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Network Controllability: algorithmics for cancer

medicine

Ion Petre

Computational Biomodeling Laboratory, Åbo Akademi University and Turku Centre
for Computer Science, Turku, Finland and the National Institute for Research and

Development in Biological Science, Bucharest, Romania

Abstract. The intrinsic robustness of living systems against perturba-
tions is a key factor that explains why many single-target drugs have been
found to provide poor efficacy or to lead to significant side effects. Rather
than trying to design selective ligands that target individual receptors
only, network polypharmacology aims to modify multiple cellular tar-
gets to tackle the compensatory mechanisms and robustness of disease-
associated cellular systems, as well as to control unwanted off-target side
effects that often limit the clinical utility of many conventional drug
treatments. However, the exponentially increasing number of potential
drug target combinations makes the pure experimental approach quickly
unfeasible, and translates into a need for algorithmic design principles to
determine the most promising target combinations to effectively control
complex disease systems, without causing drastic toxicity or other side-
effects. Building on the increased availability of disease-specific essential
genes, we concentrate on the target structural controllability problem,
where the aim is to select a minimal set of driver/driven nodes which
can control a given target within a network. That is, for every initial
configuration of the system and any desired final configuration of the
target nodes, there exists a finite sequence of input functions for the
driver nodes such that the target nodes can be driven to the desired final
configuration. We investigated this approach in some pilot studies linking
FDA-approved drugs with cancer cell-line-specific essential genes, with
some very promising results.
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Designing the Square Kilometre Array

Computer System

Andrew Ensor

High Performance Computing Research Laboratory

Auckland University of Technology, Auckland, New Zealand

Abstract. The Square Kilometre Array is the largest mega-
Science project of the next decade aiming to build enor-
mous radio telescope arrays across Western Australia and
Southern Africa. With 160 TeraByte/s data generated in
just stage one and over 260PetaFLOP compute require-
ments it presents unprecedented data movement and pro-
cessing challenges. This talk will outline the project, the
progress made by the design team toward overcoming its
computing challenges, and some of the key components
being led by New Zealand researchers.

Andrew is the Director of the High Performance Computing Research

Laboratory. His research interests include HPC and GPU computing,

distributed and mobile systems, algorithms, concurrency and computer

graphics. Andrew is also the Director of the New Zealand SKA Alliance, a

group of 35 NZ academic and industry partners working on the Exascale

computer design for the Square Kilometre Array Project.
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An Improved Universal Spiking Neural P

System with Generalized Use of Rules

Yun Jiang1,2 ⋆, Yansen Su3, and Fen Luo1,2

1 Chongqing Engineering Laboratory for Detection, Control and Integrated Systems
Chongqing Technology and Business University, Chongqing 400067, China

2 School of Artificial Intelligence,
Chongqing Technology and Business University, Chongqing 400067, China

3 Key Lab of Intelligent Computing and Signal Processing of Ministry of Education,
School of Computer Science and Technology,

Anhui University, Hefei 230039, China
jiangyun@email.ctbu.edu.cn

Abstract. Spiking neural P systems (SN P systems, for short) are a
class of distributed and parallel computing devices inspired from the way
neurons communicate by means of spikes. In most of the SN P system-
s investigated so far, the spiking rules are usually used in a sequential
way or an exhaustive way. Recently, a generalized way of using rules,
applicable for both spiking rules and forgetting rules, is considered in
SN P systems. This new strategy of using rules is a combination of the
two ways mentioned above: if a rule is used at some step, it can be ap-
plied any possible number of times, nondeterministically chosen. In this
work, we investigate the computational completeness of SN P systems
with generalized use of rules. Specifically, we construct a universal SN
P systems with generalized use of rules, where each neuron contains at
most five rules, each spiking rule consumes at most four spikes for each
time, and each forgetting rule removes at most four spikes for each time.
Compared to the original work, this result makes an improvement to the
related parameters, thus provides an answer to the open problem.

Keywords: Membrane computing, Spiking neural P system, General-
ized use of rules, Computational completeness

1 Introduction

Brain is a rich source of inspiration for informatics. Specifically, it has provided
plenty of ideas to construct high performance computing models, as well as to
design efficient algorithm. Inspired from the biological phenomenon that neuron-
s cooperate in the brain by exchanging spikes via synapses, various neural-like
computing models have been proposed. In the framework of membrane comput-
ing, a kind of distributed and parallel neural-like computing model were proposed
in 2006 [1], which is called spiking neural P systems (SN P systems, for short).

⋆ Corresponding author.

3



Since the human brain and biological neurons are rich sources of computing
ideas, many variants of SN P systems have been introduced, taking inspiration
from biological phenomena, e.g. synapse weight, neuron division, astrocytes, in-
hibitory synapses, as in [2–19]. Investigation on the theoretical and practical
usefulness have also been applied to these variants: their computing power in
relation to well-known models of computation, e.g. finite automata, register
machines, grammars, computing numbers or strings as in [20–32]; computing
efficiency in solving hard problems, as in [33, 34].

Moreover, practical applications and software for simulations have been de-
veloped for SN P systems and their variants: to design logic gates, logic circuits
[35] and databases [36], to represent knowledge [37], to diagnose fault [38–40],
to approximately solve combinatorial optimization problems [41].

Briefly, SN P systems have neurons that process only one type of symbols,
the spike, based on the indistinct signal used by biological neurons. Neurons are
placed on nodes of a directed graph, and the edges between neurons are called
synapses, again based on synapses of biological neurons. SN P systems processes
spikes by applying rules, and two of the most common types are spiking rules
and forgetting rules. Spiking rules are of the form E/ac → ap; d, where E is a
regular expression over {a}, and c, p, d are natural numbers, c ≥ p ≥ 1, d ≥ 0.
Using a rule E/ac → ap; d means that c spikes are consumed in the neuron and p
spikes are produced after a delay of d steps. The produced spikes are sent to all
neurons connected by an outgoing synapses from the neuron where the rule was
applied. Forgetting rules are of the form E/ac → λ, whose application removes
c spikes from the neuron and generates no spike.

During the evolution of SN P systems, the way of applying rules plays a cru-
cial role. In the earlier version of SN P systems, the spiking rules are usually used
in a sequential way [9, 20, 22, 23, 33, 34], which means that in a neuron, at a step,
one of the applicable rules is nondeterministically chosen for the application,
and the chosen rue is applied only once, so the system works in a sequential way
at the level of the neuron. Later the exhaustive way of using rules is proposed
[4], which is inspired by the biological fact that an enabled chemical reaction
consumes as many related substances as possible. The exhaustive use of rules
means that in a neuron, at a step, one of the applicable rules is nondeterminis-
tically chosen for the application, and the chosen rule is applied as many times
as possible. So the exhaustive use of rules is a kind of local parallelism at the
level of a neuron [30, 31].

Recently, generalized use of rules, which is similar to the minimal parallelism
mode in P systems [42], is considered for SN P systems [43]. This new way of
using rules is a combination of the sequential use of rules and the exhaustive use
of rules. Specifically, generalized use of rules means that in a neuron, at a step,
one of the applicable rules is nondeterministically chosen for the application, and
the chosen rule is applied for any l, 1 ≤ l ≤ m times, where m is the maximum
number of times for which the chosen rule can be applied under the exhaustive
way of using rules. In [43], it is proved that SN P systems with generalized use
of rules are Turing universal as number computing devices. The computational
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completeness is achieved when each neuron of the system contains at most seven
rues, each spiking rule consumes at most nine spikes for each time, and each
forgetting rule removes at most seven spikes for each time. Also in [43], it is
mentioned that these parameters in the above result may be optimized without
losing the universality.

In this work, we improve the related parameters mentioned above. Specifi-
cally, we construct a universal SN P systems with generalized use of rules, where
each neuron contains at most five rules, each spiking rule consumes at most
four spikes for each time, and each forgetting rule removes at most four spikes
for each time. This universality result provides an answer to the open problem
mentioned in [43].

This work is organized as follows. In section 2, we simply review the com-
puting models investigated in this work: SN P systems with generalized use of
rules. The computational completeness of SN P systems with generalized use of
rules is investigated in section 3. Conclusions and remarks are given in section
4.

2 Spiking Neural P Systems with Generalized Use of

Rules

In this section, we simply review SN P systems with generalized use of rules. For
more details, readers can look up in [43].

Formally, an SN P system with generalized use of rules, of degree m ≥ 1, is
a construct of the form

Π = (O,σ1,σ2, . . . ,σm, syn, out),

where:

1. O = {a} is a singleton alphabet (a is called spike);
2. σ1,σ2, . . . ,σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:

(1) ni ≥ 0 is the initial number of spikes placed in the neuron σi;
(2) Ri is a finite set of rules of the following two forms:

– Firing rule: E1/a
c1 → ap; d, where E1 is a a regular expression over

{a}, and c1 ≥ p ≥ 1, d ≥ 0 (called a delay). Specifically, when d = 0,
it can be omitted;

– Forgetting rule: E2/a
c2 → λ, where E2 is a a regular expression over

{a}, and c2 ≥ 1, with the restriction that for each rule E1/a
c1 → ap; d

of type (1) from Ri, we have E1 ∩ E2 = ∅;

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} is the set of synapses between neurons,
with restriction (i, i) /∈ syn for 1 ≤ i ≤ m (no self-loop synapse);
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4. out ∈ {1, 2, . . . ,m} indicates the output neuron, which can emit spikes to
the environment.

If a spiking rule E/ac → ap; d has E = ac and d = 0, then it is simply written
as ac → ap. Similarly, if a forgetting rule E/ac → λ has E = ac, then it is simply
written as ac → λ. In the following sections, the feature of delay is not used in
all SN P systems, so the spiking rules are always of the form E/ac → ap.

In an SN P system working in a generalized use of rules, the rules are applied
as follows.

For a spiking rule E/ac1 → ap ∈ Ri, if neuron σi contains k1 spikes, ak1 ∈
L(E) and k1 ≥ c1, then the rule can be applied. However, the essential we
consider here is not the form of the rules, but the way they are used. Using
the rule in a generalized manner, as suggested in the Introduction, means the
following. We assume that k1 = s1c1 + r1, for some s1 ≥ 1 (this means that we
must have k1 ≥ c1) and 0 ≤ r1 < c1 (the remainder of dividing k by c), then
n1c1 spikes can be consumed, where n1 is nondeterministically chosen from the
set {1, 2, . . . , s1}. If the rule consumes n1c1 spikes, 1 ≤ n1 ≤ s1, then k1 − n1c1
spikes remain in neuron σi, while n1p spikes are produced and sent to each of
the neurons σj such that (i, j) ∈ syn. In the case of σi being the output neuron,
n1p spikes are also sent to the environment. In the case of σi having no synapse
leaving from it, the produced spikes are lost.

For a forgetting rule E/ac2 → λ ∈ Ri, if neuron σi contains k2 spikes, ak2 ∈
L(E) and k2 ≥ c2, then the rule can be applied. We assume that k2 = s2c2 + r2,
with s2 ≥ 1 and 0 ≤ r2 < c2, then n2c2 spikes can be removed, where n2 is
nondeterministically chosen from the set {1, 2, . . . , s2}. If the rule removes n2c2
spikes, 1 ≤ n2 ≤ s2, then k2 − n2c2 spikes remain in neuron σi.

In each time unit, in each neuron which can use a rule we have to use a rule,
either a firing or a forgetting one. In some time, in a neuron, it is possible that
several rules can be applied. In this case, only one of the rules is nondeterminis-
tically chose to be applied, and the chosen rule will be applied in a generalized
way as mentioned above.

The configuration of the system is described by the numbers of spikes present
in each neuron. Thus, the initial configuration is ⟨n1/0, n2/0, . . . , nm/0⟩. Using
the rules as described above, we can define transitions among configurations.
Any sequence of transitions starting from the initial configuration is called a
computation. A computation halts if it reaches a configuration where no rule in
the neuron can be used. This configuration is usually called the halting config-
uration.

The result of a computation can be defined in several ways. In this work,
we consider SN P systems with generalized use of rules as number generators:
the computation result is defined as the total number of spikes sent to the en-
vironment by the output neuron during the computation, i.e., this computation
should be a halting one, otherwise, the computation is considered as an invalid
computation and gives no result. For an SN P system Π with generalized use
of rules, the set of all numbers computed in this way is denoted by Ngen(Π),
with the subscript gen indicating that the rules are applied in a generalized
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way. We denote by SpikP gen
m (rulek, consr, forgq) the family of all sets Ngen(Π)

computed as above by SN P systems with at most m ≥ 1 neurons, using at most
k ≥ 1 rules in each neuron, with all spiking rules E/ac1 → ap having c1 ≤ r,
and all forgetting rules E/ac2 → λ having c2 ≤ q. When any of these parameters
m, k, r, q is not bounded, it is replaced with ∗.

In the next sections SN P systems are represented graphically, which is easy
to understand. A neuron is represented by an oval with the initial spikes and
rules inside. Each neuron has incoming and outgoing arrows which indicates
their communications with other neurons, and the output neuron has an out-
going arrow pointing to environment, suggesting that it can send spikes to the
environment.

3 An Improved Universal Spiking Neural P Systems with

Generalized Use of Rules

In this section we present an improved universal spiking neural P systems with a
generalized way of using rules, where each neuron of the SN P system contains at
most five rules, each spiking rule consumes at most four spikes for each time, and
each forgetting rule removes at most four spikes for each time. Our universality
proof will use the characterization of NRE by means of register machine.

A register machine is a constructM = (m,H, l0, lh, I), wherem is the number
of registers, H is the set of instruction labels, l0 is the start label (labeling an
ADD instruction), lh is the halt label (assigned to instruction HALT), and I is
the set of instructions; each label from H labels only one instruction from I,
thus precisely identifying it. The labeled instructions are of the following forms:

• li : (ADD(r), lj) (add 1 to register r and then go to the instruction with
label lj),

• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and
go to the instruction with label lj , otherwise go to the instruction with label
lk),

• lh : HALT (the halt instruction).

A register machine M generates a set of number N(M) in the following
way. Starting with all registers empty (i.e., storing the number zero), the system
applies the instruction with label l0 and continues to apply instructions as indi-
cated by the labels (and made possible by the contents of registers); if the system
reaches the halt instruction, the number n present in register 1 at that time is
said to be generated by M . The set of all numbers generated by M is denoted
by N(M). It is known that the register machine can generates each recursively
enumerable set of numbers, even with only three registers [44]. Hence, register
machines characterizes NRE, i.e., N(M) = NRE. Without loss of generality, We
follow the convention that when comparing the power of two number generating
devices, number zero is ignored.

In the proof below, we use the characterization of NRE by means of register
machine, with an additional care paid to the number of rules in each neuron,
and the number of spikes consumed and removed in each rule.
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Theorem 1. SpikgenP∗(rule5, cons4, forg2) = NRE.

Proof. In view of the Turing-Church thesis, the inclusion in NRE can be proved
directly, so we only have to prove the inclusion NRE ⊆ SpikgenP∗(rule5, cons4,
forg4). The proof is achieved in a constructive way, that is, an SN P system with
generalized use of rules is constructed to simulate the universal register machine.

Let M = (m,H, l0, lh, I) be a universal register machine. Without lose of
generality, we assume that the result of a computation is the number stored in
register 1 and this register is never decremented during the computation.

In what follows, We construct an SN P system Π working in a generalized
way of using rules to simulate the register machine M .

For each register r of M we consider a neuron σr in Π whose contents cor-
respond to the contents of the register. Specifically, if the register r holds the
number n ≥ 0, then the neuron σr will contain 2n spikes. Therefore, the con-
tents of a register r increasing by 1 means the number of spikes from the neuron
σr increasing by 2; the contents of a non-empty register decreasing by 1 means
the number of spikes decreasing by 2; checking whether the register is empty
amounts at checking whether σr has no spike inside.

With each label l of an instruction in M we also associate a neuron σl. Ini-
tially, all these neurons are empty, except for the neuron σl0 associated with the
start label of M , which contains 2 spikes. This means that this neuron is “acti-
vated”. Additional neurons will be associated with the registers and the labels
of M , in a way which will be described immediately. During the computation,
the neuron σl which receives 2 spikes will become active and start to an instruc-
tion li : (OP (r), lj , lk) of M (OP is ADD or SUB). Simulating the instruction
li : (OP (r), lj , lk) of M means starting with neuron σli activated, operating the
register r as requested by OP , then introducing 2 spikes in one of the neuron σlj ,
σlk , which becomes active in this way. When the neuron σlh , associated with the
halting label of M , is activated, the computation in M is completely simulated
in Π.

Note that in both the ADD and the SUB modules, the rules from neurons
σlj , σlk are written in the form a2 → aδ(lq) (q = j or k), because we do not know
whether σlj or σlk is a label of ADD, SUB, or halting instruction. That is why
we use the function δ, defined on H as follows:

δ(l) =

{

2, if l is the label of an ADD instruction,
1, otherwise.

In what follows, the work of system Π is described (that is how system Π

simulates the ADD, SUB instructions of register machine M and outputs the
computation result).

Module ADD: simulating an ADD instruction li : (ADD(r), lj , lk)
As shown in Figure 1, the ADD module works as follows.
Let us assume that at some step t, the system starts to simulate an ADD

instruction li : (ADD(r), lj , lk) of M and register r holds the number n. At
that moment, neuron σli contains two spikes, and the other neurons are empty,
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a2 → a2
li

a2 → a2l
(1)
i

a2/a → a l
(2)
i

r

a4 → a2

a3 → λ
l
(3)
i

a4 → λ

a3 → a2
l
(4)
i

a2 → aδ(lj)lj a2 → aδ(lk) lk

Fig. 1. Module ADD for simulating li : (ADD(r), lj , lk)

except for neurons associated with the registers. With two spikes in neuron σli ,
rule a2 → a2 in neuron σli is enabled at step t, and the ADD module is initiated.

At step t, the rule a2 → a2 in σli is enabled and is used for only once, sending
two spikes to each of neurons σ

l
(1)
i

, σ
l
(2)
i

and σr. At step t+1, neuron σr receives

two spikes, which means the content in register r is incremented by one. Also
at step t + 1, both neurons σ

l
(1)
i

and σ
l
(2)
i

are activated. In neuron σ
l
(1)
i

, rule

a2 → a2 is enabled and can be applied for only once, sending two spikes to
each of neurons σ

l
(3)
i

and σ
l
(4)
i

. In neuron σ
l
(2)
i

, rule a2/a → a is enabled and

can be applied for once or two times nondeterministically, sending one spike or
two spikes to each of neurons σ

l
(3)
i

and σ
l
(4)
i

, respectively. Consequently, each of

neurons σ
l
(3)
i

and σ
l
(4)
i

receives three spikes if rule a2/a → a is used for once or

four spikes if rule a2/a → a is used for two times.

If each of neurons σ
l
(3)
i

and σ
l
(4)
i

accumulates three spikes, the three spikes

in neuron σ
l
(3)
i

are removed by applying rule a3 → λ, while the three spikes in

neuron σ
l
(4)
i

enables rule a3 → a2, and makes the neuron firing, sending two

spikes to neuron σlk . With two spikes inside, neuron σlk becomes active, which
corresponds to the fact that the system starts to simulate the instruction lk of
the machine M .

If each of neurons σ
l
(3)
i

and σ
l
(4)
i

accumulates four spikes, the four spikes

in neuron σ
l
(4)
i

are removed by applying rule a4 → λ, while the four spikes in

neuron σ
l
(3)
i

enables rule a4 → a2, and makes the neuron firing, sending two

spikes to neuron σlj . With two spikes inside, neuron σlj becomes active, which
corresponds to the fact that the system starts to simulate the instruction lj of
the machine M .
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Therefore, from firing neuron σli , the system adds two spikes to neuron σr and
fires neuron σlj or σlk nondeterministically, which simulates the ADD instruction
li : (ADD(r), lj , lk) correctly.

Module SUB: simulating a SUB instruction li : (SUB(r), lj , lk)

a2 → a
li

a → a

l
(1)
i

a3(a2)+/a4 → a2

a3 → a2
a → a

r

a3(a2)+/a4 → a4

(a4)+/a4 → a4

a3 → a2

a2 → a
a → λl

(2)
i

(a4)+/a4 → a4

a2 → λ

a → λ

l
(3)
i

a2 → a2

a → λ

l
(4)
i

a2 → λ
a → a

l
(5)
i

a2 → λ
a → a

l
(6)
i

a2 → aδ(lj)

lj

a2 → aδ(lk)

lk

Fig. 2. Module SUB for simulating li : (SUB(r), lj , lk)

As shown in Figure 2, a SUB instruction li : (SUB(r), lj , lk) is simulated in
the following way.

Let us assume that at some step t, the system starts to simulate an SUB
instruction li : (SUB(r), lj , lk) of M and register r holds the number n. At that
moment, neuron σli contains two spikes, and no spike is present in other neurons
except for neurons associated with the registers. With two spikes in neuron σli ,
rule a2 → a in neuron σli is enabled at step t, and the SUB module is initiated.

At step t, the rule a2 → a in σli is enabled and is used for only once, sending
one spikes to each of neurons σ

l
(1)
i

and σr. At step t+ 1, rule a → a in neurons

σ
l
(1)
i

is used, sending one spike to neuron σ
l
(2)
i

. Also at step t + 1, neuron σr

receives one spike from neuron σli , and the rules in it can be applied. There
exists three cases for neuron σr.
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In case 1, neuron σr has no spike at step t, which corresponds to the fact
that the number stored in register r is zero. In this case, neuron σr has one
spike at step t + 1, and the rule a → a is enabled, sending one spike to neuron
σ
l
(2)
i

. Consequently, neuron σ
l
(2)
i

accumulates two spikes at step t+ 2 (one spike

is received from neurons σ
l
(1)
i

and the other one from neuron σr), and the rule

a2 → a is enabled and applied, sending one spike to each of neurons σ
l
(s)
i

,

3 ≤ s ≤ 6. The spike in neurons σ
l
(3)
i

and σ
l
(4)
i

will be removed by rule a → λ at

the next step, while the spike in neuron σ
l
(5)
i

and σ
l
(6)
i

enables rule a → a, and

makes the neurons fire, sending one spike to neuron σlk . Neuron σlk accumulates
two spikes at step t+ 4. Note that the spike in neuron σr received from neuron
σ
l
(1)
i

at step t+2 will be consumed in the following two steps: this spike is sent to

neuron σ
l
(2)
i

by applying rule a → a; then the spike in neuron σ
l
(2)
i

is consumed

by rule a → λ. Therefore, neuron σlk is activated, and the number of spikes
stored in neuron σr is still zero, which correctly simulates SUB instruction li.

In case 2, neuron σr has two spikes at step t, which corresponds to the fact
that the number stored in register r is 1. In this case, neuron σr has three spikes
at step t + 1, and the rule a3 → a2 is enabled, sending two spikes to neuron
σ
l
(2)
i

and leaving no spike in σr. Consequently, neuron σ
l
(2)
i

accumulates three

spikes at step t+2 (one spike is received from neurons σ
l
(1)
i

and two from neuron

σr), and the rule a3 → a2 is enabled and applied, sending two spikes to each
of neurons σ

l
(s)
i

, 3 ≤ s ≤ 6. The two spikes in neurons σ
l
(3)
i

, σ
l
(5)
i

and σ
l
(6)
i

will

be removed by rule a2 → λ at the next step, while the two spikes in neuron
σ
l
(4)
i

enables rule a2 → a2, and makes the neuron fires, sending two spikes to

neuron σlj . Neuron σlj accumulates two spikes at step t+4. Similarly, the spike
in neuron σr received from neuron σ

l
(1)
i

at step t + 2 will be removed by using

rule a → a in neuron σr and rule a → λ in neuron σ
l
(2)
i

. In this way, neuron

σlj is activated, and the number of spikes stored in neuron σr becomes zero.
Therefore, SUB instruction li is correctly simulated.

In case 3, neuron σr has 2n (n ≥ 2) spikes at step t, which corresponds to the
fact that the number stored in register r is greater than 1. In this case, neuron
σr accumulates 2n+ 1 (n ≥ 2) spikes at step t+ 1, and rule a3(a2)+/a4 → a2 is
enabled. Under a generalized way of using rules, rule a3(a2)+/a4 → a2 can be
applied for several times, nondeterministically chosen.

To illustrate the simulation of SUB instruction li, we use a simple example
as follows. We assume that the number stored in register r is 6. So at step t+1,
neuron σr contains 13 spikes, and rule a3(a2)+/a3 → a2 can be used for once or
twice or three times, nondeterministically chosen.

If rule a3(a2)+/a3 → a2 is used for once, then nine spikes remain in neuron
σr, and two spikes are sent to neuron σ

l
(2)
i

. Note that one spike is also sent to

neuron σr from neuron σ
l
(1)
i

at step t+2, so neuron σr accumulates ten spikes in

total at step t+2, and no rule in this neuron can be used again. For neuron σ
l
(2)
i

,

three spikes are accumulated at step t + 2 (one spike is received from neurons
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σ
l
(1)
i

and two from neuron σr), and the rule a3 → a2 is enabled and applied,

sending two spikes to each of neurons σ
l
(s)
i

, 3 ≤ s ≤ 6. The two spikes in neurons

σ
l
(3)
i

, σ
l
(5)
i

and σ
l
(6)
i

will be removed by rule a2 → λ at the next step, while the

two spikes in neuron σ
l
(4)
i

enables rule a2 → a2, and makes the neuron fires,

sending two spikes to neuron σlj . In this way, neuron σlj is activated, and the
number of spikes stored in neuron σr becomes ten, which means that the number
stored in register r becomes five.

If rule a3(a2)+/a4 → a2 is used for twice, then four spikes are sent to neuron
σ
l
(2)
i

and five spikes remain in neuron σr. At the next step, neuron σr will ac-

cumulates 6 spikes (one of them is received from neuron σ
l
(1)
i

), and the 6 spikes

cannot be consumed by any rule in neuron σr. For neuron σ
l
(2)
i

, it accumulates

5 spikes in total at step t + 2 (four spikes are received from σr and one from
neurons σ

l
(1)
i

), enabling rule a3(a2)+/a4 → a4. By using rule a3(a2)+/a4 → a4, 4

spikes are sent to neuron σ
l
(3)
i

, and 1 spike is left in neuron σ
l
(2)
i

, where the spike

will be removed by rule a → λ. In this case, neuron σ
l
(3)
i

accumulate 4 spikes,

enabling (a4)+/a4 → a4. Rule (a4)+/a4 → a4 in neurons σ
l
(2)
i

and σ
l
(3)
i

will be

used forever, which means that the computation cannot halt and thus gives no
result. Such a computation will be ignored.

If rule a3(a2)+/a4 → a2 is used for three times, then six spikes are sent to
neuron σ

l
(2)
i

and one spike remains in neuron σr. At the next step, neuron σr

will accumulates two spikes (one of them is received from neuron σ
l
(1)
i

), and

the 2 spikes cannot be consumed by any rule in neuron σr. For neuron σ
l
(2)
i

,

it accumulates 7 spikes in total at step t + 2 (six spikes are received from σr

and one from neurons σ
l
(1)
i

), enabling rule a3(a2)+/a4 → a4. By using rule

a3(a2)+/a4 → a4, 4 spikes are sent to neuron σ
l
(3)
i

, and 3 spikes are left in neuron

σ
l
(2)
i

, where the spike will be consumed by rule a3 → a2. In this case, each of

neurons σ
l
(4)
i

, σ
l
(5)
i

and σ
l
(6)
i

accumulates 6 spikes, thus cannot be consumed by

any rule in these neurons; neuron σ
l
(3)
i

receives 4 spikes from neuron σ
l
(2)
i

at step

t + 3, enabling rule (a4)+/a4 → a4, then receives 2 spikes from neuron σ
l
(2)
i

at

step t + 3, enabling rule a2 → λ. Consequently, the computation also enters an
endless loop by repeatedly using rule (a4)+/a4 → a4 in neurons σ

l
(2)
i

and σ
l
(3)
i

.

Such a computation will also be ignored.
So in case 3, under a generalized use of rules, the simulation has two possibili-

ties: neuron σli is activated and the number of spikes in neuron σr is decremented
by two, or the simulation does not halt and it gives no result. This means that
SUB instruction li is still correctly simulated in case 3.

Therefore, the simulation of SUB instruction i correct: system Π starts from
neuron σli , and ends in σlj (if the number stored in register r is greater than
0), or in σlk (if the number stored in register r is 0). Note that the non-halting
simulation gives no result, and it is ignored.

Module FIN : Outputting the result of computation
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As shown in Figure 3, the result of computation is output in the following
way.

a2 → a

lh

a(a2)+/a2 → a2

a → a

1

a(a2)+/a2 → a

a → λ

out

Fig. 3. Module FIN for outputting the result

Assume that the halting instruction lh of M is reached, and thus the compu-
tation of M halts. This means that neuron σlh receives two spikes. We assume
that at that moment, neuron σ1 has 2n spikes, corresponding to the fact that the
number stored in register 1 is n, n ≥ 0. With two spikes in neuron σlh , rule a

2 → a
is applied, sending one spike to neuron σ1, and making rule a(a2)+/a2 → a2 in
neuron σ1 enabled. Under a generalized way of using rules, rule a(a2)+/a2 → a2

can be used for several times, nondeterministically chosen. No matter how many
times rule a(a2)+/a2 → a2 is used at first, the rule will be used repeatedly until
one spike remains in neuron σ1. In this way, 2n spikes are transferred from neu-
ron σ1 to neuron σout. The remaining one spike is then consumed by rule a → a
in neuron σ1, which makes rule a(a2)+/a2 → a in neuron σout enabled. It is not
difficult to find out that for each time rule a(a2)+/a2 → a is applied, two spikes
are consumed and one spike is sent to environment. Besides, the remaining spike
is finally removed by rule a → λ in neuron σout. Therefore, the system sends n
spikes to the environment in total during the computation, which is the exact
number stored in register 1 of M when the computation of M halts.

Based on the explanations as above, it is clear that the register machine M
is correctly simulated by SN P system Π working in a generalized way of using
rules. Therefore, Ngen(Π) = N(M), which completes the proof.

4 Remarks and Conclusion

In this work, we present an improved universal SN P system working in a gen-
eralized way of using rules. In the proof of the universality result, each neuron
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of the constructed SN P system contains at most five rules, each spiking rule
consumes at most four spikes for each time, and each forgetting rule removes at
most four spikes for each time. Compared with the construction in [43], these
parameters are optimized without losing the universality. These parameters may
be further optimized by constructing the modules differently. This task is left as
an open problem to the readers.
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minimal parallelism. Theoretical Computer Science, 378(1), 117–130.

43. Zhang, X., Wang, B., Pan, L. (2014). Spiking neural P systems with a generalized
use of rules. Neural Computation, 26, 1–19.

44. Minsky, M. (1967). Computation: Finite and Infinite Machines. Upper Saddle Riv-
er, NJ: Prentice Hall.

16



Generating Context-Free Languages using

Spiking Neural P Systems with Structural

Plasticity

Ren Tristan A. de la Cruz1, Francis George C. Cabarle1, and Henry N. Adorna1

Algorithms and Complexity Laboratory
Department of Computer Science

College of Engineering
University of the Philippines

P. Velasquez Street, Diliman, Quezon City, Philippines
{radelacruz,fccabarle,hnadorna}@up.edu.ph

Abstract. Spiking neural P system (SNP system) is a model of com-
putation inspired by networks of spiking neurons. An SNP system is
a network of neurons than can send an object, known as a spike, to
each other. Spiking neural P system with structural plasticity (SNPSP
system) is a variant of the classical SNP system. SNPSP system incor-
porates the ideas of synaptogenesis (creating new synapses) and synaptic

pruning (deletion of existing synapses), collectively known as structural
plasticity, as features of the model. This gives SNPSP systems the ability
to change their own structure/topology. In this work, we used SNPSP
systems to generate context-free languages. We created a procedure for
constructing an SNPSP system given a context-free grammar in Greibach

normal form (GNF). The resulting SNPSP system essentially simulates
the way a context-free grammar in GNF is used to generate languages.
We used modules known as arithmetic-memory modules, also created us-
ing SNPSP systems, to perform arithmetic operations which are needed
for the simulation.

Keywords: Membrane Computing · SNPSP Systems · SNP System
Variant · Context-free Languages · Arithmetic-Memory Module.

1 Introduction

Membrane computing studies family of related models of computation known as
P systems. P systems are biologically-inspired unconventional models of com-
putation [19]. They were formally introduced in [18]. P systems include models
inspired by the mechanisms of biological cell. They include models of a group of
cells (tissue-like models) and models of group of neurons (neural-like models).

Spiking neural P systems (SNP systems) [7] are neural-like P systems whose
main computing elements (processors) are spiking neurons. The neurons also
serve as storage, storing a single whole known as spike count. An SNP system is
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a collection of such neurons connected to each other using synapses. We refer to
this model as classic SNP system.

Classic SNP system is based on a simplified and abstracted spiking neurons.
Different structures and mechanisms in the brain have been good sources of in-
spiration for different variants of the classic SNP systems. e.g. weighted synapses,
neuron division, threshold mechanism, astrocytes, neuron budding, axons, etc.
After being introduced, many other variants of SNP systems were able to in-
corporate these structures and mechanisms. Some of these SNP variants are in
[15,17,21,22,12,13,28,20,27,23,16,14,26,25].

Spiking neural P system with structural plasticity (SNPSP system) is a vari-
ant of the classical SNP system that incorporates the ideas of synaptogenesis
(creating new synapses) and synaptic pruning (deletion of existing synapses),
collectively known as structural plasticity, as features of the model.This gives
SNPSP systems the ability to change their own structure/topology.

SNP variants have been used as language generator [24,4,10,11,29,8,9,30,1].
For this work, we used SNPSP systems to generate context-free languages. We
created a procedure for constructing an SNPSP system given a context-free
grammar in Greibach normal form (GNF). The resulting SNPSP system essen-
tially simulates the way a context-free grammar in GNF is used to generate
languages. We used modules known as arithmetic-memory modules, also cre-
ated using SNPSP systems, to perform arithmetic operations which are needed
for the simulation.

The structure of the document is as follows: In Section 2, we discuss some
prelimenary notions and notations like string, languages, morphisms, SNPSP
systems, AM modules. In Section 3.1 we discuss GNF grammar, string encoding
and stack operations. In Sections 3.2-3.6, we build in parts the SNPSP system
for generating CFL. In Section 4, we give some concluding remarks.

2 Preliminaries

We assume the reader has basic knowledge of formal language and automata
theory and some background on membrane computing. In this section we only
recall relevant notions and notations from these areas.

2.1 Strings and Languages

An alphabet V is a finite set of symbols, a string s is a concatenation of symbols
from some V , so that the string is said to be over the alphabet V . If s is a string
over V , we denote as |s| the length of s while |s|a where a 2 V denotes the
number of occurrences of symbol a in s.

A language L is a set of strings. When talking about languages , the term
word can be used as a synonym for string. For some alphabet V we have V ⇤

as the language that contains strings of all lengths over V including the empty
string, denoted as λ. Further, V + = V ⇤ � {λ}.
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If X and Y are alphabets, a morphism h : X⇤ ! Y ⇤ is a mapping that
satisfies the condition h(uv) = h(u)h(v) for u, v 2 X⇤. For a morphism h :
X⇤ ! Y ⇤ and a string y 2 Y ⇤, the inverse morphism from h is defined as
h�1(y) = {x 2 X⇤ | h(x) = y}. These mappings are extended in the natural
way to languages, i.e. for some language L we have h(L) = {h(w) | w 2 L}. A
morphism h : X⇤ ! X⇤ is a projection if h(a) 2 {a,λ} for each a 2 X.

2.2 Spiking Neural P Systems with Structural Plasticity

Spiking neural P systems with structural plasticity (or SNPSP systems) intro-
duced in [2] are variants of classic spiking neural P systems (or SNP systems)
from [7].

Formally, an SNPSP systemΠ of degreem � 1 is a constructΠ = (O,σ1, . . . ,
σm, syn, in, out), where:

– O = {a} is a singleton alphabet containing the spike symbol a.
– σ1, . . . ,σm are the neurons of the system. A neuron σi, 1  i  m, has the

form (ni, Ri) : ni is a non-negative integer that indicates the initial number
of spikes in σi represented by the string ani over O; Ri is a finite set of rules
with the following forms:

1. Spiking Rule: E/ac ! a where E is a regular expression over O and
c � 1. When E = ac, the rule can be written as ac ! a.

