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Abstract

Relational database design addresses applications for data that is certain. Mod-
ern applications require the handling of uncertain data. Indeed, one dimension of
big data is veracity. Ideally, the design of databases helps users quantify their
trust in the data. For that purpose, we need to establish a design framework that
handles responsibly any knowledge of an organization about the uncertainty in
their data. Naturally, such knowledge helps us find database designs that process
data more efficiently. In this paper, we apply possibility theory to introduce the
class of possibilistic multivalued dependencies that are a significant source of data
redundancy. Redundant data may occur with different degrees, derived from the
different degrees of uncertainty in the data. We propose a family of fourth normal
forms for uncertain data. We justify our proposal showing that its members char-
acterize schemata that are free from any redundant data occurrences in any of their
instances at the targeted level of uncertainty in the data. We show how to auto-
matically transform any schema into one that satisfies our proposal, without loss of
any information. Our results are founded on axiomatic and algorithmic solutions
to the implication problem of possibilistic functional and multivalued dependencies
which we also establish.
Keywords: Database design; Functional dependency; Multivalued dependency;
Normal Form; Redundancy; Uncertainty

1 Introduction

Big data has given us big promises. However, their realization comes with big responsi-
bilities. One dimension of big data is veracity, or the uncertainty in data. According to
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an IBM study, one in three managers distrust the data that they use to make decisions1.
Our community needs to establish design frameworks that produce responsible systems,
that is, systems which establish trust in the data that they manage. A first step is to
provide a capability for data stewards to quantify the degrees of uncertainty in data
that they deem appropriate. It is natural to think that such information helps tailor
database designs according to application requirements on the certainty in data. With
such a framework data would meet the requirements of applications by design. This
would provide a solid foundation for trust in data and data-driven decision making.

In [20, 21] the authors presented a design framework of relational databases for un-
certain data. Based on possibility theory [5], records are assigned a discrete degree
of possibility (p-degree) with which they occur in a relation. Intuitively, the p-degree
quantifies the level of confidence an organization is prepared to assign to a record. The
assignment of p-degrees can be based on many factors, specific to applications and ir-
relevant for developing the framework. In addition, an integrity constraint is assigned a
degree of certainty (c-degree) that quantifies to which records it applies. Intuitively, the
higher the c-degree of a constraint the lower the minimum p-degree of records to which
the constraint applies. For example, a constraint with the highest c-degree applies to
all records, and one with the lowest c-degree only applies to records with the highest
p-degree. The design framework of [21] was developed for possibilistic functional depen-
dencies (pFDs) [20]. Generalizations of Boyce-Codd and Third Normal Forms were es-
tablished that characterized schemata that eliminated, minimized across all dependency-
preserving decompositions respectively, from every instance, every redundant data value
occurrence from every record whose p-degree meets a given target. Consequently, the
normalization effort is tailored to the application requirements for the minimum p-degrees
required from data.

Our main goal is to establish a design framework for the combined class of pFDs and
possibilistic multivalued dependencies (pMVDs). That is, tailor relational schema design
up to Fagin’s Fourth Normal Form (4NF) [6] to uncertain data. One key motivation
follows the relational framework since MVDs cause data redundancy that is not covered
by FDs. However, modern applications provide stronger motivation as they need to
integrate data from various sources, in which companies have varying degrees of trust.
In fact, the integration process often relies on joins which are a frequent source of data
redundancy that is caused by MVDs. In fact, a relation exhibits an MVD if and only
if the relation is the lossless join over two of its projections [6]. As modern information
systems have the responsibility to process uncertain data efficiently, we require a design
framework for uncertain data that can eliminate sources of data redundancy as required
by applications. Our main goal poses new challenges. Indeed, the framework in [20,21] is
founded on the downward closure property of FDs, which says that an FD that is satisfied
by a relation is also satisfied by every subset of records in the relation. Unfortunately,
MVDs are not closed downwards and it is unclear whether the achievements of [21] for
pFDs can be extended to pMVDs.
Contributions. 1) We introduce the class of pMVDs, generalizing both MVDs and
pFDs, as a rich source of redundancy in uncertain data. 2) We establish axiomatic

1http://www-01.ibm.com/software/data/bigdata/
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and algorithmic characterizations for the implication problem of pFDs and pMVDs. 3)
For pFDs and pMVDs we characterize schemata that do not permit any instances with
any redundant data value occurrence of a targeted minimum p-degree. This is achieved
by a fourth normal form proposal on conditions of pMVDs that apply to data in which
redundancy of the targeted p-degree can occur. 4) We show how to transform any schema
into one that meets the fourth normal form condition, without loss of information. Our
contributions subsume Fagin’s 4NF as the special case with one p-degree.
Organization. Section 2 introduces our running example. We discuss related work
in Section 3. Preliminaries are provided in Section 4. A design theory is established in
Section 5. Our normal form proposal and semantic justification is developed in Section 6.
Section 7 explains how our normal form can always be achieved. Section 8 concludes and
comments briefly on future work. Proofs can be found in the appendix.

2 Running Application Scenario

We introduce a running example chosen small enough to illustrate our concepts and
findings throughout the paper. The application scenario integrates data about the sup-
ply of products that record which p)roducts are supplied by which s)upplier from which
l)ocation on which d)ate. The data originates from different sources. Data about prod-
ucts, suppliers, and date originate from source 1, while data about suppliers and their
location originate from source 2 and source 3. The integrated relation is the result of
joining source 1 with the union of sources 2 and 3. Importantly, there is more confidence
in records that occur in both source 2 and 3 than in records that occur in either source
2 or source 3. As a means to distinguish between these levels of confidence, records that
occur in both source 2 and 3 are assigned the confidence label high, while the remaining
ones have label medium.

A specific instance of this application scenario is depicted in Figure 1, in which relation
r originates from the given instances of the three sources. We can observe that the sub-
relation r1 of r, that consists of the four records with confidence label high, exhibits the
FD σ2 : location → supplier while r does not satisfy σ2. Indeed, the location of supplier
Eminence is not certain. Recall that an FD X → Y with attribute subsets X, Y is
satisfied by a relation whenever two records with matching values on all the attributes
in X have also matching values on all the attributes in Y . On the other hand, the entire
relation r does exhibit the MVD σ1 : product � location. Indeed, an MVD X � Y with
attribute subsets X, Y ⊆ R is satisfied by a relation whenever for every two records with
matching values on all the attributes in X there is a record that has matching values
with the first record on all the attributes in X ∪ Y and matching values with the second
record on all the attributes in X ∪ (R − Y ). In other words, r satisfies X � Y if and
only if r is the join of its projections r(XY ) and r(X(R− Y )).

