this case, and since r satisfies X ′ → R, we would arrive at the
contradiction that t = t′. Consequently, rE also satisfies σ in this case. We have therefore
shown that Σ /⊧ E ∶X → Y holds.

We will now show that Σ[E] ⊧ X → Y implies Σ ⊧ E ∶ X → Y . For that purpose we
proceed by contraposition, assuming that Σ /⊧ E ∶X → Y . Hence, there is an E-complete

45

two-tuple relation rE = {tE, t′E} such that rE violates E ∶ X → Y and rE satisfies every
σ ∈ Σ. Define r ∶= {t, t′} where

t(A) ∶= { tE(A) , if A ∈ E
0 , otherwise

and

t′(A) ∶= { t′E(A) , if A ∈ E
1 , otherwise

.

It follows that r is a total two-tuple relation over R, that r violates X → Y since X,Y ⊆ E
and rEE violates X → Y , and that r satisfies every X ′ → R,X ′ → Y ′ ∈ Σ[E] since rE
satisfies every E′ ∶ X ′,E′ ∶ X ′ → Y ′ ∈ Σ where E′ ⊆ E. It follows that Σ[E] /⊧ X → Y .
This completes the proof of (1).

We will now prove (2), and show first directly that Σ ⊧ E ∶ X is implied by a)
E = R = X, or b) there is some E′ ∶ X ′ ∈ Σ such that E′ ⊆ E and X ′ ⊆ X∗

Σ[E]. If a)

E = R = X holds, then the soundness of the (trivial ekey)-rule shows that Σ ⊧ E ∶ X. If
b) holds, then (1) shows that E ∶ X → X ′ is implied by Σ since E′ ⊆ E and X ′ ⊆ X∗

Σ[E].

From E′ ∶ X ′ ∈ Σ we conclude Σ ⊧ E ∶ XX ′ by soundness of the (eUC extension)-rule.
From Σ ⊧ E ∶XX ′ and Σ ⊧ E ∶X →X ′ we conclude Σ ⊧ E ∶X by soundness of the (eUC
pullback)-rule.

It remains to show that Σ ⊧ E ∶ X implies a) or b). For that purpose we proceed by
contraposition, assuming that neither a) nor b) hold. Since E /= R /=X we conclude that
E is a proper subset of R. Since b) does not hold, we conclude that for every E′ ∶X ′ ∈ Σ
where E′ ⊆ E holds, X ′ is not a subset of X∗

Σ[E]. Let r = {t, t′} denote the following
E-complete two-tuple relation over R:

X+
Σ[E] E −X+

Σ[E] R −E
0⋯0 0⋯0 0⋯0
0⋯0 1⋯1 ⊥ ⋯ ⊥

.

Since X ⊆ X+
Σ[E] it follows immediately that r violates the eUC E ∶ X. It remains

to show that r satisfies every σ ∈ Σ. Let us look first at the case where σ = E′ ∶ X ′. If
E′ /⊆ E, then rE

′

consists of only one tuple, so satisfies σ. If E′ ⊆ E, then X ′ intersects
non-trivially with E−X∗

Σ[E] since b) does not hold. Consequently, t(X ′) /= t′(X ′). Hence,
r satisfies σ in this case, too. Let us now look at the case where σ = E′ ∶ X ′ → Y ′. If
E′ /⊆ E, then rE

′

consists of only one tuple, so satisfies σ. It remains to consider the
case where E′ ⊆ E. We show the following: if t(X ′) = t′(X ′), then t(Y ′) = t′(Y ′).
Indeed, if t(X ′) = t′(X ′), then X ′ ⊆ X+

Σ[E] and by (1) we conclude Σ ⊧ E ∶ X → X ′.
From E′ ∶ X ′ → Y ′ ∈ Σ and Σ ⊧ E ∶ X → X ′ we conclude that Σ ⊧ EE′ ∶ X → Y ′

by the soundness of the (eUC pullback)-rule. Since E′ ⊆ E holds, we conclude that
Σ ⊧ E ∶ X → Y ′. According to (1) we obtain that Y ′ ⊆ X∗

Σ[E] holds. Consequently, the

construction of r shows that t(Y ′) = t′(Y ′) holds, too. We conclude that r satisfies every
σ ∈ Σ. This completes the proof of (2).

46

C.3 Normal Forms

Theorem 15 (Theorem 3 restated) For all sets Σ of eUCs and eFDs over R, R is
in E-RFNF for Σ if and only if R is in RFNF for Σ[E].