2. Plasticity Rule: E/ac ! αk(i, N) where c � 1, α 2 {+,�,±,⌥},
N ✓ {1, . . . ,m}, and k � 1. When E = ac, the rule can be written as
ac ! αk(i, N).

– syn ✓ {1, . . . ,m}⇥{1, . . . ,m}, with (i, i) 62 syn, is the set of initial synapses
between neurons.

– in, out are neuron labels that indicate the input and output neurons, respec-
tively.

The semantics of SNPSP system are as follows. For every time step, each
neuron of Π checks if any of their rules are applicable. Activation requirements
of a rule are specified as E/ac at the left-hand side of every rule. A rule r 2 Ri

of σi is applicable if the following conditions are met: (1) the number of spikes
in σi represented by an, is in the language described by E (i.e. an 2 L(E)), and
(2) σi contains n spikes and c  n.

It is possible that multiple rules are applicable in a neuron at a given time.
This possibility occurs when the languages described by the regular expressions
of the rules intersect, i.e. rules r1 : E1/a

c1 ! a, and r2 : E2/a
c2 ! a have

L(E1) \ L(E2) 6= ;. When multiple rules are applicable in a neuron, the neuron
non-deterministically selects one rule to activate. When a rule is activated, c
spikes are consumed in the neuron.

When a spiking rule is activated in neuron σi, all neurons σj such that
(i, j) 2 syn receive a spike from σi at the same step as rule activation.

When a plasticity rule E/ac ! αk(i, N) is activated in σi, the neuron per-
forms one of the following actions depending on α and k:

19



1. (α = +) Add at most k synapses from σi to k neurons whose labels are
specified in N .

2. (α = �) Delete at most k synapses that connect σi to neurons whose labels
are specified in N .

3. (α = ±) At time step t, perform the actions for α = +, then in time step
t+ 1, perform the actions for α = �.

4. (α = ⌥) Similar to α = ± except that actions for α = � are performed
before α = +.

Let P (i) = {j | (i, j) 2 syn}, be the set of neuron labels such that σi is
connected to σj by a synapse. If a plasticity rule is activated and is specified
to add k synapses, there are cases when the rule can only add less than k
synapses: when most of the neurons in N already have connections from σi,
i.e. |N � P (i)| < k. The rule connects σi to the remaining neurons specified in
N that are not in P (i). If |N � P (i)| = 0 then there are no more synapses to
add. If |N � P (i)| = k then there are exactly k synapses to add.

When |N � P (i)| > k then the rule non-deterministically selects k neurons
from N � P (i) and connects σi to the selected neurons.

Additionally, we note the following subsumed action: when a synapse is cre-
ated at time step t, connecting σi to σj , a spike is sent to σj at the same time
step t.

Similar cases can occur when deleting synapses. If |P (i)| < k, then a rule only
deletes less than k synapses that connect σi to neurons specified in N that are
also in P (i). If |P (i)| = 0, then there are no synapses to delete. If |P (i)\N | = k
then the rule deletes exactly k synapses that connect σi to neurons specified in
N .

When |P (i) \N | > k then the rule non-deterministically selects k synapses
that connect σi to neurons in N and delete the selected synapses.

A plasticity rule with α 2 {±,⌥} activated at step t is applied until time
step t + 1: during these steps, no other rules can be activated but the neuron
can still receive spikes.

The output neuron has a synapse to the environment. For generating lan-
guages, and as is commonly done in literature such as [4,5,29,8] when a spiking
rule is activated at time step t by the output neuron, the system is said to gen-
erate the symbol ‘1’. When no spiking rules are activated in the output neuron,
the system is said to generate the symbol ‘0’. The string generated by the system
is the concatenation of the symbols generated until the entire system halts.

When considering only finite strings, which are the ones considered in this
work, if the system does not halt on a given computation then no string is
generated. Using this interpretation, only binary languages are directly generated
by the system. In this way, we define the language generated by Π as L(Π) =
{w 2 {0, 1}+ | w is generated from a halting computation of Π}.

Only binary languages without λ are considered since the output neuron of
Π only generates the symbols ‘0’ or ‘1’ when a spike is sent or not sent to the
environment, respectively.
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2.3 Arithmetic-Memory Modules

Arithmetic-Memory (AM) modules [3] are SNPSP systems that act as infor-
mation storage (memory) and calculating units (arithmetic). An AM module
stores a whole number. Two AM modules can be instructed to perform any
of the four arithmetic operations (addition, ‘subtraction’ - absolute difference,
multiplication, whole number division).

If there are multiple AM modules, any two modules can be instructed to
perform an arithmetic operation by sending spikes to specified neurons of the
modules. One modules stores the value of the first operand while other module
stores the value of the second operand. Once activated (by receiving spikes to
specified neurons) the modules will interact with each other. The module hold-
ing the first operand (‘first’ module) will produce the result of the arithmetic
operation. The total number of spikes produced by the first module during the
operation is the result of the arithmetic operation.

Figure 1 shows a ‘black-box’ view of an AM module. It labels all the neurons
of the module that send or receive spikes to/from neurons outside the module
itself. We note the following neurons: I1, ..., I9, O,E,A1, A

0
1, ..., A4, A

0
4. Neurons

I1, ..., I9 are the ‘instruction’ neurons. NeuronO is the ‘output’ neuron. Neuron E
is the ‘end signal’ neuron. NeuronsA1, A

0
1, ..., A4, A

0
4 are the ‘addressing’ neurons.
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Fig. 1. A ‘Black Box’ View of an AM Module. All neurons shown send/receive spikes
to/from neurons outside the AM module itself.

There are 9 addressing neurons each of which corresponds to 1 type of in-
struction. i.e. I1 for Decrement, I2 for Clear, I3 for Add, I4 for Subtract, I5
for Multiplicand, I6 for Multiplier, I7 for Dividend, I8 for Divisor, I9 for Incre-
ment. Some example use-cases: (1) Sending a spike to I1 of an AM module will
decrement by one the number store in the module, (2) Sending a spike to I9 will
increment by one the value in the module, (3) Sending spikes to neuron I3 of two
modules will trigger the modules to perform the ‘Add’ operation, (4) Sending
a spike to I7 of module A will trigger the ’Dividend’ operation and sending a
spike to I8 to module B will trigger ‘Divisor’ operation. If configured correctly,
together module A and module B will perform the actual division operation.
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Any two modules can perform arithmetic operation together. This means
the modules need to interact (exchange spikes) and so they need to know the
‘address’ of each other. i.e. To perform division, module A (‘dividend’ module)
should know the address of module B (‘divisor‘ module) and module B should
also know the address of the module A. The addressing neurons are used to
specify these addresses. Another use for the addressing neurons is to specify
the neuron where the output of the operation (spikes) will be directed. Before
instructing two AM modules to perform an arithmetic operation together, they
should first be set-up by specifying the necessary addresses needed by the two
modules.

The output neuron produces the spikes representing the result of the oper-
ation. The end signal neuron sends a spike to signal that the module has done
the instructed operation. Where to direct the output of the end signal neuron
can also be specified using the addressing neurons.

AM modules will be used in the succeeding sections.

3 Generating Context-Free Languages using SNPSP

Systems

This section contains the main result of this work, a procedure for constructing
an SNPSP system Π for a given context-free language L. Formally, we will prove
Theorem 1. Parts of the proof will be given in Subsections 3.1-3.6. The proof
will show how the SNPSP system Π is constructed.

Theorem 1. If L is a context-free language over T = {t1, t2, · · · , ty}, then there

is an SNPSP system Π, a morphism h1 : (T [ {c})⇤ ! {0, 1}⇤, and a projection

h2 : (T [ {c})⇤ ! T ⇤ such that L = h2(h1
�1(L(Π)))

Subsection 3.1 discusses context-free grammars in Greibach normal form

(GNF) and an algorithm that uses the said grammar to generate strings. The
algorithm uses a stack data structure and operations (push, pop) on the stack.
The subsection also discusses how the algorithm’s stack can be encoded as num-
ber (stack encoding) and how the push and pop operations can be mapped to
arithmetic operations on the said number (stack encoding).

Subsections 3.2-3.6 describe how different SNPSP subsystem can be con-
structed to in order to implement the string generating algorithm described in
Subsection 3.1. Subsection 3.3 shows how to construct an SNPSP subsystem that
implements the arithmetic version of the pop operation. Subsection 3.4 shows
how to construct an SNPSP subsystem that implements a compare operation
needed by the algorithm. Subsection 3.5 shows how to construct an SNPSP sub-
system that produces the output spike train and Subsection 3.6 shows how to
construct an SNPSP subsystem that implements the arithmetic version of the
push operation.
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3.1 Encoding and Stack Operations

A language L is context-free if it can be generated by a context-free grammar. In
this paper, we will use context-free grammars in Greibach normal form(GNF)
[6]. A grammar G in GNF is G = (N,T, S, P ) where N = {n1, n2, · · · , nx} is the
set of non-terminal symbols, T = {t1, t2, · · · , ty} is the set of terminal symbols,
S 2 N is the start symbol, and P is the set of production rules. The production
rules Rj (1  j  |P |) in P have the following form: Rj : nrj ! tr0

j
Nj where

nrj 2 N , tr0
j
2 T , Nj 2 N⇤, 1  rj  x, 1  r0j  y.

SNPSP system Π will simulate how grammar G can generate the words in
L. SNPSP system Π will use a stack data structure and simulate the algorithm
below:

0. When generating a word w, we start with the non-terminal initial symbol
S. This symbol is placed on the stack. We use the notation ‘N ’ to represent
the stack. N is a string over the non-terminal symbols, N 2 N⇤, that repre-
sents the content of the stack. The first (left-most) symbol of N represents
the symbol at the bottom of the stack while the last (right-most) symbol
represents the symbol at the top of the stack. i.e. If N = abcde, then the
stack contains the 5 symbols a, b, c, d, e; a is the symbol on bottom of the
stack while e is the symbol at the top of the stack.

1. ‘Pop’ (get and remove) the top symbol of the stack.
2. Check which production rules can be applied to the top symbol and non-

deterministically select and apply one of those rules. The main form of pro-
duction rule is “n ! tN 0” where n 2 N , t 2 T , and N 0 2 N⇤. If the top
symbol is ni, then any rule with n = ni can be applied. Applying the rule
means to output the terminal symbol t and ‘pushing’ (inserting a symbol
or multiple symbols to the stack) the symbols in N 0 to the stack. Since the
stack is the string N , ‘pushing’ a symbol a to the stack means appending a to
N so the new value of N is Na (Nnew = Nolda). ı.e. Applying “A! aAB”
means the top symbol popped is the non-terminal A, the terminal symbol
a will be output, and non-terminal symbols B and A will be ‘pushed’ to
the stack, symbol B being pushed first. If N 0 is the empty string λ, then no
non-terminal symbols will be pushed to the stack.

3. Steps 1 and 2 are counted as one iteration. Iterations will continue as long
as the stack still contains non-terminal symbols. The algorithm stops when
there are no more non-terminal symbols in the stack. The non-deterministically
generated word w is the string of terminal symbols ‘outputted’ per iteration.

An example run of the algorithm is in Appendix A.1.
SNPSP systems only have a single type of object, the spike a, there is no

way to represent the non-terminal symbols directly. A string s is encoded as the
number valk(s) where k is the size of the alphabet of used by string s. Numbers
can be represented in SNP and SNPSP systems as the number of spikes in the
neurons. Using this encoding, we can store the stack data structure (a string) as
the number of spike in a neuron.

23



Let N 2 N⇤ be the string representing the stack. Let N = {n1, ..., nx} be set
of non-terminal symbols of grammar G. N is encoded as the number valx(N)
which can be computed recursively as:

valx(N) =

8

<

:

(x+ 1)valx(N
0
) + valx(ni) if N = N

0
ni, N 0 2 N+, ni 2 N

i if N = ni 2 N , 1  i  x
0 if N = λ

(1)

Alternatively, if N = ns1ns2ns3 ...nsl where nsi 2 N and 1  si  x, valx(N)
can be computed as :

valx(N) =

(

Pl

j=1 valx(nsj )(x+ 1)l�j if N 6= λ where valx(ni) = i, ni 2 N ,1  i 

0 if N = λ

(2)
An example of how this encoding works is available in Appendix A.2.
The algorithm above involves two operations on the stack: popping and push-

ing of elements. Since the stack is represented as string N , the operations of
popping and pushing elements are actually operations on strings. i.e. concate-
nation of strings for the push operation and removal of a symbol from a string
for the pop operation.

We can define the push and pop operations formally using 3 as functions p1,
p2, and, p3.

Function p1 : N⇤ ⇥ N⇤ ! N⇤, where N = {n1, ..., nx} is the set of non-
terminal symbols, is the push function (or operation). It is defined as:

p1(N,N 0) =

8

<

:

p1(p1(N,ni), N
00) if N 0 = niN

00, N 0 2 N+, N 00 2 N+, ni 2 N
Nni if N 0 = ni 2 N , 1  i  x
N if N 0 = λ

(3)
N 2 N⇤ is the stack. The push function p1 recursively appends the symbols

of N 0 2 N⇤ to string N . Simply, p1(N,N 0) = NN 0.
Function p2 : N⇤ ! N⇤, is one of the pop functions. p2(N) gives the top

symbol (right-most) of stack N .

p2(N) = n,where N = N 0n,N 0 2 N⇤, n 2 N [ {λ} (4)

Function p3 : N⇤ ! N⇤ is also one of the pop functions. p3(N) gives the
substring (prefix) N 0 which is the string N except for the last (right-most)
symbol.

p3(N) =

⇢

N 0 if N = N 0ni , ni 2 N , N 0 2 N⇤

λ if N = λ
(5)

Since in SNPSP systems, we will be using the valx encoding of strings like
N and N 0 2 N⇤, we will create push and pop functions p01, p

0
2, and p03 that deal
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with numbers (non-negative integers, we denote this set as W for whole numbers)
instead of string.

The push function p01 : W⇥W!W corresponds to the push function p1. If
N is the stack string with encoding valx(N) and N 0 2 N⇤ is some string with
encoding valx(N

0), then p01 is defined as:

p01(valx(N), valx(N
0)) = valx(p1(N,N)) = valx(NN 0) (6)

Push function p01 takes the encodings of 2 strings and returns the encoding
of the concatenation of those 2 strings. We can directly use the encodings and
express p01 without using the function p1.

p01(valx(N), valx(N
0)) = valx(N)(x+ 1)|N

0| + valx(N
0) (7)

The expression on the right-hand side of Equation 7 is derived from how
valx encoding is calculated in Equation 1. An example usage of p01 is avaiable in
Appendix A.3.

The pop function p02 : W ! W corresponds to p2. It takes the encoding of
the stack string N and returns the encoding the top (right-most) symbol of the
stack N .

p02(valx(N)) =

⇢

valx(ni) if N = N 0ni, N
0 2 N⇤, ni 2 N

λ if N = λ
(8)

When valx(N) is written in base x + 1, the right-most symbol of N corre-
sponds to the least significant digit of valx(N). i.e. If N = ABCAA and its
right-most symbol being A, then val3(ABCAA) = 123114 and its least signif-
icant digit is 1. To get the least significant digit of valx(N) get the remainder
when we divide the encoding with base x+1. With this, p02 can be rewritten as:

p02(valx(N)) = valx(N) mod (x+ 1) (9)

The pop function p03 : W ! W corresponds to p3. It takes the encoding of
the stack string N and returns the encoding the prefix substring of N excluding
the last symbol.

p03(valx(N)) =

⇢

valx(N
0) if N = N 0ni, N

0 2 N⇤, ni 2 N
λ if N = λ

(10)

p03(valx(N)) can be calculated by dividing it with the base x + 1 (getting
only the integer quotient). e.g. If N = ABCAA and val3(ABCAA) = 123114,
then b123114/104c = 12314 which is exactly the encoding val3(ABCA) for the
string ABCA which is N excluding the last symbol A.

p03(valx(N)) = valx(N)/(x+ 1) (11)

Now that we have the encoding function valx and stack functions p01, p
0
2, p

0
3

we can know use these function in the algorithm describe above that simulates
string generation of any context-free grammar G in GNF. A full example of the
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usage of valk(N) encoding and arithemtic stack operations p01, p
0
2, p

0
3 is available

in Appendix A.4.

3.2 Constructing SNPSP System for CFL

We can now recreate algorithm in Section 3.1 that deals with numbers instead
of strings. We will use the encoding function valx and push and pop functions
p01, p

0
2, p

0
3. Functions p01, p

0
2, p

0
3 involve arithmetic operations. We will use AM

modules to implement p01, p
0
2, p

0
3 in the SNPSP system.

Recall that we will be simulating the string generation process of a GNF
grammar G = (N = {n1, ..., nx}, T = {t1, ..., ty}, S 2 N,P ) with P containing
rules of the form “Rj : nrj ! tr0

j
Nj” where nrj 2 N , tr0

j
2 T , Nj 2 N⇤,

1  rj  x, 1  r0j  y. We can look at a production rule Rj as having the 3
components nrj , tr0j , Nj . Using valx encoding, the components nrj , Nj can be

represented in the SNPSP system as the numbers valx(nrj ), valx(ρ(Nj)) where
ρ(Nj) is the reverse of string Nj . We explained in Section 3.1 why we reverse the
Nj of production rule Rj before getting its encoding.These numbers are stored
in the system using AM modules. In the algorithm in Section 3.1, when rule Rj

is used, the terminal symbol tr0
j
is ‘outputted’ immediately. tr0

j
does not need to

be stored in the system as number but it will be represented as a neuron.
For each non-terminal symbol ni 2 N , there will be an AM module, module

Ni, that stores the encoding valx(ni). We can see these AM modules in Figure
3. For each terminal symbol ti 2 T , there will be a neuron, neuron ti, that
corresponds to the terminal symbol. These neurons are in Figure 4. For each
rule Rj 2 P , two AM modules, module N 0

j and module Lj , will be added to
the SNPSP system. Module N 0

j stores the encoding of the reverse of string Nj

of rule Rj . We use the function ρ : N⇤ ! N⇤ to reverse a string s making its
left-most symbol the right-most symbol of a new string s0 and vice versa. We
define ρ below:

ρ(N 0) =

8

<

:

nρ(N 00) if N 0 = N 00n, N 00 2 N+, n 2 N
n if N 0 = n 2 N
λ if N 0 = λ

(12)

ModuleN 0
j stores the number valx(ρ(Nj)) while module Lj stores the number

(x + 1)|Nj |. These modules are shown in Figure 5. In equation 7, we can see
how valx(ρ(Nj)) (which is valx(N

0) in the equation 7) and (x + 1)|Nj | (which

is (x + 1)|N
0| in equation 7) are used by the push function p01 to perform the

arithmetic equivalent of the push operation.

3.3 Constructing SNPSP Subsystem for the Pop Operation

Figure 2 is the SNPSP subsystem that performs the pop operations. There are
5 AM modules: module A, module B, module C, module D, and module G. In
general (most of the time), module A stores the current encoding of the stack,
valx(N). We use the variable W to mean actual number stored in module A
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since during the operations, module A may contain the value that is not (yet)
equal to valx(N) since the operation is still ongoing. Module B is used as a
temporary number storage during the operation. We use the variable S to mean
the number currently store in the module. Module C stores the number x+1 and
is setup to perform the division process with module A. Module D also stores
the number x+1 and is setup to perform the multiplication process with module
B. Module G contains the address of module C, as the number C. Module G
will give this address to module A before the division process between module
A and module C. Module A, being the module that holds the stack encoding,
also performs arithmetic operations with a module other than module C. So the
address of module C is stored in module G.

Details of the SNPSP subsystem that are not available in Figure 2 are de-
scribed below:

Neurons in Figure 2 with the single rule “a! a”: eA, e
0
A, e

00
A, o

0
A, o

00
A, o

0
B , o

00
B ,

eD, e0D, e00D, eC , eG, d1, ..., d8, dx, dy, dz, m1, ...,m9.
Static synapses in the SNPSP subsystem in Figure 2: (ki, oA) where 1  i  7,

(qi, oB) where 1  i  4, (dx, ai) where 1  i  7, (dy, ai) where 1  i  7,
(dz, ai) where 1  i  7 ,(ai,mj) where 1  i  7, 1  j  i+1, (mi, p

0
23) where

1  i  8.
Rules for oA: r0 : a2/a! ±1(oA, {o

0
A}), r1 : a3 ! λ, r2 : a5/a! ±1(oA, {o

00
A}),

r3 : a6 ! λ, r4 : a8/a! ±1(oA, {o
000
A}) , r5 : a9 ! λ.

Rules for oB : r0 : a2/a! ±1(oB , {o
0
B}), r1 : a3 ! λ, r2 : a5/a! ±1(oB , {o

00
B}),

r3 : a6 ! λ.
Rules in neurons a1, a4, ..., a7: r1 : a1 ! λ, r2 : a2 ! λ, r3 : a3 ! λ,

r4 : a5 ! a.
Rules in neurons a2, a3: r1 : a1 ! λ, r2 : a2 ! λ, r3 : a3 ! λ, r4 : a5/a! λ,

r5 : a7 ! a.
Rules for p023:

– r0 : a1 ! ±5(p023, {IG,3, d1, dx, dy, dz})
– r1 : a2 ! ±10(p023, {IA,7, IC,8, k1, k2, k3, k4, d2, dx, dy, dz})
– r2 : a3 ! ±8(p023, {IB,5, ID,6, k1, k2, q1, d3, dx, dy, dz})
– r3 : a4 ! ±8(p023, {IA,3, k1, q1, q2, d4, dx, dy, dz})
– r4 : a5 ! ±7(p023, {IA,2, k1, k2, d5, dx, dy, dz})
– r5 : a6 ! ±9(p023, {IB,3, q1, q2, q3, q4, d6, dx, dy, dz})
– r6 : a7 ! ±8(p023, {IB,2, A

0
A,4, q1, q2, d7, dx, dy, dz})

– r7 : a8 ! ±1(p023, {f})

Neuron p023 contains 8 rules that correspond to 8 steps performed during
the pop operations. The neuron is labeled as ‘p023’ since it essential simulates
calculations of p02(valx(N)) and p03(valx(N)). The 8 steps performed are as follow:

Step 0: Load the address of module C in module A . This step is triggered
by sending one spike to neuron p023 which will then activate rule r0. Plasticity rule
r0 will create synapses and send spike to neuron IG,3 (‘Add’ instruction neuron
I3 of module G), and neurons d1, dx, dy, dz. Send a spike to neuron IG,3 will
trigger the ‘Add’ operation in the module. Since no other modules are activated
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Fig. 2. SNPSP Subsystem for Performing ‘Pop’ Operations (p02, p
0

3).

module G will simply send out C spikes via its output neuron O. Module G is
setup to forward its output spikes to module A’s neuron A0

4. After receive all C
spikes from module G (C spike representing the address of module C), module
A has now been setup and is ready to perform division with module C.

Spikes sent to neurons dx, dy, dz are forwarded to neurons a1, ..., a7. The spike
sent to neuron d1 is forwarded to neuron a1. Neurons a2, ..., a8 would receive 3
spikes each while neuron a1 will receive 4 spikes. Neurons a2, ..., a8 would delete
the 3 spikes they received using rule r3 : a3 ! λ. Neuron a1 will keep its 4 spikes.

Neuron a1 represents the next step, step 1. After performing the ‘Add’ oper-
ation, module G will send a spike to its end signal neuron E which will then be
forwarded to neuron eG. Neuron eG will forward the spike to neuron a1 which will
change the neuron count from 4 spikes to 5 spikes and activating rule r4 : a5 ! a.
Neuron a1 will forward the spike to neurons m1,m2 and they will then forward
the two spikes to neuron p023.

Step 1: Divide W by x+1. After receiving 2 spikes from the previous step,
neuron p023 will apply the rule r1, which will create synapses and send spikes to
neurons IA,7, IC,8, k1, ...k4, d2, dx, dy, dz.

Module A has the value W = valx(N) while module C has the value x+ 1.
Sending spikes to neurons IA,7, IC,8 will trigger the ‘Dividend’ operation in
module A and the ’Divisor’ operation in module C which will start the di-
vision process between the two modules. The spikes sent to neurons k1, ..., k4
will be forwarded to neuron oA which will now have 4 spikes. After this, a
spike sent to neuron oA will change the spike count from 4 to 5, activating rule
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r2 : a5 ! ±1(oA, {o
00
A}). When neuron oA has 4 spikes, a spike sent to the neuron

is forwarded to neuron o00A. Neuron o00A is connected to the (increment) instruc-
tion neuron I9 of module B. At this point, every spike sent out of module A (via
output neuron O) increments the value S stored in module B. Initially, S = 0.

Spikes sent to neurons dx, dy, dz are forwarded to neurons a1, ..., a7. The spike
sent to neuron d2 is forwarded to neuron a2. Neurons a1, a3, ..., a7 would receive
3 spikes each while neuron a2 will receive 4 spikes. Neurons a1, a3, ..., a7 would
delete the 3 spikes they received using rule r3 : a3 ! λ. Neuron a2 will keep its
4 spikes.

During the division process, module C will repeatedly perform the ‘Divisor’
operation which means it will send out spikes (possibly) multiple times via its
end signal neuron E. The spike sent out by module C via neuron E is forwarded
to neuron eC which will then forward the spike to neuron a2. This will change
the spike count from 4 to 5 and will activate the rule r4 : a5/a! λ in neuron a2.
The spike count will return from 5 to 4. The division process ends when module
A finishes the ‘dividend’ operation and send a spike to its neuron E. Neuron E
will forward the spike to neuron eA which will then forward the spike to neurons
e0A, e

00
A. e

0
A, e

00
A will forward the two spikes to neuron a2 changing the spike count

from 4 to 6. Module C finishes its last ‘divisor’ operation and it will send a spike
to its neuron E which will forward the spike to neuron eC . eC will forward the
spike to neuron a2 changing the spike count from 6 to 7 and activating the rule
r5 : a7 ! a. Neuron a2 will send spike to neurons m1,m2,m3 which will then
forward the 3 spikes to neuron p023 starting step 2.

After division process, W/(x + 1) where W = valx(N)), between module
A and module C, the value in module B should now be S = W/(x + 1) since
all output spike sent out by module A is forwarded to module B’s increment
instruction neuron I9. Module B now stores S = valxN/(x + 1) which is the
value p03(valx(N)).

Step 2: Multiply S by x+1. After receiving 3 spikes from the previous step,
neuron p023 will apply the rule r2, which will create synapses and send spikes to
neurons IB,5, ID,6, k1, k2, q1, d3, dx, dy, dz.

Module B has the value S = valx(N)/(x + 1) while module D has the
value x + 1. Sending spikes to neurons IB,5, ID,6 will trigger the ‘Multiplicand’
operation in module B and the ’Multiplier’ operation in module D which will
start the multiplication process between the two modules. The spikes sent to
neurons k1, k2 will be forwarded to neuron oA which will change the spike count
from 4 spikes (from step 1) to 6 spikes and will activate the rule r3 : a6 ! λ

(resetting the spike count to 0). The spike sent to neuron q1 is forwarded to
neuron oB changing the spike count from 0 to 1. Any spike sent to neuron oB
from output neuron O of module B will be forwarded to neuron o0B using the
rule r0 : a2/a! ±1(oB , {o

0
B}). Neuron o0B will then forward the spike to module

A’s decrement instruction neuron I1.

Spikes sent to neurons dx, dy, dz are forwarded to neurons a1, ..., a7. The
spike sent to neuron d3 is forwarded to neuron a3. Neurons a1, a2, a4..., a7 would
receive 3 spikes each while neuron a3 will receive 4 spikes. Neurons a1, a2, a4..., a7
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would delete the 3 spikes they received using rule r3 : a3 ! λ. Neuron a3 will
keep its 4 spikes.

Spikes sent to neurons k1, k2 will be forwarded to neuron oA changing the
spike count from 4 spikes (from step 1) to 6 spikes. Rule rx : a6 ! λ will be
activated resetting the spike count in neuron oA to 0.

During the division process, module B will repeatedly perform the ‘Multi-
plicand’ operation which means it will send out spikes (possibly) multiple times
via its end signal neuron E. The spike sent out by module B via neuron E is
forwarded to neuron eB which will then forward the spike to neuron a3. This
will change the spike count from 4 to 5 and will activate the rule r4 : a5/a! λ

in neuron a3. The spike count will return from 5 to 4. The multiplication process
ends when module D finishes the ‘multiplier’ operation and send a spike to its
neuron E. Neuron E will forward the spike to neuron eD which will then for-
ward the spike to neurons e0D, e00D. e0D, e00D will forward the two spikes to neuron
a3 changing the spike count from 4 to 6. Module B finishes its last operation
(which is actually the ’Add’ operation instead the ’Multiplicand’ operation) and
it will send a spike to its neuron E which will forward the spike to neuron eB .
eB will forward the spike to neuron a3 changing the spike count from 6 to 7 and
activating the rule r5 : a7 ! a. Neuron a3 will send spike to neurons m1, ...,m4

which will then forward the 4 spikes to neuron p023 starting step 3.

After multiplication process, S · (x+1) where S = valx(N)/(x+1), between
module B and moduleD, the value in module A should now beW = W�(S ·(x+
1)) where W = valx(N) since all output spike sent out by module B during the
multiplication process is forwarded to module A’s decrement instruction neuron
I1. Module A now stores W = valx(N) � (valxN/(x + 1)) · (x + 1) = valx(N)
mod (x+ 1) which is the value p02(valx(N)).

Step 3: Copy the content of module A to other modules. After receiving
4 spikes from the previous step, neuron p023 will apply the rule r3, which will
create synapses and send spikes to neurons IA,3, k1, q1, q2, d4, dx, dy, dz.

After step 2, module A now contains the value W = p02(valx(N)) (top symbol
of the stack) while module B now contains the value S = p03(valx(N)) (the
remaining stack when the top symbol is removed). Module A is the storage for
the stack encoding so the current value S should be copied to module. But before
we can copy S to module A, the top of the stack encoding W should be copied
to other modules.

The spikes sent to neuron k1 will be forwarded to neuron oA changing the
spike count from 0 to 1. Every spike sent to neuron oA by output neuron O of
module A will be forwarded to neuron o0A using the plasticity rule ro : a2/a !
±1(oA, {o

0
A}).

The spike sent to IA,3 will trigger the ’Add’ operation in module A. Since no
other module is activated along with module A, module A will simply send out
W spikes using its output neuron O. These spikes will be forwarded to neuron
oA which will forward it to neuron o0A. In Figure 3, we can see neuron o0A will
forward the spikes to increment instruction neurons I9 of modules T1, ..., Tx.
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Essentially, this step copies the value in module A which is the top symbol
encoding W = p02(valx(N)) to x modules, modules T1, ..., Tx.

Spikes sent to neurons q1, q2 will be forwarded to neuron oB changing the
spike count from 1 spike to 3 spikes. Neuron oB will then activate the rule
r1 : a3 ! λ resetting the spike count of neuron oB to 0.

Spikes sent to neurons dx, dy, dz are forwarded to neurons a1, ..., a7. The
spike sent to neuron d4 is forwarded to neuron a4. Neurons a1, a2, a3, a5, a6, a7
would receive 3 spikes each while neuron a4 will receive 4 spikes. Neurons
a1, a2, a3, a5, a6, a7 would delete the 3 spikes they received using rule r3 : a3 ! λ.
Neuron a4 will keep its 4 spikes.

After performing the ’Add’ operation, module A will send a spike to neuron
eA which will forward the spike to neuron e0A. Neuron e0A will forward the spike
to neuron a4 changing the spike count from 4 to 5. Using the rule r4 : a5 !
a, neuron a4 will send spikes to neurons m1, ...,m5 which then will forward
them to neuron p023. Neuron p023 having 5 spikes will activate rule r4 : a5 !
±7(p023, {IA,2, k1, k2, d5, dx, dy, dz}) which will lead to step 4.

Step 4: Clear the content of module A. After receiving 5 spikes from the
previous step, neuron p023 will apply the rule r4, which will create synapses and
send spikes to neurons IA,2, k1, k2, d5, dx, dy, dz.

The spikes sent to neurons k1, k2 will be forwarded to neuron oA changing
the spike count from 1 spike (from the previous step) to 3 spikes. Neuron oA will
then activate rule r1 : a3 ! λ resetting the spike count in the neuron to 0.

Spikes sent to neurons dx, dy, dz are forwarded to neurons a1, ..., a7. The spike
sent to neuron d5 is forwarded to neuron a5. Neurons a1, .., a4, a6, a7 would re-
ceive 3 spikes each while neuron a5 will receive 4 spikes. Neurons a1, ..., a4, a6, a7
would delete the 3 spikes they received using rule r3 : a3 ! λ. Neuron a5 will
keep its 4 spikes.

The spike sent to neuron IA,2 will activate the ‘Clear’ operation in module
A which will reset the value W in module A to 0. At the end of the ’clear’
operation in module A, the end signal neuron E of the module will send a spike
to neuron eA which will then forward it to neuron e0A. Neuron e0A will then send
the spike neuron a5 changing the spike count from 4 spikes to 5 spikes. Using
rule r4 : a5 ! a, neuron a5 will send spikes to neurons m1, ...,m6 which will
then forward the spikes to neuron p023. Neuron p023 having 6 spikes will activate
rule r5 : a6 ! ±9(p023, {IB,3, q1, q2, q3, q4, d6, dx, dy, dz}) which will lead to step

5.

Step 5: Copy the content S = p03(valx(N)) of module B to module A.
After receiving 6 spikes from the previous step, neuron p023 will apply the rule r5,
which will create synapses and send spikes to neurons IB,3, q1, q2, q3, q4, d6, dx, dy,
dz.

The spikes sent to neurons q1, ..., q4 will be forwarded to neuron oB changing
the spike count from 0 spike to 4 spikes. When neuron oB has 4 spikes, a spike
sent to the neuron by the output neuron O of module B will be forwarded by
neuron o00B using rule r2 : a5/a ! ±1(oB , {o

00
B}). Neuron o00B will then forward

the spikes it receive to the increment instruction neuron I9 of module A.
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Spikes sent to neurons dx, dy, dz are forwarded to neurons a1, ..., a7. The spike
sent to neuron d6 is forwarded to neuron a6. Neurons a1, .., a5, a7 would receive
3 spikes each while neuron a6 will receive 4 spikes. Neurons a1, ..., a5, a7 would
delete the 3 spikes they received using rule r3 : a3 ! λ. Neuron a6 will keep its
4 spikes.

The spike sent to neuron IB,3 will activate the ’Add’ operation in module
B. Since no other module is activated, module B will simply send out S =
p03(valx(N)) spikes. The output neuron O of module B will send these S spikes
to neuron oB . After performing the ‘Add’ operation, the value in module A would
have been incremented S times. In step 4, the value in module A was set to 0
and in this step the value was incremented S times. Also, at the end of the ‘Add’
operation, output neuron E of module B will send a spike to neuron eB which will
then forward the spike to neuron a6 changing the spike count in neuron a6 from
4 spikes to 5 spikes. Using rule r4 : a5 ! a, neuron a6 will send spikes to neurons
m1, ...,m7 which will then forward the spikes to neuron p023. Neuron p023 having
7 spikes will activate rule r6 : a7 ! ±7(p023, {IB,2, A

0
A,4, q1, q2, d7, dx, dy, dz})

which will lead to step 6.

Step 6: Reset the content of module B (S = 0) and clear the address
of module C set in module A. After receiving 7 spikes from the previous step,
neuron p023 will apply the rule r6, which will create synapses and send spikes to
neurons IB,2, A

0
A,4, q1, q2, d7, dx, dy, dz.

The spikes sent to neurons q1, q2 will be forwarded to neuron oB changing
the spike count from 4 spikes to 6 spikes. With 6 spikes, neuron oB will activate
the rule r3 : a6 ! λ and reset the spike count to 0.

Spikes sent to neurons dx, dy, dz are forwarded to neurons a1, ..., a7. The spike
sent to neuron d7 is forwarded to neuron a7. Neurons a1, .., a6 would receive 3
spikes each while neuron a7 will receive 4 spikes. Neurons a1, ..., a6 would delete
the 3 spikes they received using rule r3 : a3 ! λ. Neuron a7 will keep its 4 spikes.