Following Vincent’s notion of data redundancy [25], σ2 causes all occurrences of sup-
plier The little link to be redundant: every change in value for one of these occurrences
causes a violation of σ2. These redundant values only occur in records of high confidence,
since σ2 only applies to those records. However, every value occurrence in columns loca-
tion, supplier, and date is also redundant. These redundancies are caused by the MVD
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Figure 1: 4NF normalization strategies for data with different confidence levels

σ1 which applies to all records. This illustrates that MVDs are a major source of data
redundancy that cannot be captured by FDs, but also that the uncertainty in data causes
different degrees of data redundancy. The latter point is further highlighted in Figure 1.
In applications with records of high or medium confidence, we only need the MVD σ2

for normalization, because the FD σ1 does not apply. The 4NF decomposition D1 il-
lustrates this case in Figure 1. In applications with records of high confidence only, we
require both the FD σ1 and the MVD σ2 for normalization. Here, D2 and D3 are loss-
less decompositions into 4NF, respectively. The scenario also illustrates that redundancy
in records with higher p-degrees require a higher normalization effort than redundancy
in records with lower p-degrees, for the simple reason that more dependencies apply to
fewer records. Arguably, records with lower p-degree are more susceptible to updates. In
this case, the normalization effort is smaller as fewer dependencies cause redundancy in
records with lower p-degrees.

3 Related Work

While there is a plethora of interest in uncertain data, research on query languages and
probabilistic approaches dominate. Instead, we are interested in schema design using a
possibilistic approach. Hence, our discussion of related work centers on schema design.

The article is a natural continuation of our work on schema design [21], based on
pFDs introduced in [20]. As illustrated before, pFDs cannot capture many instances of
redundancy in uncertain data for which pMVDs are responsible. This is particularly
relevant in modern applications where data is joined from various sources of information.
Our article is the first to introduce pMVDs, and therefore also the first with a 4NF
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proposal targeted at uncertain data. As we capture the combined class of pFDs and
pMVDs, our results subsume previous findings on schema design based on pFDs alone
[21].

Our framework subsumes Fagin’s well-known MVDs and 4NF from relational da-
tabases as the special case with only one p-degree [6]. This includes results on the
implication problem for the combined class of FDs and MVDs [7, 17], as well as the
semantic justification of 4NF by the absence of data redundancy caused by MVDs [25].

Few other papers address schema design for uncertain data [4, 24]. In [24] an “FD
theory for data models whose basic construct for uncertainty is alternatives” is developed.
That work is thus fundamentally different from the current approach. In particular, p-
relations cannot always be expressed by the uncertain relations of [24]. For example,
the simple two-tuple p-relation {(t1, α1), (t2, α2)} with the possible worlds w1 = {t1} ⊆
{t1, t2} = w2 cannot be expressed: The world w1 says there is at most one record in
which t1 is an alternative, while the world w2 says that there must be at least two
records, namely one record in which t1 is an alternative and one record in which t2 is an
alternative. Indeed, t1 and t2 cannot be alternatives of the same record since possible
worlds in [24] result from choosing one alternative from each record. The article [4] models
fuzziness in an Entity-Relationship model, so addresses schema design by a conceptual
approach and not by a logical approach as we do. [4] derives the uncertainty of their
fuzzy FDs from fuzzy similarity relations between attribute values, as proposed in [22].
That means that classical normalization is applied to data value redundancy with weaker
notions of value equality, but always to the same set of records and the same set of FDs.
Instead, the certainty of pFDs in our approach is derived from the largest possible world
of records to which they apply. That means classical normalization is still applied to
data value redundancy based on value equality, but optimized in terms of the number of
FDs that apply to a possible world. Both approaches are therefore incomparable, even
if only FDs are considered.

4 Possibilistic Relations

We summarize our model of uncertain data, introduced in [20] and further used in [21].
A relation schema, usually denoted by R, is a finite non-empty set of attributes. Each

attribute A ∈ R has a domain dom(A) of values. A tuple t over R is an element of the
Cartesian product

∏
A∈R dom(A) of the attributes’ domains. For X ⊆ R we denote by

t(X) the projection of t on X. A relation over R is a finite set r of tuples over R. As a
running example we use the relation schema Supply with attributes Product, Location,
Supplier, and Date, as introduced before.

We define possibilistic relations as relations where each tuple is associated with some
confidence. The confidence of a tuple expresses up to which degree of possibility a tuple
occurs in a relation. Formally, we model the confidence as a scale of possibility, that is,
a finite, strictly linear order S = (S,<) with k + 1 elements where k is some positive
integer, which we denote by α1 > · · · > αk > αk+1, and whose elements αi ∈ S we call
possibility degrees (p-degrees). The top p-degree α1 is reserved for tuples that are ‘fully
possible’ to occur in a relation, while the bottom p-degree αk+1 is reserved for tuples
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that are ‘not possible at all’, that is ‘impossible’, to occur in a relation currently. The
use of the bottom p-degree αk+1 in our model is the counterpart of the classical closed
world assumption. Humans like to use simple scales in everyday life, for instance to
communicate, compare, or rank. Simple usually means to classify items qualitatively,
rather than quantitatively by putting a precise value on it. Note that classical relations
use a scale with two elements, that is, where k = 1.

In our running example, source one says which products are supplied on which days
from which location, while sources two and three say which suppliers are found at these
locations. While both sources confirm “The little link” as supplier at “Singapore” and
“Malaysia”, only source two mentions supplier “Eminence” at “Singapore” and only
source three mentions supplier “Eminence” at “Malaysia”. Accordingly, (The little link,
Singapore) and (The little link, Malaysia) have p-degree α1, while (Eminence, Singapore)
and (Eminence, Malaysia) only have p-degree α2. This is a natural technique to assign
p-degrees to records based on the number k of sources in which they appear: they obtain
the highest p-degree α1 when they appear in all sources, the second highest p-degree α2

when they appear in all but one source, and so on until records that appear in only one
source obtain the lowest p-degree αk and the bottom p-degree αk+1 is reserved for records
that do not appear in any source.