Proof We show first the following: if R is not in E-RFNF for Σ, then R is in not in RFNF
for Σ[E]. According to our hypothesis, there is some relation r over R that satisfies Σ, an
attribute A ∈ E, and a tuple t ∈ rE such that t(A) is E-redundant for Σ. Hence, for every
E-replacement t̄ of t(A), r̄ ∶= (r−{t})∪{t̄} violates some eUCs or eFD in Σ. Consequently,
there must be some tuple t′ ∈ rE such that t /= t′, t(X ′A) = t′(X ′A) and A ∈ Y ′ −X ′ for
some non-trivial eFD E′ ∶ X ′ → Y ′ ∈ Σ with E′ ⊆ E. Let rC ∶= {tC , t′C} be the complete
relation where tC(A′) = t(A′) whenever t(A′) /=⊥, t′C(A′) = t′(A′) whenever t′(A′) /=⊥, and
tC(A′), t′C(A′) can be arbitrary complete values otherwise such that tC(A′) /= t′C(A′). In
particular, tC(E) = t(E) and t′C(E) = t′(E) since t, t′ ∈ rE. Since t /= t′ it follows that
tC /= t′C . Consequently, rC is a two-tuple R-relation that satisfies Σ[E] since {t, t′} is a
two-tuple E-complete relation that satisfies Σ. The data value occurrence tC(A) in rC is
redundant for Σ[E] since every replacement t̄ of t(A), r̄C ∶= (rC − {t}) ∪ {t̄} violates the
FD X ′ → Y ′ in Σ[E]. Hence, R is not in RFNF for Σ[E].

We now show: if R is in not in RFNF for Σ[E], then R is not in E-RFNF for
Σ. According to our hypothesis, there is some complete relation r over R that satisfies
Σ[E], some tuple t ∈ r, and attribute A ∈ R such that the data value occurrence t(A) is
redundant for Σ[E]. That is, for every replacement t̄ of t(A), r̄ ∶= (r −{t}) ∪ {t̄} violates
some constraint in Σ[E]. Consequently, there must be some tuple t′ ∈ r such that t /= t′,
t(X ′A) = t′(X ′A) and A ∈ Y ′ −X ′ for some FD X ′ → Y ′ ∈ Σ[E]. In particular, Y ′ ⊂ R
as otherwise t = t′. Hence, there is some E′ ∶X ′ → Y ′ ∈ Σ. In particular, A ∈ Y ′ ⊆ E′ ⊆ E.
Let rI ∶= {t, t′I} such that t′I(A′) = t′(A′) whenever A′ ∈ E, and t′I(A′) =⊥ whenever
A′ ∉ E. Since r satisfies Σ[E], rI satisfies Σ. In summary, there are an E-complete
relation rI over R that satisfies Σ, an attribute A ∈ E, and a tuple t ∈ rEI = rI such that
every E-replacement t̄ of t(A), r̄I ∶= (rI − {t}) ∪ {t̄} violates E′ ∶ X ′ → Y ′Σ. Hence, R is
not in E-RFNF for Σ.

The following lemma provides a key insight into the FD-reduct Σ[E] of a set Σ of
eUCs and eFDs. Indeed, Σ[E] implies the key dependency X → R if and only if the eUC
E ∶X is implied by Σ.

Lemma 4 Let Σ be a set of eUCs and eFDs over relation schema R, and E ⊆ R an
attribute subset of R. Then Σ[E] ⊧X → R if and only if Σ ⊧ E ∶X.

Proof Assume first that E = R. Then the first property of Theorem 2 shows that
Σ[R] ⊧ X → R if and only if Σ ⊧ R ∶ X → R. However, Σ ⊧ R ∶ X → R if and only if
Σ ⊧ R ∶X. This shows the lemma for the case where E = R.

Assume now that E is a proper subset of R. We show that Σ[E] ⊧ X → R if and
only if (∗) there is some E′ ∶ X ′ ∈ Σ such that E′ ⊆ E and Σ ⊧ E ∶ X → X ′. The second
property of Theorem 2 then ensures that (∗) is equivalent to Σ ⊧ E ∶X.

If (∗) holds, then X ′ → R ∈ Σ[E] by definition of Σ[E] and Σ[E] ⊧ X → X ′ by
the first property of Theorem 2. Consequently, Σ[E] ⊧ X → R by the soundness of the

47

transitivity rule for traditional FDs. Vice versa, assume that (∗) does not hold. That is,
for all X ′ → R ∈ Σ[E] we have X ′ /⊆ X+

Σ[E]. We will show that X → R is not implied by

Σ[E]. Let r = {t, t′} denote the following complete two-tuple relation over R.