The spike sent to addressing neuron A0
A,4 will clear the address of module C

set in module A. The spike sent to clear instruction neuron IB,2 will set the value
S stored in the module to 0. After clearing the value in module A, it will send
out a spike from its end signal neuron E to neuron eB which will then forward
the spike to neuron e0B . Neuron e0B will forward the spike to neuron a7 changing
the spike count from 4 spikes to 5 spikes. Neuron a7 having 5 spikes will apply
rule r4 : a5 ! a sending spikes to neurons m1, ...,m8. Neurons m1, ...,m8 will
forward the spikes to neuron p023. Neuron p023 having 8 spikes will apply rule
r7 : a8 ! ±1(p023, {f}) which will lead to step 7.

Step 7: Initiate the process of checking production rule can be applied.
After receiving 8 spikes from the previous step, neuron p023 will apply the rule
r7, which will create a synapse and a spike to neuron f . Sending spike to neuron
f triggers the SNPSP subsystem in Figure 3. This subsystem is responsible for
checking which production rule of the grammar is applicable given the encoding
of the stack top symbol p02(valx(N)). In step 3, the calculate (encoding of) stack
top symbol is stored in module A and is copied to modules T1, ..., Tx which are
parts of the subsystem in Figure 3.
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We summarize below the activities of the SNPSP subsystem in Figure 2.
Given the following initial values in the modules: Module A : W = valx(N),
Module B: S = 0, Module C : x + 1, Module D : x + 1, Module C: address of
Module C, the subsystem will do the following steps/calculations:

0. Load the address of module C in module A.
1. S  W/(x+ 1). This is S = valx(N)/(x+ 1) which is p03(valx(N)). This is

the encoding of the new stack with the top symbol removed.
2. W  W � (S · (x+ 1)). This is W = valx(N)� (valx(N)/(x+ 1))(x+ 1) =

valx(N) mod (x + 1) which is p02(valx(N)). This is the encoding of the
stack’s top symbol.

3. T  W . The top symbol encoding in module A is copied to modules T1, ..., Tx

in Figure 3. Modules T1, ..., Tx always store the same value we denote as T .
4. W  0. Reset the value stored in module A to 0.
5. W  S. The new stack encoding S = p03(N) is copied to module A.
6. S  0. Reset the value stored in module B to 0.
7. Trigger the ‘Compare’ process in the subsystem in Figure 3.

Neuron p023 contains all rules that trigger the steps listed above. The purpose
of neurons dx, dx, dz, d1, ..., d7, a1, ..., a7,m1, ...,m8 is to provide neuron p023 the
correct number of spikes at the proper time step in order for neuron p023 to active
rules r1, ..., r7 in order and at the correct time.

For each rule ri (1  i  7) in neuron p023, there is a corresponding neuron
ai such that when neuron ai spikes, after two steps neuron p023 would receive
i+1 spikes and will activate rule ri in the next time step. The purpose of neuron
ai is to receive spikes from the end signal neurons of the modules activated in
the previous step. These ‘end spikes’ signal to neuron ai that modules are done
performing their operations and the subsystem can now proceed with step i. We
say that neuron ai is ‘listening’ to the end signals of the modules involve in
step i-1. Rule ri sends 4 spikes to neuron ai+1 via neuron dx, dy, dz, di+1 while
the rest of neurons aj 6=i+1 only receives 3 spikes via neurons dx, dy, dz. For a
neuron ai+1, having 4 spikes means it is the neuron that is ‘listening’ for the
end spikes from the active modules which signify the end of step i. The other
neurons aj 6=i+1 will delete any end spikes they receive from the active modules.
Neuron aj 6=i+1 having less than 4 spikes (i.e. 3 spikes received from dx, dy, dz)
means the neuron is not ‘actively listening’ and they are not task to trigger the
next step (step i+1 ) of the process. Neurons aj 6=i+1 will delete the end spikes
they receive from the active modules.

Neuron oA is used in the subsystem to direct the output spikes of module
A. While neuron oB is used to direct the output spikes of module B. This is
done by sending the specified number of spikes to the neurons specifying the
target neuron in which they will forward the next incoming spike. i.e. In step
1, 4 spikes are sent to neuron oA to ‘instruct’ it to forwards the next spikes to
neuron o00A which is connected to neuron I9 of module B. While in step 3, 1 spike
is sent to neuron oA to instruct it forwards the next spikes to neuron o0A which
is connected to neurons I3 of modules T1, ..., Tx in Figure 3.

33



3.4 Constructing SNPSP Subsystem for the Compare Operation

During the pop operation performed by the subsystem in Figure 2, modules
T1, ..., Tx received p02(valx(N)) spikes. Each module now contains the number
encoding of the top symbol of the stack. The last rule, r7, activated by neuron
p023 sends a spike to neuron f which activates the ‘compare’ operation performed
by the subsystem in Figure 3. The ‘compare’ operation compares the encoding
T of the top symbol stored in modules Ti to the encodings valx(ni) of the non-
terminal symbols (stored in modules Ni) to determine which valx(ni) equals T
or simply to determine what is the top symbol.
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Fig. 3. SNPSP Subsystem for Determining Applicable Production Rules.

The comparison is done by sending a spike to the add instruction neuron I3 of
each module Ni and each module Ti. None of the modules are setup to actually
perform binary addition. We can determine the top symbol by observing the end
spikes of the modules.

Module Ti will be paired with module Ni. The end spike of module Ti will
be received by neuron n00

i while the end spike of module Ni will be received by
neuron n0

i. Since all modules will receive the spike through the add instruction
neuron I3 at the same time, then they will all perform the ‘Add’ operation at the
same time. If module Ti and module Ni send out their end spikes at the same
time, then we know that the encoding T of the top symbol is equal to valx(ni)
which means the popped top symbol is ni. Otherwise, the popped top symbol is
not ni.
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Neuron n0
i, n

00
i will forward the spikes they receive, using rule a! a, to neuron

ni. Neuron ni receiving 2 spikes signifies that ni is the popped top symbol of
the stack. It means any production rule of the grammar that transforms the
non-terminal symbol ni can be activated. Any rule “Rj : nrj ! tr0

j
Nj” with

nrj = ni (or when rj = i) can be activated.
We note that the spikes sent to neurons n0

i are also forwarded to neuron g.
Neuron g has the single rule ax ! a which is activated when neuron g receives
x spikes. This will only occur when all modules Ni are done with the ‘Add’
operation. Neuron g will then forward the spike to all clear instruction neurons
I2 of modules Ti. This will clear the value of the modules setting T = 0 for all
modules T1, ..., Tx.

For each production rule Rj of the grammar, there is a corresponding neuron
uj . Neuron ni has the following 2 rules of the “r1 : a ! λ” and “r2 : a2 !
±1(ni,Wi)” where Wi = {uj | neuron uj corresponds to rule Rj : nrj ! tr0

j
Nj

and nrj = ni}. Wi is the set of neurons ui corresponding to some rules Rj such
that the non-terminal symbol nrj being transformed by the rule is ni. Neuron ni

activates rule r1 when it only receives one spike at a time. This is the case when
T 6= valx(ni). Neuron ni activates rule r2 when T = valx(ni). When neuron ni

activates rule r2, it will non-deterministically select one of the uj 2 Wi neuron
to connect and send a spike to. This means Rj of the grammar is selected and
applied to non-terminal top symbol. This completes the ‘compare’ operation. The
subsystem in Figure 3 was able to determine which of the non-terminal symbol
ni is the top symbol and non-deterministically select which of the applicable
production rules Rj to apply by sending a spike to its corresponding neuron uj .

3.5 Constructing SNPSP Subsystem for Output

The strings generated by grammarG are strings over the alphabet T = {t1, ..., ty}
of terminal symbols but the strings generated by SNPSP systems are strings over
the binary alphabet B = {0, 1}. We use the morphism h1 : (T [ {c})⇤ ! B⇤

and projection h2 : (T [ {c})⇤ ! T ⇤ to relate the strings generated by gram-
mar G to the strings generated by the SNPSP system. We define h1 as follows:
h1(ti) = 01i0 for 1  i  y, h1(c) = 0. We define h2 as follows: h2(ti) = ti for
1  i  y, h2(c) = λ.

The SNPSP subsystem in Figure 3 determines which of the production rules
can be applied and non-deterministically select one of the applicable production
rule. When production rule is applied, the grammar being in GNF, one terminal
symbol is generated. When production rule Rj is applied, its corresponding
neuron uj receives a spike. Neuron uj has the single rule a ! a and its only
task is to forward the spikes it receive to connected neurons. In Figure 4, we
can see that uj is connected to a neuron ti. Given rule Rj : nrj ! tr0

j
Nj , its

corresponding neuron uj is connected to ti if ti = tr0
j
(or when r0j = i).

All neurons in the SNPSP subsystem in Figure 4 has the single rule a ! a
except for neurons u0

1, ..., u
0
j , ..., u

0
|P | and neuron z. Neuron z is the output neuron

for the entire SNPSP system and has a synapse to the environment.
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Fig. 4. SNPSP Subsystem for the String Output of the System.

When rule Rj is applied, neuron uj will forward a spike to neuron ti = tr0
j

which will then forward the spikes to neurons rk where 1  k  i+ 1. Neurons
rk (1  k  i + 1) will forward their spikes to neuron z. Neuron z will receive
i + 1 spikes. Neuron z has the following rules: r1 : a(a+)/a ! a and r2 : a !
±|P |(z, {u0

1, ..., u
0
|P |}). After receiving i + 1 spike, neuron z will apply rule r1 i

times sending the spike train 1i to the environment. After i steps, there will be
a single spike in neuron z and the neuron will apply the rule r2. In two steps,
neuron z will connect and send spikes to neurons u0

1, ..., u
0
|p| then it will delete the

created synapses. Neurons u0
1, ..., u

0
|p| would have received one spike each from

neuron z.

Observing the spike train to the environment, when rule Rj : nrj ! tr0
j
Nj is

applied such that tr0
j
= ti (or r

0
j = i) then substring “01i0” is a generated. The

full string generated by the system is composed of substrings of the form “01i0”
which are separated by substrings of the form “0j”. If the SNPSP system was
able to apply n productions before halting, then there will be n substrings of
the form “01i0” generated. The form of the full string generated by the system
is: S = 0j1 | 01i10 | 0j2 | 01i20 | · · · | 01in0 | 0jn+1 .

The substrings “01i0” are generated when rules are applied and the ‘output’
SNPSP subsystem in Figure 4 is activated. Substrings “0j” are generated when
the other SNPSP subsystems in Figures 2, 3, and 5 are active which means output
neuron z in the ‘output’ subsystem is not sending spikes to the environment.

Applying inverse morphism h�1
1 to S will give the string S0 = h�1

1 (S): S0 =
cj1 | ti1 | cj2 | ti2 | · · · | tin | cjn+1 . Then applying morphism h2 to S0 will give
the string S00 = h2(S

0): S00 = ti1 | ti2 | · · · | tin . The string generated by
grammar G is S00 = h2(h

�1
1 (S)) where S is the string generated by the SNPSP

system.
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3.6 Constructing SNPSP Subsystem for the Push Operation

When rule Rj : nrj ! tr0
j
Nj is applied, aside from generating the substring

“01r
0

j0” that corresponds to the terminal symbol tr0
j
, the string Nj should be

‘pushed’ to the stack. From Section 3.1, we explained that the reverse of Nj ,
denote as ρ(Nj) in Section 3.2, is the one pushed to the stack. In equation
7, we show how the new stack encoding p01(valx(N), valx(ρ(Nj))) is calculated
using the values valx(N), valx(ρ(Nj)) and (x+1)|Nj |. The process of calculating
p01(valx(N), valx(ρ(Nj))) is the arithmetic version of string operation of pushing
symbols to the stack.

The SNPSP subsystem in Figure 5 performs the arithmetic operations us-
ing AM modules in order to calculate p01(valx(N), valx(ρ(Nj))). Module A, the
storage of the stack encoding valx(N), and module B, a module used for tem-
porary storage, are reused in this ‘push’ SNPSP subsystem. Aside from the two
main modules A and B the following modules are part of the ‘push’ SNPSP sub-
system: Modules N 0

j store the values valx(ρ(Nj)), Modules Lj store the values

(x + 1)|Nj |, Module E will store the value B which will be a copy of a specific
value valx(ρ(Nj)) stored in some Module N 0

j , Module F will store the value D

which will be a copy of a specific value (x + 1)|Nj | stored in some module Lj ,
Module H stores the address of module E.
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Fig. 5. SNPSP Subsystem for Performing the ‘Push’ Operation (p01).

The details about the subsystem that are not visible in Figure 5 and are not
yet detailed Section 3.3 are shown below:
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Neurons while the single rule a! a: eE , e
0
E , e00E , eF , eH .

Static synapses in the SNPSP subsystem in Figure 5: (d0x, bi) where 1  i  6,
(d0y, bi) where 1  i  6, (d0z, bi) where 1  i  6, (d0i, bi) where 1  i  6, (bi,m

0
j)

where 1  i  6, 1  j  i+ 1 , (m0
i, p

0
1) where 1  i  6.

Rules for p01: r0 : a1 ! ±4(p01, {IH,3, d
0
1, d

0
x, d

0
y, d

0
z}), r1 : a2 ! ±10(p01,

{IA,5, IE,6, k1, k2, k3, k4, d
0
2, d

0
x, d

0
y, d

0
z}) , r2 : a3 ! ±8(p01, {IA,3, k5, k6, k7, d

0
3, d

0
x,

d0y, d
0
z}) , r3 : a4 ! ±9(p01, {IB,3, q1, q2, q3, q4, d

0
4, d

0
x, d

0
y, d

0
z}) , r4 : a5 ! ±7(p01,

{IB,2, IE,2, IF,3, d
0
5, d

0
x, d

0
y, d

0
z}) , r5 : a6 ! ±9(p01, {A

0
A,4, IF,2, k1, k2, q1, q2, d

0
6, d

0
x,

d0y, d
0
z}) , r6 : a7 ! ±1(p01, {P

0
23})

Similar to the ‘pop’ SNPSP subsystem in Figure 2, the ‘push’ subsystem will
perform the computation of p01(valx(N), valx(ρ(Nj))) in steps, 7 steps specifi-
cally. Neuron p01 has the 7 rules r0, ..., r6 that trigger each of the step. Rule ri
triggers the ith step. Similar to the rules in neuron p023 in the ‘pop’ subsystem,
the rules in p01 are used to (1) trigger the necessary arithmetic operations by
sending spikes instruction neurons of the modules, (2) direct the output spikes
of the modules (specifically modules A or B) by sending spikes to specific neu-
rons in {k1, ..., k7, q1, ..., q4}, (3) prepare for the next step, e.g. step i + 1 by
sending spikes to neurons d0x, d

0
y, d

0
z, d

0
i+1.

Neurons d01, ..., d
0
6, d

0
x, d

0
y, d

0
z, b1, ..., b6,m

0
1, ...,m

0
7 in the ‘push’ subsystem have

the same purpose as neurons d1, ..., d7, dx, dy, dz, a1, ..., a7,m1, ...,m8 in the ‘pop’
subsystem. Neurons d01, ..., d

0
6, d

0
x, d

0
y, d

0
z, b1, ..., b6,m

0
1, ...,m

0
7 work together to

provide the correct number of spikes to neuron p01 at the proper time step in
order for neuron p01 to activate rules r1, ..., r6 in order and in the correct time.

We summarize below the activities of the SNPSP subsystem in Figure 5.
Given the following initial values in the modules: Module A : W = valx(N),
Module B: S = 0, Module N 0

j : valx(ρ(Nj)), Module Lj : (x+ 1)|Nj |, Module E
: B = 0, Module F : D = 0, Module H : address of module E, the subsystem
will do the following steps or calculations:

-4. In Figure 3, when rule Rj is activated a spike is sent to its corresponding
neuron uj . Neuron uj forwards the spike to neurons vj , v

0
j which then forward

the spikes to neuron u0
j . Neuron u0

j has now 2 spikes.
-3. Neuron uj also sends a spike to some neuron ti to trigger the ‘output’ oper-

ation described in Section 3.5. At the end of the output operation neuron z
in Figure 4 will use is rule r2 and send spikes to all neurons u0

j . Neuron u0
j

has only two rules r1 : a ! λ and r2 : a3 ! a. The specific neuron u0
j that

previously received 2 spikes will not have 3 spikes.
-2. This neuron u0

j will send spikes to the add instruction neurons I3 of modules

Lj and N 0
j . Module Lj will send out (x + 1)|Nj | spikes to the increment

instruction I9 of module E so the variable B = (x+ 1)|Nj |. Module N 0
j will

send out valx(ρ(Nj)) spikes to the increment instruction I9 of module F so
the variable D = valx(ρ(Nj)).

-1. The end spike of module Lj will be sent to neuron p01 triggering start of the
7 steps for computing p01(valx(N), valx(ρ(Nj))).

0. Load the address of module E to module A
1. S  W ·B. This means S = valx(N) · (x+ 1)|Nj |.
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2. S  S �W . This means S = valx(N) · (x+ 1)|Nj | � valx(N).
3. W  W + S. This means W = valx(N) + valx(N) · (x+ 1)|Nj | � valx(N).

Or W = valx(N) · (x+ 1)|Nj |

4. W  W +D, S  0, B  0. For W this means W = valx(N) · (x+1)|Nj |+
valx(ρ(Nj)).

5. D  0, clear address of module E set in module A.
6. Send a spike to neuron p023 which will trigger the ‘pop’ operation after this

‘push’ operation.

Steps �3 to �1 are triggered by a spike sent to neuron uj at the end of
the ‘compare’ operation and a spike sent to neuron u0

j at the end of the ‘output’
operation. Steps 0 to 6 are triggered by the rules r0, ..., r6 in neuron p01. After the
‘push’ operation, module A now stores W = valx(N) · (x+ 1)|Nj | + valx(ρ(Nj))
which is exactly the value of p01(valx(N), valx(ρ(Nj))). Module B now stores
S = 0, module E now stores B = 0, module F now stores D = 0.

The entire system halts and stops generating symbols when the stack encod-
ing reaches 0. This finishes the proof of Theorem 1.

4 Conclusions

To generate context-free languages, we created a procedure that will create an
SNPSP system that simulates the way a context-free grammar in Greibach nor-
mal form generates strings using a stack algorithm. The stack algorithm involves
symbols being pushed to or popped from the stack. Initially, we used a string
to represent the stack and we define string operations to represent both push
and pop stack operations. We then use an encoding to convert the stack string
to a whole number so it can be stored in a single neuron (in an AM module).
Corresponding functions on numbers were created to represent the string push
and pop operations. The stack algorithm can now be implemented using AM
modules since we have converted the stack to a number and the stack operations
to operations on numbers.

By using a different encoding on the string and different numerical oper-
ations on the number (stack), one can create a variant of this procedure for
creating the SNPSP system. It is possible to encode a string to a number using
only multiplication as operation. This will result to the push and pop operation
being converted to numerical operations that only involve multiplication and
division. The resulting SNPSP system will probably have a different number of
AM modules used.
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27. X. Zhang and L. Pan and A. Păun: On the universality of axon p systems. IEEE
Transactions on Neural Networks and Learning Systems 26(11), 2816–2829 (Nov
2015). https://doi.org/10.1109/TNNLS.2015.2396940

28. Zeng, X., Zhang, X., Song, T., Pan, L.: Spiking neural p systems with thresholds.
Neural Computation 26(7), 1340–1361 (July 2014)

29. Zhang, X., Zeng, X., Pan, L.: On string languages generated by spiking neural p
systems with exhaustive use of rules. Natural Computing 7(4), 535–549 (2008)

30. Zhang, X., Zeng, X., Pan, L.: On languages generated by asynchronous spik-
ing neural P systems. Theoretical Computer Science 410(26), 2478–2488 (2009).
https://doi.org/10.1016/j.tcs.2008.12.055

41

https://doi.org/10.1142/s0129065717500423
https://doi.org/10.1142/s0129065717500423
https://doi.org/10.1142/s0129065717500423
https://doi.org/10.1016/j.tcs.2014.01.001
https://doi.org/10.1109/TNNLS.2017.2726119
https://doi.org/10.1142/s0129065718500132
https://doi.org/10.1142/s0129065718500132
https://doi.org/10.1142/s0129065718500132
https://doi.org/10.1016/j.tcs.2015.12.038
https://doi.org/10.1016/j.tcs.2015.12.038
https://doi.org/10.1016/j.tcs.2015.12.038
https://doi.org/10.1109/TNNLS.2015.2396940
https://doi.org/10.1016/j.tcs.2008.12.055


A Appendix

A.1 String Generation - Example

Example: G = (N = {A,B}, T = {a, b}, A, P ) where P contains the following
rules: R1 : A! aAB, R2 : B ! bAB, R3 : A! a, R4 : B ! b.

The table below shows how the word “aabab” is generated by the algorithm
using grammar G.

Iteration Stack (N) Applied Rule Output Symbol New Stack

1 A R1 : A → aAB a BA

2 BA R3 : A → a a B

3 B R2 : B → bAB b BA

4 BA R3 : A → a a B

5 B R4 : B → b b λ

Table 1. String Production for aabab.

In iteration 1, N = A, and the popped top symbol is A which means rules
R1, R3 can be applied. After popping the top symbol, the stack is now N = λ.
R1 is non-deterministically selected and applied. Applying R1 will output the
terminal symbol a and will push the symbol B and then symbol A to the stack
which will result to N = BA. The rest of the iterations are shown above. Each
iteration performs steps 1 and 2 of the algorithm. For each iteration, there is
an output terminal symbol. Looking at the ‘Output Symbol’ column in Table 1,
you can see that the word “aabab” is generated by the algorithm.

A.2 Encoding of the Stack String - Example

N = {n1 = A, n2 = B,n3 = C}, x = |N | = 3, val3(ni) = i for 1  i  3.

N (Stack) val3 Computation (Base 10) val3(N) val3(N)
(Base 4) (Base 10)

A val3(A) = 1 (1)4 (1)10
B val3(B) = 2 (2)4 (2)10
C val3(C) = 3 (3)4 (3)10
ABC val3(ABC) = 1(4)2 + 2(4)1 + 3(4)0 (123)4 (27)10
AA val3(AB) = 1(4)2 + 1(4)0 (11)4 (5)10
CAB val3(CAB) = 3(4)2 + 1(4)1 + 2(4)0 (312)4 (54)10
CCBBA val3(CAB) = 3(4)4 + 3(4)3 + 2(4)2 + 2(4)1 + 1(4)0 (33221)4 (1001)10

Table 2. String Encoding Examples
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A.3 Arithmetic Version of Push Operation (or String
Concatenation) - Example

We can use strings in Table 2. The size of the alphabet N is x = 3, string ABC
is encoded as 1234 (in base x+1 = 4) and string AA is encoded as 114. If we let
N = ABC and N 0 = AA, then NN 0 = ABCAA. If we encode NN 0 = ABCAA
as described in Equation 2, then (note: x+ 1 = 410 or x+ 1 = 104)

val3(ABCAA)10 = val3(A)·4
4+val3(B)·43+val3(C)·42+val3(A)·4

1+val3(A)·4
0

val3(ABCAA)10 = 1 · 44 + 2 · 43 + 3 · 42 + 1 · 41 + 1 · 40 = 43710

The encoding val3(ABCAA)10 = 43710 is calculated using base 10. In base
x+1 = 4, it is written as 123114. It is easier to visualize how the encoding works
when the result is written in base x+1 since for every symbol in the string there
is a corresponding ‘digit’ in the encoding when written in base x + 1. In base
x+1 = 4, the resulting encoding val3(ABCAA) is the concatenation of the digits
of val3(ABC) = 1234 and digits of val3(AA) = 114 which is 123114. But since
concatenation is an operation on strings and the encodings are numbers, we use
the Equation 7 for p01 to define arithmetically this digit concatenation process.
Using p01, val3(ABCAA) can be calculated as p01(val3(ABC), val3(AA)):

p01(val3(ABC), val3(AA)) = val3(ABC)(104)
|AA| + valx(AA)

p01(val3(ABC), val3(AA)) = 1234 · (104)
24 + 114 = 123004 + 114 = 123114

A.4 String Generation using Arithmetic Version of Stack
Operations - Example

Let G = (N = {A,B,C}, T = {a, b, c}, A, P ) where P contains the following
rules: R1 : A! aABB, R2 : B ! bBBC, R3 : A! a, R4 : B ! b, R5 : C ! c.

The string aabbbcb is generated by grammar G as follows:

A
R1��! aABB

R3��! aaBB
R2��! aabBBCB

R4��! aabbBCB
R4��! aabbbCB

R5��!

aabbbcB
R4��! aabbbcb

Starting form the axiom symbolA, one applicable rule is non-deterministically
selected and applied to the first (left-most) non-terminal symbol. One rule is ap-
plied at any given time. Since grammar G in Greibach normal form, when a
rule is applied only one terminal symbol is generated at a time. The string is
generated from left to right.

We note a difference in conventions used in the string generation above and
the string generation using the stack algorithm. In string generation above, for

example in the step: aaBB
R2��! aabBBCB, the terminal symbols are generated

from left to right, applying the rules first on the left-most non-terminal symbol
which in this step is B. When R2 is applied to B, terminal symbol b is generated
and non-terminal symbols BBC are generated. In the stack algorithm, stack
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string N stores the non-terminal symbols. In this step, N = BB but the top of
the stack is the right-most symbol of N . When R2 is applied, N = B since the
top symbol B was popped, and the string CBB is pushed to the stack making
the stack string N = BCBB. The stack algorithm also generates the string
from left to right similar to the normal derivation, the only difference is on the
convention of how the stack string is written. The left-most non-terminal symbol
in the generated string corresponds to the top (right-most) symbol of the stack.

This convention in writing the stack string is used so when the stack string is
encoded as a number the top symbol of the stack will be the least significant digit
of the encoded number. i.e. stack string N = ABCABC, val3(ABCABC) =
1231234, the top of symbol of the stack is C, and the top symbol encoding is
the least significant digit 34. The least significant digit of valx(N) is easier to
calculate compared to its most significant digit.

Table 3 shows the 7 iterations of the algorithm when generating the string
aabbbcb. The third column shows the encoding val3(N) in base x+ 1 = 4 of the
stack string N . The value of p02(val3(N)) is the least significant digit of val3(N)
which corresponds to the top symbol of the stack. The value of p03(val3(N))
is the encoding of the new stack after removing the top symbol of the stack.
N 0 is the reverse string of non-terminal symbols of a production rule. e.g. For
R1 : A ! aABB, N 0 = BBA and for R2 : B ! bBBC, N 0 = CBB. Noting
again, that N 0 is the reverse of the actual non-terminal substring because of
the convention used in the stack algorithm (right-most symbols being first to
be processed, top of the stack). val3(N

0) is the encoding of N 0. val3(N
0) is

that is pushed, using p01 to the new stack p03(val3(N)). The resulting stack is
p01(p

0
3(val3(N)), val3(N

0)). Column 6 shows the generated terminal symbol per
iteration.

No. N val3(N) p02(val3(N)) Rule Output p03(val3(N)) val3(N
0) p01(p

0

3(val3(N)), val3(N
0))

1 A 14 14 R1 a 04 2214 2214
2 BBA 2214 14 R3 a 224 04 224
3 BB 224 24 R2 b 24 3224 23224
4 BCBB 23224 24 R4 b 2324 04 2324
5 BCB 2324 24 R4 b 234 04 234
6 BC 234 34 R5 c 24 04 24
7 B 24 24 R4 b 04 04 04

Table 3. String Generation for aabbbcb
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Abstract. A method for image segmentation based on improved hybrid
particle swarm optimization (PSO) is proposed. In view of the traditional
PSO algorithm is easy to fall into local optimal solution, we update the
particle velocity based on the combination of global optimization, region
equilibrium and compression factor. By this way, the search ability of the
particle and performance of optimization is improved. Compared three
classic test function, the algorithm can greatly improve the search ability.
And experiments prove that it performs well on image segmentation.

Keywords: Hybrid particle swarm optimization,region equilibrium,compression
factor,image segmentation

1 Introduction

Image segmentation technology is very important research work in the field
of computer vision and artificial intelligence. This technology not only involves
the lower data processing of image information, but also involves the upper level
knowledge expression, which belongs to the classical difficult problem of image
information engineering. The current methods of image segmentation mainly
include threshold method, edge test [2], region growing method[3], morphology
watershed method[4,5], and etc. For real-time applications, image segmentation
is usually used one-dimensional Otsu method[6]. Based on the maximum class
square error method, Otsu proposes an algorithm to calculate the single thresh-
old. Single threshold Otsu method only considers the gray information of the
image, but does not take into account the spatial position of the pixels. In 1979,
Otsu proposed a two-dimensional segmentation method, which became a hot
issue in the study[7,8]. But the computation complexity increases exponentially.
How to efficiently calculating the optimal threshold becomes the key of the algo-
rithm.Swarm intelligence evolutionary algorithms such as genetic algorithm [9],

⋆ Zhou Kang is corresponding author (phone: 0086-027-85504737; fax: 0086-027-
85504742; e-mail: zhoukang wh@163.com).
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particle swarm optimization algorithm [10] are introduced to deal with them.In
this paper, the regional equilibrium optimal solution and the compression factor
of flight speed control are introduced into the particle velocity update formu-
la.The search ability and convergence accuracy of the hybrid particle swarm
optimization algorithm are improved by improving the particle velocity update
formula.

2 Hybrid PSO algorithm with region equilibrium and

compression factor

2.1 Standard particle swarm optimization algorithm

The standard particle swarm algorithm (PSO) was proposed by Eberhart
et al in 1995[1], and simulated the foraging behavior of bird. Birds use simple
rules to determine their flight speed and direction. Similar to other evolutionary
algorithms, PSO uses the concepts of "population" and "evolution" to operate
according to the fitness value of an individual. Assuming a S dimension search
space, there is a population containing m particles, wherein the particles are
represented as a vector, the position of each particle is representative a potential
solution (or called for the initial position), for a vector, we can calculate the
fitness value using an objective function. And we can select the optimal solu-
tion according to the fitness value. The initial position, the local best position,
the globe best position and the velocity for particle are respectively denoted
as:Xi = (Xi1, Xi2, ..., Xis), Pi = (Pi1, Pi2, ..., Pis), Pg = (Pg1, Pg2, ..., Pgs), and
Vi = (Vi1, Vi2, ..., Vis), For a particle, the velocity and position are updated by
the formula:

At = c1r1(Pi(t)−Xi(t) + c2r2(Pg(t)−Xi(t)) (1)

Vi(t+ 1) = Vi(t) +At (2)

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (3)

The nonnegative constants are random numbers independent of each other.
We generally chose the maximum number of iterations as the condition of the
iteration termination.

2.2 Optimal solution of regional equilibrium

For the standard particle swarm optimization (PSO), the velocity updating
depends on the local optimal solution of the particle itself and the globe optimal
solution of the whole population. In the initial stage of the algorithm, it is very
likely that the particle swarm search is too fast to miss the globe optimal solution.
Thus, the search is fall into local optimum.
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In order to improve the search accuracy of algorithm, Zhang [11] proposed a
scheme of the current optimal solution instead of the global optimal solution to
balance the local search ability of each particle’s neighbors, but it still has some
limitations, especially the computation and storage of distance. In this paper, the
particle is regarded as the center of a local region, and a circular neighborhood
is set. The geometric center of the particle’s current optimum position is used as
the global optimum position in the region. In this way, local information about
each particle will be shared more efficiently and accurately. Even in the extreme
cases, there may be no other particles in the given neighborhood, so that the
neighborhood should be adjusted. The neighborhood expansion process is as
follows:

If the particles are not present after the three adjustments, the local infor-
mation of the particle is not enough and no balance is needed, so the formula
updated velocity use the original directly. A velocity updating formula based on
local region optimal solution is proposed:

At = c1r1(Pi(t)−Xi(t) + c2r2(Pn(t)−Xi(t)) (4)

Previous studies show that the global PSO algorithm converges fast, but it
is easy to fall into local optimum. The algorithm combined with region equilib-
rium can get better optimal and more accurate solution, but the search speed
will be slower. Therefore, we adopt a hybrid algorithm that combines global
optimization and regional equilibrium optimization to update particle velocity:

Hi(t+ 1) = u1Mi(t+ 1) + u2Ni(t+ 1) (5)

Aui(t) = Vi(t) + c1r1(Pi(t)−Xi(t)) (6)

For local equilibrium optimization:

Mi(t+ 1) = Aui(t) + c2r2(Pn(t)−Xi(t) (7)

For global equilibrium optimization:

Ni(t+ 1) = Aui(t) + c2r2(Pg(t)−Xi(t) (8)

u1 = t/T, u2 = 1 − u1 ensure that the algorithm taking into account local
optimization and global optimization, the particle velocity is not so fast that the
best solution is missed and the algorithm is more accurate in the later stage.

2.3 Compression factor

In the formula of velocity update, the values of those two non negative con-
stants determine the particle’s own experience and the influence of the empirical
information of other particles on the trajectory, reflecting the exchange of infor-
mation between particles[12]. Smaller values of configuration parameters cause
particles to iteration more locally; On the other hand, will cause the premature
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convergence. In order to achieve the balance between global and local search,
Shi put forward the strategy of setting contraction factor. The velocity update
formula is as follows:

Ai(t) = c1r1(Pi(t)−Xi(t) + c2r2(Pg(t)−Xi(t) (9)

Vi(t+ 1) = ϕ(Vi(t) +Au1i(t)) (10)

ϕ = 2/

√

2− c−

√

c2 − 4c, c = c1 + c2 (11)

Document [13] pointed out that, compared to the optimization of weight-
s, the setting of compression factors not only effectively constrains the particle
velocity, but also enhances the local search ability of the algorithm. Some im-
provements have been made to the compression factor. In the case of controlling
the velocity of the particles, the local and the global optimum fitness information
are preserved, and the updated velocity update formula is as follows:

Vi(t+ 1) = ϕ(Vi(t)) +Au1i(t) (12)

2.4 Hybrid PSO algorithm with region equilibrium and compression

factor

Based on the two factors of regional equilibrium and compression factor, the
updating formulas are improved, and a hybrid particle swarm optimization algo-
rithm is proposed. The new speed and position update formulas are as follows:

Xi(t+ 1) = Xi(t) +Hi(t+ 1) (13)

Hi(t+ 1) = u1Mi(t+ 1) + u2Ni(t+ 1) (14)

Awi(t) = ϕ(Vi(t)) + c1r1(Pi(t)−Xi(t)) (15)

Mi(t+ 1) = Awi(t) + c2r2(Pn(t)−Xi(t) (16)

Ni(t+ 1) = Awi(t) + c2r2(Pg(t)−Xi(t) (17)

2.5 Algorithm Test

Since the algorithm in this paper is improved on the basis of traditional
algorithms, it is necessary to compare with other algorithms to verify the per-
formance of the algorithm. In order to test the actual performance of the pro-
posed algorithm (HRC-PSO), it is compared with the inertia weight linear de-
creasing algorithm (DW-PSO) and the adaptive weight algorithm (AW-PSO).
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We chose three representative and widely used test functions to verify the per-
formance.These functions include Ackley, Rastrigrin and Schaffer function, the
range of the corresponding variable respectively (−32, 32), (5.12, 5.12)and(−10, 10).
The global optimum is all 0. The parameter configuration is as follows: popula-
tion size = 40; C1 = C2 = 1.5; target value = 0; Iteration number = 100. The
results as shown in table 1.

Table 1. Demographic Prediction performance compari-
son by three evaluation metrics.

Function Average run time (s) Best average fitness

DW-PSO AW-PSO HRC-PSO DW-PSO AW-PSO HRC-PSO

Ackley 0.0760 0.0786 0.2323 -0.525 -0.539 -0.255

Rastrigrin 0.0650 0.0586 0.1883 -0.425 -0.434 -0.221

Schaffer 0.0692 0.0667 0.2011 -0.423 -0.512 -0.105

The optimal values can be obtained by the 3 algorithms within 100 genera-
tions. On the average time index, HRC-PSO uses more complicated speed update
formula, so it takes more time. But on the Best average fitness index, the supe-
riority of the algorithm is fully reflected. With the same number of iterations,
the algorithm used in this paper has long search time. But the search efficiency
is much higher. This fully demonstrates the effectiveness of the strategy and the
advantages of the improved algorithm.

3 Simulation experiment

3.1 Principle of Otsu threshold images segmentation

For a digital image with sizeM ∗ N , for each pixel, its pixel gray value and
neighborhood gray value are L, define a binary array (i, j), of which i is the pixel
gray value, j is the average gray value of corresponding (3∗3) neighborhood; nij

is the number of the pixel which have the same binary array (i, j); The relative
probability is Pij = nij/M ∗ N . s is the threshold of pixel gray value and t is
the gray value threshold of neighborhood.