Formally, a possibilistic relation schema (p-schema) (R,S) consists of a relation
schema R and a possibility scale S. A possibilistic relation (p-relation) over (R,S)

Table 1: Possibilistic relation (r,Possr)
Product Location Supplier Date Possr
Cufflinks Singapore The little link 04/11/2018 α1

Cufflinks Malaysia The little link 21/11/2018 α1

Cufflinks Singapore The little link 21/11/2018 α1

Cufflinks Malaysia The little link 04/11/2018 α1

Cufflinks Singapore Eminence 04/11/2018 α2

Cufflinks Malaysia Eminence 21/11/2018 α2

Cufflinks Singapore Eminence 21/11/2018 α2

Cufflinks Malaysia Eminence 04/11/2018 α2

consists of a relation r over R, to-
gether with a function Possr that
maps each tuple t ∈ r to a p-
degree Possr(t) in the possibil-
ity scale S. Sometimes, we sim-
ply refer to a p-relation (r,Possr)
by r, assuming that Possr has
been fixed. For example, Table 1
shows our p-relation (r,Possr)
over (Supply,S = {α1, α2, α3}).

P-relations enjoy a well-founded
semantics in terms of possible
worlds. In fact, a p-relation gives rise to a possibility distribution over possible worlds of
relations. For i = 1, . . . , k let ri denote the relation that consists of all tuples in r that
have a p-degree of at least αi, that is, ri = {t ∈ r | Possr(t) ≥ αi}. The linear order
of the p-degrees results in a linear order of possible worlds of relations. Indeed, we have
r1 ⊆ r2 ⊆ · · · ⊆ rk. The possibility distribution πr for this linear chain of possible worlds
is defined by πr(ri) = αi. Note that rk+1 is not considered to be a possible world, since its
possibility π(rk+1) = αk+1 means ‘not possible at all’. Vice versa, the possibility Possr(t)
of a tuple t ∈ r is the possibility of the smallest possible world in which t occurs, that is,
the maximum possibility max{αi | t ∈ ri} of a world to which t belongs. If t /∈ rk, then
Possr(t) = αk+1. The top p-degree α1 takes on a distinguished role: every tuple that is
‘fully possible’ occurs in every possible world - and is thus - ‘fully certain’. This confirms
our intuition that p-relations subsume relations (of fully certain tuples) as a special case.
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4.1 Functional and Multivalued Dependencies

Recall that an FD X → Y is satisfied by a relation r whenever every pair of tuples in
r that have matching values on all the attributes in X have also matching values on all
the attributes in Y [6]. For example, the FD Location → Supplier is not satisfied by r2

but by r1. An MVD X � Y is satisfied by a relation r over relation schema R whenever
for every pair of tuples in r that have matching values on all the attributes in X there
is some tuple in r that has matching values on all the attributes in XY with the first
tuple and matching values on all the attributes in X(R − Y ) with the second tuple [6].
For example, the MVD Product � Location is satisfies by relations r1 and r2.

For a given FD or MVD σ, the marginal certainty with which a σ holds in a p-
relation corresponds to the p-degree of the smallest possible world in which σ is violated.
Therefore, dually to a scale S of p-degrees for tuples we use a scale ST of certainty degrees
(c-degrees) for FDs and MVDs. We commonly use subscripted versions of the Greek letter
β to denote c-degrees associated with FDs and MVDs. Formally, the duality between
p-degrees in S and the c-degrees in ST can be defined by the mapping αi 7→ βk+2−i,
for i = 1, . . . , k + 1. Assuming that the world rk+1 cannot satisfy any FD or MVD, the
marginal certainty C(r,Possr)(σ) with which the FD or MVD σ holds on the p-relation
(r,Possr) is the c-degree βk+2−i that corresponds to the smallest world ri in which σ is
violated, that is,

C(r,Possr)(σ) = min{βk+2−i | 6|=ri σ}.

In particular, if rk satisfies σ, then C(r,Possr)(σ) = β1. We can now define the syntax and
semantics of pFDs and pMVDs.

Definition 1 A possibilistic FD (pFD) over a p-schema (R,S) is an expression (X →
Y, β) where X, Y ⊆ R and β ∈ ST . A possibilistic MVD (pMVD) over a p-schema (R,S)
is an expression (X � Y, β) where X, Y ⊆ R and β ∈ ST . A p-relation (r,Possr) over
(R,S) satisfies the pFD or pMVD (σ, β) if and only if C(r,Possr)(σ) ≥ β.

The following comment illustrates a difference between FDs and MVDs that is impor-
tant for Definition 1 of their possibilistic variants. FDs are downwards-closed: whenever
a relation r satisfies an FD, then every sub-relation s ⊆ r also satisfies the FD. This is not
the case for MVDs: For example, the relation r1 satisfies the MVD Product � Supplier,
while every sub-relation with either 2 or 3 records violates this MVD. The downward-
closure property of FDs provides a very natural definition of its possibilistic counterpart:
If the FD is satisfied by some world, then it is satisfied by every smaller world as well.
This means that every FD that holds with c-degree β also holds with every smaller c-
degree β′. However, even though MVDs are not downward-closed, they still permit the
same natural definition for their possibilistic counterpart: whenever there are two tuples
t, t′ ∈ r with p-degrees αi and αj, respectively, then an MVD that is satisfied by rmax{i,j}
also generates a tuple t′′ ∈ rmax{i,j}, that is, t′′ has minimum p-degree min{αi, αj}. In
particular, if t, t′ ∈ ri, then t′′ ∈ ri, too. In other words, if an MVD is satisfied by some
world, then it is also satisfied by every smaller world. This means that every MVD that
holds with c-degree β also holds with every smaller c-degree β′. For example, the world r2

satisfies the MVD Product � Supplier, and also the world r1. In summary, our definition
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of the marginal certainty applies to both FDs and MVDs, but is motivated by different
properties: namely by the downward-closure property of FDs and the tuple-generating
property of MVDs.