X+
Σ[E] R −X+

Σ[E]
0⋯0 0⋯0
0⋯0 1⋯1

For X ′ → R to be in Σ[E] there are two possibilities: 1) There is some E′ ∶X ′ → R ∈ Σ
such that E′ ⊆ E, and 2) There is some E′ ∶ X ′ ∈ Σ such that E′ ⊆ E. For 1) it follows
that R ⊆ E′ ⊆ E, that is, R = E′ = E which would contradict our assumption. Hence,
only 2) is possible by assumption. Furthermore, for every X ′ → Y ∈ Σ[E] with Y /= R it
follows that there is some E′ ∶ X ′ → Y ∈ Σ such that E′ ⊆ E. Hence, X ′Y ⊆ E. That is,
3) for every X ′ → Y ∈ Σ[E] with Y /= R it follows that X ′Y ⊆ E.

Since X ⊆ E and E is assumed to be a proper subset of R it follows that X is a
proper subset of R. Due to (3) we conclude that X+

Σ[E] ⊆ E is also a proper subset
of R. Hence, r is a two-tuple relation. Since X ⊆ X+

Σ[E] we conclude that X → R is

not satisfied by r. We show now that r satisfies every FD U → V ∈ Σ[E]. Assume
that t(U) = t′(U) as otherwise there is nothing to show. It follows that U ⊆ X+

Σ[E] and

therefore X → U ∈ Σ[E]+A. From U → V ∈ Σ[E] we conclude that X → V ∈ Σ[E]+A, which
means that V ⊆ X+

Σ[E] holds as well. Consequently, t(V) = t′(V), so r satisfies U → V .

We just showed that X → R is not implied by Σ[E].

Theorem 16 (Theorem 4 restated) Relation schema R is in E-BCNF for the set Σ
of eUCs and eFDs if and only if R is in BCNF for Σ[E].

Proof Let R be in E-BCNF for a set Σ of eUCs and eFDs over R. We show that R is
in BCNF for Σ[E]. For that purpose, let X → Y ∈ Σ[E] be a non-trivial FD over R.
We need to show that X → R ∈ Σ[E]+A holds. If Y = R, then there is nothing to show.
Otherwise, since X → Y ∈ Σ[E] and Y /= R, the definition of Σ[E] means that there is
some non-trivial E′ ∶ X → Y ∈ Σ such that E′ ⊆ E. Consequently, E ∶ X → Y ∈ Σ+

E. Since
R is in E-BCNF for Σ, we also have E ∶ X ∈ Σ+

E. According to Lemma 4 that means
X → R ∈ Σ[E]+A, which is what we had to show.

Vice versa, let R be in BCNF for Σ[E]. We need to show that R is in E-BCNF
for Σ. For that purpose, let E ∶ X → Y ∈ Σ+

E be a non-trivial eFD over R. We need
to show that E ∶ X ∈ Σ+

E holds. We first observe that X /= R as other the given eFD
would be trivial. Due to Theorem 1 and Theorem 2, E ∶ X → Y ∈ Σ+

E is equivalent to
X → Y ∈ Σ[E]+A. Since R is in BCNF for Σ[E], X → R ∈ Σ[E]+A holds, too. According
Lemma 4, E ∶X ∈ Σ+

E holds.

Theorem 17 (Theorem 5 restated) For all relation schemata R, all attribute subsets
E ⊆ R, and all sets Σ of eUCs and eFDs over R, R is in E-RFNF for Σ if and only if
R is in E-BCNF for Σ.

Proof By Theorem 3, R is in E-RFNF for Σ if and only if R is in RFNF for Σ[E].
However, the latter is equivalent to R being in BCNF for Σ[E]. By Theorem 4, R being
in BCNF for Σ[E] is equivalent to R being in E-BCNF for Σ.

48

Theorem 18 (Theorem 6 restated) A relation schema R is in E-BCNF for a set Σ
of eUCs and eFDs if and only if for every eFD E′ ∶X → Y ∈ Σ where E′ ⊆ E and Y /⊆X,
E ∶X ∈ Σ+

E. Hence, deciding if a schema is in E-BCNF for Σ is quadratic in Σ.

Proof Since every eFD E′ ∶ X → Y ∈ Σ where E′ ⊆ E implies that E ∶ X → Y ∈ Σ+
E, the

condition is necessary for R to be in E-BCNF for Σ. It remains to show the opposite.
Assume that for every eFD E′ ∶ X → Y ∈ Σ where E′ ⊆ E and Y /⊆ X, we have

E ∶X ∈ Σ+
E. Show that R is in E-BCNF for Σ. By Theorem 4, it suffices to show that R

is in BCNF for Σ[E]. That is, for every non-trivial FD X → Y ∈ Σ[E] we need to show
that X → R ∈ Σ+

A holds. Let X → Y ∈ Σ[E] be a non-trivial FD. By definition of Σ[E] it
follows that i) Y = R or ii) there is some E′ ∶ X → Y ∈ Σ such that E′ ⊆ E. If i) holds,
then there remains nothing to show. Otherwise, ii) holds and our assumption implies
that E ∶X ∈ Σ+

E. Lemma 4 shows that X → R ∈ Σ[E]+A. This completes the proof.

Lemma 5 An attribute A ∈ R is E-prime for a given set Σ of eUCs and eFDs over R if
and only if the attribute A is prime for Σ[E].