The relative probability is:

pi,j =
ni,j

M ·N
; (18)

Assume that the object and background as I0 and I1, s is the threshold of
pixel gray value and t is the gray value threshold of neighborhood.

Two classes of the probability are:

P0(s, t) =

s
∑

i=1

t
∑

j=1

Pi,j (19)
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P1(s, t) =

L
∑

i=s+1

L
∑

j=t+1

Pi,j (20)

Two classes of the corresponding mean vector are:

µ0 = (

s
∑

i=1

t
∑

j=1

i · Pi,j

P0

s
∑

i=1

t
∑

j=1

j · Pi,j

P0
)
T (21)

µ1 = (

L
∑

i=1

L
∑

j=1

i · Pi,j

P1

L
∑

i=1

L
∑

j=1

j · Pi,j

P1
)
T (22)

The population mean vector is

muT = (

L
∑

i=1

L
∑

j=1

i · Pi,j

L
∑

i=1

L
∑

j=1

j · Pi,j)
T (23)

Ignoring the influence of noise and other, we can do the assumptions as the
following:

P0 + P1 ≈ 1, µ ≈ P0µ0 + P1µ1 (24)

Use the trace of matrix Sb(s,t) as the discrete degree measure, So the best
optional threshold value (s, t) should meet the following equation:

(s
∗
, t

∗
) = arg max

1≤s,t≤L
(R) (25)

How to ascertain the optimal threshold is the key for the algorithm.

3.2 Experimental results and discussions

In order to verify the performance of the algorithm proposed in this paper,
the algorithm is compared with the experimental results.

The simulation experiment based on image data set, a large number of sim-
ulation is performed on the data set by these 3 algorithms. The following are
discussed from two aspects

1. Does not limit the running time and compares the average time between
the two algorithms to achieve the optimal threshold. Through the program im-
plementation, we can find that the two algorithms can find the optimal thresh-
old. However, there is a clear gap that the time when the optimal threshold
is obtained. Statistically speaking, the efficiency of the improved algorithm is
obviously higher than that of the traditional algorithm. This shows that the
compression factor and region equalization strategy indeed improve the conver-
gence rate of the algorithm. the experimental results are good, because of the
limited space, the segmentation results of 3 original images in this paper are
only shown in Table 2.
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(a) Camera

(b) Sheep (c) Man

Fig. 1. Experimental images

Table 2. Performance comparison

Image AW-PSO HRC-PSO

The threshold Time The threshold Time

(a) (90,147) 0.423 (90,147) 0.071

(b) (66,140) 0.386 (66,140) 0.062

(c) (82,138) 0.365 (82,138) 0.058

According to the implementation principle and running time of the algorithm,
the calculation time of the algorithm is related to the size of the image and the
resolution of the gray scale, but it is independent of the specific image. It has
strong robustness. The algorithm has certain practical value.

2. Taking into account the online requirements of image processing, we limit
the time. The segmentation results of two algorithms are compared.

Fig. 2. Segmentation results for images

Obviously, the algorithm can accurately segment the main target in the im-
age, and the segmentation results are clearer than the contrast algorithm, contain
more details, and are closer to the original image visually. In the segmentation
result of Fig. 2 (b), the image processed by the algorithm contains more details,
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while other algorithms lack the corresponding details. Fig.2 (c) shows the al-
gorithm can eliminate some noise interference, and the segmentation stability
is better.Therefore, from the practical point of view, the improved algorithm
has a strong ability to process images online and is more suitable for the strict
requirements of time.

4 Conclusion

Based on region equilibrium and compression factor, the PSO algorithm is im-
proved, and a threshold image segmentation algorithm based on OTSU method
is proposed. In view of the traditional PSO algorithm is easy to fall into lo-
cal optimal solution, we update the particle velocity based on the combination
of global optimization, region equilibrium and compression factor. It is obvious
that the optimal value of convergence is not very different, but the algorithm
presented in this paper has obvious advantages in convergence speed. The seg-
mentation results in image data sets show that the proposed algorithm can get
the segmentation result is stable and clear, and has strong ability to overcome
the curse of dimensionality.
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Abstract. In this paper we create a matrix representation for Spiking
Neural P Systems with Structural Plasticity (SNPSP, for short), taking
inspiration from existing algorithms and representations for related mod-
els. Using our matrix representation, we provide a simulation algorithm
for SNPSP systems. We analyse the time and space complexity of our
algorithm. Such a simulation algorithm will be useful for implementing
SNPSP systems, including related models with a dynamic topology, in
software or hardware.

Keywords: Spiking Neural P Systems, Structural Plasticity, Matrix Represen-
tation, Membrane Computing

1 Introduction

In the realm of computer science, models are used to describe the workings of
various systems and how they are said to be “computing.” These models pos-
sess various features that depict how values are changed and manipulated to
achieve a desired output. Present-day computers are based off of some specific
variants of the Turing machine and the like and therefore carry their characteris-
tic advantages (and disadvantages) over other, more “primitive” models; speed,
Turing-completeness, and space capacity are just some of the important prop-
erties that describe the abilities of these models. Small changes in any of these
could spell the difference between being able to compute or solve a problem,
and otherwise. It is thus imperative to come up with models that overcome the
obstacles that impede other models, and thus solve problems better and faster.
While many such models still have no commercially available physical realiza-
tion, simulation on modern computers will be enough to prove the abilities of
these models until such feasible prototypes are created.
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A good example of some powerful models that are still in the simulation stage
are those discovered in the field of natural computing, specifically in membrane
computing. These are based off of natural phenomena, like the transfer of chem-
icals within cells and throughout cell systems. The advantage of these models
over standard ones (e.g. Turing machines) are their characteristic parallelism,
even over small space constraints. The parallelism could then be used to solve
NP-Complete and other hard problems, and possibly in a more efficient manner
than the sequential TM’s. This paper focuses on a computational model based
on the Spiking Neural P Systems (SNP Systems) as defined in [8, 10]. The ma-
trix representation and simulation algorithm also draws inspiration from those
mentioned in [3–6,11]. A preliminary version of the matrix representation in this
paper is in [7].

As elaborated in [1,5,11], the benefits of a matrix representation compared to
other representations is due to the increased parallelism when performing linear
algebra operations. This increased parallelism when simulating computations
can benefit sequential (e.g. CPU) simulators but more so using parallel (e.g.
GPU) simulators. More benefits using a matrix representation and other parallel
computing techniques are recently given in [4, 6, 9]. In [9], variants of SN P
systems that have a dynamic topology, i.e. adding or removing neurons, synapses,
or both, are compared with respect to the recent technologies of GPUs. It is then
noted in [9] that for such GPUs, the more efficient way to perform dynamism
in the topology is the plasticity found in SNPSP systems. Also in [9] it is noted
that simulator performance in GPUs can be further improved if a “compact”
representation is used, e.g. removing all or most zeroes from sparse matrices
representing the system. A zero in the matrix representation can refer to absence
of a parameter, such as having no edge between two nodes.

This paper is structured as follows: in Section 2 the preliminaries for this
work are introduced; in Section 3 and Section 4 our matrix representation and
notations are provided, respectively; the representation and notations are used
in our simulation algorithm in Section 5; An example of a “simulation run” of
our algorithms is in Section 6; lastly, Section 7 provides closing remarks and
research directions. Detailed proofs of our theorems are given in Appendix A.

2 Preliminaries

For this work, a specific variant of the SNP system would be in focus, namely the
Spiking Neural P System with Structural Plasticity (SNPSP). Here, forgetting
rules are replaced by plasticity rules, thus marking the characteristic difference
between the two models. Plasticity rules allow for the creation, deletion, and
rewiring of synapses by their respective source neurons. More formally, as also
given in [3]:

Definition 1 (SNPSP System). A spiking neural P system with structural plas-
ticity (SNPSP system, for short) of degree m � 1 is a construct of the form

Π = (O,σ1, · · · ,σm, syn, out)
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where:

1. O = {a} is the singleton alphabet (a is called spike)
2. σ1, · · · ,σm are pairs σi = (ni, Ri), 1  i  m, called neurons, where ni � 0

and ni 2 N[ {0} represents the initial spikes in σi, Ri is a finite set of rules
of σi with the following forms:

(a) Spiking rule: E/ac ! a, where E is a regular expression over O, with
c � 1;

(b) Plasticity rule: E/ac ! αk(i, Nj), where c � 1, α 2 {+,�,±,⌥}, k � 1,
1  j  |Ri|, and Nj ✓ {1, · · · ,m}.

3. syn ✓ {1, · · · ,m}⇥{1, · · · ,m}, with (i, i) /2 syn for 1  i  m, are synapses
between neurons;

4. out 2 {1, · · · ,m} indicates the output neuron.

Given neuron σi (we can also say neuron i or simply σi if there is no confu-
sion), we denote the set of neuron labels which has σi as their presynaptic neuron
as pres(i), i.e., pres(i) = {j|(i, j) 2 syn}. Similarly, we denote the set of neuron
labels which has σi as their postsynaptic neuron as pos(i) = {j|(j, i) 2 syn}.

Plasticity rules are applied as follows. If at time t we have that σi has b � c
spikes and ab 2 L(E), a rule E/ac ! αk(i, N) 2 Ri can be applied. The set
N is a collection of neurons to which σi can connect to (synapse creation) or
disconnect from (synapse deletion) using the applied plasticity rule. The rule
consumes c spikes and performs one of the following, depending on α:

If α = + and N � pres(i) = ;, or if α = � and pres(i) = ;, then there
is nothing more to do, i.e., c spikes are consumed but no synapse is created or
removed. For α = +: If |N � pres(i)|  k, deterministically create a synapse to
every σl, l 2 Nj � pres(i). If, however, |N � pres(i)| > k, then nondeterminis-
tically select k neurons in N � pres(i) and create one synapse to each selected
neuron.

For α = � : If |pres(i)|  k, deterministically delete all synapses in pres(i).
If, however, |pres(i)| > k, then non- deterministically select k neurons in pres(i)
and delete each synapse to the selected neurons.

If α 2 {±,⌥}, create (respectively, delete) synapses at time t and then delete
(respectively, create) synapses at time t + 1. Only the priority of application
of synapse creation or deletion is changed, but the application is similar to
α 2 {+,�}. The neuron is always open from time t until t+ 1, i.e., the neuron
can continue receiving spikes. However, the neuron can only apply another rule
at time t+ 2.

An important note is that for σi applying a rule with α 2 {+,±,⌥}, creating
a synapse always involves an embedded sending of one spike when σi connects
to a neuron. This single spike is sent at the time the synapse creation is applied.
Whenever σi attaches to σj using a synapse during synapse creation, we have σi

immediately transferring one spike to σj .
If two rules with regular expressions E1 and E2 can be applied at the same

time, that is, L(E1) \ L(E2) 6= ;, then only one of them is nondeterministically
chosen and applied. All neurons therefore apply at most one rule in one time step
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(locally sequential), but all neurons that can apply a rule must do so (globally
parallel). Note that the application of rules in neurons are synchronized, that is,
a global clock is assumed.

A system state or configuration of an SNPSP system is based on (a) distribu-
tion of spikes in neurons and (b) neuron connections based on the synapse graph
syn. We can represent (a) as hs1, · · · , smi where si, 1  i  m, is the number
of spikes contained in σi. For (b) we can derive pres(i) and pos(i) from syn,
for a given σi. The initial configuration therefore is represented as hn1, · · · , nmi,
with the possibility of a disconnected graph, i.e., syn = ;. A computation is
defined as a sequence of configuration transitions from an initial configuration.
A computation halts if the system reaches a halting configuration, that is, a
configuration where no rules can be applied and all neurons are open. Whether
a computation is halting or not, we associate natural numbers 1  t1 < t2 < · · ·
corresponding to the time instances when the neuron out sends a spike out to
(or when in receives a spike from) the system.

A result of a computation can be defined in several ways in SNP systems
literature, but in this work we use the following as in [8]: We only consider the
first two time instances t1 and t2 that σout spikes. Their difference, i.e., the
number t2 � t1, is said to be computed by Π.

As an illustration, consider an SNPSP systemΠex shown in Figure 1 from [3].
The labels of each rule in Figure 1 are used later in our matrix representation
and algorithm so we ignore them for now. Neurons 2, out = 3, 4, and 5 con-
tain only the rule a ! a, and we omit this from writing. In the initial con-
figuration, at time t0 = 0, is where only σ1 has two spikes and σ3 has only
one spike. Neuron 1 is the only neuron with plasticity rules, where we have
syn = {(2, 4), (2, 5), (4, 1), (5, 1)}.

1

2
3

4

5
a2

a2/a → +1(1, {2, 3})

a → −1(1, {2, 3})

a

a → a
a → a

a → a

a → a

P,1

P,2

S,1

S,2

S,3

S,4

Fig. 1. An SNPSP system Πex.

As detailed in [3], we have Πex computing the set {1, 4, 7, 10, . . .} = {3m +
1|m � 0}. In Table 1 the output of Πex is t2 � t1 = 1 if neuron σ1 creates
synapse (1, 3), where (!) means that the output neuron σ3 fires a spike to the
environment, and t2 and t1 are the second and first time σ3 fires, respectively.
In Table 2 the output of Πex is 4 if σ1 creates synapse (1, 2) instead of (1, 3).
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Time σ1 σ2 σ3 σA1 σA2 syn

0 2 0 1 0 0 syn

t1 = 1 1 0 1 (!) 0 0 syn [ {(1, 3)}
t2 = 2 0 0 0 (!) 0 0 syn

Table 1. Computation of Πex for {1}

Time σ1 σ2 σ3 σA1 σA2 syn

0 2 0 1 0 0 syn

t1 = 1 1 1 0 (!) 0 0 syn [ {(1, 2)}
2 0 0 0 1 1 syn

3 2 0 0 0 0 syn

4 1 0 1 0 0 syn [ {(1, 3)}
t2 = 5 0 0 0 (!) 0 0 syn

Table 2. Computation of Πex for {4}

3 Matrix Representation of SNPSP

To illustrate how SNPSP systems can be represented as specified below, we
use Πex in Figure 1. Using the formal definition, the system can thus be ex-
pressed as Πex = ({a},σ1,σ2,σ3,σ4,σ5, syn, 3). The neurons are (from σ1 to σ5)
(2, {rP,1, rP,2}), (0, {rS,1}), (1, {rS,2}), (0, {rS,3}), and (0, {rS,4}); the synapses
are defined as syn = {(2, 4), (2, 5), (5, 1), (4, 1)}, 3); and finally the rules are
rP,1 = a2/a ! +1(1, {2, 3}), rP,2 = a ! �1(1, {2, 3}), and rS,i = a ! a, 8i 2
{1, 2, 3, 4}.

For SNPSP systems, a neuron is said to be defined by its spike count and
the set of rules associated with it. With this, we define the spike count vector
and the rule source matrix.

Definition 2 (Spike Count Vector). Let Π be an SNPSP system with m neurons.

In a computation, for any k 2 N, the vector C(k) = [c
(k)
1 , c

(k)
2 , · · · , c

(k)
m ] is called

the spike count vector of the system at time k, where c
(k)
i is the amount of spikes

in neuron σi, i = 1, 2, · · · ,m at time k.

Definition 3 (Rule Source Matrix). Let Π be an SNPSP system with m neu-
rons. Let rR be the number of rules of type R 2 {P,S}, where P and S corre-
spond to plasticity and spiking rules, respectively. Let dR : (R, 1), · · · , (R, rR)
be a total ordering of rules of type R. The rule source matrices of the system Π,
SrR, are defined as follows:

SrR =

2

6

4

srR,1,1 · · · srR,1,m

...
. . .

...
srR,rR,1 · · · srR,rR,m

3

7

5

where:

srR,i,j =

(

1, if rule rR,i is in neuron σj;

0, otherwise.

We also define an aggregate rule source matrix Sr to denote the combination
of SrP and SrS , with the rows (rules) arbitrarily ordered.

Next in the definition of SNPSP systems is the set of synapses. Here, since
these connections are not constant, the synapse matrix is defined to change with
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time. In addition to that, we define matrices that record the newly created (and
deleted) synapses.

Definition 4 (Synapse Matrix). In an SNPSP system Π with m neurons, the
synapse matrix, Sy(k), at time k, is defined as follows:

Sy(k) =
h

sy
(k)
i,j

i

m⇥m
=

2

6

6

4

sy
(k)
1,1 · · · sy

(k)
1,m

...
. . .

...

sy
(k)
m,1 · · · sy

(k)
m,m

3

7

7

5

where:

sy
(k)
i,j =

8

>

<

>

:

1,
if there exists a synapse from neuron σi

to neuron σj at time k;

0, otherwise.

Definition 5 (Synapse Creation [Deletion] Matrix). In an SNPSP system Π

with m neurons, the synapse creation [deletion] matrix, Sy
(k)
+ [Sy

(k)
�

], at time k,
is defined as follows (o 2 {+,�}):

Sy(k)o =
h

sy
(k)
o,i,j

i

m⇥m
=

2

6

6

4

sy
(k)
o,1,1 · · · sy

(k)
o,1,m

...
. . .

...

sy
(k)
o,m,1 · · · sy

(k)
o,m,m

3

7

7

5

where:

sy
(k)
o,i,j =

8

>

<

>

:

1,
if a synapse from neuron σi to neuron σj

was operated on at time k;

0, otherwise.

and the indicated operation is deletion if o = � or creation if o = +.

We also define a synapse change matrix Sy
(k)
∆

= Sy
(k)
+ � Sy

(k)
�

to be the net
change in the synapse matrix at time k.

Given Definitions 4 and 5, we can obtain the next synapse matrix with

Sy(k) = Sy(k�1) + Sy
(k)
∆

= Sy(k�1) + Sy
(k)
+ � Sy

(k)
�

(1)

Definition 2 records the spikes stored in the neurons, but here we would also
need to know about the spikes sent out to the environment. For this, we have:

Definition 6 (Output Spike Count and Output Spike Indicator). In an SNPSP
system Π, the output spike count at time k is denoted by os(k), which is the
number of spikes already sent out by the output neuron to the environment from
time 0 to time k. The output spike indicator at time k is defined as

sp(k) =

8

>

<

>

:

1,
if a spike was sent out to the environment

at time k;

0, otherwise.
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In the computation as in Table 2, the output neuron spiked to the environ-
ment at times t1 = 1 and t2 = 5. Table 3 shows the values of os(k) and sp(k).

Time os(k) sp(k)

0 0 0
t1 = 1 1 1

2 1 0
3 1 0
4 1 0

t2 = 5 2 1
Table 3. Output Spike Counts and Indica-
tors for Πex Computing {4}

form pattern p q

a⇤ a0(a1)⇤ 0 1
a+ a1(a1)⇤ 1 1

ak ak(a0)⇤ k 0

ak(aj)⇤ ak(aj)⇤ k j

ak(aj)+ ak+j(aj)⇤ k + j j

Table 4. Allowed Forms of Regular Expres-
sions

Next, we define vectors and matrices that describe the rules associated with
the neurons of the system Π. First, we need to describe the regular expressions
used by the rules to determine the number of spikes required for firing. For this
work we shall be limiting these regular expressions to be of the forms ak, a+, a⇤,
ak(aj)⇤, and ak(aj)+, for some positive integers j and k. In general, we describe
these regular expressions to be of linear form – i.e., they can be described by
the pattern ap+qn = ap(aq)⇤ for integers p, q, n � 0, p+q � 1. Table 4 illustrates
this.

Thus, we can describe the regular expressions by their corresponding p and
q values. To wit:

Definition 7 (Regular Expression P and Q Vectors). In an SNPSP system
Π, PS and QS [PP and QP ] are the (regular expression) P and Q vectors
of the spiking [plasticity] rules, defined as PR = [pR,1, · · · , pR,rR ] and QR =
[qR,1, · · · , pR,rR ] for R 2 {P,S}, which describe the p and q values for the
regular expressions of each rule, such that:

ER,i = ap̄+q̄n = ap̄(aq̄)⇤

where p̄ = pR,i, q̄ = qR,i, and ER,i is the regular expression of the rule rR,i.
We also define aggregate P and Q vectors to denote the combination of PP

with PS , and QP with QS , respectively. The elements are arbitrarily ordered.

Once we can decide if a rule can fire, we can then check which rules would
fire and which would not. Note that for this work, if a rule is applicable, it must
fire immediately. Rules have also been restricted to determinism per neuron,
and to sequentiality. Thus, for rules ra and rb both in the same neuron, ra 6= rb,
L(Ea) \ L(Eb) = ;. We then have the following definition:

Definition 8 (Rule Firing Vector). In an SNPSP system Π, the rule firing
vectors at time k are defined as the vector

Fi
(k)
R =

h

fi
(k)
R,1, · · · , fi

(k)
R,rR

i
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for R 2 {P ,S} (P for plasticity rules, S for spiking rules). The vectors describe
which rules will be fired, as follows:

fi
(k)
R,i =

(

1, if rule rR,i is fired at time k;

0, otherwise.

We also define an aggregate rule firing vector Fi to denote the combination
of FiP and FiS , with the elements arbitrarily ordered.

Once a rule is fired, it consumes a specified number of spikes from its source
neuron. Thus, we have:

Definition 9 (Spike Consumption Vector). In an SNPSP system Π, the spike

consumption vectors at time k are defined as the vector Co
(k)
R =

h

co
(k)
R,1, · · · , co

(k)
R,rR

i

,

for R 2 {P,S} (P for plasticity rules, S for spiking rules). Here, co
(k)
R,i = c is

the number of spikes consumed by rule rS,i = E/ac ! ap if R = S, or by rule
rP,i = E/ac ! αk(i, N) if R = P.

We also define an aggregate spike consumption vector Co to denote the com-
bination of CoP and CoS , with the elements arbitrarily ordered.

The plasticity rules have four types of operations, namely + for synapse
creation, � for synapse deletion, ± for successive creation and deletion in two
time steps, and ⌥ for successive deletion and creation. Just as in [7], this is
further illustrated as timers of the form (creation, deletion) follows: starting at
an idle state, the timer is initialized at (0, 0). A + or a � operation will set it
to (1, 0) and (0, 1), respectively. Lastly, the ± and ⌥ operations, having their
component operations done in two consecutive time steps, set the timer to (1, 2)
and (2, 1), respectively. For all of these, the timers count down at every time
step up to 0.

Definition 10 (Timer Matrix). In an SNPSP system Π, the timer matrix at
time k is defined as the matrix

T i(k) =

2

6

6

4

ti
(k)
1,1 ti

(k)
1,2

...
...

ti
(k)
rP ,1 ti

(k)
rP ,2

3

7

7

5

where, for o = [+,�]:

ti
(k)
i,j =

(

t, if rule rP,i is to execute oj at time k + t� 1;

0, otherwise.

We also define a primed timer matrix, T i0(k), which is the timer after ticking
(counting down) at time k, but before rules are fired at time k. Thus T i(k) is
also called the unprimed timer matrix.
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Once we find out a rule should fire at time k, we then start the timer using
the following matrix:

Definition 11 (Timer Start Matrix). In an SNPSP system Π, the timer start
matrix is defined as the matrix

St =

2

6

6

6

4

st1,1 st1,2
st2,1 st2,2
...

...
strP ,1 strP ,2

3

7

7

7

5

where each sti,j would be the value that ti
(k)
i,j should be set to once rule rP,i is to

fire at time k.

For the remaining parts of the plasticity rules as defined, we have the follow-
ing:

Definition 12 (Destination Candidate Matrix). In an SNPSP system Π, the
destination candidate matrix is defined as the matrix

NM =

2

6

4

nm1,1 · · · nm1,m

...
. . .

...
nmrP ,1 · · · nmrP ,m

3

7

5

where

nmi,j =

(

1, if i 2 Nj, for rule rP,j = E/ac ! αk(i, Nj);

0, otherwise.

Definition 13 (Synapse Count Vector). In an SNPSP system Π, the synapse
count vector is defined as the vector

KV = [kv1, · · · , kvrP ]

where each kvi = k, for rule ri = E/ac ! αk(i, Nj).

Finally, for the simulations, we need to keep track of each computation step
and system configuration. Thus, we have the following definitions.

Definition 14 (Spike Gain Vector). In an SNPSP system Π with m neurons,

the spike gain vector at time k is defined as the vector G(k) =
h

g
(k)
1 , · · · , g

(k)
m

i

where each g
(k)
i is the number of spikes gained by the neuron σi in time k, from

other neurons. These gains can also be segregated according to the type of the

rule that caused that gain, as with G
(k)
R =

h

g
(k)
R,1, · · · , g

(k)
R,m

i

where R = P for

plasticity rules and R = S for spiking rules.
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Definition 15 (Spike Loss Vector). In an SNPSP system Π with m neurons,

the spike loss vector at time k is defined as the vector L(k) =
h

l
(k)
1 , · · · , l

(k)
m

i

where each l
(k)
i is the number of spikes lost by the neuron σi in time k from

spike consumption by rule firing. These losses can also be segregated according

to the type of the rule that caused that loss, as with L
(k)
R =

h

l
(k)
R,1, · · · , l

(k)
R,m

i

where

R = P for plasticity rules and R = S for spiking rules.

Definition 16 (System State). In the computations of an SNPSP system Π,
the overall system state at time k is defined as

Cf (k) = hRule(k)|Syn(k)|Conf (k)i

= hFi(k), T i(k), os(k), sp(k)|Sy
(k)
∆

|C(k), Sy(k), T i0(k)i

where Rule(k) is the rule change node, Syn(k) is the synapse change node, and
Conf (k) is the system configuration node, all for time k.

The initial state Cf (0) marks the start of a computation. A computation is
only to be terminated by a halting state Cf (t), where either (1) os(t) has been set
to 2, or (2) t has reached a certain desired maximum time step.

The next few definitions would be for representing and generating computa-
tions and would be very important in the simulation algorithms.

Definition 17 (Computation Trace). Given an SNPSP system Π, a computa-
tion trace of Π is a sequence of nodes {Conf (0), Rule(1), Syn(1), Conf (1), . . .,
Conf (t)} starting with an initial configuration node Conf (0) followed by triples
of nodes of (Rule(k), Syn(k), Conf (k)) representing system states. A computation
trace is said to be valid iff the following conditions are satisfied:

– each system state Cf (k) (after the initial configuration) can be correctly gen-
erated or computed from the previous system state Cf (k�1);

– the initial system state is represented by Rule(0) (not in the sequence but
defined to be filled with 0-values), Syn(0) (also not in the sequence but defined
to be filled with 0-values), and Conf (0);

– the terminating (halting) system step is represented by the last rule change
node Rule(t) either holds os(t) = 2 or t has reached a maximum time step.

Definition 18 (Computation Tree). Given an SNPSP system Π, a computation
tree/graph for Π is a rooted graph where each path from the root (the initial
configuration node Conf (0)) to a leaf (halting configuration node Conf (t)) is a
computation trace for Π. A computation tree is said to be correct if the set of all
paths from the root to the leaves is equal to the set of valid computation traces.

Note that we would allow loops in generating a computation tree, thus making
it more appropriate to call them computation graphs.
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4 Notations and Conventions

Here we would describe the conventions and notations in writing matrices. In
this work, given a matrix Mat, we would refer to the rth row and the cth column
as Matr and Mat(c), respectively. Note that these are both row vectors. For a

matrix with subscripts and superscripts, as with Mat
(k)
x , we would then have

Mat
(k)
x,r and Mat

(k)
x,(c). Since scalars here would usually be written in lowercase, a

particular element of the matrix (say, the (i, j)th) would be denoted by mati,j .
For example, for a matrix

Mat =

2

4

1 2 3
1 2 3
1 2 3

3

5

Mat1 = [1, 2, 3] is the first row, Mat(2) = [2, 2, 2] is the second column (as a row
vector), and mat2,3 = 3 is the value at the intersection of the second row and
third column.

5 Simulation Algorithm

The algorithm is centered on forming the computation tree from a given config-
uration, by first branching out into rule nodes for the rule changes at the current
time. Then, the rule nodes propagate into synapse nodes for the synapse changes
(now for the next time step). Lastly, the synapse nodes branch out into their
own configuration nodes for the system configurations. Note that since we are
only considering nondeterminism in the synapse level, the configuration nodes
will only ever branch out into just one single rule node each.

The simulation main algorithm will go as in Algorithm 1, creating a computa-
tion “tree” (strictly speaking, since identical configuration nodes will be joined,
it is more of a computation graph) up to a specified depth. It creates the graph
by forming the configuration nodes in a breadth-first manner using a queue, then
the subtree of each configuration node (up to two levels) if created in a depth-
first manner. The history of the past configurations (for checking uniqueness) is
created using some arbitrary data structure. The specific methods of the graph
and queue (connect, dequeue, enqueue, pop, push, empty, tooDeep) would not
be specified in detail. Details of the proofs of the following Theorems are given
in Appendix A.

Algorithm 2 will then check the applicability of the rules. This is done using
the P and Q vectors of the given system. The for loop in Line 3 would check
if ani , where ni is the number of spikes in neuron σi, would satisfy the regular
expression for each of the rules. Note that the output spikes are monitored by
Line 9. newFi (in Line 5 returns an all-zero firing vector for rules of type R.
Line 13 would just check if the rule was already fired and is still applying a
plasticity operation, where the timer would be at 0, since it didn’t just start
firing then. The primed timer would just be copied over to the unprimed timer
without changes. Otherwise, if the rule would only start to be applied, then Line
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Algorithm 1: Main Algorithm

1 initializeValues()
/* gets input, initializes matrices & vectors, and generally

initializes system */

2 confs  [Cf (0)]

3 hist  [Cf (0)
! node (Cf (0))]

/* mapping of all prev configurations to their nodes in the

computation tree */

4 while not empty( confs) :

5 conf  dequeue(confs)
6 if not tooDeep( conf) :

7 continue

8 rules  getRules(conf)
9 while not empty( rules) :

10 rule  pop(rules)
11 connect(conf, rule)
12 syns  getSyns(conf, rule)
13 while not empty( syns) :

14 syn  pop(syns)
15 connect(rule, syn)
16 cur getConf(conf, rule, syn)
17 if cur in hist :

18 connect(syn, hist [ cur ] )

19 else:

20 connect(syn,cur)
21 if os < 2 : enqueue(confs,conf)

16 would start the timer. Lastly, Line 18 would return the appropriate rule node.
Details of newRule() would not be given, except for it being the constructor of
rule nodes.

Theorem 1. For an SNPSP system Π, the getRules() function (as described
in Algorithm 2) generates a list of all the applicable rule nodes Rule(k) given
Conf (k�1).

Algorithm 3 would generate each configuration based on the possible com-
binations of candidate neurons nondeterministically selected by plasticity rules.
getCandidates() would generate all permutations for this given these candi-
dates (based from NM and KV and whichever of the synapses are existent on
Sy(k)). It would return a vector of (Sy+, Sy�) pairs.

Theorem 2. For an SNPSP system Π, the getSyns() function (as described
in Algorithm 3) returns Syn(k) given Conf (k�1), and Rule(k).

Lastly, Algorithm 4 is focused on creating the current configuration given the
previous one. First, we note that the kth configuration can be calculated from
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Algorithm 2: Get Rule Nodes

function getRules( conf ) :

1 k  k + 1

2 os(k), sp(k)  os(k�1), 0
3 for each R in {S,P} :

4 Sp (C(k�1)
⇥ SrTR)� PR

5 Fi
(k)

R
 newFi(R)

6 for i from 1 to rR :

7 if (qR,i, Spi > 0 and Spi mod qR,i = 0) or qR,i, Spi = 0 :

8 fi
(k)

R,i  1

9 if R = S and SrS,out,i = 1 : os(k), sp(k)  os(k) + 1, 1

10 else :

11 fi
(k)

R,i  0

12 for i from 1 to rP :

13 if 1 in T i
0(k�1)

i :

14 fi
(k)

P,i  0

15 T i
(k)

i  T i
0(k�1)

i

16 else if fi
(k)

P,i = 1 :

17 T i
(k)

i  Sti

18 return [ newRule(Fi(k),T i(k),os(k),sp(k)) ]

Algorithm 3: Get Synapse Nodes

function getSyns( conf, rule ) :

1 syns  [ ]

2 for each (Sy+, Sy�) in getCandidates(SrP , NM , KV , Sy(k)) :

/* gets a list of all possible combinations of candidate

synapses based on the N of the rule and the previous

synapse connections */

3 Sy
(k)

∆
 Sy

(k)

+
� Sy

(k)

�

4 push(syns, newSyn(Sy
(k)

∆
))

5 return syns

the total gain and the total loss as such:

C(k) = C(k�1) +G(k) � L(k)

We are classifying the gains/losses according to the type of the causing rule, and

thus L(k) = L
(k)
P + L

(k)
S and G(k) = G

(k)
P +G

(k)
S .
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Spike gains from spiking rules can be computed by checking the rules that
fired, then tracing the source neurons of those rules and the destination of their
corresponding out-synapses, therefore:

Theorem 3. For an SNPSP system Π with m neurons and rS spiking rules,
where d : 1, · · · , rS is a total order for the spiking rules, the total spike gain from
spiking rules at time k can be computed using

G
(k)
S = Fi

(k)
S ⇥ SrS ⇥ Sy(k)

On the other hand, plasticity rules can only cause spike gains during synapse
creation. Thus, gains from plasticity rules can be computed by checking the
destination of the newly-created synapses, if any. In symbol form:

Theorem 4. For an SNPSP system Π with m neurons and rP plasticity rules,
where d : 1, · · · , rP is a total order for the plasticity rules, the total spike gain
from plasticity rules at time k can be computed by summing all of the rows of

Sy
(k)
+ using G

(k)
P =

PrP
i=1 Sy

(k)
+,i.

Spikes are only lost on consumption during rule firing. So for both rule types,
this is computed from checking how many spikes are consumed according to the
rules and then checking the source neurons of these rules.

Theorem 5. For an SNPSP system Π with m neurons, rS spiking rules, rP
plasticity rules, where dR : 1, · · · , rR is a total order for the spiking [plasticity]
rules and R = S [R = P], the total spike loss from spiking [plasticity] rules at
time k can be computed using

L
(k)
R = (Fi

(k)
R � CoR)⇥ SrR

where R 2 {S,P}, and � is element-wise multiplication

Theorem 6. For an SNPSP system Π, the getConf() function (as described
in Algorithm 4) returns Conf (k) given Conf (k�1), Rule(k), and Syn(k).

Theorem 7. For an SNPSP system Π (that follows the restrictions assumed
in this paper), Algorithm 1 can correctly simulate the computation of Π and
generate a correct computation tree (graph).

Further algorithm analysis and proof of correctness are detailed in [7], as
summarized in Table 5. In the next section, we give an example of a “run” of
our algorithms in this section to simulate a simple RSSN P system.

6 Example Simulation

In this section we demonstrate the matrix representation and algorithms from the
previous section usingΠex from Figure 1. Note that for the illustrations to follow,
the matrices and vectors that define an aggregate version that combines those
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Algorithm 4: Get Configuration Nodes

function getConf( conf, rule, syn ) :

1 Sy(k)
 Sy(k�1) + Sy

(k)

∆

2 G
(k)

S
 Fi

(k)

S
⇥ SrS ⇥ Sy(k)

3 G
(k)

P
 sumRows(Sy

(k)

+
)

4 L
(k)

S
 (Fi

(k)

S
� CoS)⇥ SrS

5 L
(k)

P
 (Fi

(k)

P
� CoP)⇥ SrP

6 G(k)
 G

(k)

P
+G

(k)

S

7 L(k)
 L

(k)

P
+ L

(k)

S

8 C(k)
 C(k�1) +G(k)

� L(k)

9 for i from 1 to rP do

10 for j from 1 to 2 do

11 ti
0(k)

i,j  max(ti
(k)

i,j � 1,0)

12 return newConf((C(k),Sy(k),T i0(k))

Algorithm Time Complexity Space Complexity Notes

Tree (node count) - O((2e)m
2t/2)

Algorithm 1 O(F (F +mr)) O(F + F r/(m2
)) F = (2e)m

2t/2m2

Algorithm 2 - O(mr)

Algorithm 3 O((2e)m
2t/2m2) -

Algorithm 4 O(mr) -
Table 5. Space and Time Complexities of Algorithms Presented

for plasticity and for spiking rules (i.e. Sr, P , Q, Fi, Co), the arbitrary ordering
as specified in their respective definitions would simply be the concatenation of
those for the spiking rules and for the plasticity rules. In other words, as with
the rule firing vector, the resulting vector would be

Fi(k) =
h

fi
(k)
S,0 · · · fi

(k)
S,rS

fi
(k)
P,0 · · · fi

(k)
P,rP

i

Given the initial values as computed above, the initial configuration of the
system is

Cf (0) = hRule(0)|Syn(0)|Conf (0)i

=

*

⇥

0 0 0 0 0 0
⇤

,



0 0
0 0

�

, 0, 0

�

�

�

�

�

2

6

6

6

6

4

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3

7

7

7

7

5

�

�

�

�

�

⇥

2 0 1 0 0
⇤

,

2

6

6

6

6

4

0 0 0 0 0
0 0 0 1 1
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0

3

7

7

7

7

5

,



0 0
0 0

�

+

(2)

We have already computed for the rule firing vectors and the timer matrix
at time 1, which are
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Fi(1) =
⇥

0 1 0 0 1 0
⇤

(3)
T i(1) =



1 0
0 0

�

(4)

Since we have already decided that rules rS,2 and rP,1 are to fire, we could
proceed to selecting which synapses are to be operated on using rP,1. Since
in the rule source matrix, srP,1,1 = 1 (for plasticity rule number one, for the
first neuron), then the source neuron of rule rP,1 is neuron σ1. The candidate
destination neurons for the same rule are neurons σ2 and σ3, since nm1,2 =
nm1,3 = 1 (for plasticity rule number one, for the second and third neurons).
The operation is o1 = +, given that ti1,1 = 1 (for plasticity rule number one,
for the first neuron). Thus, we are to select kv1 = 1 neuron from these two
candidates to which we would create a synapse to (since the chosen operation is
op1 = + for synapse creation). In the example where Πex computed 4, the first
selected neuron was σ2.