5 Possibilistic Design Theory

Relational normalization for 4NF [6] is founded on the theory of functional and mul-
tivalued dependencies, in particular the axiomatic and algorithmic solutions to their
implication problem [6,7]. Consequently, we now establish a design theory for pFDs and
pMVDs as a foundation for a possibilistic 4NF normal form, its semantic justification, and
normalization of p-schemata. First, we establish a strong link between the implication
problem of pFDs and pMVDs and the implication problem of FDs and MVDs, which is a
consequence of the downward closure property of FDs and the tuple-generating property
of MVDs. Based on this link, we then establish axiomatic and algorithmic solutions to
the implication problem of pFDs and pMVDs. Our design theory for pFDs and pMVDs
subsumes the design theory for classical FDs and MVDs as the special case where k = 1,
and also subsumes the design theory for pFDs as the special case with no pMVDs.

5.1 β-Cuts

We establish a precise correspondence between instances of the implication problem for
pFDs and pMVDs and instances of the implication problem for relational FDs and MVDs.
Let Σ ∪ {ϕ} denote a set of pFDs and pMVDs over a p-schema (R,S). We say that Σ
implies ϕ, denoted by Σ |= ϕ, if every p-relation (r,Possr) over (R,S) that satisfies every
pFD and pMVD in Σ also satisfies ϕ.

Example 1 Let Σ consist of the pMVD (Product � Location, β1) but also the pFD
(Location → Supplier, β2) over (Supply, {α1, α2, α3}). Further, let ϕ denote the pFD
(Product→ Supplier, β1). Then Σ does not imply ϕ as the following p-relation witnesses.

Product Location Supplier Date P-degree
Cufflinks Singapore The little link 04/11/2018 α1

Cufflinks Singapore Eminence 04/11/2018 α2

For a set Σ of pFDs and pMVDs on some p-schema (R,S) and c-degree β ∈ ST where
β > βk+1, let

Σβ = {X → Y | (X → Y, β′) ∈ Σ and β′ ≥ β}

be the β-cut of Σ. The major strength of our framework is engraved in the following
result. It says that a pFD or pMVD (σ, β) with c-degree β is implied by a set Σ of pFDs
and pMVDs if and only if the FD or MVD σ is implied by the β-cut Σβ of Σ.

Theorem 1 Let Σ∪{(σ, β)} be a set of pFDs and pMVDs over a p-schema (R,S) where
β > βk+1. Then Σ |= (σ, β) if and only if Σβ |= σ.

The following example illustrates Theorem 1.
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Table 2: Axiomatization P of pFDs and pMVDs

(XY → X,β)

(X → Y, β)

(X → XY, β)

(X → Y, β) (Y → Z, β)

(X → Z, β)
(FD reflexivity, R) (FD extension, E) (FD transitivity, T )

(∅� R, β)

(X � Y, β) (X � Z, β)

(X → Y Z, β)

(X � Y, β) (Y � Z, β)

(X � Z − Y, β) (σ, βk+1)
(MVD complement, C) (MVD union, U) (MVD pseudo-transitivity, PM ) (bottom rule, B)

(X → Y, β)

(X � Y, β)

(X � Y, β) (Y → Z, β)

(X → Z − Y, β)

(σ, β)

(σ, β′)
β≥β′

(FD-MVD implication, I) (FD-MVD pseudo-transitivity, PFM ) (weakening, W)

Example 2 Let Σ and ϕ be as in Example 1, in particular Σ does not imply ϕ. Theorem
1 reduces the implication problem of pFDs and pMVDs to that of FDs and MVDs, namely
Σβ1 does not imply Product → Supplier. Indeed, the possible world r2 of the p-relation
from Example 1

Product Location Supplier Date
Cufflinks Singapore The little link 04/11/2018
Cufflinks Singapore Eminence 04/11/2018

satisfies the MVD Product � Location that forms Σβ1, and violates the FD Product →
Supplier.

5.2 Axiomatic Characterization

The semantic closure Σ∗ = {ϕ | Σ |= ϕ} contains all pFDs and pMVDs implied by

Σ. We compute Σ∗ by applying inference rules of the form
premise

conclusion
condition, where

rules without premise are axioms. For a set R of inference rules let Σ `R ϕ denote that
there is an inference of ϕ from Σ by R. That is, there is some sequence σ1, . . . , σn such
that σn = ϕ and every σi is in Σ or the result of applying a rule in R to some premises
in {σ1, . . . , σi−1}. Let Σ+

R = {ϕ | Σ `R ϕ} denote the syntactic closure of Σ under
inferences by R. R is sound (complete) if for every p-schema (R,S) and for every set Σ
we have Σ+

R ⊆ Σ∗ (Σ∗ ⊆ Σ+
R). The (finite) set R is a (finite) axiomatization if R is both

sound and complete.
Table 2 shows the axiomatization P of pFDs and pMVDs. For a rule in R ∈ P −

{B,W} let R′ denote the rule that is obtained from R by omitting the c-degree β and
the parenthesis, and let P′ = {R′ | R ∈ P − {B,W}}. It is known that P′ forms an
axiomatization for FDs and MVDs [9]. In fact, P subsumes the axiomatization for FDs
and MVDs as the special case where the scale ST consists of just two c-degrees. In the
rules all attribute sets X, Y, Z are subsets of the given relation schema R, the c-degrees β
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and β′ belong to the given certainty scale ST , and βk+1 denotes the bottom c-degree. For
a completeness proof of P we could use the classical strategy to write down a two-tuple
p-relation that violates a given pFD or pMVD (σ, β) that cannot be inferred from a given
pFD and pMVD set Σ using P. Instead, we establish the completeness of P directly by
showing that a given pFD or pMVD (σ, β) that is implied by Σ can be also be inferred
from Σ using the rules in P. This direct proof shows how the bottom axiom B and
weakening ruleW can be applied to reduce the inference of (σ, β) from Σ to an inference
of σ from Σβ. However, the completeness of P′ guarantees immediately that σ can be
inferred from Σβ, due to Theorem 1 and the assumption that (σ, β) is implied by Σ.

Theorem 2 P forms a finite axiomatization for the implication of pFDs and pMVDs.

Example 3 Let Σ = {(Product � Location, β1), (Location → Supplier, β2)} and ϕ =
(Product→ Supplier, β2) over Supply, and ϕ′ = (Product→ Supplier, β1). We show an
inference of ϕ from Σ by P.