Proof Lemma 4 shows that K is a minimal E-key for R for Σ if and only if K is a
minimal key for R for Σ[E]. Consequently, an attribute A ∈ R is E-prime for Σ if and
only if A is prime for Σ[E].

Theorem 19 (Theorem 7 restated) For all relation schemata R, all E ⊆ R, and all
sets Σ of eUCs and eFDs over R, R is in E-3NF for Σ if and only if R is in 3NF for
Σ[E].

Proof Let R be in E-3NF for Σ. We show that R is in 3NF for Σ[E].
Let X → Y ∈ Σ[E] be a non-trivial FD over R. If Y = R, then there remains nothing

to show. Otherwise, there is some E′ ∶ X → Y ∈ Σ such that E′ ⊆ E and Y /⊆ X. Hence,
E ∶ X → Y ∈ Σ+

E and Y /⊆ X. Since R is in 3NF for Σ it follows that i) E ∶ X ∈ Σ+
E, or ii)

every attribute in Y −X is E-prime. Lemma 4 shows that X → R ∈ Σ[E]+A. Furthermore,
ii) implies that every attribute in Y −X is prime for Σ[E] by Lemma 5. That is, R is in
3NF for Σ[E].

Vice versa, let R be in 3NF for Σ[E]. We show that R is in E-3NF for Σ.
Let E ∶X → Y ∈ Σ+

E be non-trivial. If Y = R, then there remains nothing to show. So
let Y ⊂ R. From E ∶ X → Y ∈ Σ+

E we conclude that X → Y ∈ Σ[E]+A is non-trivial. Since
R is in 3NF for Σ[E], it follows that i) X → R ∈ Σ[E]+A or ii) every attribute in Y −X
is prime for Σ[E]. By Lemma 4 it follows that i) implies E ∶ X ∈ Σ+

E. By Lemma 5 it
follows that ii) implies that every attribute in Y −X is E-prime for Σ. Consequently, R
is in E-3NF for Σ.

Theorem 20 (Theorem 8 restated) R is in E-3NF for a set Σ of eUCs and eFDs
over R if and only if for every eFD E′ ∶X → Y ∈ Σ where E′ ⊆ E and Y /⊆X, E ∶X ∈ Σ+

E

or every attribute in Y −X is E-prime.

Proof Since every eFD E′ ∶ X → Y ∈ Σ where E′ ⊆ E implies that E ∶ X → Y ∈ Σ+
E, the

condition is necessary for R to be in E-3NF for Σ. It remains to show the opposite.

49

Assume that for every eFD E′ ∶ X → Y ∈ Σ where E′ ⊆ E and Y /⊆ X, we have
E ∶X ∈ Σ+

E or every attribute in Y −X is E-prime. Show that R is in E-BCNF for Σ. By
Theorem 7, it suffices to show that R is in 3NF for Σ[E]. That is, for every non-trivial
FD X → Y ∈ Σ[E] we need to show that X → R ∈ Σ+

A holds or every attribute in Y −X is
prime for Σ[E]. Let X → Y ∈ Σ[E] be a non-trivial FD. By definition of Σ[E] it follows
that i) Y = R or ii) there is some E′ ∶ X → Y ∈ Σ such that E′ ⊆ E. If i) holds, then
there remains nothing to show. Otherwise, ii) holds and our assumption implies that
E ∶ X ∈ Σ+

E or every attribute in Y −X is E-prime. Lemma 4 and Lemma 5 show that
X → R ∈ Σ[E]+A or every attribute in Y −X is prime for Σ[E]. Hence, R is in 3NF for
Σ[E]. This completes the proof.

C.4 Normalization

Theorem 21 (Theorem 10) Let E ∶ X → Y be an eFD that satisfies the relation r
over relation schema R. Then the set of E-complete records of r is the lossless join of
its projections on XY and X(R − Y), that is, rE = rE[XY] & rE[X(R − Y)]. Also, r is
the disjoint union of the set of E-complete records of r, and the set of records of r with
missing data on some column in E, that is, r = rE ⊍ (r − rE).

Proof A relation r satisfies E ∶ X → Y if and only if rE satisfies the FD X → Y .
Consequently, the classical decomposition theorem [27] covers the first case that rE =
rE[XY] & rE[X(R − Y)]. The second case is trivial.

50