Since rule rS,2 is in neuron σ3 = σout and has fired, we know that it has
caused a spike to be sent to the environment at time 1. Therefore, the output
spike count and indicator are os(1) = 1 and sp(1) = 1.

Afterwards, we could now create the next configuration. We have

Sy
(1)
∆

= Sy
(1)
+ =

2

6

6

6

6

4

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3

7

7

7

7

5

(5)

Sy(1) = Sy(0) + Sy
(1)
∆

= Sy(0) + Sy
(1)
+ � Sy

(1)
�

= Sy(0) + Sy
(1)
+

=

2

6

6

6

6

4

0 0 0 0 0
0 0 0 1 1
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0

3

7

7

7

7

5

+

2

6

6

6

6

4

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3

7

7

7

7

5

=

2

6

6

6

6

4

0 1 0 0 0
0 0 0 1 1
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0

3

7

7

7

7

5

(6)

Now we can use Algorithm 4 to create the matrices for the next configuration.

G
(1)

S
= Fi

(0)

S
⇥ SrS ⇥ Sy

(1) =
⇥

0 1 0 0
⇤

⇥

2

6

6

4

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

3

7

7

5

⇥

2

6

6

6

6

4

0 1 0 0 0
0 0 0 1 1
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0

3

7

7

7

7

5

=
⇥

0 0 0 0 0
⇤

(7)

G
(1)

P
= sumRows(Sy

(1)

+
) =

⇥

1 1 1 1 1
⇤

⇥ Sy
(1)

+
=
⇥

1 1 1 1 1
⇤

⇥

2

6

6

6

6

4

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3

7

7

7

7

5

=
⇥

0 1 0 0 0
⇤

(8)
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1 1
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(1) = L
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S
+ L

(1)

P
=
⇥
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+
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⇤

=
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S
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P
=
⇥

0 1 0 0 0
⇤

+
⇥

0 0 0 0 0
⇤

=
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C
(1) = C

(0) +G
(1)
� L

(1) =
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2 0 1 0 0
⇤

+
⇥

0 1 0 0 0
⇤

�
⇥

1 0 1 0 0
⇤

=
⇥

1 1 0 0 0
⇤

(13)

Finally, the timer matrix would count down, and we would have

T i0(1) =



0 0
0 0

�

(14)

Given the computation as illustrated so far, the current state of the compu-
tation tree is shown in Figure 2.

Conf 0 0
t = 0 0 0

2 0 1 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0

Rule 1 0

0 1 0 0

sp = 1 1 0
os = 1 0 0

Syn

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Conf 0 0
t = 1 0 0

1 1 0 0 0
0 1 0 0 0
0 0 0 1 1
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0

Syn

0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Legend
Conf

T i0(t)
t

C(t)

Sy(t)

Rule Fi
(t+1)

P

Fi
(t+1)

S

sp
T i(t+1)

os

Syn

Sy(t+1)

Fig. 2. Incomplete computation tree for Πex computing {4}
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7 Closing Remarks

The algorithm can be sped up by GPU parallelization on the matrix operations.
If an implementer decides not to check for uniqueness, then the simulation can
be sped up further by performing parallel configuration generations. Otherwise,
the configurations would have to be checked sequentially. If the implementer is
sure that there would be no loops in the computation tree, then they can opt
not to do uniqueness checks.

Future work for this paper includes a software implementation of the algo-
rithm on GPU and CPU using the matrix representation as proof of concept;
and simulation results using the software. As previously mentioned, for this work
we are only dealing with SNPSP systems with determinism on the rule-level.
Lastly, an algorithm is also to be provided for the conversion of such SNPSP
systems without this deterministic restriction into another system that has the
restriction. We also note that at present, the matrix representation seems to
be applicable to asynchronous version of SNPSP systems, see e.g. [2]. In asyn-
chronous mode of rule application, as opposed to the synchronous mode in this
work, at each step a neuron can nondeterministically choose not to apply a rule
even if a rule can be applied. However, the algorithms given in this work must
be modified in order to include this additional level of nondeterminism.

References

1. Cabarle, F.G.C., Adorna, H.N., Mart́ınez-del-Amor, M.Á., Pérez-Jiménez, M.J.:
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9. Mart́ınez-del-Amor, M.Á., Orellana-Mart́ın, D., Cabarle, F.G.C., Pérez-Jiménez,
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A Theorem proofs

Proof for Theorem 1.

Proof. By definition, Rule(k) = (Fi(k), T i(k), os(k), sp(k)). First, given that the
input Conf (k�1) is of the previous time step (fed into the function as Conf (k)),
we first increment k at Line 1 for appropriate usage in the resulting rule node.
Thus we know that the newRules() constructor at Line 18 is of the right time
step. Line 4 evaluates a formula and assigns it to a temporary variable Sp, for
spikes. The formula consists of two parts, the multiplication and the subtraction.
It goes as follows:

Sp =
⇣

C
(k�1)

⇥ Sr
T
R

⌘

� PR

=

✓

h

c
(k�1)

i

i

m
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srR,i,j

i

m⇥rR

◆

�

h

pR,i

i

rR

=

 



X

i

c
(k�1)

i srR,i,j

�

rR

!

�



pR,i

�

rR

Since srR,i,j = 1 if rule rR,i belongs to neuron σj (0 otherwise), and c
(k)
i is the

number of spikes in neuron σi at time k, we have

c
(k�1)
i srR,i,j =

(

c
(k�1)
i , rR,j 2 Ri;

0, otherwise.

Also noting that rules can only be associated with one neuron, we can then

conclude that
P

i c
(k�1)
i srR,i,j is the number of spikes in the source neuron of

rule rR,j . We let rspR,i be this number. Now that we know each rule’s respec-
tive source neuron spike count, we can now use the P and Q vectors to check
compatibility with the rule’s respective regular expression. Thus

Sp =

 



X

i

c
(k�1)

i srR,i,j

�

rR

!

�



pR,i

�

rR

=
h

rspR,i

i

rR

�

h

pR,i

i

rR

=
h

rspR,i � pR,i

i

rR

With s being the current spike count of a certain neuron, we need to match
as with ap(aq)⇤ = ap+qn, and thus we need to make sure s = p + qn for some
nonnegative integers p,q, and n. So we first subtract p in Line 4, and check for
qn in the if clause of Line 7. There are two cases for as to match the regular
expression. First, if there is a non-zero q for the rule. If there is, there should
be no problem using Spi mod qR,i = 0 (so long as Spi isn’t negative, in which
case rspR,i � pR,i = s � p < 0). The other case would be if q = 0, in which
case the regular expression is of the form ap. Thus p+ qn = p, a constant, and
so s = p + qn can only be satisfied if s � p = rspR,i � pR,i = 0. If the regular
expression is matched, fiR, i(k) = 1; otherwise, = 0. Since the loop of Line 6
iterates over all the rules of type R, and that R goes through both P and S
(Line 3), these two loops go over all of the rules. Thus Fi(k) now tells us which
rules have matched their regular expressions and can fire.
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os(k) would by default copy the value from the previous time step, os(k),
while sp(k) would stay at 0. The former would only increase and the latter be
set to 1 if an output spike was discovered to be sent to the environment at time
k. This condition is checked by the if clause at Line 9, which would only be
reached if rule rR,i were to fire at time k for the given values of R and i. Thus,
we only need to check if this rule sent an output spike. Since only spiking rules
can send spikes to the environment, the condition at Line 9 should check if the
given rule was a spiking rule (R = S) and if the current rule belonged to the
output neuron (SrS,out,i = 1). Thus, os(k) and sp(k) are now computed correctly.

Lastly, the timer matrix T i(k) would only be touched in the for loop of Line
12. For each plasticity rule, we first check if the rule already fired at the previous
time step (Line 13) and is still executing at the current time step (as with the
± and ⌥ rules). This could be checked by looking for a 1 in the primed timers

of the said rule from the previous time step (T i
0(k�1)
i ), since the timers have

already counted down after initial rule firing. fi
(k)
P,i is simply marked as 0 since

the rule isn’t allowed to fire anew if it is still executing, and just copies the
previous primed timers onto the current unprimed timers. Otherwise, if the rule
isn’t to execute a second operation at the current time step, we check if it fired

anew at the current time step (Line 9). Since Fi
(k)
R now shows which rules are

applicable (unless ongoing execution), we can now be sure that the rules will be
applied at time step k and thus we start the timer (Line 17). Given that, we are
now sure that Fi(k) and T i(k) are now computed correctly.

Therefore, we are now sure that os(k), sp(k), Fi(k), and T i(k) are computed
correctly. newRule() is thus sure to be fed the correct arguments, and will return
the correct rule node.

Proof for Theorem 2.

Proof. Here, we return a list of all possible synapse nodes Syn(k). getCandidates()
has not been specified in this paper, and is assumed to return a list of all possible
combinations of created/deleted synapses based on permutations of destination
neurons and synapse counts of applicable plasticity rules. Given this, we are

ensured that Sy
(k)
+ and Sy

(k)
�

are the appropriate synapse creation and deletion

matrices of each synapse node to be created. Thus, Sy
(k)
∆

would then hold the
appropriate synapse change matrix for the same synapse node and would thus
be appropriately passed onto the constructor for Syn(k) and be included in the
return list. Therefore, getSyns() returns the correctly computed synapse nodes
appropriate for the given rule node.

Proof for Theorem 3.

Proof. Given the definitions of FiS , SrS , and Sy, we have
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Since fi
(k)
S,i = 1 if rule rS,i has spiked at time k (0 otherwise), and srS,i,j = 1 if

rS,i belongs to neuron σj (0 otherwise), we have

fi
(k)
S,isrS,i,j =

(

1, rS,i 
(k) 2 Rj ;

0, otherwise.

Thus
P

i fi
(k)
S,isrS,i,j is the number of spiking rules that have spiked at time k

from neuron σj . However, given that we have restricted neurons to only fire a
maximum of one rule each, the value of this summation will only ever be 0 or
1, only indicating whether the neuron had a spiking rule fire or not. Continuing

further, sy
(k)
i,j = 1 if neuron σi is connected to σj at time k (0 otherwise), so
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Spiking rules can only cause spike gains in a destination neuron if some other
source neuron fires a spiking rule to the said destination, and so we finally have
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Proof for Theorem 4.

Proof. Since plasticity rules can only cause spike gains by creating synapses
(because creating synapses would inherently send one spike to the destination

neuron), we only need to check Sy
(k)
+ . Given the definition of Sy+ we have
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Proof for Theorem 5.

Proof. Both spiking and plasticity rules can only cause spike loss through spike
consumption upon rule firing. Thus,
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Since srR,i,j will only have a nonzero value if rule rR,i is in neuron σj , we have

rR,i 
(k)
c srR,i,j =
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rR,i 
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c , rR,i 2 Rj ;

0, otherwise

Spike losses will only ever be caused by spike consumption from rule firing in a

given neuron. Thus, also given the definition of σj 
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Lines 9–11 would tick the timer to get T i0(k), by manually decreasing each ele-
ment of the matrix by 1 unless the value is 0.

Proof for Theorem 6.

Proof. By definition, Conf (k) = (C(k), Sy(k), T i0(k)). Lines 1 to 8 have been
proven to correctly compute for C(k) and Sy(k). The loop in Line 9 iterates over
all plasticity rules, while the inner loop of Line 10 goes over the two plasticity
operations creation (1) and deletion (2). Line 11 would then either count down

the current unprimed timer (ti
(k)
i,j � 1), or keep it at zero (max). Thus, the loops

correctly compute for T i0(k). Line 12 thus returns the correct configuration node
via the constructor for Conf (k), being passed the correct arguments for C(k),
Sy(k), and T i0(k).

Proof for Theorem 7.

Proof. The first three lines are just for initialization. The loop in Line 4 iter-
ates over the configuration nodes in a breadth-first manner (seen by the use
of dequeue and enqueue). Line 6 would cut off the computation graph once
it reaches a given depth. The loop in Line 9 would go through the rule nodes,
connecting them to configuration nodes first before heading to the loop in Line
13. This loop would go through the synapse nodes and connect them to the rule
nodes, and then generates a new configuration node in Line 16. These two in-
ner loops, from the rule nodes down to the immediate next configuration nodes,
would generate these three levels in a depth-first manner (as seen with pop and
push). Essentially, what happens is (1) given a configuration node, generate the
subtree of these configuration nodes up to three levels in depth-first manner, (2)
go through these configuration nodes in breadth-first manner.
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Abstract. As an important variant of membrane computing models, fuzzy rea-

soning spiking neural P systems (FRSN P system) was introduced to build a link

between P systems and fault diagnosis applications. FRSN P system offers an

intuitive illustration based on a strictly mathematical expression, a good fault-

tolerant capacity, a good description for the relationships between protective de-

vices and faults, and an understandable diagnosis model-building process. How-

ever, the implementation of FRSN P system is a manual process, which is a time-

consuming and very hard task, especially impossible to perform for large scale

networks. In this work we developed a software system for automatically fulfill-

ing the task, named as Membrane computing fault diagnosis system (MCFDS).

The system consists of input, output and four subsystems containing network

topology analysis, suspicious fault component analysis, construction of FRSN P

system for suspicious fault components and fuzzy inference. Also, the feasibility

of the FRSN P system is checked on the IEEE14 node system.

Keywords: Membrane computing; P system; Fuzzy reasoning spiking neural P

system; Fault diagnosis; Power system

1 Introduction

As a branch of natural computing, membrane computing was introduced by Păun in

1998 [1]. The distributed parallel computational model is called a membrane system or a

P system. Membrane computing aims to investigate the computational models and their

applications abstracted from the structure and functioning of cells [3]. A large number

of studies show that many variants of P systems are Turing complete [2,4,6,7,29]. More-

over, distributive, maximally parallel and expansibility [8] make P systems suitable for

solving a variety of practical problems [5,10,13,26,37].

With the development of membrane computing, many types of membrane systems

are proposed [11,12,14,15,16,17]. The spiking neural P systems is a hot research topic

of neural P systems [19,20,21,22,24,25], which was introduced by Ionescu et al in 2006

[18]. Fuzzy reasoning spiking neural P system (FRSN P system) was introduced to build

⋆ Corresponding author.
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Fig. 1. System frame structure

a bridge between the P systems and fault diagnosis for electric power systems [8,28].

FRSN P system offers an intuitive illustration based on a strictly mathematical expres-

sion, a good fault-tolerant capacity, a good description for the relationships between

protective devices and faults, and an understandable diagnosis model-building process

[8,23,40]. According to the investigations reported in literature, FRSN P system have

been successfully used to diagnose the faults occurring in transformers [28,44], power

transmission networks [40], traction power supply systems of high-speed railways [38],

metro traction power systems [41] and fault classification of power transmission lines

[43].

In [39], several questions on FRSN P system were mentioned. Is FRSN P system

suitable for large-scale power transmission networks? How is the complexity of the

FRSN P system? Is the FRSN P system performance superior to other diagnosis meth-

ods like Petri Nets, with respect to diagnosis time, fault section misinformation rate,

fault section missing rate and computational complexity? Until now, FRSN P system

for fault diagnosis is implemented in a manual way and therefore it is impossible to

provide the answers to these questions. This is the motivation for this work.

In this paper, a software system has been developed for automatically fulfilling the

task and it is called Membrane Computing Fault Diagnosis System (MCFDS). The

system consists of input, output and four subsystems: network topology analysis, sus-

picious fault component analysis, construction of FRSN P system for suspicious fault

components and fuzzy inference. Furthermore, the feasibility of MCFDS is checked on

the IEEE14 node system.

2 MCFDS

The Membrane Computing Fault Diagnosis System (MCFDS) consists of mainly three

components, i.e., input, output and subsystems. The main components of the subsys-

tems are network topology analysis, suspicious fault component analysis, construction

of FRSN P system for suspicious fault components and fuzzy inference. The input data

is composed of topology data of power systems and protection configuration data. The

outputs include fault component information, protective relays information and circuit

breakers operation evaluation. The schematic structure of MCFDS is shown in Fig. 1.
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2.1 Input Data

The source of the information of the fault diagnosis program is the grid static data

and switch state data based on fault information system. In this paper we use access

database to store network topology information and protection configuration informa-

tion. The static topology information and protection configuration information of the

power network give as input into the access database to form the topology table and

protection configuration table. Therefore, the input data of FRSN P system for fault

diagnosis consists of two parts: topology data of a power system and protection config-

uration data.

2.1.1 Topology Data of Power Systems

In this paper we mainly discuss the fault diagnosis methods in power transmission

network. Moreover, this paper improves the traditional line analysis [9] and redefines

the components, i.e., transmission lines, busbars, transformers and generators. The cir-

cuit breakers work as switches.

The “Component” and “Switche” that appear in the following sections are defined

in the following manner. A Power system is made up of components and switch devices

which connect a variety of other equipments. So, the whole electric power system grid

network can be represented by the power transmission network topology as shown in

Fig. 2. The components shown in the figure refer to the transmission lines, busbars,

transformers and generators. The switches refer to the circuit breakers with two states:

open and closed.

Component 1 Component 2

Component 5

Component 3 Component 4

Switch 4

Switch 1 Switch 2 Switch 3

Fig. 2. Schematic diagram of power transmission network topology

After there is a failure, because of the grid power system components and complex

wiring, it is very difficult to find the faults in huge systems. But whenever fault occurs

in a power system, the protective relays and circuit breakers will operate to isolate the

fault. We investigate the actions of protective relays and tripped circuit breakers in the

network and the connection relationship between them. Fig. 2 shows a simple and clear

power transmission network topology of the connection relation between components

and circuit breakers. Then the fault component is searched according to the tripped

circuit breakers.

The following topology table is constructed from the components and switches of

the entire power transmission network topology. The table stores the data of the main
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components and switches along with their connection relationships and the protection

number associated with each component.

ID 

number 

Switches 

operation 

Component

/switch 
Type 

Type 

number 

Associated 

components/switches 

Associated 

protective relays 

10108 -- B08 Bus 101 CB0807.CB08G2 
10110108. 

21310214 

Fig. 3. The topology table

2.1.2 Protection Configuration Data

The SCADA system can provide the tripped circuit breakers and operated protec-

tive relays information whenever there is a fault in the grid. Moreover, the data of the

components, protective relays and circuit breakers are used to construct the correlation

database.

The correlation relationships are introduced in [30,33,34] in the following manner:

Component - Protective relay means that the protective relays can be divided into the

main protective relays of the component and one of the first backup protective relays;

Protective relay - Switch means that the circuit breaker can trip in principle once the

protective relays operation is performed;

Component1 - Component2 relates to the scope of protection of the second backup

protective relay of component1 which can protect component2.

With these correlations, the protection configuration table can be described as fol-

lows:

ID 

number 

Protective 

relay 

Relays 

operation 

Operated 

switches 

Protected 

equipment 

10110113 Main_ protective relay 0 10426.10438.10439 B13 

Fig. 4. The protection configuration table

2.2 Network Topology Analysis Subsystem

After the failure in the power system transmission network, the fault component is

eventually isolated by tripped circuit breakers. Moreover, the fault component will be

isolated in the passive network. We have elaborated in section 2.1, the entire topol-

ogy database and protective relay database. Also, have established the corresponding

topology table which represents the correlation between the whole transmission net-

work topology structure and protective relays. Whenever a failure occurs in the power
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system transmission network, at first the information is received from SCADA system

by circuit breaker opening and closing state, and then the suspicious fault component is

found by using the network topology analysis method. The specific network topology

analysis method is as follows:

(1) Set up M, and store all component IDs into M;
(2) Set up the subset N. Take a component from the set M and put it in the subset

N. Find all closed circuit breakers connected to it. If there is no closed circuit

breaker, then turn to step (5);
(3) Identify the components connected to the closed circuit breaker and add the

found components to the subset N;
(4) Continue to search for closed circuit breakers that are connected to the compo-

nents in step (3) (except for circuit breakers used in step (3)). If there is a closed

circuit breaker, go to step (3);
(5) Remove all components in the set M that appear in the subset collection N. If the

set M is not empty, then transfer to step (2);
(6) List all the subsets N.

In fault diagnosis, the network topology analysis method is used to search all sub-

sets, and then the passive networks are found from these subsets. This passive networks

are the outage areas. In this way, the diagnosis scope can be reduced and then the sus-

picious fault component is diagnosed. It also reduces the amount of operations and

improves the efficiency of fault diagnosis. The process of the searching of the passive

networks is shown in Fig. 5.

Tripped circuit breaker 

information, topology 

data of power system

Store all components

ID into setM

Set up the subset N

Take a component from the set 

M and put it in the subset N

Whether there

is a closed circuit breaker connected to 

the component?

The set M is empty

Take the components of 

the subset N from the set M

Find the component that are 

connected to the closed circuit 

breaker and add the subset N

List all the subsets

Find the passive 

networks

No

Yes

No

Yes

Suspicious fault 

components

Fig. 5. Search the outage area flow chart
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2.3 Suspicious Fault Component Analysis Subsystem

The network topology analysis method is used to find a passive network and the di-

agnosis of the suspicious fault components in the passive network. The modelling of

FRSN P systems is very complex because of the existence of many components in the

complex grid network. In order to improve the diagnosis efficiency and accuracy of the

algorithm, in this paper, we introduce the concept of suspected fault component logic

analysis. At first a logic diagram is constructed in such a manner that the suspected

fault component is considered as the starting point. Then it searches and builds towards

each connection to protect the component within the scope of the protection of all com-

ponents and switches. The FRSN P system model is constructed according to the fault

production rules of the suspected fault components. Hence the fault area is reduced and

the fault component is identified.

In the logic diagram the suspicious component along with other system components

and switches in the passive network are represented by a node and the edge between

the two nodes represents the connection between the components and switches. The

directional of the protective relay is used as the direction information. Moreover, the

condition of the path search termination is:

(1) The search is complete when all the protective relays and switches that can pro-

tect the suspicious fault components are searched on different paths.

(2) If the search path is disconnected from the peripheral device due to normal opera-

tions (such as the operation of the blade, etc.), then the search will be terminated.

(3) If the search direction is opposite to the rule, the search path will terminate.

(4) Search for a loop structure or parallel edge structure on the search path, and if it

exists then terminate this direction search.

The logic diagram of the suspected fault component describes the topological as-

sociation of the suspected fault components and its associated protection in the power

grid. The following example illustrates the method of forming the logic diagram of the

suspected component. In Fig. 6, it is assumed that the suspicious fault component is B3

by the method of network topology analysis. The logic diagram of the suspected fault

component is established by bus B3 in three paths: B3 −→ CB5 −→ L3 −→ CB2;

B3 −→ CB6 −→ L4 −→ CB7; B3 −→ CB9 −→ L5 −→ CB10, respectively.

Moreover, the mutual cooperation between the protective relay and circuit breaker will

cut off the connection with the whole grid.

2.4 Subsystem For Modeling Suspicious Fault Components with FRSN P system

Before performing the reasoning algorithm, we need to build a FRSN P system diagno-

sis model. A local grid is shown in Fig 6 and the network topology analysis subsystem

obtains the bus B3 as the suspicious component. Also, the bus B3 and line L4 are used

to build the FRSN P system fault diagnosis model.

At first, the bus B3 in Fig. 6 is used to describe the model where the fault confidence

level of bus B3 is the value of output of the FRSN P system. Moreover, we discussed the

mutual cooperation between the protective relay and circuit breaker by the suspicious
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Fig. 6. A local grid

fault component logic diagram in Section 2.3. The fault production rules of bus B3 are

described as follows:

R1: IF (B3m operates and CB5 trips ) OR (L3Ss operates and CB2 trips ) THEN

B3 faults ( CF = ci),

R2: IF (B3m operates and CB6 trips ) OR (L4Rs operates and CB7 trips ) THEN

B3 faults ( CF = ci),

R3: IF (B3m operates and CB9 trips ) OR (L5Ss operates and CB10 trips ) THEN

B3 faults ( CF = ci).

Following fault diagnosis model based on FRSN P system for bus B3 are built according

to these fault production rules shown in Fig. 7(a). The FRSN P system Π is a construct

of the form:

Π = (O,σp1, . . . ,σp22,σr1, . . . ,σr10, syn, in, out)

where

(1) O = {a} is the singleton alphabet (a is called spike);

(2) σp1, . . . ,σp22 are proposition neurons corresponding to the propositions with

fuzzy truth values θ1, θ2, . . . , θ22;

(3) σr1, . . . ,σr10 are rule neurons, where σr1, . . . ,σr6 and σr10 are and rule neu-

rons and σr7,σr8,σr9 are or rule neurons. A real number ci ∈ [0, 1] is used to

represent the certainty factor (CF) of the fuzzy production rule associated with

σri (1 ≤ i ≤ 10) ;

(4) syn ⊆ {1, 2, . . . , 22}× {1, 2, . . . , 10} with i ̸= j for all (i, j) ∈ syn, 1 ≤ i, j ≤

22, is a directed graph of synapses between the linked neurons;

(5) in = {σp1, . . . ,σp12}, out = {σr10}.

The transmission line L4 in Fig. 6 is used to describe model building of transmission

line, where the fault confidence level of transmission line L4 is the value of output of
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the FRSN P system. The fault production rules of transmission line L4 are described as

follows:

R1: IF (L4Sm operates and CB6 trips ) OR (L4Sp operates and CB6 trips ) OR

(Second backup protection operates and CB trips ) THEN L4 faults ( CF = ci),

R2: IF (L4Rm operates and CB7 trips ) OR (L4Rp operates and CB7 trips ) OR

(Second backup protection operates and CB trips ) THEN L4 faults ( CF = ci).

Therefore, fault diagnosis model based on FRSN P system for transmission line L4

are built according to the fault production rules shown in Fig. 7(b).
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Fig. 7. Suspect fault components FRSN P system model

In order to make the reasoning reflect the operation of the actual power grid more

accurately, the uncertain factors in the protection and the circuit breaker action infor-

mations are obtained from the power system dispatching center. In this paper, the initial

confidence level setting of operate and non-operate protective relays and circuit break-

ers are given in [45], as shown in Table 1 and Table 2 respectively. At the same time,

considering the uncertainty of the rule credibility, the certainty factor ci of each fuzzy

production rule is considered to be 0.95.

Table 1. Confidence levels of operate protective devices

Components Main First backup Second backup

Name Relays CBs Relays CBs Relays CBs

Bus 0.8564 0.9833 - - 0.7 0.75

Line 0.9913 0.9833 0.8 0.85 0.7 0.75
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Table 2. Confidence levels of non-operate protective devices

Components Main First backup Second backup

Name Relays CBs Relays CBs Relays CBs

Bus 0.2 0.2 - - 0.2 0.2

Line 0.2 0.2 0.2 0.2 0.2 0.2

In this paper, a proposition neuron is used for all second backup protective relays

and circuit breakers at both ends of the line. If there are multiple second backup protec-

tive relays, a factor µ is applied before the confidence level of the proposition neuron,

and the two ends of the line (S end and R end) respectively.

µ1 =
Number of protective relays (circuit breaker) for S end operation

Number of all protective relays (circuit breakers) on the S end
(1)

µ2 =
Number of protective relays (circuit breaker) for R end operation

Number of all protective relays (circuit breakers) on the R end
(2)

The automatic generation of the FRSN P system model is shown below:

Step 1: According to the suspected fault component logic diagram, take one path

of the suspected fault component logic diagram, and the components and switches

involved in the path can be expressed as a fault production rule.

Step 2: Set up two set θ and δ, where θ is the proposition neurons corresponding to

the propositions with fuzzy truth values. The initial value setting of the correspond-

ing protective relay and circuit breaker of the first layer of proposition neurons in

the FRSN P system model is set by the information of the input from SCADA sys-

tem. δ is the certainty factor which is added to describe the credibility of the fuzzy

generated rules of the neuron.

Step 3: Store the values of θ and δ according to the confidence levels of operate and

non-operate protective relays and circuit breakers in the first path.

Step 4: Repeat the first three steps until all the values of θ and δ represented by the

paths are added corresponding to one branch direction.

2.5 Fuzzy Inference Subsystem

After obtaining the confidence level of the proposition expressed by the proposition

neuron and the certainty factor value of the rule neuron, the next step is to carry out the

reasoning operation. By executing the following reasoning algorithm, the fuzzy values

of the propositions are represented by the output proposition neurons which can be

obtained quickly and simply. Specific algorithm steps [40] are as follows ( where s

represents the number of proposition neurons, t represents the number of rule neurons

and s+ t = m):
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Step 1: Set the initial state to g = 0. Set the termination condition to 0 = (0,

. . . , 0)
T

1×t. The initial values of θ and δ are set to θg = (θ1g, θ2g, . . . , θsg)
T and

δg = (δ1g, δ2g, . . . , δtg)
T , respectively;

Step 2: g is increased by one;

Step 3: The firing condition of each input neuron (g = 1) or each proposition neuron

(g > 1) is evaluated. If the condition is satisfied and there is a presynaptic rule neuron,

the neuron fires and transmits a spike to the next rule neuron. Compute the fuzzy truth

value vector δg according to (3):

δg = (DT
1 ⊗ θg−1) + (DT

2 ⊕ θg−1) + (DT
3 * θg−1) (3)

Step 4: If δg = 01, then the algorithm stops and output the reasoning results. Oth-

erwise, the algorithm continues.

Step 5: Evaluate the firing condition of each rule neuron. If the condition is satisfied,

then the rule neuron fires and transmits a spike to the next proposition neuron. Further,

compute the fuzzy truth value vector θg according to (4). Then, the algorithm goes to

Step 2:

θg = E
T * (C ⊗ δg) (4)

Parameter vectors and matrices are described in the following manner:

(1) θ = (θ1, θ2, . . . , θs)
T is a real truth value vector of s proposition neurons. θi(1 ≤

i ≤ s) is a real number in [0, 1] and represents the potential value contained in the

ith proposition neuron. If there is no spike in a proposition neuron, its potential

value is 0.

(2) δ = (δ1, δ2, . . . , δt)
T is a real truth value vector of t rule neurons. δj(1 ≤ j ≤ t)

is a real number in [0, 1] and represents the potential value contained in the jth

rule neuron. If there is no spike contained in a rule neuron, its potential value is

0.

(3) C = diag(c1, c2, . . . , ct) is a diagonal matrix, where cj(1 ≤ j ≤ t) is a real

number in [0, 1] representing the certainty factor of the jth fuzzy production

rule.

(4) D1 = (dij)s×t is a synaptic matrix representing the directed connection from

proposition neurons to general rule neurons. If there is a directed arc (synapse)

from the proposition neuron σi to the general rule neuron σj , dij = 1, otherwise,

dij = 0.

(5) D2 = (dij)s×t is a synaptic matrix representing the directed connection from

proposition neurons to and rule neurons. If there is a directed arc (synapse)from

the proposition neuron σi to the and rule neuron σj , dij = 1, otherwise, dij = 0.

(6) D3 = (dij)s×t is a synaptic matrix representing the directed connection between

proposition neurons and or rule neurons. If there is a directed arc (synapse) from

the proposition neuron σi to the or rule neuron σj , dij = 1, otherwise, dij = 0.

(7) E = (eji)t×s is a synaptic matrix representing the directed connection between

rule neurons and proposition rule neurons. If there is a directed arc (synapse)

from the rule neuron σj to the proposition neuron σi, eji = 1, otherwise, eji = 0.

Subsequently, we introduce the following three multiplication operations:
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(1) D
T ⊗ θ = (d̄1, d̄2, . . . , d̄t)

T , where d̄i = d1j ∗ θ1 + d2j ∗ θ2+ . . . +dsj ∗ θs,

j = 1, 2, . . . , t.
(2) D

T ⊕ θ = (d̄1, d̄2, . . . , d̄t)
T , where d̄i = min{ d1j ∗ θ1, . . . , dsj ∗ θs}, j = 1, 2,

. . . , t.

(3) E
T * θ = (ē1, ē2, . . . , ēs)

T , where ēi = max{ e1i ∗ δ1, . . . , eti ∗ δt}, i = 1, 2,
. . . , s.

Through the network topology analysis algorithm to find the passive region, and

to diagnose the suspicious fault components in the passive region one by one. At first,

the suspicious fault component analysis subsystem is called to form the logic diagram

of the suspicious fault components, and then the FRSN P system diagnosis model is

formed by the query protection configuration data. Finally, by calling FRSN P system

inference algorithm, the fault confidence levels of the suspected fault components is

obtained and the fault of the components is determined to realize the whole diagnosis

process.

3 Experiments

To verify the effectiveness of the programmed implementation, the IEEE14 node pow-

er system network model shown in Fig. 8 is tested. It is a 14-bus system containing

B01 ∼ B14 14 buses and L0102 ∼ L1314 20 lines. The protective device consists of

134 protective relays, 40 circuit breakers, and B01m . . .B14m are the main protective

relays of the buses. Moreover, LXSm and LXRm are the main protective relays on both

ends of the line, LXSp and LXRp are the first backup protective relays on both ends of

the line, LXSs and LXRs are the second backup protective relays on both ends of the

line (where X represents the ID of the line). Before diagnosing the suspected fault com-

ponent, the components and switches of the entire power transmission network must

adopt the method described in the section 2.1 to construct their respective topology

table.The detailed protection configuration of various components, as well as the rela-

tionship between the protective relays and the circuit breakers have been represented

by the corresponding database in Fig. 9 and Fig. 10. Furthermore, the whole diagnosis

process is carried out in the MATLAB environment. We give an example to illustrate

the steps of MCFDS.

Case: bus B13 has a fault

(I). Operated relays: B13m; Tripped circuit breakers: CB1306, CB1312, CB1314.

(II). Call the network topology analysis algorithm to get the passive zone {13}.

(III). To query the topology database of power system, the corresponding logic dia-

gram of suspected fault components is formed, as shown in Fig. 11.

(IV). According to logic diagram of suspected fault components, query protection

configuration database is used to form a FRSN P system model, as shown in Fig. 12.

(V). The protective relays and circuit breakers operation information are obtained

from the dispatching center. Then according to Tables 1 and 2, the corresponding

proposition neurons are constructed in the FRSN P system model with initial values,

and a pulse is inserted into each initial proposition neuron to start the ignition.

(VI). The FRSN P system algorithm is invoked to perform inference operations on

suspicious fault components.
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Fig. 9. IEEE14 node power system network topology database
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Fig. 10. IEEE14 node power system network protection configuration database

B13

CB1314 CB1306

CB1312

L1213 L0613

CB1413

L1314

CB0613CB1213

Fig. 11. B13 Logic diagram

The reasoning process is as follows:

(1) Parameter initialization: g = 0, θ0 and δ0 are set according to the pulse values

contained in each neuron, i.e., θ0 = (0.9833, 0.8564, 0.2, 0.2, 0.9833, 0.8564,
0.2, 0.2, 0.9833, 0.8564, 0.20.2, 0, . . . , 0)T , δ0 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T .