(Product � Location, β1)

W : (Product � Location, β2) (Location→ Supplier, β2)

PFM : (Product→ Supplier, β2)

Of course, ϕ′ cannot be inferred from Σ by P, as Example 1 shows.

5.3 Algorithmic Characterization

In practice it is often unnecessary to compute the closure Σ∗ from a given set Σ. Instead,
rather frequently occurs the problem of deciding whether a given Σ implies a given ϕ.

PROBLEM: IMPLICATION
INPUT: Relation schema R,

Scale S with k + 1 possibility degrees,
Set Σ ∪ {ϕ} of pFDs and pMVDs over (R,S)

OUTPUT: Yes, if Σ |= ϕ, and No, otherwise

One may compute Σ∗ and check if ϕ ∈ Σ∗, but this is inefficient and does not make
effective use of the additional input ϕ. For pFDs and pMVDs, we can exploit Theorem 1
to derive an almost linear time algorithm that decides the implication problem. Given a
pFD and pMVD set Σ∪ {(σ, β)} we return true if β = βk+1 (since this is the trivial case
where βk+1 is the bottom c-degree), otherwise it is sufficient to check if Σβ |= σ. The
latter test can be done in almost linear time [7].

Theorem 3 The implication problem Σ |= ϕ of pFDs and pMVDs can be decided in
time O(||Σ|| · log ||Σ||).

We illustrate the algorithm on our running example.

Example 4 Let Σ = {(Product � Location, β1), (Location → Supplier, β2)} and ϕ =
(Product → Supplier, β2) over Supply, and ϕ′ = (Product → Supplier, β1). Indeed,
Product → Supplier is not implied by Σβ1 while Product → Supplier is implied by Σβ2.
That is, Σ implies ϕ but Σ does not imply ϕ′.
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6 Possibilistic Fourth Normal Form Design

In p-relations different tuples may have different p-degrees, and different pFDs and
pMVDs may apply to them. Hence, data value redundancy is caused by pFDs or pMVDs
with different c-degrees and occurs in tuples of different p-degrees. Indeed, the smaller
the p-degree for which data value redundancy is to be eliminated, the smaller the num-
ber of pFDs and pMVDs that can cause this redundancy. Consequently, the smaller the
normalization effort will be, too. We will now exploit this observation to tailor relational
schema design for applications with different requirements for the uncertainty of their
data. For this purpose, we will introduce notions of data value redundancy that target
the p-degree of tuples in which they occur. This results in a family of semantic normal
forms by which data value redundancy of varying p-degrees are eliminated. We charac-
terize each of the semantic normal forms by a corresponding syntactic normal form, and
establish strong correspondences with Fagin’s 4NF in relational databases [6, 25].

6.1 Redundancy-Free Normal Form

Motivated by our running example we propose different degrees of data value redundancy
that are tailored towards the different p-degrees of tuples in a p-relation. For this, we
exploit the classical proposal by Vincent [25]. Let R denote a relation schema, A an
attribute of R, t a tuple over R, and Σ a set of constraints over R. A replacement of
t(A) is a tuple t̄ over R such that: i) for all Ā ∈ R − {A} we have t̄(Ā) = t(Ā), and
ii) t̄(A) 6= t(A). For a relation r over R that satisfies Σ and t ∈ r, the data value
occurrence t(A) in r is redundant for Σ if and only if for every replacement t̄ of t(A),
r̄ := (r−{t})∪{t̄} violates some constraint in Σ. A relation schema R is in Redundancy-
Free normal form (RFNF) for a set Σ of constraints if and only if there are no relation
r over R that satisfies Σ, tuple t ∈ r, and attribute A ∈ R such that the data value
occurrence t(A) is redundant for Σ [25].

Definition 2 Let (R,S) denote a p-schema, Σ a set of pFDs and pMVDs over (R,S),
A ∈ R an attribute, (r,Possr) a p-relation over (R,S) that satisfies Σ, and t a tuple in
ri. The data value occurrence t(A) is αi-redundant if and only if t(A) is redundant for
Σαi

= {X → Y | (X → Y, β) ∈ Σ and β ≥ βk+1−i}.

This definition meets the intuition of data value redundancy in our running example.
For instance, each occurrence of The little link is α1-redundant, and each occurrences of
Eminence is α2-redundant. Importantly, αi-redundant data value occurrences can only
be caused by pFDs or pMVDs (σ, β) that apply to the world of the occurrence, that is,
where β ≥ βk+1−i. Hence, α1-redundancy can be caused by pFDs or pMVDs with any
c-degree β1, . . . , βk, while αk-redundancy can only be caused by pFDs or pMVDs with
c-degree β1. This motivates the following definition.

Definition 3 A p-schema (R,S) is in αi-Redundancy-Free Normal Form (αi-RFNF)
for a set Σ of pFDs and pMVDs over (R,S) if and only if there do not exist a p-relation
(r,Possr) over (R,S) that satisfies Σ, an attribute A ∈ R, and a tuple t ∈ ri such that
t(A) is αi-redundant.
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For example, (Supply,S) is neither in α1-RFNF nor in α2-RFNF for Σ. The negative
results follow directly from the redundant occurrences in Figure 1. Indeed, αi-RFNF
characterizes p-schemata that permit only p-relations whose possible world ri is free
from data redundancy caused by the classical FDs and MVDs that apply to it.

Theorem 4 (R,S) is in αi-RFNF for Σ if and only if R is in RFNF for Σαi
.

6.2 Possibilistic Fourth Normal Form

Our goal is now to characterize α-RFNF, which is a semantic normal form, purely syn-
tactically. Therefore, we propose qualitative variants of the classical 4NF condition [6].
Recall that a relation schema R is in Fourth normal form (4NF) for a set Σ of FDs
and MVDs over R if and only if for all X � Y ∈ Σ+

P′ where Y 6⊆ X and Y 6= R, we

have X → R ∈ Σ+
P′ . Here, Σ+

P′ denotes the syntactic closure of Σ with respect to the
axiomatization P′ of FDs and MVDs [9]. While α-RFNF is defined semantically using
the p-degree α of a possible world, qualitative variants of 4NF are defined syntactically
using the c-degrees of the given pFDs and pMVDs.