(2) g = 1,

θ1 = (0, . . . , 0, 0.8136, 0.19, 0.8136, 0.19, 0.8136, 0.19, 0, 0, 0, 0)T ,

δ1 = (0.8564, 0.2, 0.8564, 0.2, 0.8564, 0.2, 0, 0, 0, 0)T .

(3) g = 2,

θ2 = (0, . . . , 0, 0.7729, 0.7729, 0.7729)T ,

δ2 = (0, 0, 0, 0, 0, 0, 0.8136, 0.8136, 0.8136, 0)T .

(4) g = 3,

θ3 = (0, . . . , 0, 0.7343)T ,
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Fig. 13. Fault diagnosis program simulation results

δ3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0.7729)T .

(5) g = 4, δ4 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T = 0. The termination condition is satisfied

and output is obtained.

The fault component confidence level of bus B13 is 0.7343, according to the de-

cision rule. Bus B13 is the fault component. The diagnostic results in the form of a

graphical user interface have been displayed in Fig. 13.

(VII). Protective relays and circuit breakers perform all operations normally.
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4 Conclusions

In this paper, the whole diagnosis process of power system fault diagnosis is based

on FRSN P system and is realized by programming. The whole diagnostic algorithm

includes: data structure module, power grid topology analysis algorithm module, suspi-

cious fault component logic analysis algorithm module, and FRSN P system inference

algorithm module. IEEE14 node is discussed to verify the diagnosis algorithm pro-

gram. The diagnosis of the results are consistent with manual calculation results, which

verifies the feasibility and reliability of automatic diagnosis algorithm procedures. The

FRSN P system is used for fault diagnosis of the entire program diagnostic algorithm

and also the speed and complexity of the various modules have been studied. Moreover,

the programming method can be adopted to improve the automation of fault diagnosis

to explore the superiority of fault diagnosis method based on FRSN P system in large

scale power grid fault diagnosis with more nodes.
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18. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae,

71(2-3), 279-308 (2006).
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Abstract: This paper proposed a new electrical synaptic transmission-based
Spiking Neural P system (SNP system) based on SNP systems. Some new
elements are added into the original definition of SNP systems, such as new
synapses, bidirectional model, two types of neurons and canceling the delay
of axon. Because SNP system is easy to express the logical relationship be-
tween graphics and has strong ability to process information in parallel, the
bidirectional characteristics of electrical synaptic transmission is effectively
combined with the electrical quantity (direction of current) for fault loca-
tion of distribution network with distributed generations (DGs) in this paper.
The fault location model and reasoning algorithm of the electrical synap-
tic transmission-based SNP system are studied with the advantages of high
accuracy, less computation, simple and intuitive model and reasoning. Fur-
thermore, the algorithm is applied reasonably in the bidirectional power flow
characteristics of distribution network with DGs. Finally, this paper verifies
the effectiveness, accuracy and reliability of the method through two cases
which involve the single fault, multiple fault and misinformation fault.
Keywords: distribution network with DGs; fault location; Electrical Synaptic
Transmission-Based Spiking Neural P System

1 Introduction

With the large-scale DGs (distributed generation) access to the distribution
network, the traditional single centralized power generation mode shifts to
the power generation mode which combines the centralized and distributed
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power generation mode, which changes the power flow structure and operation
mode of the passive distribution network, making the fault location process
more complicated. The traditional protection strategy of the passive distri-
bution network is no longer applicable. It is of great significance to study a
new method of fast and accurate fault location for the reliability of power
generation with DGs [1]-[2].

In order to eliminate the influence of DGs and meet the development needs
of the distribution network, many new methods of fault location have been
proposed in recently years. Ref. [3]-[4] proposed a method based on high fre-
quency impedance, which is only suitable for phase-to-phase faults and ground
faults in neutral grounded power systems, and the scope of application is very
limited. Ref. [5]-[6] proposed a method of fault location based on single-ended
impedance and a method of fault location based on double-ended impedance
respectively. And these methods have advantages of less investment and sim-
ple principles, but are greatly affected by the line impedance and the feeding
power of distribution power supply in the system. Ref. [7] proposed a matrix
algorithm for fault location, which is easy to implement, but it only applies
to a single fault of the single power distribution network. Ref. [8] proposed an
improved matrix algorithm with higher accuracy but this algorithm requires
actual amplitude of short-circuit current and great computational complex-
ity. The method based on electrical quantity, such as the method of fault
diagnosis using three-phase current proposed in Ref. [9] with simple princi-
ples, which is easy to understand, but it is not easy to implement. Ref. [10]
proposed a Petri net-based method with simple principles and complicated
calculation. The optimization algorithms used in distribution networks with
DGs include: Particle Swarm Optimization Algorithm (PSO), Heuristic Algo-
rithm [11], Heuristic Method [12], Ant Colony Optimization Algorithm [13],
QPSO Algorithm [14], etc. However, these algorithms generally have the dis-
advantages of great computational complexity major calculation and easy to
get into local optimum. Ref. [15] proposed a neural network-based approach
that focuses on the improvement of neural networks and is only applicable
to single-phase faults and three-phase faults. Nonetheless, most of the ANN-
based diagnosis systems suffer from the black-box phenomenon since it is
difficult to extract domain knowledge encoded in a trained network to explain
its results intuitively. In addition, the performance of ANN-based diagnosis
systems is highly restricted without the extensive confirmation of the quality
of training process and the quantity of training samples.

Membrane computing (also known as P system) is a new branch of natu-
ral computing, proposed in 1998 by Gheorghe Pǎun [16]. The Spiking Neural
P system (SNP system) is one of the three main types of P systems, which
is a distributed parallel computing model with good comprehensibility [17].
The spiking neural membrane system has the characteristics of strong dis-
tributed parallel computing capability, information processing capability and
image graphics capability, which is suitable for solving problems such as fault
information redundancy, complicated process and fault misjudgment in the
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process of fault identification and fault location. In Ref. [18]-[26], several SNP
systems are proposed and the synapses mentioned in the variants are all chem-
ical synapses; chemical synapses rely on chemical signals for the transmission
of neural information, which can only be transmitted in one direction, while
electrical synapses can transmit spikes quickly and directly between neurons
without the delay of axon [27]-[28].

In the brain neural network, the interconnection of neurons is called
synapse [29]-[30]. Based on the SNP systems, this paper combines the bidi-
rectional characteristics of electrical synaptic transmission into SNP systems,
the bidirectional characteristic of electrical synaptic transmission corresponds
to the bidirectional power flow of distribution networks with DGs, and the
delay of axon is reasonably canceled. In the meantime, the rules are on the
electrical synapse, so that each synapse can use different rules, and a method
of fault location for distribution network with DGs using electrical synap-
tic transmission-based spiking neural P system is proposed [31]. At the same
time, for sub-areas of the distributed power distribution network ,the fault
location model of the distribution network with DGs using electrical synaptic
transmission-based spiking neural P system is established, and the reasoning
algorithm is used to locate the fault and verify the fault current information;
the method has the following characteristics: (1) it can accurately and quickly
locate fault locations including single faults, multiple faults, and misinforma-
tion faults in the distribution network with DGs; (2) it can verify the fault
current information while fault location, and improve the accuracy of fault
current information and fault location results; (3) its principles and system
expressions are intuitive, easy to understand, strong in visibility and high in
versatility; (4) and the method has strong traceability, high support of bio-
logical theory and rich theoretical content.

This paper is organized as follows. Section 2 proposes the electrical synap-
tic transmission-based spiking neural P system. Section 3 introduces the
method of fault location of distribution network with DGs using electrical
synaptic transmission-based spiking neural P system. Three cases will be s-
tudied in Section 4, which the single fault, multiple faults and misinformation
faults in each case will be verified. Finally, conclusions are discussed in Section
5.

2 Electrical Synaptic Transmission-Based Spiking Neural

P Systems

2.1 SNP System

Here, we briefly review the basic concepts of SNP systems in the computing
form.

A SNP system of degree m ≥ 1, is a construct of the form [17]
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Fig. 1. Electrical synapse diagram

Π = (A,σ1,σ2, . . . ,σm, syn, I, O)

where

• A = {a} is the singleton alphabet (the object a is called spike).
• σ1,σ2, · · · ,σm are neurons, of the form σi = (ni, R) with 1 ≤ i ≤ m ,

where

• ni ≥ 0 is the initial number of spikes contained by neurons σi;
• R is a finite set of rules of the form E/ac → ap; d

where E is a regular expression over a, c ≥ 1 and p, d ≥ 0, if p = 0, then
E is the empty string, d = 0, and as belongs to the language generated by
expression E for no rule E/ac → ap; d ;

• syn ⊆ {1, 2, . . . ,m}×{1, 2, . . . ,m} with i ̸= j for all (i, j) ∈ syn,1 ≤ i ≤ m;
• I and O are input neuron set and output neuron set, respectively.

2.2 Electrical Synaptic Transmission-Based Spiking Neural P
Systems

2.2.1 Synapse

Synapses in the brain neural network system refer to the interconnected struc-
ture of spikes from one neuron to another. According to its structure and
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function, it can be divided into two major categories: electrical synapse and
chemical synapse.

Electrical synapse: presynaptic neurons transmit neural information by
means of electrical signals;

Chemical synapse: presynaptic neurons transmit neural information through
the synaptic cleft and eventually to postsynaptic neurons by means of chem-
ical signals.

Electrical synapse refers to the site where two neuronal membranes are in
close contact, and the site has a protein-forming channel, and the membrane
impedance of the site is low. The information transmission on the electrical
synapse is an electrical (electrical signal) transmission, and in addition to the
fast transmission rate of the nerve impulse, that is, no delay of axon, since
the ion flow of the connecting channel is bidirectional, the signal transmission
is bidirectional[10].

2.3 Electrical Synaptic Transmission-Based Spiking Neural P
Systems

According to the introduction of the definition and characteristics of electrical
synapses in Section 2.1.1, we will propose an electrical synaptic transmission-
based spiking neural P system.

A electrical synaptic transmission-based spiking neural P system of degree
m ≥ 1 , is a construct of the form

Π = (A,σ1,σ2, . . . ,σm, syn, I/O,O/I)

where

• A = {a} is the singleton alphabet (the object a is called spike).
• σ1,σ2, · · · ,σm are neurons in system

∏

, of the form σi = (αi) (1 ≤ i ≤ m)
with 1 ≤ i ≤ m ; where αi ∈ (−1, 0, 1)(1 ≤ i ≤ m) represents the spike
value;

• syn represents a collection of electrical synapses between neurons in the
system, of the form ((i, j), R(i, j)), where

(1) (i, j)(1 ≤ i, j ≤ m) represents electrical synapses i ̸= j that connect
neurons σi and σj .

(2) R(i, j) is a finite set of rules of the form on electrical synapses:
A. E/aα → aβ the rule is a firing rule; E/aβ → aα the rule is a backward

firing rule;
B. If β = 0, the rule is written in the form E/aα → λ, that is forgetting

rule. If α = 0, the rule is written in the form E/aβ → λ, that is backward
forgetting rule. where E is regular expression over; where α ∈ (−1, 0, 1), β ∈

(−1, 0, 1).

• syn ⊆ {1, 2, . . . ,m}×{1, 2, . . . ,m} with i ̸= j for all (i, j) ∈ syn, 1 ≤ i ≤ m
is a directed graph between electrical synapses;
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• I/O and O/I are input/output neuron set and output/input neuron set,
respectively.

Wherein, in the electrical synaptic transmission-based spiking neural P
system, the spike value contained in the neuron is no longer the number
of spikes, but a discrete value. According to the characteristics of electri-
cal synaptic transmission described in 2.1.1, which is bidirectional and has
no delay of axon, the delay of axon is canceled in the electrical synaptic
transmission-based spiking neural P system. At the same time, new firing
rules corresponding to the bidirectionality of electrical synaptic transmission
are added to the electrical synaptic transmission-based spiking neural P sys-
tem. Backward firing rules and backward forgetting rules, corresponding to
the backward reasoning process of the algorithm and model below. And the
rules in the system are located on the synapse rather than in the neurons,
i.e. the neurons only contain spikes to ensure that different rules can be used
for each synapse during the forward and backward reasoning process of the
model.

Secondly, there are two types of neurons in the electrical synaptic transmission-
based spiking neural P system: input/output neurons, output/input neurons
and section neurons.

3 Method of Fault Location Using Electrical Synaptic

Transmission-Based Spiking Neural P Systems

3.1 Fault Diagnosis Process

In the distribution network with DGs, it is divided into areas by using the
normally interconnection switch as the dividing point. In the fault location
process, only the area containing the fault information is selected, and the
fault current information reported by the FTU configured at each switch is

Fig. 2. (a) Input/output neuron, output/input neuron and (b) its simplified form

Fig. 3. (a) section neuron and (b) its simplified form
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used for calculation. And in a distribution network with DGs, a sub-net sur-
rounded by switches or terminal points, which no longer includes a switch, is
referred to as a section, and the section is the smallest unit of the method of
fault location herein. Secondly, establishing a corresponding electrical synap-
tic transmission-based spiking neural P system for the candidate fault areas.
Thirdly, running a forward reasoning algorithm and a backward verification
algorithm on the established model. Fourthly, realizing accurate fault location
of the fault section and verification of the fault current information through
the fault judgment standard; finally, obtaining the final results.

Fig. 4. Flow chart of fault location of distribution network with DGs

3.2 Model Establishing Principle

In section 2.2, we have learned that the electrical synaptic transmission-based
spiking neural P system is a bidirectional system that can perform bidirection-
al reasoning. In this section, the forward reasoning process and the backward
verification process of the system are introduced in two subsections.

3.2.1 Forward Reasoning Process

In the distribution network with DGs, only the power outage section is selected
to establish a fault location model. Firstly, the direction in which the main
power source in the distribution network with DGs is directed to the feeder
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line or DG is defined as the positive direction. Then, according to the fault
current information detected by the FTU, different working modes are set,
and the modes are divided into -1, 0, and 1. Where mode -1 indicates that
the fault current locates at node j and the current direction is opposite to the
positive direction; mode 1 indicates that the fault current locates at node j
and the current direction is the same as the positive direction, as shown in
Table 1.

Table 1. Working Mode of Fault Current Information

(I/O)j

The fault current is present at node j and the current
direction is opposite to the assumed positive direction

-1

The fault current is present at node j and the current
direction is consistent with the assumed positive

direction
1

No fault current at the node 0

Next, In the distribution network, the network description matrix D is
constructed according to the topology of the distribution network with DGs.
Node j is the exit point of section i, and the element dij in D is -1; node j
is the enter point of section i, and the element dij in D is 1. If node j is not
associated with section i, it is 0, as shown in Table 2.

Table 2. Element dij in Network Description Matrix D

dij

Node j is the exit point of section i -1

Node j is the enter point of section i 1

Node j is not associated with section i 0

Then, get the result by O/I = D · (I/O)T , if (O/I)i ≤ 0, no fault occurs
in section i; if (O/I)i > 0 , fault occurs in section i. To intuitively and eas-
ily express the working mode of fault state outputs, and the jump function

H(x) =

⎧

⎨

⎩

1, x > 0

0, x ≤ 0
is applied to obtain the result as shown in Table 3.

3.2.2 Backward Verification Process

Firstly, according to the actual current flow direction on the feeder line of the
power outage section, the current direction matrix S is constructed, and the
elements Sij in matrix S, as shown in Table 4.
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Table 3. Working Mode of Fault State Outputs

(O/I)i
No fault occurs in section i 0

Fault occurs in section i 1

Table 4. Actual Current Direction Matrix S

Sij

The fault current flows into section j via node i and
is opposite to the assumed positive direction

-1

The fault current flows into section j via node i and
is consistent with the assumed positive direction

1

Node i is not associated with section j 0

According to the final result obtained in 3.2.1, the final backward verifica-
tion process result is expressed intuitively and simply by (I/O)1 = ST

·(O/I),
and the sgn function in the formula (1) is applied to the obtained result, that
is,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x > 0, sgnx = 1

x = 0, sgnx = 0

x < 0, sgnx = −1

(1)

Table 5. Working Mode of Fault State Outputs

(I/O)1 ∧ (I/O)
1

If the vector elements in G and I/O are consistent,
the input fault information is complete and correct.

0
If one of vector elements in G and I/O is different,

the input fault information is incomplete or distorted.

According to (I/O)1 ∧ (I/O) , the working mode of fault authenticity
verification shown in Table 5 is obtained.

Note: (I/O)1 is the input/output neuron I/O, because the results con-
tained in the neuron are different during the forward reasoning process and
the backward verification process, the two forms are used to indicate the dis-
tinction, but they are actually the same neuron.

3.3 Reasoning Algorithm

This section will describe the reasoning algorithm of the electrical synaptic
transmission-based spiking neural P system, which is divided into two parts.
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Firstly, forward reasoning part; if discrete values of input/output I/O
neurons are known, discrete values of other unknown neurons can be derived
from the forward reasoning part of the algorithm. The reasoning result is a
sequence of spikes formed by discrete values of the output/input neuron O/I.

Secondly, backward reasoning part; in forward reasoning part, the sequence
of spikes formed by the discrete values of the output/input neuron O/I derived
from the forward reasoning part can be inversely derived from the discrete
values of the input/output neuron I/O.

In the reasoning process, there are p = m + n + 1 neurons, including m
input/output neurons I/O, n section neurons σj , and 1 input/output neuron
O/I. To illustrate this reasoning algorithm better and more conveniently, we
now introduce some matrices as follows:

(1) α = (α1,α2, . . . ,αm)
T

is a vector containing discrete values in m
input/output neurons I/O, where α = (−1, 0, 1) represents discrete values
(1 ≤ i ≤ m) in the ith input/output neuron I/O.

(2) β = (β,β2, . . . ,βn) is a vector containing discrete values in section
neurons σj , where β = (−1, 0, 1) represents discrete values (1 ≤ j ≤ n) in the
jth section neuron σj .

(3) O/I = (β1,β2, . . . ,βn)
T

is an input/output neuron, and the output
result is a sequential spike train of the output result in section neurons;

(4) D = (dij)m×n
is the network description matrix between input/output

neurons I/O and section neurons σj in the forward reasoning part, constructed
according to the description of Table 2;

(5) S = (sji)n×m
is the current direction matrix between section neu-

rons σj and output/input neurons O/I in the backward verification part,
constructed according to the description of Table 4;

Forward reasoning part: firstly, the initial values of the input/output neu-
rons I/O and the section neurons σj are set separately. Next, according to
β = D×α , the discrete values of the section neurons are calculated; then, the
discrete values of the section neurons will appear in the output/input neurons
O/I in the form of spike trains. If β = 1, fault occurs in section i . Conversely,
if β = 0 , no fault occurs in section i.

Backward verification part: according to the results obtained in the out-
put/input neurons O/I and α = S×β, get discrete values in the input/output
neurons (I/O)1.

Finally, combining the results obtained from the input/output neurons
of the backward verification algorithm with the fault current information in
the input/output neurons of the forward reasoning algorithm, and verifying
whether the fault current information is wrong.

Note: (I/O)1 is the input/output neuron I/O, because the results con-
tained in the neuron are different during the forward reasoning process and
the backward verification process, the two forms are used to indicate the dis-
tinction, but they are actually the same neuron.
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4 Case Study

4.1 Fault Location of Simple Distribution Network with DGs

In order to facilitate the understanding of the electrical synaptic transmission-
based SNP model, this section will illustrate several examples of distribution
networks with DGs. According to the fault location principle of distribution
network with DGs and the electrical synaptic transmission-based SNP, three
fault conditions of each example are analyzed: single fault, multiple faults,
and misinformation fault.

Fig. 5. A simple feeder network

A simple power distribution system is shown in Figure 5, where S1-S7 are
section switches and L1-L6 are feeder sections. Fig. 6 is the electrical synaptic
transmission-based SNP model.

Fig. 6. Electrical synaptic transmission-based SNP model

The section switches and the like on the feeder line are numbered, that is,
S1 to S7, and are represented by input/output neurons σi(1 ≤ i ≤ 7); and
sections of the feeder line are numbered, that is, L1 to L6, and are represented
by section neurons σj(1 ≤ j ≤ 6). The electrical synaptic transmission-based
SNP model of Fig. 6 is established according to the actual relationship be-
tween section switches and sections. The bidirectional connection between the
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input/output neurons and the section neurons, the section neurons and the
output/input neurons corresponds to the bidirectional transmission character-
istics of the electrical synaptic transmission; it also conforms to the bidirec-
tional current flow characteristics in distribution networks with DGs; at the
same time, in Biology, the neurons transmit information in both directions
through electrical synapses, and the information processing is performed in
both directions.

4.1.1 Single fault: when section L3 fail

A. Forward reasoning process
The fault information reported by the FTU obtains the flow direction of

the fault current experienced on each section switch, and the fault current
column vector is constructed as

I/O = [1, 1, 1,−1,−1,−1,−1]T

According to the principle of fault diagnosis, a network description matrix
D is established as

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1 0 0 0 0 0

0 1 −1 0 0 0 0

0 0 1 −1 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 1 −1 0

0 0 0 0 0 1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

According to reasoning algorithm B = D × α, we can obtain as

O/I = [0, 0, 1, 0, 0, 0]T

That is, the section L3 fails.
B. Backward verification process

In this reasoning model, we can obtain as

O/I = [0, 0, 1, 0, 0, 0]T

Establish the actual current direction matrix as
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S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 −1 0 0 0

0 0 −1 −1 0 0

0 0 −1 −1 −1 0

0 0 −1 −1 −1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

According to α = ST × β, (I/O)1 = [1, 1, 1,−1,−1,−1,−1] = I/O, this
result proves that the forward reasoning result is correct and the fault current
information is correct. That is, it is proved by the forward reasoning process
and the backward verification process that the fault has occurred at the section
L3. And the fault current information has no misinformation.

4.1.2 Multiple faults: when section L3 and L5 fails

A. Forward reasoning process

I/O = [1, 1, 1, 0, 0,−1,−1]T

Since the topology of the distribution network with DGs has not changed,
the network description matrix D remains unchanged as

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1 0 0 0 0 0

0 1 −1 0 0 0 0

0 0 1 −1 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 1 −1 0

0 0 0 0 0 1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

According to reasoning algorithm β = D × α, we can obtain as

O/I = [0, 0, 1, 0, 1, 0]T

That is, the section L3and L5 fail.
B. Backward verification process

In this reasoning model, O/I = [0, 0, 1, 0, 1, 0]T .
Establish the actual current direction matrix as
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S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −1 0

0 0 0 0 −1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

According to α = ST × β, (I/O)1 = [1, 1, 1, 0, 0,−1,−1] = I/O, this
result proves that the forward reasoning result is correct and the fault current
information is correct. That is, it is proved by the forward reasoning process
and the backward verification process that the fault has occurred at the section
L3 and L5. And the fault current information has no misinformation.

4.1.3 Misinformation fault: when section L3 fail

A. Forward reasoning process
When the fault has occurred at the section L3, the fault information re-

ported by the FTU obtains the flow direction of the fault current experienced
on each section switch, if the FTU incorrectly reports the current direction
information on the section switch S7, then the fault current column vector is
constructed as follows

I/O = [1, 1, 1,−1,−1,−1, 1]T

According to the principle of fault diagnosis, a network description matrix
D is established as follows

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1 0 0 0 0 0

0 1 −1 0 0 0 0

0 0 1 −1 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 1 −1 0

0 0 0 0 0 1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

According to reasoning algorithm β = D × α, we can obtain as

O/I = [0, 0, 1, 0, 0, 0]T

That is, the section L3 fails.
B. Backward verification process
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In this reasoning model, O/I = [0, 0, 1, 0, 0, 0]T

Establish the actual current direction matrix as

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 −1 0 0 0

0 0 −1 −1 0 0

0 0 −1 −1 −1 0

0 0 −1 −1 −1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

According to α = ST × β, I/O ̸= [1, 1, 1,−1,−1,−1,−1] = I/O , this
result proves that the forward reasoning result is correct and the fault current
information is correct. That is, it is proved by the forward reasoning process
and the backward verification process that the fault has occurred at the section
L3. And the fault current information has misinformation.

4.2 Multi-Power Distribution Network

Fig. 7. Multi-power distribution network

As shown in Fig. 7, the distribution network for high reliability require-
ments is in closed loop mode, and the actual operation mode is area operation.
Then the classic distribution network with DGs in Fig. 7 is divided into two
areas: Area I and Area II.
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4.2.1 Single fault: when section L3 fail

The corresponding electrical synaptic transmission-based SNP model is shown
in Fig. 8.

Fig. 8. Electrical synaptic transmission-based SNP model for multi-power distribu-
tion nerwork

A. Forward reasoning process
The fault information reported by the FTU obtains the flow direction of

the fault current experienced on each section switch, and the fault current
column vector is constructed as

I/O = [1, 1, 0, 1,−1,−1]T

According to the principle of fault diagnosis, a network description matrix
D is established as

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1 0 0 0 0

0 1 −1 −1 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

According to reasoning algorithm β = D × α

O/I = [0, 0, 1, 0]T

That is, the section L3 fails.
B. Backward verification process
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In this reasoning model O/I = [0, 0, 1, 0]T .
Establish the actual current direction matrix as

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 0

0 1 1 0

0 −1 0 0

0 0 1 0

0 0 −1 0

0 0 −1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

According to α = ST × β, I/O = [1, 1, 0, 1,−1,−1] = I/O, this result
proves that the forward reasoning result is correct and the fault current infor-
mation is correct. That is, it is proved by the forward reasoning process and
the backward verification process that the fault has occurred at the section
L3. And the fault current information has no misinformation.

4.2.2 Multiple faults: when section L3 and L4 fails

A. Forward reasoning process

I/O = [1, 1, 0, 1, 0,−1]T

Since the topology of the distribution network with DGs has not changed,
the network description matrix remains unchanged as

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1 0 0 0 0

0 1 −1 −1 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

According to reasoning algorithm β = D × α

O/I = [0, 0, 1, 1]T

That is, the section L3 and L4 fail.
B. Backward verification process

In this reasoning model O/I = [0, 0, 1, 1]T . Establish the actual current
direction matrix as
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S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 0

0 1 1 0

0 −1 0 0

0 0 1 0

0 0 0 0

0 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

According to α = ST ×β, I/O = [1, 1, 0, 1, 0,−1] = I/O , this result proves
that the forward reasoning result is correct and the fault current information
is correct. That is, it is proved by the forward reasoning process and the
backward verification process that the fault has occurred at the section L3
and L4. And the fault current information has no misinformation.

4.2.3 Misinformation fault: when section L3 fail

A. Forward reasoning process

I/O = [1, 1, 0, 1,−1, 1]T

According to the principle of fault diagnosis, a network description matrix
is established as

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1 0 0 0 0

0 1 −1 −1 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

According to reasoning algorithm β = D × α.

O/I = [0, 0, 1, 0]T

That is, the section L3 fails.
B. Backward verification process

In this reasoning model O/I = [0, 0, 1, 0]T .
Establish the actual current direction matrix as

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 0

0 1 1 0

0 −1 0 0

0 0 1 0

0 0 −1 0

0 0 −1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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According to α = ST × β, I/O ̸= [1, 1, 0, 1,−1,−1] = I/O , this result
proves that the forward reasoning result is correct and the fault current infor-
mation is correct. That is, it is proved by the forward reasoning process and
the backward verification process that the fault has occurred at the section
L3. And the fault current information has misinformation.

4.3 Complex Distribution Network

Fig. 9. Complex distribution network with DGs

Complex distribution network with DGs is shown in Fig. 9. In the actual
complex distribution network with DGs, fault location can be performed ac-
cording to the fault location scheme of the multi-power distribution network:
the distribution network with DGs will be divided into areas, and then fault
location will be performed as described above. The reasoning is not repeated
here.

4.4 Analysis and Comparison

A method of fault location of distribution network is proposed with DGs using
electrical synaptic transmission-based spiking neural P system in this paper.
Case 1 has also been studied in Ref. [7], but only the single fault condition of
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the distribution network for feeder line is discussed in it, and the scope of ap-
plication is narrow. Ref. [8] improved the matrix algorithm based on Ref. [7],
but the matrix algorithm used in [8] requires a large amount of current am-
plitude data, and the calculation is large and the fault tolerance is poor. The
single-ended impedance and double-ended impedance-based methods used in
Ref. [5]-[6] are greatly affected by the line impedance and the feeding power
of distribution power supply in the system, and the fault location cannot be
performed quickly and accurately. The particle swarm optimization algorithm
used in ref.[11]-[14] needs to continuously update the position and velocity of
each particle in the operation process to obtain the optimal inertia weight,
and it is easy to fall into local optimum in the operation process, and Ref.
[13] mentioned that if multiple faults occur on feeders that are not connect-
ed by DG, only one fault location can be located, and there is a problem of
missing fault locations. The neural network-based fault location method used
in Ref. [15] has a positioning error. In the meantime, the algorithms involved
in [20]-[21], [32]-[33] require historical data from circuit breakers CB, relays
R, etc., and do not involve electrical quantity related information, and this
method has strong dependence on historical data and empirical data, which
leads to poor fault tolerance. The method presented in this paper is not only
applicable to a variety of fault conditions for distribution network with DGs,
but also can verify the fault current information, improve the reliability of the
fault current information and the accuracy of the fault location result while
in fault location.

5 Conclusion

Based on the traditional SNP system, this paper proposes a method of fault lo-
cation of distribution network with DGs using electrical synaptic transmission-
based spiking neural P system. This method adds a new element, the electrical
synapse, and cancels the delay of axon; the electrical quantity and network
topology are utilized in the reasoning algorithm to effectively combine the
bidirectionality and rapidity of the electrical synapse. The method presents
the effectively combined results in a graphical model according to the model
establishing principle, visually represents the relationship between the various
parts of the distribution network and the logical relationship of the graphics,
and visually represents the fault location process.

In this paper, the three cases from simple to complex distribution networks
with DGs are verified separately, so that readers can more easily understand
the method of fault location and fault location process proposed in this paper.
Through the verification of these three cases, it is proved that the method of
fault location is not affected by the complexity of the distribution network.
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Abstract. A new picture array generating model of array P system with
a restricted type of picture insertion rules and picture array objects in its
regions, is introduced. The generative power of such a system is exhibited
by comparing with certain related picture array generating models. As an
application, certain floor-design patterns, called “kolams”, are generated
using such an array P system.

Keywords: Array P system Insertion Two-dimensional picture array

1 Introduction

In the area of membrane computing [10, 11], the novel computing model of P
system in its basic form and in its several variants, has served as a framework
for dealing with problems in different areas of application [20]. One such area is
in formal language theory with different models of P systems having been de-
veloped for handling the problem of generation of classes of languages, starting
with the seminal work of Păun [9]. In the extension of language theory to two
dimensions, P systems have also played a significant role with different kinds of
P systems with array objects and array evolving rules having been introduced
(see, for example, [10, 16, 19]).

The operation of insertion on words has been studied in string language the-
ory in the context of DNA computing [8]. Fujioka [2] considered this operation
in two-dimensional picture arrays and introduced a picture array generating
model. This model has a feature which is analogous to the pure 2D context-free
grammar [3] where the operation is rewriting in parallel all symbols in a column
or row of a (rectangular) picture array by strings of equal length while in [2],
insertion (instead of rewriting ) of strings of equal length is done in parallel
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between columns or rows. Here we consider a restricted type of insertion rules
with the “contexts” of length at most one, in the regions of a cell-like P system
with the objects being picture arrays in the regions. We examine the generative
power of the resulting array P system model introduced here with certain other
picture array generating models. We also exhibit an application to generation of
“kolam” patterns [14].

2 Preliminaries

For formal language theory related notions, the reader can refer to [12] and to
[3, 17] for two-dimensional array grammars and languages. For P systems and
array P systems we refer to [9, 16]

A finite set V of symbols is called an alphabet. A word or a string α = a1a2 . . . am

ai 2 V, 1  i  m,(m � 1) of length m over an alphabet V is a finite sequence of
symbols belonging to V. The length of a word α is denoted by |α|. The set of all
words over V , including the empty word λ with no symbols, is denoted by V

⇤.
For any word w = a1a2 . . . an,

t
w is the vertical word with the word w written

vertically. For example, if α = bab over the alphabet {a, b}, then tα is
b

a

b

. If w

is a single symbol of the alphabet, then we write t
w as w itself. A rectangular

p⇥ q array (also called picture array) X over an alphabet V is of the form

X =

a11 · · · a1q

...
. . .

...
ap1 · · · apq

where each aij 2 V, 1  i  p, 1  j  q. The number of rows of X and the
number of columns of X are respectively denoted by |X|r and |X|c. The set of
all rectangular arrays over V is denoted by V

⇤⇤, which includes the empty array
λ. V ++ = V

⇤⇤ � {λ}. A picture language is a subset of V ⇤⇤
.

The column catenation X � Y of two arrays X and Y with the same num-
ber of rows is formed by juxtaposing Y to the right of X. The row catenation
X ⇧ Y of two arrays X and Y with the same number of columns is formed by
juxtaposing Y below X.

3 Array P System with Restricted Picture Insertion

Rules

A picture-insertion system has been considered in [2] with insertion in a picture
array being done between columns or rows, extending the notion of insertion in
words [8]. We recall the definition of this system with a special case, namely,
with “contexts” of length one in the rules and call this system as a restricted
picture-insertion system.
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Definition 1. A restricted picture-insertion system (RPIS) is a 4-tuple Γ =
(Σ, Ic, Ir, A) where

i) Σ is an alphabet;
ii) Ic = {ci | 1  i  m}, (m � 1) where ci, called a column insertion

table, is a finite set of column insertion rules with alphabetic context of
the form (a,α, b), a, b 2 Σ [ {λ},α 2 Σ⇤ such that for any two rules
(a1,α, b1), (a2,β, b2) in ci, we have |α| = |β| and either both the left con-
texts a1 and a2 are in Σ (likewise the right contexts b1 and b2 are in Σ) or
both are λ ;

iii) Ir = {rj | 1  j  n}, (n � 1) where rj , called a row insertion table, is a
finite set of row insertion rules with alphabetic context of the form (d, tγ, e),
d, e 2 Σ [ {λ}, γ 2 Σ⇤ such that for any two rules (d1,

tγ, e1), (d2,
tδ, e2) in

rj, we have |γ| = |δ| and either both the up contexts d1 and d2 are in Σ

(likewise the down contexts e1 and e2 are in Σ) or both are λ;
iv) A ✓ Σ⇤⇤ � {λ} is a finite set of axiom arrays.

For picture arrays P,Q 2 Σ⇤⇤
, a one-step derivation in the RPIS Γ, denoted

by P ) Q, yields Q from P whenever either (i) or (ii) holds: (i) if t
a1 · · · am

and t
b1 · · · bm are two adjacent columns, namely, columns j and j + 1 for some

j, 1  j  n�1, in the picture array P of size m⇥n, and if (ai,αi, bi), 1  i  m

are column insertion rules in a column insertion table in Ic, then the rules can be
applied in parallel by inserting αi in the i

th row between ai 2 Σ and bi 2 Σ for
all i, 1  i  m or (ii) if d1 · · · dn and e1 · · · en are two adjacent rows, namely,
rows k and k + 1 for some k, 1  k  m, in the picture array P of size m ⇥ n,

and if (di,
tβi, ei), 1  i  m are row insertion rules in a row insertion table in

Ir, then the rules can be applied in parallel by inserting βi in the i
th column

between ei 2 Σ and di 2 Σ for 1  i  n. Likewise insertions to the immediate
left or right (respy. immediate up or down) of a column (respy. row) in the pic-
ture array P can be defined by requiring the corresponding left or right or up or
down contexts in the rules used to be λ.

The picture language L(Γ ) generated by Γ consists of picture arrays derived
in one or more finite number of derivation steps starting with an axiom array in
A. The family of picture languages generated by RPIS is denoted by RPIL.

Example 1. Consider the RPIS Γ1 = (Σ, Ic, Ir, A}) where Σ = {a, b}, Ic =
{c1}, Ir = {r1}, where c1 = {(a, ab, b)}, r1 = {(a, a,λ), (b, b,λ)} and A consists

of the array
a b

a b

Γ1 generates a picture language L1 consisting of picture arrays X � Y with X

over a and Y over b and |X|r = |Y |r, |X|c = |Y |c. A member of L1 is shown
in Fig. 1. Starting with the axiom array in A, in any step of a derivation, the
application of the column insertion rule of c1 inserts ab in every row between a

and b while the application of the row insertion rule of r1 inserts in every column
and just below a row, the symbol a below a and the symbol b below b. In other
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a a a b b b

a a a b b b

a a a b b b

a a a b b b

Fig. 1. A picture array in the language L1

words, for example, a derivation in which rules of c1 and then rules of r1 are
applied, is shown below:

a a b b

a a b b

a a b b

)c1

a a a b b b

a a a b b b

a a a b b b

)r1

a a a b b b

a a a b b b

a a a b b b

a a a b b b

We now define an array P system with picture arrays as objects and with re-
stricted picture insertion rules in the regions.

Definition 2. An array P System with restricted picture insertion rules
(APRPIS) is Π = (Σ, µ, F1, . . . , Fm, R1, . . . , Rm, io), where: Σ is the alphabet,
µ is a membrane structure with m membranes labelled in a one-to-one way with
1, 2, · · · ,m; Fi, 1  i  m, is a finite set (can be empty) of axiom picture ar-
rays over Σ in the i

th region of µ; Ri, 1  i  m is a finite set of column or
row insertion tables as in a RPIS in the i

th region µ; each of the tables has an
attached target here, out, in. (as usual, here is omitted and is understood). io is
the label of an elementary membrane of µ (the output membrane).

A computation in APRPIS is defined in the same way as in an array-rewriting
P system [16, 19] with the successful computations being the halting ones: each
array, from each region of Π, which can be obtained by applying the restricted
picture insertion rules to the arrays associated with that region, should be ob-
tained but rules of only one table is applied ; the array obtained in a region is
placed in the region indicated by the target associated with the table of rules used;
the target (here indicates that the array remains in the same region, out indicates
that the array is sent to the immediate outer region except for the outermost skin
membrane in which case the array sent out is “lost” in the environment ; and
in indicates that the array is sent to the immediately inner membrane, nonde-
terministically chosen (but if no innner membrane exists, then the table of rules
with the target indication in cannot be used). A computation is successful only
if it stops and a configuration is reached where no table of rules can be applied
to the existing arrays. The result of a halting computation consists of the arrays
placed in the output membrane with label io in the halting configuration. The set
of all such arrays computed or generated by the system Π is denoted by AL(Π).
The family of all array languages AL(Π) generated by systems Π as above, with
at most m membranes, is denoted by APm(RPIS).

We illustrate with an example.
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Example 2. Consider the APRPIS Π1 = (Σ, [1 [2 ]2 ]1, F1, F2, R1, R2, 2) where

Σ = {a, b, e}, F1 = {

a b

a b
}, F2 = φ. R1 consists of the column insertion tables

(c1, in), (c2, in) and R2 consists of row insertion table (r, out) where
c1 = {(a, ab, b)}, c2 = {(a, e, b)}, r = {(a, a,λ), (b, b,λ)}.

In a computation in Π1, since only the region 1 has an axiom picture array
a b

a b
,

application of the rule of the table c1 will insert ab between a and b in every row
and the resulting array is sent to region 2 due to target indication in. Application
of the rules in r in region 2 inserts a row below one of the rows with a below
a and b below b and the array is sent back to region 1 due to target indication
out. The process can repeat. If in region 1, the rule of the table c2 is applied
then e is inserted between a and b in every row resulting in an array of the form
a · · · a e b · · · b

...
. . .

...
...
...
. . .

...
a · · · a e b · · · b

and the array is sent to the output region 2. The computation

halts as no other rule could be applied. Note that in the rules in r there is no
rule that allows insertion below e and hence the rules of the table r can no longer
be applied. The arrays generated are of the form M1 �M2 �M3 where M1 is an
array over a, M3 is an array over b and M2 is an array with only one column
of e0s. Also, |M1|c = |M3|c = |M1 � M2 � M3|r. In otherwords, the number of
rows of the array generated equals the number of columns of M1 which equals
the number of columns of M3. One such array is shown in Fig. 2.

a a a e b b b

a a a e b b b

a a a e b b b

Fig. 2. A picture array generated by Π1

Theorem 1.

RPIL = AP1(RPIS) ⇢ AP2(RPIS)

Proof. In a RPIS as well as APRPIS with one membrane, the rules are only
the RPIS rules and so it is clear that RPIL = AP1(RPIS). Also by definition,
the inclusion AP1(RPIS) ✓ AP2(RPIS) follows. The proper inclusion follows
from Example 2 on noting that in any picture array M generated, the number
of columns = 2⇥ the number of rows +1. If there is only one membrane, there
is no way to control application of the rules of the column and row tables as all
the tables of rules are in the same region.

We now compare the generative power of APRPIS with certain similar picture
generating models. The insertion rules considered both in RPIS and APRPIS
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are restricted forms of the insertion rules considered in the picture insertion
system defining the class INPA [2]. Yet we show that there are picture ar-
ray languages generated by APRPIS with two membranes that are not in the
class INPA. Also, in [17], a picture array generating model, called pure 2D
context-free grammar (P2DCFG), is proposed and the generative power of this
model is investigated. In this model, all symbols in a column or in a row of a
m ⇥ n picture array are rewritten by pure context-free rules [17] of the form
a ! α with α in all the rules in a table having the same length. The family
of languages generated by P2DCFG is denoted by P2DCFL. Two variants of
P2DCFG, called (l/u)P2DCFG and (r/d)P2DCFG which are incomparable
with P2DCFG have also been considered [5, 18]. In a (l/u)P2DCFG the sym-
bols in the leftmost column or the uppermost row only are rewritten while in a
(r/d)P2DCFG the symbols in the rightmost column or the lowermost row are
rewritten. We show that there are picture array languages that can be generated
by APRPIS with two membranes but cannot be in P2DCFL, (l/u)P2DCFL

and (r/d)P2DCFL.

Theorem 2. 1. AP2(RPIS)� P2DCFL 6= φ

2. AP2(RPIS)� (l/u)P2DCFL 6= φ

3. AP2(RPIS)� (r/d)P2DCFL 6= φ

4. AP2(RPIS)� INPA 6= φ

Proof. Consider the picture array language L2 consisting of m⇥ (3n+2) arrays
(m � 2, n � 1), such that an array in L2 is of the form M1 �M2 �M3 �M4 �M5

where M1,M3,M5 are m⇥ n arrays over {a}, {b}, {d} respectively and M2,M4

are m⇥ 1 arrays over {e}. The language L2 cannot belong to any of the families
P2DCFL, (l/u)P2DCFL and (r/d)P2DCFL because in P2DCFG generating
in different modes, a language in any of these families, symbols in an array can
be rewritten in only one column at a time. The language L2 cannot also belong
to the class INPA for a similar reason. This means that the array with columns
of a0s in the beginning, columns of b0s in the middle and columns of c0s in the
end, equal in number, cannot be generated.
The language L2 is generated by the APRPIS Π2 with two membranes where

Π2 = ({a, b, d, e}, [1 [2 ]2 ]1, F1, F2, R1, R2, 2)

with F1 = {

a b d

a b d
, } F2 = φ. R1 consists of the column insertion table

(c1, in) and a row insertion table (r, here) and R2 consists of the column insertion
tables (c3, out), (c2, here), (c4, here) where c1 = {(a, ab, b)}, c2 = {(a, e, b)}, c3 =
{(b, d, d)}, c4 = {(b, be, d)}, and r = {(a, a,λ), (b, b,λ), (d, d,λ)}.
The region 1 alone has an axiom picture array. So a computation in Π2 can start
in this region with the applicable tables of rules. If the rule of column insertion
table c1 is applied then ab will be inserted in every row between two adjacent
columns of a0s and b

0
s and the array is sent to region 2. If in this region the

rule of column insertion table c3 is applied then d will be inserted in every row
between two adjacent columns of b0s and d

0
s and the array is sent back to region
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1. The process can repeat. At anytime, the rule of the row insertion table r can be
applied, thus inserting in the picture array a row of the form a · · · ab · · · bd · · · d.

If at anytime, instead of c3, the rule of the column insertion table c2 (respy. c4)
is applied in region 2, then a column of e0s will be inserted between two adjacent
columns of a0s and b

0
s (respy. columns of b0s and d

0
s ). A correct sequence of

application of the of rules is to apply now in region 2, the rule of the column
table c2 followed by c4 or c4 followed by c2, thus generating a picture array of
the form shown in Fig. 3. Region 2 is the output region and arrays collected here
form the picture array language generated which is L2.

a · · · a e b · · · b e d · · · d

...
. . .

...
...
...
. . .

...
...
...
. . .

...
a · · · a e b · · · b e d · · · d

Fig. 3. A picture array generated by Π2

A well-known class, called the family of context-sensitive matrix languages (CSML),
of two-dimensional picture array languages was introduced by
Siromoney et al. [13]. The corresponding class of grammars, known as CSMG

involves two phases of generation with the first phase generating a string s over
intermediate symbols and in the second phase all the intermediate symbols in
s are rewritten in parallel by regular nonterminal rules of the form A ! aB,

or together terminated by regular terminal rules of the form A ! a, (A,B are
nonterminals and a is a terminal symbol), thus generating the columns of the
picture array. The words in the first phase form a context-sensitive language. An
extension, called TCSML of the family CSML was introduced in [15] by having
in a CSMG, an additional feature of tables of nonterminal rules or tables of ter-
minal rules in the second phase. It was shown in [15] that CSML ⇢ TCSML.

We show here that there are picture array languages that cannot be in TCSML

but can be generated by APRPIS with two membranes.

Theorem 3. AP2(RPIS)� TCSML 6= φ

Proof. Consider the picture array language L3 consisting of (2m+1)⇥ (2m+1)
arrays, (m � 1), such that an array in L3 is of the form (M1 �M2 �M3) ⇧M4 ⇧

(M3 �M2 �M1) where M1,M3 are m⇥m arrays over {a}, {b} respectively, M2

is an m⇥ 1 array over {e} and M4 is an 1⇥ (2m+1) array over {e}. A member
of L3 is shown in Fig. 4. The language L3 cannot belong to the family TCSML.

In fact in a grammar generating a picture array in a language in TCSML, the
number of rows above and below a distinct row of a generated array, cannot
be maintained to be equal as the application of the tables of rules cannot be
controlled.
The language L3 is generated by the APRPIS Π3 with two membranes where

Π3 = ({a, b, e}, [1 [2 ]2 ]1, F1, F2, R1, R2, 2)
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with F1 = {

a b

b a
, } F2 = φ. R1 consists of the column insertion tables (c1, in), (c2, in)

and R2 consists of the row insertion tables (r3, out), (r4, here) where

c1 = {(a, ab, b), (b, ba, a)}, c2 = {(a, e, b), (b, e, a)},

r3 = {(a, tab, b), (b, tba, a)}, r4 = {(a, e, b), (b, e, a), (e, e, e)}.

Starting with the axiom picture array in region 1, a computation in Π3 can

a · · · a e b · · · b

...
. . .

...
...
...
. . .

...
a · · · a e b · · · b

e · · · e e e · · · e

b · · · b e a · · · a

...
. . .

...
...
...
. . .

...
b · · · b e a · · · a

Fig. 4. A picture array generated by Π3

start in this region with the applicable tables of rules. If the rules of column
insertion table c1 are applied then ab will be inserted in every row between the
two symbols a and b in two adjacent columns while ba will be inserted in every
row between the two symbols b and a in the same two adjacent columns, thus
adding two columns to the picture array. The array generated is sent to region
2. If in this region the rules of row insertion table r3 is applied then ab will be
inserted in all columns between the symbols a and b in two adjacent rows while
ba will be inserted between the symbols b and a in the same two adjacent rows,
thus adding two rows to the picture array and the array is sent back to region
1. The process can repeat. If at anytime, the rules of the column insertion table
c2 is applied in region 1, then a column of e0s will be inserted between the two
adjacent columns t

a · · · ab · · · b and t
b · · · ba · · · a and the array is sent to region

2. A correct sequence of application of the tables of rules is to apply now in
region 2, the rules of the row table r4, thus generating a picture array of the
form shown in Fig. 4. Region 2 is the output region and arrays collected here
form the picture array language generated which is L3.

Head [4] introduced splicing systems while proposing a theoretical model of
DNA recombination. Berstel et al. [1] introduced a variant of splicing system,
known as flat splicing system and noted [1, p4] that the flat splicing system
involving the operation of flat splicing on words and the insertion system [8]
involving the operation of insertion on words, have similarity but the systems
are incomparable. Extending the operation of flat splicing to picture arrays, a
picture array generating model, called array flat splicing system (AFS), was
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introduced and investigated in [7]. Here we show that picture array languages
that cannot be generated by any AFS can be generated by APRPIS with two
membranes. The family of picture array languages generated by AFS is denoted
by L(AFS).

Theorem 4. AP2(RPIS)� L(AFS) 6= φ

Proof. Consider the picture array language L4 consisting of m⇥ (n+ 2) arrays,
(m � 2, n � 1), such that an array in L4 is of the form M1 � M2 � M3 where
M1,M3 are m ⇥ 1 arrays over {x}, {y} respectively and M2 is an m ⇥ n array
over {a}. a member of L4 is shown in Fig. 5. The language L4 does not belong
to the family L(AFS) [7].
The language L4 is generated by the APRPIS Π4 with two membranes where

Π4 = ({x, y, a}, [1 [2 ]2 ]1, F1, F2, R1, R2, 2)

with F1 = {

x a y

x a y
, } F2 = φ. R1 consists of the column insertion tables

(c1, here), (c2, in) and a row insertion table (r, here) where

c1 = {(x, a, a)}, c2 = {(a, a, y)}, r = {(x, x,λ), (y, y,λ), (a, ta,λ)}.

We note that the rule of the column insertion table c1 inserts a column of a0s

x a a a a y

x a a a a y

x a a a a y

x a a a a y

Fig. 5. A picture array generated by Π4

but the array remains in the region 1 itself. The rule of the column insertion
table c2 has the same effect but the array is sent to the output region 2. The
rule of the row insertion table r inserts a row of the form xa · · · ay while an array
is generated.

4 Application to ”kolam” pattern generation

A “kolam” pattern [14] is a visually pleasing floor design, more common in
South India, drawn with curly lines around points arranged in a particular pat-
tern, resulting in the intended “kolam” drawing. In [14] “kolam” patterns were
considered as picture arrays in the two-dimensional plane with the labels of the
cells of the picture array representing primitive “kolam” patterns [6]. In fact
array grammars developed in [14] were used to generate the picture arrays and
the labels were replaced by the corresponding primitive patterns, thus yielding
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the kolam pattern composed of these primitive patterns. Here we illustrate by
constructing a APRPIS generating picture arrays representing a particular set
of “kolam patterns”, one member of which is shown in Fig. 7. The labels of the
arrays stand for the primitive kolam patterns defining the “kolam”. An array
representing this kind of a kolam is shown in Fig. 8.
Let Lk be the picture language consisting of (m+2)⇥(2n+3), m � 1, n � 1 pic-

Fig. 6. A set of primitive “Kolam” patterns.

Fig. 7. A “Kolam” pattern.

ture arrays p such that p(i, 1) = p(i, n+2) = p(i, 2n+3) = b, for i 2 {1,m+2},
p(1, j) = d1 for 2  j  n + 1;n + 3  j  2n + 2, p(n + 2, j) = d2 for
2  j  n+1;n+3  j  2n+2, p(i, 1) = d3, for 2  i  n+1, p(i, 2n+3) = d4,

for 2  j  n + 1, p(i, n + 2) = e, for 2  i  n + 1 and all other p(i, j) = d.

Here d1, d2, d3, d4, d, e stand for the “kolam” primitive patterns as in Fig. 6 and
b stands for blank.

The picture language Lk is generated by the APRPIS with alphabet

{d1, d2, d3, d4, d, e, b},membrane structure [1 [2 [3 ]3 ]2 ]1, axiom array
b d1 b d1 b

d3 d e d d4

b d2 b d2 b
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b d1 d1 d1 b d1 d1 d1 b

d3 d d d e d d d d4
d3 d d d e d d d d4
d3 d d d e d d d d4
b d2 d2 d2 b d2 d2 d2 b

Fig. 8. Array representing the “kolam” in Fig. 7.

in region 1 and no axiom array in regions 2 and 3, with 3 as the output region.
The sets R1, R2, R3 are the sets of tables of insertion rules in regions 1,2 and
3 respectively, where R1 contains a column insertion table (c1, in) and a row
insertion table (r1, here), R2 contains two column insertion tables (c2, out) and
(c3, in). Here

c1 = {(d1, d1, b), (d, d, e), (d2, d2, b)}, c2 = {(b, d1, d1), (e, d, d), (b, d2, d2)

c3 = {(d1, d1, b), (d, d, d4), (d2, d2, b)},

r1 = {(b, d3, d3), (d1, d, d), (b, e, e), (b, d4, d4)}.

In a computation, the rules of table c1 insert a column of the form t
d1d · · · dd2

to the left of the middle column of e0s while the rules of table c2 insert a similar
column to the right of the middle column of e0s. The generated array is sent to
region 2 from region 1 on applying c1 while it is sent from region 2 to region 1
on applying c2. The process can repeat adding equal number of columns to the
left and right of the middle column. The application of the rules of the table r1

inserts below the first row, a row of symbols d3d · · · ded · · · dd4 as many times as
needed and the generated array remains in region 1. When the rules of the table
c3 are applied in region 2, it has the same effect as applying c2 but the insertion
is to the left of the last column and the array is sent to the output region 3, with
the computation halting. The generated arrays are the picture arrays of Lk and
no other array is generated. On replacing the labels of the squares in a generated
picture array by the corresponding primitive kolam patterns shown in Fig. 6, we
obtain the “kolam” itself. One such generated “kolam” is shown in Fig. 7.
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Membrane computing is an unconventional computing area that aims to ab-
stract computing ideas (e.g., computing models, data structures, data opera-
tions) from the structure and functioning of living cells, as well as from more
complex biological entities, like tissues, organs and populations of cells [11]. The
computational models that investigated in membrane computing are generically
called P systems. According to the membrane structure of P systems, there ex-
ist two main families: cell-like P systems (described by trees) and tissue-like P

systems [8] or neural-like P systems [7] (described by directed graphs).

Tissue P systems consider arbitrary graphs as underlying structures [8],
where cells placed in nodes and edges correspond to communication channels.
In tissue P systems, every cell may have connection with the environment and
every cell may have connection with any other cell. The movement of objects
through communication channels is controlled by a set of communication (sym-
port/antiport) rules [6, 10], where a communication rule is called a symport
rules if a multiset of objects is moved from one region to another region in one
direction, and a communication rule is called an antiport rule if simultaneous
two multisets of objects are moved between two cells or between a cell and the
environment in opposite directions.

There are several strategies for rule application considered in cell-like P sys-
tems, such as minimal parallelism [2], asynchronous [3–5], flat maximal par-
allelism [9, 14], time-freeness [13, 15]. In [1], spiking neural P systems with a
non-synchronized use of rules were considered, where in any step, the enabled
rules in a neuron can apply or not apply. It is proved that asynchronous spiking
neural P systems with extended rules (bounded neurons or unbounded neurons)
are not computationally complete [1]. In [12], the notion of local synchronization
was introduced into asynchronous spiking neural P systems, where the system
is worked in an asynchronous way, furthermore, a family of sets of neurons (also
called ls-sets) is specified; if one of the neurons from an ls-set fires, then all
neurons from this set should fire if they have enabled rules. It is shown that
asynchronous SN P systems with local synchronization consisting of unbounded
neurons and using standard spiking rules are proved to be universal [12].

In this work, the notion of local synchronization is introduced into asyn-
chronous tissue P systems, where the application of rules in such P systems is

⋆ Corresponding author.
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described as follows: in each time unit, any number of applicable rules in the
system may be used; furthermore, for cells in the same ls-sets, if one of rules in
these cells is used, then all enabled rules in this set should be used in a maximally
parallel way (note that rules in the same ls-set are the rules that all the involved
regions belong to the same synchronized component). The computational power
of synchronous tissue P systems with local synchronization is investigated. We
prove that asynchronous tissue P systems with one cell, using antiport rules of
length 3 or using symport rules of length 3 can simulate partially blind register
machines; and the converse simulation holds for tissue P systems. Moreover, if we
consider local synchronization of using rules in asynchronous tissue P systems,
then such P systems with three cells, symport rules of length 2 and antiport
rules of length 4 are Turing universal.
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13. B. Song, M.J. Pérez-Jiménez, L. Pan, An efficient time-free solution to SAT prob-
lem by P systems with proteins on membranes, J. Comput. Syst. Sci. 82 (2016)
1090–1099.
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Abstract. Image edge detection is a fundamental problem in image processing

and computer vision, particularly in the area of feature extraction. However, the

time complexity increases squarely with the increase of image resolution in con-

ventional serial computing mode. This results in time consuming when dealing

with large amount of image data. In this work, a novel parallel implementation

algorithm for gradient based edge detection (ED), namely EDENP, is proposed.

The proposed bio-inspired parallel algorithm is in the framework of enzymatic

numerical P system (ENPS). The mathematical model, system structure, execu-

tion process, and required resources are elaborated in detail. The performance and

efficiency of this algorithm are evaluated on the CUDA platform. The advantage

of EDENP is that it has the property of low computational complexity indepen-

dent of the image resolution, with keeping the same edge detection performance

as the original algorithm in image processing.

Keywords: Membrane computing; edge detection; enzymatic numerical P sys-

tem; gradient based edge detection

1 Introduction

In the past decades, image processing technology has experienced dramatic growth and

widespread applications. Nearly no area is not impacted in some way by digital im-

age processing [1]. Normally, digital image processing includes three main levels, i.e.,

low-level, mid-level and high-level processing [2]. As one of the most important low-

level image processing algorithms, edge detection has been extensively used in target

? Corresponding author.
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tracking [3], image compression [5], and object recognition [4,6]. Gradient based edge

detection is one of the classical edge detection algorithms with the merits of good per-

formance and moderate complexity, which is very suitable for real time image process-

ing [7]. However, convolution calculation (i.e., a classic neighborhood computing in

image processing) [8] is involved in the gradient computation of each pixel, and hence

the time complexity increases squarely with the increase of image resolution. So it is

difficult to deal with an image with large resolution, such as remote sensing image,

medical image, etc., in real time processing.

In order to achieve real-time calculation of high resolution images, many researchers

have put much effort and several methods have been proposed. The most commonly

used solution is to run the program on Graphics Processing Unit (GPU), as described

in [10,11]. GPU uses hundreds of parallel processor cores executing tens of thousands

of parallel threads to rapidly solve large problems having substantial inherent paral-

lelism [12]. However, with the shrinking volume of chips, semiconductor technology

begins to reach its physical limits, which means the performance of conventional com-

puting technique based on silicon chip integrated circuit microprocessors will be dif-

ficult to improve further [13]. Under this background, some scholars have turned their

attention to non-traditional computing [14,15]. Membrane computing (MC) is a ac-

tive branch of natural computing, which investigates distributed and parallel comput-

ing models, abstracted from the compartmentalized structure and interactions of living

cells [16,17,18]. It has been considered as a promising method to resolve the conflict

between the ever-increasing amount of data in the image processing field and the back-

ward computing power of conventional computer [19,20]. During the past years, image

smoothing [30], obtaining homology groups of 2D images [21,22], counting cell [23],

image thinning [24], symmetric dynamic programming stereo [25] and corner detection

[26] in MC framework have been vividly studied.

For edge detection, edge based image segmentation procedures by using a tissue-

like P system with degree 2 were described [27,28,29]. Although the computational

complexity can be greatly reduced, the performances of those tissue-like P system based

algorithms are far inferior to the performance of the existing algorithms in image pro-

cessing. In [50], a new operator, called AGP Segmentator, which is a variation of the

Sobel operator was designed and implemented by using tissue-like P system for image

segmentation. Although several testing examples were given in [50] to illustrate that the

new AGP operator can improve the performance of the traditional Sobel operator, the

conclusion is still not theoretically proven.

In this paper, we focus on the parallel implementation of gradient based edge de-

tection algorithm. There are two differences from the previous literature in the MC

framework in this work. One is that a variant of enzymatic numerical P systems (ENPS)

are introduced. Besides the features as described in [30], ENPS have several good fea-

tures which makes it suitable for image processing. One of it is that numerical variables

and numerical expressions can be used directly in ENPS. Thus some complex mathe-

matical calculations can be achieved without coding and decoding processes. Another

important feature is that enzymatic variables can control the execution order of multi-

ple rules, i.e., the algorithms with complex logical relationships can be realized. The

other difference is that we did not change the mathematical model of the original edge
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detection algorithm. Hence, the parallel implementation results of the proposed algo-

rithm are consistent with the results of the original edge detection algorithm run on the

serial computing platform. Most of the original classical image processing algorithms

have been widely used in practical engineering because their performance can meet the

requirements of practical engineering. Under the precondition of keeping the mathe-

matical model of original algorithm unchanged, the designed parallel implementation

algorithm can be directly applied to the real image processing project without the need

to perform large-scale testing of the performance of the new algorithm.

The main contribution of this paper is the design of a novel parallel algorithm,

named EDENP, for gradient based edge detection in the framework of ENPS. The sig-

nificant advantage of EDENP is that it can achieve the time complexity of O(1) the-

oretically, no matter how large the image resolution is. Moreover, the performance is

equivalent to the performance of the original gradient based edge detection algorithm

in image processing.

The rest of this paper is structured as follows. Section 2 introduces the definition,

characteristics and applications of ENPS. The problem statement is elaborated in sec-

tion 3. Section 4 discusses the EDENP algorithm in detail. The experiments and results

are presented in Section 5. Conclusions are drawn in Section 6.

2 Enzymatic numerical P systems

Membrane Computing is a new computing model abstracted from the structure and

functioning of living cells with properties of nondeterministic distributed and parallel

computing models. According to the way in which membranes are structured, there are

three major types of P systems, i.e., cell-like [16], tissue-like [31] and spiking neural

P systems [32], and the main basic data structure associated with membranes include

multisets, strings or numerical variables. A numerical P system (NPS) is a new special

research branch of cell-like P systems, proposed by the founder of Membrane Com-

puting, Păun [33]. The traditional multisets of objects associated to membranes are

replaced by sets of numerical variables, and the evolutionary rule are composed of a

production function and a repartition protocol in NPS[52][54][55]. Although it was in-

spired from economic phenomena, it has been widely applied in robot controller design

[34,35,36,37]. For example, in [34,37], it was used for obstacle avoidance and wall fol-

lowing, and in [35] a trajectory tracking system of nonholonomic wheeled mobile robot

was constructed with ENPS. Since deterministic numerical P systems can only execute

one production function per membrane at a time, when there are multiple production

functions per membrane, one is selected randomly. This will limit its application in

some situation where the rules should be executed deterministically. In order to solve

this problem and expand the application of NPS, ENPS were proposed [38]. It is ex-

tended from numerical P system by introducing enzyme-like variables. The standard

form is defined as follows:

Π =
⇣

m,H, µ,
�

V ar1, E1,Pr1, V ar1(0)
�

, ...,
�

V arm, Em,Prm, V arm(0)
�

⌘

.

where:
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– m is the number of membranes used.

– H is an alphabet that contains m symbols, and H = {1, 2, . . . ,m}.

– µ is the membrane structure.

– V ari is the set of variables from membrane i and V ari (0) are the initial values for

these variables.

– Pri is the set of rules in membrane i, composed of a production function and a

repartition protocol. A typical rule is as follows.

Fl,i (y1,i, ..., ykl,i) |ej,i → cl,1|v1 + cl,2|v2 + ...+ cl,ni
|vni

,

where ej,i is a variable from V ari different from y1,i, . . . , ykl,i and v1, v2, . . . , vni
.

The rule can be executed at a time t only if ej,i > min {y1,i (t) , y2,i (t) , ...ykl,i (t)}.

From the definition of ENPS, it is clear that with enzymes-like variables, the system

can control multiple production functions to run in parallel in the same membrane

deterministically[53]. Hence, it can overcome the disadvantages of traditional numeri-

cal P systems that only run one rule nondeterministically at a time in a membrane. The

ENPS with deterministic, parallel execution model has already been proved to be Tur-

ing universal [39,40]. In [41], it is shown that any ENPS working in all-parallel mode

or one parallel model can be simulated by an equivalent one-membrane ENPS work-

ing in the same mode. Linear production functions, each depending upon at most one

variable, suffice to reach universality for both computing modes. Since the proposal of

ENPS, this model has been successfully applied in a wide range of domains, such as

robot control [43], big data field [44], pole balancing control [45], and logic operations

and sorting [46] fields. In this work, ENPS is used to solve the problem of gradient

based image edge detection.

3 Problem Statement

The GBED work is based on the assumption that the edge occurs where the gradient

of brightness intensity of each pixel is high. A pair of convolution masks is used to

estimate the gradients in the x and y directions, respectively. Sobel, Prewitt, and Roberts

operators are classic convolution masks of GBED, as shown in formulas (1-3). In this

paper, we take Sobel operator as an example of GBED. When the masks are sliding

over the image, a square of pixels are operated. Then both directional gradients (gxi,j
,

gyi,j
) and absolute gradient magnitude gi,j of a given pixel whose image coordinate is

(i, j) are computed, as shown in formulas (4-5), where 2 ≤ i, j ≤ n− 1 for image with

resolution of n× n .

Sobelx =

2

4

−1 0 1
−2 0 2
−1 0 1

3

5 ; Sobely =

2

4

1 2 1
0 0 0
−1 −2 −1

3

5 (1)

Prewx =

2

4

−1 0 1
−1 0 1
−1 0 1

3

5 ; Prewy =

2

4

1 1 1
0 0 0
−1 −1 −1

3

5 (2)
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Robx =



−1 0
0 1

�

; Roby =



0 −1
1 0

�

(3)

gxi,j
= Sobelx ∗ I(i, j); gyi,j

= Sobely ∗ I(i, j) (4)

gi,j =
q

gxi,j
2 + gyi,j

2 (5)

When the gradient magnitude of one pixel is computed, a predefined threshold θ is

used to judge whether this pixel is an edge pixel or not, according to formula (6). More

concretely, if the gradient magnitude of the given pixel is greater than or equal to θ, then

the pixel is assumed as an edge point, otherwise, it is a background point, as formula

(7).

di,j = gi,j − θ (6)

edgi,j =

⇢

1 if (di,j ≥ 0)
0 if (di,j < 0)

(7)

The program pseudo code of GBED run on conventional serial computer is illus-

trated in Algorithm 1, where the initial value of edgi,j is set to 0. From Algorithm 1,

it can be deduced that the computational complexity is O
�

n
2
�

because two loops are

involved. When n is large, the calculations are very time-consuming under the serial

computing platform.

Algorithm 1 The pseudo code of GBED

Input: I(n ∗ n)
Output: edg(n ∗ n)
1: for i = 2 : n− 2 do

2: for j = 2 : n− 1 do

3: Computing gxi,j

4: Computing gyi,j
5: Computing gi,j
6: Computing di,j
7: Computing edgi,j
8: end for

9: end for

4 The EDENP algorithm

This section starts with the mathematical model of EDENP followed by the detailed

description of EDENP. The execution process and resources needed are discussed at

last.
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4.1 Mathematical model of EDENP

From section 3, we know that the GBED algorithm contains four steps for a certain

pixel in an image, i.e., directional gradients estimation, absolute gradient magnitude

estimation, comparison between gradient magnitude and predefined threshold, and edge

determination, as illustrated in Fig. 1. The four steps should be executed in a certain

logical order under the control of enzyme variables. At each step, all pixels on the

image are examined in parallel.

Fig. 1. The computing flowchart of GBED

The mathematical expression of EDENP is as follows, and the corresponding mem-

brane structure is illustrated in Fig. 2.

Π =
⇣

m,H, µ,
�

V ar1, E1,Pr1, V ar1(0)
�

,
�

V ar2, E2,Pr2, V ar2(0)
�

⌘

,

where

(1) m = 2.

(2) H = {1, 2}.

(3) u = [[ ]2]1.

(4) V ar1=
�

xi,j , edgi,j , θ, e1,1, ED

 

, V ar2 =
�

gxi,j
, gy

i,j
, gi,j , ed1, ed2, Ei,j , EDi,j

 

.

(a) xi,j(1 ≤ i, j ≤ n), are the gray value of pixel with coordinate of (i, j) on

the source image plane.

(b) edgi,j(1 ≤ i, j ≤ n), are the corresponding edge points of the source image

with initial value 0.

(c) θ[threshold], is a numerical variable which is used as the threshold value

for edge detection, and the value of threshold should be predefined.
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(d) gxi,j
(1 ≤ i, j ≤ n), are the horizontal derivative approximations at each

pixel.

(e) gyi,j
(1 ≤ i, j ≤ n), are the vertical derivative approximations at each pixel.

(f) gi,j(1 ≤ i, j ≤ n), are the gradient magnitude approximations at each pixel.

(g) ed1[0], is a numerical variable with initial value 0, which is used as the back-

ground value of the edge image.

(h) ed2[1], is a numerical variable with initial value 1, which is used as the edge

point value of the edge image.

(i) ed3[−256], is a numerical variable with initial value -256, which is used as

a intermediate variable.

(5) Ek is a set of enzyme variables from membrane k, i.e., E1 = {e1,1, ED}, E2 =
�

Ei,j , EDi,j

 

.

(6) Prk is the set of programs (rules) in membrane k, composed of a production func-

tion and a repartition protocol, i.e., Pr1 = {Prmain}, Pr2 =
�

Pr1∼14,CEi,j

 

.

(a) Pr1,CEi,j
∼Pr10,CEi,j

.

(i) Pr1,CEi,j
:

(|xi,j+2 + 2xi+1,j+2 + xi+2,j+2 − xi,j − 2xi+1,j − xi+2,j |) |e1,1 →

1|gxi,j
, (2 ≤ i, j ≤ n− 2),

(ii) Pr2,CEi,j
:

(|xi,j + 2xi,j+1 + xi,j+2 − xi+2,j − 2xi+2,j+1 − xi+2,j+2|) |e1,1 →

1|gyi,j
,

(2 ≤ i, j ≤ n− 2),
(iii) Pr3,CE1,i

: 0|e1,1 → |gx1,i
; (1 ≤ i ≤ n),

(iv) Pr4,CEn,i
: 0|e1,1 → |gxn,i

; (1 ≤ i ≤ n),
(v) Pr5,CEi,1 : 0|e1,1 → |gxi,1 ; (2 ≤ i ≤ n− 1),

(vi) Pr6,CEi,n
: 0|e1,1 → |gxi,n

; (2 ≤ i ≤ n− 1),
(vii) Pr7,CE1,i

: 0|e1,1 → |gy1,i
; (1 ≤ i ≤ n),

(viii) Pr8,CEn,i
: 0|e1,1 → |gyn,i

; (1 ≤ i ≤ n),
(ix) Pr9,CEi,1

: 0|e1,1 → |gyi,1
; (2 ≤ i ≤ n− 1),

(x) Pr10,CEi,n
: 0|e1,1 → |gyi,n

; (2 ≤ i ≤ n− 1).
Those rules are used to execute formula (1). The enzyme in Pr1,CEi,j

∼

Pr10,CEi,j
must exist in enough amount so that the rules can be acti-

vated. Specifically, if the value of the enzyme e1,1 is greater than vari-

able xi,j

�

1 ≤ i, j ≤ n
�

, then rules Pr1,CEi,j
∼Pr10,CEi,j

are effective.

Since variable xi,j is the gray value of image, the maximum value is

255. So, the initial value of e1,1 is set to 256, such that the condition

modeled by rule Pr1,CEi,j
∼Pr10,CEi,j

are satisfied. It is important to

note that the number of rules are n × n, and all the rules are executed

in parallel.

(b) Pr11,CEi,j
:
⇣
q

g2xi,j
+ g2yi,j

⌘

|e1,1 → 1|gi,j ; 1 ≤ i, j ≤ n

Pr11,CEi,j
are the rules which are executed by formula (5). Hence, after

executing Pr1,CEi,j
∼Pr10,CEi,j

, the value of the variables gxi,j
, gyi,j

are

obtained. The maximum value of gxi,j
and gyi,j

is 255, and the enzyme e1,1

is 256. So the condition of execution for rules Pr11,CEi,j
is satisfied. Hence,

all n× n rules are executed concurrently.
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(c) Pr12,CEi,j
: (2∗ (gi,j − θ))| → 1|gi,j+1|Ei,j ; 1 ≤ i, j ≤ n

Pr12,CEi,j
are the rules which compute di,j in formula (6). After executing

Pr12,CEi,j
, the value of di,j are obtained, which is equal to variables gi,j and

Ei,j in rule Pr12,CEi,j
.