Definition 4 A p-schema (R,S) is in β-4NF for a set Σ of pFDs and pMVDs over
(R,S) if and only if for every pMVD (X � Y, β) ∈ Σ+

P where Y 6⊆ X and Y 6= R, we

have (X → R, β) ∈ Σ+
P.

Σβ2-BCNF Σβ1-BCNF

⇔ ⇔
β2-BCNF β1-BCNF

⇔ ⇔
α1-RFNF α2-RFNF

⇔ ⇔

Σα1-RFNF Σα2-RFNF

Figure 2: Normal Forms

Recall that sets Σ and Θ are covers of one another
if Σ∗ = Θ∗ holds. The property of being in β-4NF for Σ
is independent of the representation of Σ. That is, for
every cover Σ′ of Σ, (R,S) is in β-4NF for Σ if and only
if (R,S) is in β-4NF for Σ′. The β-4NF condition for a
pFD and pMVD set Σ can be characterized by the 4NF
condition for the FD and MVD set Σβ.

Theorem 5 (R,S) is in β-4NF for Σ if and only if R
is in 4NF for Σβ.

We can now characterize the semantic αi-RFNF by
the syntactic βk+1−i-4NF.

Theorem 6 For all i = 1, . . . , k, (R,S) with |S| = k+1
is in αi-RFNF with respect to Σ if and only if (R,S) is
in βk+1−i-4NF with respect to Σ.

Figure 2 shows the correspondences between the syntactic and semantic normal forms,
and their relationships to classical normal forms.

Due to the cover-insensitivity of the β-4NF condition, one may wonder about the
efficiency of checking whether a given p-schema (R,S) is in β-4NF with respect to a set
Σ. Indeed, as in the classical case it suffices to check some pFDs and pMVDs in Σ instead
of checking all pMVDs in Σ+

P.
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Theorem 7 A p-schema (R,S) is in β-4NF for a set Σ of pFDs and pMVDs over
(R,S) if and only if for every pFD (X → Y, β′) ∈ Σ where β′ ≥ β and Y 6⊆ X and
for every pMVD (X � Y, β′) ∈ Σ where β′ ≥ β and Y 6⊆ X and Y 6= R, we have
(X → R, β) ∈ Σ+

P.

Example 5 Let (Supply,S) and Σ . Using Theorem 7 we can observe that the schema
is neither in β1- nor β2-4NF for Σ. By Theorem 6 we conclude that the schema is neither
in α2- nor α1-RFNF for Σ. By Theorem 5 it follows that Supply is neither in 4NF for
Σβ1, nor Σβ2. Finally, by Theorem 4, it follows that Supply is neither in RFNF for Σα2

or Σα1.

7 Qualitative Normalization

We now establish algorithmic means to design relational database schemata for applica-
tions with uncertain data. For that purpose, we normalize a given

Figure 3: C-degrees to control design trade-
offs

p-schema (R,S) for the given set Σ of
pFDs and pMVDs. Our strategy is to
fix some c-degree β ∈ ST that deter-
mines which possible world we normalize
for which FDs and MVDs. For each choice
of a c-degree, we pursue 4NF normaliza-
tions to obtain lossless decompositions free
from any data value redundancy but po-
tentially not dependency-preserving (that
is, some FDs or MVDs may require valida-
tion on the join of some relations). Apply-
ing our strategy to different c-degrees pro-
vides organizations with a variety of nor-
malized database schemata, each targeted
at different levels of data integrity, data
losslessness, and the efficiency of different
updates and queries. In this sense, our c-degrees are parameters that allow stakehold-
ers to control trade-offs between data integrity and data losslessness, as well as between
query efficiency and update efficiency, as illustrated in Figure 3.

7.1 4NF Decomposition

We recall basic terminology from relational databases. A decomposition of relation
schema R is a set D = {R1, . . . , Rn} of relation schemata such that R1∪· · ·∪Rn = R. For
Rj ⊆ R and an FD and MVD set Σ over R, Σ[Rj] = {X → Y | X → Y ∈ Σ+

A and X, Y ⊆
Rj} denotes the projection of Σ onto Rj. A decomposition D of a relation schema R with
FD and MVD set Σ is lossless if and only if every relation r over R that satisfies Σ
is the join of its projections on the elements of D, that is, r = ./Rj∈D r[Rj]. Here,
r[Rj] = {t(Rj) | t ∈ r}. A 4NF decomposition of a relation schema R with FD and
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MVD set Σ is a decomposition D of R where every Rj ∈ D is in 4NF for Σ[Rj]. Theorem
5 motivates the following definition of a 4NF decomposition that is lossless for a given
p-degree.

Definition 5 Given a p-schema (R, {α1, . . . , αk+1}), an αk+1−i-lossless 4NF decomposi-
tion for the pFD and pMVD set Σ is a lossless 4NF decomposition of R for Σβi.

Instrumental to Definition 5 is the following decomposition theorem, which follows
directly from Theorem 1. It covers the classical decomposition theorem [6] as the special
case of having just one possible world.

Theorem 8 Let (X → Y, βi) be a pFD and (X � Y, βi) be a pMVD with 1 ≤ i <
k + 1 that satisfies the p-relation (r,Possr) over the p-schema (R,S). Then rk+1−i =
rk+1−i[XY ] ./ rk+1−i[X(R−Y )], that is, the possible world rk+1−i of r is the lossless join
of its projections on XY and X(R− Y ).

Therefore, an αk+1−i-lossless 4NF decomposition for a pFD and pMVD set Σ can
simply be obtained by performing a classical lossless 4NF decomposition for the βi-cut
Σβi of Σ. This suggests a simple lossless 4NF decomposition strategy.

PROBLEM: Qualitative 4NF Decomposition
INPUT: Possibilistic Relation Schema (R,S)

Set Σ of pFDs and pMVDs over (R,S)
Certainty degree βi ∈ ST − {βk+1}

OUTPUT: αk+1−i-lossless 4NF decomposition of (R,S) with respect to Σ
METHOD: Perform a lossless 4NF decomposition of R with respect to Σβi

We illustrate the decomposition on our running example.

Example 6 Let (Supply,S) and Σ be as in Example 1. As (Supply,S) is not in β1-
4NF for Σ, we perform an α2-lossless 4NF decomposition for Σβ1. The result consists
of R1 = {Product,Location} and R2 = {Product, Supplier,Date}. Note that the MVD in
Σβ1 is satisfied by the join of any relation over R1 with any relation over R2. That means
our 4NF decomposition is β1-dependency-preserving.

The last example is rather special, since one cannot expect to preserve all FDs and
MVDs in the 4NF decomposition process. Recall that a decomposition D of relation
schema R with FD and MVD set Σ is dependency-preserving if and only if the join
./r relation over D∈D r of every relation r over every D ∈ D satisfies Σ. Note here that we
consider only relations r over D of the join that satisfy all the FDs and MVDs in the
projection of Σ onto D.

This is illustrated with another example.

Example 7 Let (Supply,S) and Σ be as in Example 1. As (Supply,S) is not in
β2-4NF for Σ, we perform an α1-lossless 4NF decomposition for Σβ2. The result is
R1 = {Product,Location} and R2 = {Product, Supplier} with projected FD/MVD set

Σβ2 [R2] = {Product→ Supplier}
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and R3 = {Product,Date}. Note that the FD Location→ Supplier is not preserved by this
decomposition. Since the pFDs and pMVDs in Σ apply only to world r1 from Figure 1,
this decomposition may be applied to r1 to obtain the instance D2 shown in Figure 1.

Definition 6 A β-dependency-preserving decomposition of a p-schema (R,S) for the
pFD and pMVD set Σ is a dependency-preserving decomposition of R for Σβ.

The α2-lossless 4NF decomposition from Example 6 is β1-dependency-preserving, but
the α1-lossless 4NF decomposition from Example 7 is not β2-dependency-preserving. In
practice, lost dependencies can only be validated by joining relations after inserts or
modification. For example, to validate the FD Location→ Supplier after an update, one
would have to join R1 and R2 from Example 7. This can be prohibitively expensive.
While 3NF synthesis algorithms exist that can transform any relational database schema
into one that is dependency-preserving, such normal form is unknown for MVDs.

8 Conclusion and Future Work

We have extended Fagin’s 4NF from certain [6] to uncertain data. Our results show how
traditional database design can make the most of information about the uncertainty in
data, provided that the information about the data is given in the form of possibility
degrees. Future work includes extensions to partial [10, 12, 14, 16, 18] and nested data
[8,11] over fixed and undetermined schemata [1,2,19], and to referential integrity [13,15].
Investigations in the context of probabilistic databases must take different routes as any
classes of probabilistic data dependencies that require a non-unary interaction are not
finitely axiomatizable [3, 23].
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A Proofs

Theorem 9 (Theorem 1 restated) Let Σ∪{(σ, β)} be a set of pFDs and pMVDs over
a p-schema (R,S) where β > βk+1. Then Σ |= (σ, β) if and only if Σβ |= σ.

Proof Suppose (r,Possr) is some p-relation over (R,S) that satisfies Σ, but violates
(σ, β). In particular, C(r,Possr)(σ) < β implies that there is some relation ri that violates
σ and where

βk+2−i < β. (1)

Let σ′ ∈ Σβ, where (σ′, β′) ∈ Σ. Since r satisfies (σ′, β′) ∈ Σ we have

C(r,Possr)(σ
′) ≥ β′ ≥ β. (2)

If ri violated σ′, then

β > βk+2−i by (1)
≥ C(r,Possr)(σ

′) by Definition of C(r,Possr)

≥ β by (2)

a contradiction. Hence, the relation ri satisfies Σβ and violates σ′.
Let r′ denote some relation that satisfies Σβ and violates σ. Without loss of generality,

we assume that r′ = {t, t′} consists of only two tuples. If that is not the case, then it is
well-known that there is a sub-relation of r′ with two tuples that satisfies Σβ and violates
σ. Let r be the p-relation over (R,S) that consists of the relation r′ and where Possr′(t) =
α1 and Possr′(t

′) = αi, such that βk+1−i = β. Then r violates (σ, β) since C(r,Possr)(σ) =
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βk+2−i, as ri = r′ is the smallest relation that violates σ, and βk+2−i < βk+1−i = β. For
(σ′, β′) ∈ Σ we distinguish two cases. If ri satisfies σ′, then C(r,Possr)(σ

′) = β1 ≥ β. If ri
violates σ′, then σ′ /∈ Σβ, i.e., β′ < β = βk+1−i. Therefore, β′ ≤ βk+2−i = C(r,Possr)(σ

′)
as ri = r′ is the smallest relation that violates σ′. We conclude that C(r,Possr)(σ

′) ≥ β′.
Consequently, (r,Possr) is a p-relation that satisfies Σ and violates (σ, β).

Theorem 10 (Theorem 2 restated) The set P forms a finite axiomatization for the
implication of pFDs and pMVDs.

Proof The proofs of soundness are straightforward, keeping in mind the soundness of
inference rules for FDs and MVDs, as well as Theorem 1. For the completeness proof,
we take full advantage of Theorem 1 and the fact that the inference rules are sound and
complete for the implication of FDs and MVDs. Let (R,S) be an arbitrary possibilistisc
relation schema with |S| = k+ 1, and Σ∪ {(σ, β)} an arbitrary set of pFDs and pMVDs
over the schema, such that Σ |= (σ, β) holds. We need to show that Σ `P (σ, β) holds,
too.

We distinguish two cases. If β = βk+1, then Σ |= (σ, β) means that Σ `P (σ, β) holds
by a single application of the bottom rule B. For the remainder of the proof we therefore
assume that β < βk+1. From Σ |= (σ, β) we conclude Σβ |= σ by Theorem 1. Since the
inference system A is complete for the implication of FDs and MVDs, we conclude that
Σβ `A σ holds. Now, for the FD and MVD set Σβ we define Σβ

β = {(σ, β) | σ ∈ Σβ}.
Therefore, the inference of σ from Σβ using the inference system can be easily turned

into an inference of (σ, β) from Σβ
β by P, simply by adding the certainty degree β to

each FD and MVD that occurs in the inference. Therefore, whenever an inference rule
R′ is applied, one can now apply the corresponding rule R, respectively. It follows that
Σβ
β `P (σ, β) holds. Finally, the definition of Σβ

β ensures that every pFD and pMVD in

Σβ
β can be inferred from a pFD or pMVD in Σ by a single application of the weakening

ruleW . Hence, Σβ
β `P (σ, β) means, in particular, Σ `P (σ, β). This completes the proof.

Theorem 11 (Theorem 4 restated) (R,S) is in αi-RFNF with respect to Σ if and
only if R is in RFNF with respect to Σαi

.

Proof We show first the following: if (R,S) is not in αi-RFNF with respect to Σ, then
R is in not in RFNF with respect to Σαi

. According to our hypothesis, there is some
possibilistic relation (r,Possr) over (R,S) that satisfies Σ, an attribute A ∈ R, and a
tuple t ∈ ri such that t(A) is redundant with respect to Σαi

. In particular, it follows that
ri satisfies Σαi

since r satisfies Σ. Hence, R is not in RFNF with respect to Σαi
.

We now show: if R is in not in RFNF with respect to Σαi
, then (R,S) is not in

αi-RFNF with respect to Σ. According to our hypothesis, there is some relation ri over
R that satisfies Σαi

, and some t ∈ ri and A ∈ R such that t(A) is redundant with respect
to Σαi

. In particular, ri must contain some tuple t1 6= t. We now extend the relation ri
to a possibilistic relation (r,Possr) by defining Possr(t1) = α1 and Possr(t

′) = αi for all
t′ ∈ ri−{t1}. We show that r satisfies Σ. If (σ, β) ∈ Σ is in Σαi

, then Cr(σ) = β1 ≥ β. If
(σ, β) /∈ Σαi

, then β < βk+1−i. If ri satisfies σ, then C(r,Possr)(σ) = β1 ≥ β. If ri violates
σ, then C(r,Possr)(σ) = βk+2−i ≥ β. As t(A) is αi-redundant we have shown that (R,S)
is not in αi-RFNF with respect to Σ.
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Theorem 12 (Theorem 4 restated) (R,S) is in αi-RFNF for Σ if and only if R is
in RFNF for Σαi

.

Proof We show first the following: if (R,S) is not in αi-RFNF for Σ, then R is in not
in RFNF for Σαi

. According to our hypothesis, there is some p-relation (r,Possr) over
(R,S) that satisfies Σ, an attribute A ∈ R, and a tuple t ∈ ri such that t(A) is redundant
for Σαi

. In particular, it follows that ri satisfies Σαi
since r satisfies Σ. Hence, R is not

in RFNF for Σαi
.

We now show: if R is in not in RFNF for Σαi
, then (R,S) is not in αi-RFNF for Σ.

According to our hypothesis, there is some relation ri over R that satisfies Σαi
, and some

t ∈ ri and A ∈ R such that t(A) is redundant for Σαi
. In particular, ri must contain

some tuple t1 6= t. We now extend the relation ri to a p-relation (r,Possr) by defining
Possr(t1) = α1 and Possr(t

′) = αi for all t′ ∈ ri − {t1}. We show that r satisfies Σ. If
(σ, β) ∈ Σ is in Σαi

, then Cr(σ) = β1 ≥ β. If (σ, β) /∈ Σαi
, then β < βk+1−i. If ri satisfies

σ, then C(r,Possr)(σ) = β1 ≥ β. If ri violates σ, then C(r,Possr)(σ) = βk+2−i ≥ β. As t(A)
is αi-redundant we have shown that (R,S) is not in αi-RFNF for Σ.

Theorem 13 (Theorem 5 restated) (R,S) is in β-4NF for Σ if and only if R is in
4NF for Σβ.

Proof By definition, (R,S) is in β-4NF for Σ if and only if for every pMVD (X �
Y, β) ∈ Σ+

P and Y 6⊆ X and Y 6= R we have (X → R, β) ∈ Σ+
P. Due to Theorem 2 the

latter condition is equivalent to saying that for every pMVD (X � Y, β) that is implied
by Σ and Y 6⊆ X and Y 6= R, the pFD (X → R, β) is implied by Σ, too. According to
Theorem 1, this statement is equivalent to saying that for every MVD X → Y that is
implied by Σβ and Y 6⊆ X and Y 6= R, the FD X → R is implied by Σβ, too. Due to the
completeness of the inference rules for the implication of FDs and MVDs, this statement
is equivalent to saying that for every MVD X � Y ∈ (Σβ)+

P′ where Y 6⊆ X and Y 6= R

we have X → R ∈ (Σβ)+
P′ , too. The latter statement, however, is equivalent to saying

that R is in 4NF for Σβ.

Theorem 14 (Theorem 6 restated) For all i = 1, . . . , k, (R,S) with |S| = k + 1 is
in αi-RFNF for Σ if and only if (R,S) is in βk+1−i-4NF for Σ.

Proof By Theorem 4, (R,S) is in αi-RFNF for Σ if and only if R is in RFNF for Σαi
.

Since Σαi
= Σβk+1−i

, and since RFNF and 4NF coincide in relational databases, the
latter statement is equivalent to saying that R is in 4NF for Σβk+1−i

. However, the last
statement is equivalent to saying that (R,S) is in βk+1−i-4NF for Σ, by Theorem 5.

Theorem 15 (Theorem 7 restated) A p-schema (R,S) is in β-4NF for a set Σ of
pFDs and pMVDs over (R,S) if and only if for every pFD (X → Y, β′) ∈ Σ where β′ ≥ β
and Y 6⊆ X and for every pMVD (X � Y, β′) ∈ Σ where β′ ≥ β and Y 6⊆ X and Y 6= R,
we have (X → R, β) ∈ Σ+

P.

Proof By Theorem 5, (R,S) is in β-4NF for Σ if and only if R is in 4NF for Σβ.
However, the latter condition is well-known to be equivalent to checking for every FD
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X → Y ∈ Σβ where Y 6⊆ X and every MVD X � Y ∈ Σβ where Y 6⊆ X and Y 6= R,
that X → R ∈ (Σβ)+

P′ [25]. The condition that σ ∈ Σβ is equivalent to saying that

(σ, β′) ∈ Σ for β′ ≥ β. Lastly, the condition X → R ∈ (Σβ)+
A is equivalent to saying that

(X → R, β′) ∈ Σ+
P for some β′ ≥ β, according to Theorem 2 and Theorem 1.
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