(d) Pr13,CEi,j
: (ed1 + 2 ∗ ed2) |Ei,j

→ 1|edgi,j+1|EDi,j
; Pr14,CEi,j

: (0 ∗ ed1
+0 ∗ ed3|Ei,j

→ 1|edgi,j + 1|EDi,j
; 1 ≤ i, j ≤ n.

Pr13,CEi,j
and Pr14,CEi,j

are rules for computing edge value as formula

(7). If Ei,j is greater than or equal to 0, then Pr13,CEi,j
and Pr14,CEi,j

are

executed. Because ed1 is 0, and ed3 is -256, so Ei,j ≥ min (ed1, ed2) and

Ei,j ≥ min (ed1, ed3). The execution condition of Pr13,CEi,j
and Pr14,CEi,j

is satisfied. If di,j < 0, only Pr14,CEi,j
will be executed. Because Ei,j ≥

min (ed1, ed3) and Ei,j < min (ed1, ed2), only the execution condition of

Pr14,CEi,j
can be satisfied. After executing Pr13,CEi,j

and Pr14,CEi,j
, vari-

ables edgi,j will be set to 1 if di,j ≥ 0 and every variable EDi,j
will be

assigned.
(e) Prmain :

�

0 ∗ ED1,1
+ 0 ∗ ED1,2

+ ...+ 0 ∗ EDm,n
+ 1

�

| → 1|ED

Prmain is a rule contained in cell 1, which controls the stop condition of the

P system. For pixel (i, j) , if all the enzyme variables EDi,j
are assigned,

the condition for Prmain is meet. Enzyme variable ED is set to 1 by rule

Prmain, and the system stops running.

4.2 The structure and execution process of EDENP

As shown in Fig. 2, the structure of EDENP includes two membranes. The system

begins to work when the input variables xi,j represent the gray value of source image

at location (i, j) appear in the skin membrane. The whole process includes five steps.

Step 1: Horizontal and vertical derivative approximations of every pixel are com-

puted by using rules of Pr1,CEi,j
∼Pr10,CEi,j

in a parallel manner;

Step 2: The gradient magnitude of all the pixels are obtained at the same time with

rules of Pr11,CEi,j
;

Step 3: The comparison between the gradient magnitude of each pixel and the pre-

defined threshold is executed by rules of Pr12,CEi,j
;

Step 4: The edge pixels are detected and marked with 1, while the background pixels

are marked with 0 by rules of Pr13,CEi,j
and Pr14,CEi,j

;

Step 5: The system stop condition is satisfied and the system stops working by rules

of Prmain.

So as described above, only five steps are needed to the proposed algorithm for

images with arbitrary resolution. Since we did not change the mathematical model,

the performance of the algorithm is equal to the original Sobel operator based edge

detection algorithm in image processing.

4.3 Complexity and resources analysis

Taking into account that the size of the input data is n × n, and the image is a gray

image. The amount of resources needed is illustrated in Table 1. From Table 1, we can

see that the time complexity of the proposed method is O(1), and the space complexity

is O(n2).
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Fig. 2. Enzymatic numerical membrane system for GBED

5 Experiments and Results

In this section, both the performance and efficiency of our proposed EDENP algorithm

are evaluated. Since there is no hardware implementation of membrane computing sys-

tems at present, the only way to test the behavior of designed P systems is to simulate

it in conventional computers. In this paper, a parallel computing architecture, CUDA

(Compute Unified Device Architecture), is used as the simulating platform, as it has
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been reported in several literature [47,48,49,50]. The parameters of the platform on

which our experiments are carried out are illustrated in Table 2. The threshold θ for all

the experiments is set to 0.2.

5.1 Performance evaluation

Two case studies are considered to evaluate the performance of the proposed method.

For each case study, the comparison is considered in terms of quantitative and qualita-

tive results with the typical methods proposed in [27] and [50]. We will sketched the

edge detection algorithm of literature [27,50] and using the MATLAB program to im-

plement it on a CPU platform. The confidence degree of the edge image is one of the

mostly used evaluation indicator for edge detection algorithms, and its mathematical

definition is presented in reference [51]. In general, the greater edge confidence degree

is, the more reliable the edges are. In this article, edge confidence degree is introduced

to evaluate the performance of the edge detection algorithm quantitively.

5.1.1 Case study 1 Case study 1 is considered to evaluate the performance of the

three algorithms for images with rich textures. Four images named rice, cameraman,

mri, and AT3 lm4 01 randomly collected from the MATLAB Image Tool Box are used

as testing samples in this experiment, as shown in Fig.4(a1∼a4). Fig.4(b1∼b4) , (c1∼c4)

and (d1∼d4) show the detailed qualitative edge detection results of the three algorithms

for the four images. It can be clear observed from Fig.4(b1∼b4) that the counts of the

objects can be detected, but meanwhile the noise on the background is also detected,

which will make the following image processing, such as object recognition, more dif-

ficult to deal with. The results by reference [27] are shown in Fig.4(c1∼c4). It can be

seen that there are too many small edges, and the main outlines of the targets can hardly

be found even by human eyes. The results of EDENP are illustrated in Fig.4(d1∼d4),

from which we can see that not only the main counters of objects can be detected suc-

cessfully, but also the noise is well suppressed.

5.1.2 Case study 2 Case study 2 is used to test the performance of the three methods

for images with less texture, in which images named toyobjects, circbw, text, testpat1

randomly selected from MATLAB Image Tool Box are used as testing image samples.

In image toyobjects, each object has a constant gray value, while the other three images

are binary images. Like in Case 1, the detected edge results by the three approaches are

shown in Fig.5 (b1∼b4), (c1∼ c4) and (d1∼d4). Fig.5(b1),(b4) clear show that there are

many discontinuous edges when using algorithm in reference [50], while the other two

methods can detect the edges completely. When comparing the thickness of the edges,

it is obvious to see that method in reference [27] can achieve the thinnest edges, then the

EDENP method, and the edges detected by [50] is the thickest. Although the method in

[27] can obtain the finest edges, those edges often have burrs, as shown in Fig.6. Fig.6

gives the enlargement of partial edges, where the red rectangular in Fig.6 (a1) and (a2)

are the areas zoomed in. The corresponding enlarged edges are presented in Fig.6 (c1)

and (c2), where areas containing burrs are marked with pink rectangle. By comparing

Fig.6 (c1),(c2) with (b1),(b2) and (d1),(d2), it is clear that edges by algorithm in [50]
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Table 1. Complexity and resources needed for proposed P system

Term Necessary Resources

Initial number of cells 2

Number of enzymatic variables 2n2 + 2

Number of numerical variables 5n2 + 4

Number of rules 6n2 + 4

Execution steps 5

Fig. 3. Edge detection results of images with rich texture (the first column: the source gray im-

ages; the second to the last column: results by using methods in reference [50], reference [27]

and EDENP respectively)
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Table 2. Parameters the computer used

Term Parameters

CPU model Intel Pentium 4 650

cache memory 2 MB of L2

main memory 1 GB DDR SDRAM with 64 bits bus wide to 200 MHz

hard disc 160 GB SATA2 with a transfer rate of 300 Mbps in a 8 MB buffer

GPU model NVIDIA Geforce 8600 GT composed by 4 Stream

execution steps 5

Table 3. The edge confidence degree

reference [50] reference [27] EDENP

rice 0.75 0.56 0.84

cameraman 0.66 0.32 0.74

mri 0.63 0.56 0.68

AT3 lm4 01 0.44 0.12 0.5

toyobjects 0.85 0.76 0.86

circbw 0.94 0.93 0.95

text 0.93 0.90 0.94

testpat1 0.81 0.79 0.86

and EDENP are smoother than that in [27]. The areas where contain discontinuous

edges with method in [27] are marked in green rectangle Fig.6 (b1),(b2).

Table.3 provides the comparison results of the three methods in terms of edge confi-

dence degree. Note that the edge confidence degree refers to the credibility. The greater

the edge confidence degree, the greater the probability that the detected edges are the

true edges. It can be seen from Table.3 that the EDENP method has the highest edge

confidence degree for images with both high and less texture, which means edges de-

tected by EDENP has less false edges.

Through the above quantitative and qualitative results , it can be deduced that method

in reference [27] is nearly invalid for grayscale images with rich texture. For images

with less textures, this method can get the fine edges of the objects. However, the edges

are not smooth in some cases because of the false burr edge points. Approach in [50]

can not get the whole counters of the objects due to the discontinous edges detected for

images with both rich and less textures. The EDENP algorithm has the highest perfor-

mance and can obtain edges which are clear, continuous, and authentic for images with

both rich and less textures.
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Fig. 4. Edge detection results of images with less texture (the first column: the source gray images;

the second to the last columns: results by using methods in [50], [27] and EDENP, respectively)

142



Fig. 5. Edge detection results of images with less texture (the first column: the source gray images;

the second to the last columns: results by using methods in [50], [27] and EDENP, respectively)

Table 4. Elapsed of images with different resolution(cameraman)

Image resolution 2562 3842 5122 7682 10242 20482 platform

Elapsed Time(ms) 0.014 0.03 0.05 0.12 0.23 0.86 GPU

Elapsed Time(ms) 3.5 9.1 4.4 9.6 41.9 72.8 CPU

Speedup ratio 250 303 88 80 182 130

5.2 Efficiency evaluation

To better describe the computation performance of EDENP, a speedup ratio is defined

as the elapsed time of algorithm on CPU platform divided by running time on GPU

platform. The running times of images with different resolutions under GPU and CPU

platform and corresponding speedup ratios for one image are illustrated in Tables 4

and 5 gives the speedup ratios results of the other seven images. From Tables 4 and 5,

we can see that the lowest speedup is 53, and the maximum speedup can reach up to

262. It is obvious that the computing power of the proposed algorithm is much superior

comparing with the traditional algorithm implemented on CPU platform.

Table 5. The speedup ratio of seven images

Image resolution 2562 3842 5122 7682 10242 20482

mri 60 80 77 62 73 66

AT3 lm4 01 80 90 102 172 71 75

circbw 193 213 262 210 176 66

text 167 180 194 118 57 65

testpat1 53 76 100 161 87 64
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6 Conclusions

In this paper, a novel GBED parallel implementation method under the membrane com-

puting framework named EDENP has been presented. The core idea of this method is to

employ enzyme variables in ENPS to flexibly control the execution order of the rules.

So the edge detection based on Gradient operator can be successfully designed. It only

needs 5 steps for edge detection regardless of how large the image resolution is. Exten-

sive simulation experiments conducted with different image resolutions show the good

performance and effectiveness of the algorithm proposed. Since the gradient operator is

a typical linear operator, the algorithm proposed can be extended to other linear convo-

lution calculations in image processing, like mean filter algorithm, opening and closing

operations in morphology.
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31. Martı́n-Vide, C., Păun, Gh., Pazos, J., Rodrı́guez-Patón, A.: Tissue P systems. Theoretical

Computer Science, 296(2), 295–326 (2003).
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Abstract. Since the beginnings of membrane computing, software and
hardware tools have been implemented for simulating computations of
the proposed models. Some of these simulators are relatively generic,
providing enough flexibility for a wide variety of models and others are
ad-hoc simulators that reproduce computations of a single design that
has been hard-coded or computations of a single type of model. On the
one hand, generic tools are excellent assistants for the researchers while
verifying their designs. On the other hand, the efficiency of specific tools
in terms of simulation performance for a given design sacrifices the flexi-
bility of the previous ones. In this paper, it is presented for the first time
a tool that breaks this duality, we have implemented a compiler which
receives as input the definition of a design in the P-Lingua language and
produces as output source code in the C++ language for an ad-hoc sim-
ulator that has been optimized for the input design. The objective of
this work is twofold: On the one hand, we have extended the P-Lingua
framework to include some semantic features concerning to the models,
such as rule patterns and derivation modes, that can be written in an
explicit manner within their own file. On the other hand, we have de-
veloped a GNU GPLv3 command-line tool for Linux which works in the
same manner as conventional compilers. Finally, we include in this paper
a few examples for different types of cell-like and tissue-like models.

1 Introduction

Membrane computing is an unconventional model of computation within natural
computing that was introduced in 1998 by Gh. Păun [17]. The computational
devices in membrane computing, also known as P systems, are non-deterministic
theoretical machines inspired on the biochemical processes that take place inside
the compartments of living cells.

Several kinds of P systems coexist, each of them having different syntactic
ingredients, such as different alphabets and structures. The two most studied are
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cell-like membrane systems, characterized by their rooted tree structure, where
membranes act as filters that let certain elements to pass through them [17],
and membrane systems structured as directed graphs, representing the com-
munication between cells within a tissue of a living being, called tissue-like P
systems [9] or between neurons in a brain, called spiking neural P systems [7].
The interchange of objects between the different compartments is defined by the
rules of the system, that together with the corresponding semantics, mark the
functioning of the system.

A configuration of a P system is defined by the structure of the compart-
ments at a certain moment, and the elements (being usually objects, although
other kinds of elements can be considered, as strings, catalysts [17] and anti-
matter [14], among others) contained in each compartment, as well as other
characteristics from specific types of P systems, providing a snapshot of the sys-
tem at an instant t. By using the rules specified in a model, we can make its
objects change, both evolving and moving between the different compartments
(membranes in the case of cell-like P systems and cells in the case of tissue-like
P systems).

On the one hand, in P systems with active membranes [19], both objects
and membranes change through the application of evolution, communication,
division, separation, creation and dissolution. In this framework, membranes
can have a polarization associated to each membrane. On the other hand, in
tissue P systems [9], symport/antiport rules are devoted to make objects move
from a cell to another cell or to the environment (a special compartment where
there exist an arbitrary number of objects of an alphabet defined a priori), while
division and separation rules allow an exponential growth in linear time.

We say that a configuration Ct yields to a configuration Ct+1 if, by applying
the rules specified in the model according to its semantics, we can obtain Ct+1

from Ct. Semantics rules the behavior of the system, determining which rules
can be applied and how they affect the system according to a global clock. A
computation of a P system is a (finite or infinite) sequence of instantaneous
configurations.

We consider a family (or model) of P systems as the definition of a type of
P system, that is, its syntax and semantics. According to the specification of a
particular family of P systems, we consider a (specific) model as the definition
of an individual P system, that is, its working alphabet, initial membrane struc-
ture with initial multisets of objects and the set of rewriting rules with another
characteristics of the correspondent family. By the definition of the family, we
can interpret the structure and behavior of a specific model within that family.

Membrane computing is a very flexible framework where different types of
devices can be outlined. In fact, the intersection between Membrane Computing
and other fields, such as engineering [20], biology [23] and ecology [2], as well as
a long list of other scientific lines [5, 13, 24], has generated necessities that could
only be filled by the creation of new kinds of P systems, expanding the scope of
researchers in this area. For an exhaustive explanation of the different types of
P systems, we refer the reader to [18] and [16].
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Software and hardware simulators have been implemented from the begin-
nings of membrane computing. Some of these are very generic and flexible. On
the other hand, we define an ad-hoc simulator as a simulator for one and on-
ly one membrane computing design which has been hard-coded. Such tools are
usually the faster simulators since they can be optimized for the input design
and the hardware to be used. But the hard-coding process requires an excellent
knowledge of the hardware architecture, as well as the design to be implemented.
Debugging should be always critical and the results are not very reusable.

In this work, we have extended the P-Lingua framework [6, 25] to include
semantic features concerning to the models. On the other hand, we have imple-
mented a GNU GPLv3 command-line tool to compile P-Lingua input files to
ad-hoc source code in C++. The output files are optimized for the input designs
and all the process can be automatized by using makefiles, i.e.,files which specify
how to derive the target program.

The paper is structured as follows: In the next section, some preliminaries
concepts about P-Lingua are introduced. In Section 3, we propose an extension
for the P-Lingua language to directly define model constraints in the own P-
Lingua files, providing a more flexible and experimental framework. The next
Section is devoted to the new GNU GPLv3 software tool to compile the input P-
Lingua files and generate source code in C++, as well as JSON code codifying the
input designs for third-party applications. Section 5 introduces the simulation
algorithm used in the generated simulators. In Section 6 some examples of the
new P-Lingua extension are introduced. Finally, some conclusions and future
work are drawn.

2 Preliminaries

P-Lingua [6, 25] is a software framework that includes a definition language for P
systems (also called P-Lingua) and a GNU GPLv3 Java library (pLinguaCore)
that is able to parse P-Lingua files and simulate computations. The library
contains three main components:

– A parser for reading input files in P-Lingua format and checking syntactic
and semantic constraints related to predefined models. In order to achieve
this, the first line of a P-Lingua file should include a P system model dec-
laration by using an unique identifier. There are several P system models
that can be used, each one with its own identifier, such as transition,
membrane division, tissue psystems, and probabilistic. The analysis
of semantic ingredients, such as rule patterns, is hard-coded for each model.
Several versions of pLinguaCore [6, 8, 10, 21] have been launched to cover
different types of models.

– For each type of model, the pLinguaCore library includes one or more built-
in simulators, each one implementing a different simulation algorithm. For
instance, Population Dynamic P systems [1] (probabilistic identifier in
P-Lingua) can be simulated within the library by applying three different
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algorithms: BBB, DNDP, and DCBA [3, 11]. Remarkable software projects such
as MeCoSim (Membrane Computing Simulator) [27, 22] use the simulators
integrated in the library to perform P system computations and generate
relevant information as result for custom applications.

– Alternatively, the pLinguaCore library is able to transform the input P-
Lingua files to other formats such as XML or binary format in order to feed
external simulators. The generated files for the given P systems are free of
syntactic/semantic errors since the transformation is done after the parser
analysis. Several external simulators use this feature, for example, the PM-
CGPU project (Parallel simulators for membrane computing on GPU) [12,
26] uses definitions generated by pLinguaCore in order to provide the input
of CUDA GPU simulators.

The P-Lingua language is currently a standard widely used for the scientific
community since the syntax is modular, parametric and close to the common
scientific notation. The description of the language can be found in the refer-
ences [6, 8, 10, 21, 25]. As an example, the definition of a basic transition P system
follows:

@model<transition>

def main()

{

@mu = [[[]’3 []’4]’2]’1;

@ms(3) = a,f;

[a --> a,bp]’3;

[a --> bp,@d]’3;

[f --> f*2]’3;

[bp --> b]’2;

[b []’4 --> b [c]’4]’2;

(1) [f*2 --> f ]’2;

(2) [f --> a,@d]’2;

}

In the example, a module main is defined including an initial membrane
structure [ [ ]3 [ ]4 ]2 ]1, an initial multiset for the membrane labelled 3, and
a set of seven multiset rewriting rules. The special symbol @d is used to specify
dissolution. The last two rules include priorities as integer numbers in parenthesis
at the beginning of the left-hand side of the rules. More complex examples can
be found in the P-Lingua web [25].

3 An extension of P-Lingua for semantic features

As explained above, the analysis of semantic ingredients belonging to P systems
is hard-coded in the pLinguaCore library, i.e, the only way to define new types of
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models is by implementing code inside the library. In this section, we propose an
extension for the P-Lingua language to directly define model constraints in the
own P-Lingua files, providing a more flexible and experimental framework. Two
types of semantic constraints can be defined with this extension: rule patterns

and derivation modes.

3.1 Rule patterns

The P-Lingua parser is able to recognize rules with the next general syntax:

p

u[v1[v1,1]
α1,1

h1,1
. . . [v1,m1 ]

α1,m1

h1,m1
]α1

h1
. . . [vn[vn,1]

αn,1

hn,1
. . . [vn,mn

]
αn,mn

hn,mn
]αn

hn

q
−→ or

q
←→

w0[w1[w1,1]
β1,1
g1,1

. . . [w1,r1 ]
β1,r1
g1,r1

]β1
g1

. . . [ws[ws,1]
βs,1
gs,1

. . . [ws,rs ]
βs,rs
gs,rs

]βs

gs

where:

– p is a priority related to the rule given by a natural number, where a lower
number means a higher rule priority.

– q is a probability related to the rule given by a real number in [0, 1].
– αi,αi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi and βi,βi,j , 1 ≤ i ≤ s, 1 ≤ j ≤ ri are electrical

charges.
– hi, hi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi and gi, gi,j , 1 ≤ i ≤ s, 1 ≤ j ≤ ri are

membrane labels.
– u, vi, vi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi and wi, wi,j , 1 ≤ i ≤ s, 1 ≤ j ≤ ri are

multisets of objects.

Next, there is a list of P-Lingua rule examples matching the general rule
syntax:

– a,b [ d,e*2 ]’h --> [f,g]’h :: q; where q is the probability of the
rule.

– (p) [a]’h --> [b]’h; where p is the priority of the rule.
– [a --> b]’h;, the left-hand side and right-hand side of evolution rules can

be collapsed.
– +[a]’h --> +[b]’h -[c]’h; a division rule using electrical charges.
– [a]’h --> ; a dissolution rule.
– a[ ]’h --> [b]’h; a send-in rule.
– [a]’h --> b[ ]’h; a send-out rule.
– [a --> #]’h; the symbol # can be optionally used as empty multiset.
– [a]’1 <--> [b]’0; a symport/antiport rule in the tissue-like framework.
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The syntax of the general rule is very permissive, and so different parsers for
different models have been developed in order to restrict the rules used in each
one. In order to provide the researcher a more flexible framework, not having
to depend on the implementation itself but acquiring the capacity of restricting
the model by himself, we introduce the next syntax in P-Lingua for rule pattern
matching:

!rule-type-id

{

pattern1

pattern2

...

patternN

}

where rule-type-identifier is an unique name for the type of rule that is
going to be defined and pattern1, pattern2, ..., patternN are rule patterns
following the same syntax than common rules in P-Lingua where anonymous
variables beginning with ? can be optionally used instead of probabilities, charges
and priorities. In the patterns, the symbols beginning with a, b or c always mean
single objects and symbols beginning with u, v and w always mean multisets of
objects. In Section 6, are given several examples of rule patterns in P-Lingua for
different types of cell-like and tissue-like models.

3.2 Derivation modes

From an informal point of view, we can see a derivation mode as the way a step
of a P system is performed. As a part of semantics, it rules the exact application
of rules of the system, deciding when rules can be applied or not when they are
applicable. An extensive study of derivation modes can be found in [4]. In order
to make the work self-content, we give a minimal definition of a derivation mode.

A derivation mode ϑ is defined as a function that selects different multisets
of rules “really applicable” to a configuration Ct of a P system depending on a
specification. For this purpose, let Π be a P system with R as its set of rules, R
a multiset of compatible rules applicable to a P system at configuration Ct, and
let R be the set of all multisets applicable to a P system at configuration Ct.

In this extension of P-Lingua we provide two main derivation modes:

– Maximally parallel derivation mode (max): It is the default mode for P
systems. In this mode, we only take multisets from R that are not extensible,
that is:

R′ = {R | R ∈ R∧ ̸ ∃R′ ∈ R : R ! R′
}.

The multiset of rules finally applied to Ct is selected non-deterministically
from R′.
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– Bounded-by-rule parallel derivation mode (boundB1,...,Br
): Let {a, b, . . . }

be the set of different types of rules present in a P system. Bi can be of the
following forms:

• Bi = j, j ∈ {a, b, . . . };
• Bi = βn(B1i , . . . , Bri), being n ∈ N, and for eachBj = βmj

(B1j , . . . , Brj ),
j ∈ {1i, . . . ri}, mj ≤ n;

• As a restriction, a label for a type of rule cannot appear more than once
in the whole definition of the derivation mode.

We say that n is the bound of Bi = βn. We say that a type of rule (j) is in
the context of Bi if:

• There exists Bi = βn(j) (we call Bi its immediate context); and
• There exists Bi = βn(B1i , . . . , Bri) such that Bj is a context of the type

of rule (j).

This mode is defined recursively, and we can understand the applicability

of the rules in a defined bounded-by-rule parallel derivation mode in the
following sense:

• In a context βn(B1, . . . , Br), the number of rules that can be applied in
parallel in a P system in a configuration Ct is n; and

• In a bounded-by-rule parallel derivation mode boundB1,...,Br
, if Bi =

j(j ∈ {a, b, . . . }), being 1 ≤ i ≤ r, then rules of type j can be applied in
a maximal way.

With this mode, we can define the classical mode used in P systems with
active membranes, that is, evolution rules (a) can be applied in a maximal
parallel mode, while the other types of rules (send-in communication rules
(b), send-out communication rules (c), dissolution rules (d), division rules
for elementary (e) and non-elementary (f) membranes) can be applied at
most once per membrane at each computation step. It would be defined as
bounda,β1(b,c,d,e,f). If Rj is the set of rules from R of the type j, we formally
define the bounded-by-rule maximally parallel mode by

R′ = { R | R ∈ R
∧ | {r | r ∈ R, r ∈ Rj} |≤ n for all j in the context of Bi = βn

∧ ̸ ∃R′ ∈ R : R ! R′
}

Thus, a model type can be defined in P-Lingua by aggregating the allowed
rule patterns and its corresponding derivation modes, the syntax is as follows:

@model(id) = rule-type-id1,..., rule-type-idN;

where id is an unique identifier for the model and rule-type-id1 ,...,
rule-type-idN are unique identifiers for the corresponding allowed rule pat-
terns. By default all rules behave in maximally parallel derivation mode, but
rules can be grouped in sets to behave in bounded parallel derivation mode as
follows:
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@model(id) = @bound{rule-type-id,..., rule-type-idN};

where bound is a natural number defining the maximum number of rules in the
group that can be applied to a given configuration. In Section 6, several examples
of model definitions in P-Lingua are given.

4 A command-line tool for generating ad-hoc simulators

A GNU GPLv3 command-line tool called pcc has been implemented in C++
language with Flex [28] and Bison [29]. The source code including examples and
instructions can be downloaded from https://github.com/RGNC/plingua.

The tool provides three main functionalities:

– Parsing P-Lingua files while printing the syntactic and semantic errors
to the standard error output. In this sense, the tool acts as a conventional
compiler, showing the name of the file, as well as the number of the line
and column for each error with a short description. The analysis of semantic
errors is done by using the rule patterns and derivation modes defined in the
own P-Lingua files. Several files can be compiled together like conventional
programs, furthermore standard makefiles can be also used. The developer
can decide to write the rule patterns and derivation modes in a set of files
and reuse them in several projects. More explanations can be found in the
website.

– Generating JSON files. The tool is able to translate the definitions con-
tained in P-Lingua files to JSON format [30] for compatibility with third-
party simulators. The translation is done after parsing the input files, thus
the JSON files are free of syntactic/semantic errors and the third-party ap-
plications do not have to check them. Several P-Lingua files can be combined
together in one JSON file, including also the selected derivation modes.

– Generating source code. The tool can generate all the source files for
a command-line executable in C++ which is a complete ad-hoc simulator
optimized for the design given by the input files. The generated program is
able to simulate computations for the defined P system following the specified
derivation modes. It interacts with the user by the command-line as common
Linux console applications. Generic front-ends could be easily implemented
because the command-line options are common to all the simulators. The
simulations could be interrupted and resumed since intermediate configura-
tions can be saved in JSON files. Initial multisets can also be defined before
the simulation, as well as setting different halting conditions, such as simu-
lating a fixed number of computation steps or running until the execution
of a rule marked in the P-Lingua file as halting rule.
The pcc tool performs several analyses over the input files in order to op-
timize the memory and time that is going to be used for the simulator.
The C++ structures used to represent the membrane tree are selected de-
pending on the type of rules that can be used, for instance, if there are
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not send-in/send-out rules, then C++ pointers to parent/child membranes
are not necessary. The generated code can be compiled with the GNU g++
tool [31], makefiles can also be used to automatize all the process from the
P-Lingua files to the Linux executable. Instructions and examples can be
found in the web page.

5 The simulation algorithm

The compiler presented in Section 4 generates the source code in C++ for an
ad-hoc simulator which is able to reproduce computations for the input design
written in P-Lingua. The generated code follows the scheme shown in Fig. 1.
The simulation is provided by a sequential loop where each iteration simulates
one step of computation. For each iteration, the simulator determines the mul-
tiset of rules which is going to be applied and then, it applies it to the current
configuration Ct obtaining the next configuration Ct+1. The halting condition is
checked after each iteration.

Fig. 1. The main simulation loop

The algorithm used to select rules is described in Pseudocode 1. It returns a
multiset B of pairs (m, r) and a configuration C ′

t. One pair (m, r) means that rule
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r has been selected once to be applied over membrane m in Ct. The configuration
C ′

t contains a copy of Ct after applying the left-hand side of the selected rules,
i.e, after removing from Ct the multisets of objects specified by the left-hand side
of the selected rules. On the other hand, the applicability function determines
the maximum number of possible applications for a rule r over a membrane m
in configuration C ′

t. It considers the left-hand side, the charges in the right-hand
side, as well as the derivation mode of r. A membrane m in C ′

t is marked as
fixed if at least one pair (m, r) is contained in B or unfixed otherwise. A rule r
cannot be selected if it would change the electrical charge of a fixed membrane.

Finally, Algorithm 2 receives the partial configuration C ′

t and generates the
next configuration Ct+1 by applying the right-hand side of the selected rules.

Algorithm 1 SELECT RULES

Require: Current configuration Ct; Set of rules R;
M ← ∅;B ← ∅;C′

t ← Ct;
for each membrane m in C′

t do

Am ← R; // Copy the set of rules
M ← M ∪m

Mark m as unfixed
end for

while |M | > 0 do

m ← Randomly select one membrane in M

r ← Randomly select one rule in Am

k ← applicability(C′

t, r,m)
if k = 0 then

Remove r from Am

if |Am| = 0 then

Remove m from M

end if

else

n ← A random natural number in [1, k]
C′

t ← apply left hand side(C′

t, r,m, n)
B ← B ∪ {(m, r)n}
Mark m as fixed

end if

end while

return (C′

t, B)

6 Examples

6.1 Transition P systems

!transition_evolution /* Limited to rules with 3 inner membranes */
{

[a -> v]’h;
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Algorithm 2 APPLY RULES

Require: Partial configuration C′

t; Multiset of selected rules B;
Ct+1 ← C′

t;
for each pair (m, r) in B do

Ct+1 ← apply right hand side(Ct+1, r,m)
end for

return Ct+1

[a -> v, @d]’h;
(?) [a -> v]’h;
(?) [a -> v, @d]’h;

[a [ ]’h1 --> v [w]’h1]’h;
[a [ ]’h1 --> v [w]’h1]’h;

(?) [a [ ]’h1 --> v [w]’h1]’h;
(?) [a [ ]’h1 --> v [w]’h1]’h;

[a [ ]’h1 [ ]’h2 --> v [w1]’h1 [w2]’h2]’h;
[a [ ]’h1 [ ]’h2 --> v [w1]’h1 [w2]’h2]’h;

(?) [a [ ]’h1 [ ]’h2 --> v [w1]’h1 [w2]’h2]’h;
(?) [a [ ]’h1 [ ]’h2 --> v [w1]’h1 [w2]’h2]’h;

[a [ ]’h1 [ ]’h2 [ ]’h3 --> v [w1]’h1 [w2]’h2 [w3]’h3]’h;
[a [ ]’h1 [ ]’h2 [ ]’h3 --> v [w1]’h1 [w2]’h2 [w3]’h3]’h;

(?) [a [ ]’h1 [ ]’h2 [ ]’h3 --> v [w1]’h1 [w2]’h2 [w3]’h3]’h;
(?) [a [ ]’h1 [ ]’h2 [ ]’h3 --> v [w1]’h1 [w2]’h2 [w3]’h3]’h;

}

@model(transition) = transition_evolution;

6.2 Active membranes with division rules

!dam_evolution
{

?[a -> v]’h;
?[a -> ]’h;

}

!dam_send_in
{

a ?[ ]’h -> ?[b]’h;
}

!dam_send_out
{

?[a]’h -> b ?[ ]’h;
}

!dam_dissolution
{

?[a]’h -> b;
?[a]’h -> ;

}

!dam_division
{

?[a]’h -> ?[ ]’h ?[ ]’h;
?[a]’h -> ?[b]’h ?[ ]’h;
?[a]’h -> ?[ ]’h ?[b]’h;
?[a]’h -> ?[b]’h ?[c]’h;

}

@model(membrane_division) =
dam_evolution, @1{dam_send_in, dam_send_out, dam_dissolution, dam_division};
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6.3 Tissue-like P systems with communication and cell division

!tissue_communication
{

[u]’h1 <--> [v]’h2;
}

!tissue_division
{

[a]’h -> [ ]’h [ ]’h;
[a]’h -> [b]’h [ ]’h;
[a]’h -> [ ]’h [b]’h;
[a]’h -> [b]’h [c]’h;

}

@model(tissue_division) =
tissue_communication, @1{tissue_division};

6.4 Population Dynamics P Systems

!pdp_evolution
{

u1 ?[v1]’h -> u2 ?[v2]’h :: ?;
}

!pdp_environment_communication
{

[[a]’e1 [ ]’e2]’h -> [[ ]’e1 [b]’e2]’h :: ?;
}

@model(probabilistic) =
pdp_evolution, pdp_environment_communication;

7 Conclusions and future work

This paper presents for the first time a compiler for membrane computing which
is able to generate C++ source code for optimized ad-hoc simulators. The input
P systems are written in P-Lingua, a common language to define membrane
computing designs. In this paper we have extended the language to include
semantics ingredients, such as rule patterns and derivation modes. The compiler
can recognize the rule patterns and show syntactic/semantic errors during the
parsing process. The generated simulators are able to simulate computations
given by the derivation modes, even if the derivation modes are experimental.
Thus, the goal of this tool is twofold: On the one hand, it pretends to be a
good assistant for researchers while verifying their designs, even working with
experimental models. On the other hand, it provides optimized simulators for
real applications, such as robotics or simulation of biological phenomena.

Several lines are open for future work. From the point of view of the language,
the semantic ingredients that can be written in P-Lingua should be studied
in order to cover more types of models. For instance, defining bounds for the
multiplicities of objects in different compartments, such as the environment in
tissue-like P systems, where the multiplicity of objects can be infinite. On the
other hand, custom directives could be included in P-Lingua files and translated
to C preprocessor directives for the simulator. For example, if the design is
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confluent, a directive could be written to optimize the simulation time, since it
is not necessary to simulate the non-determinism by using random numbers.

From the point of view of the generated simulators, it would be very interest-
ing to produce optimized code for different parallel hardware architectures such
as multi-core processors, GPUs or FPGAs. Until now, the faster simulators for
parallel architectures are relatively ad-hoc, since several optimizations should
be done by analysing the input design. A tool able to automatize this process
for a wide variety of input designs could approximate the membrane comput-
ing paradigm to other disciplines where it is needed efficient solutions to hard
problems. In particular, it could be applied to anytime algorithms for robotics,
such as social navigation in crowdy environments or automatic driving, where
the robot should have a fast response in real-time, but the solution could be
improved by using more computational time.
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Abstract. Modelling pedestrians evacuation behavior has become an
essential issue in improving the safety of high-rise buildings evacuation.
The motivation of this paper is to extend the intelligent decision P system
(IDPS) to describe and evaluate the behavior selection of pedestrians. T-
wo types of pedestrians were studied in the framework of IDPS: queuers,
who adhered to the evacuation instructions and had to follow the fron-
t ones to maximize the efficiency of global evacuation; and competitors
who elbowed their way through the crowd, with frequently overtook each
other but no violence whatsoever, maximizing the efficiency of individual
evacuation. They corresponded to queuing behavior and competitive be-
havior, respectively. The IDPS also modeled obstacle avoidance behavior
at two specific fire scenarios, diffused fire scenario and non-diffused fire
scenario. The simulation results showed that the cumulative effects of
queuing behavior and competitive behavior varied with different walking
speeds and different floors. When a fire occurs, the evacuation efficien-
cy of queuing behavior was higher than that of competitive behavior,
and the number of pedestrian casualties was decreased. The findings of
this study can be used to develop new behavioral models of evacuation
simulations in high-rise buildings.

Keywords: membrane computing · intelligence decision P system · com-
petitive behavior · queuing behavior · high-rise building

1 Introduction

With the development of modern cities, more and more high-rise buildings have
risen, and the number of people in these high-rise buildings is usually massive
[1]. Thus under the situations such as fire and terrorist attack, the emergency
evacuation of such buildings has become an important concern for architects,
residents and government [2].

Factors affecting the evacuation characteristics are mainly divided into the
following two categories: flow capacity and human behavior [3] [4]. The flow ca-
pacity is limited by the geometry characteristics of buildings such as staircase
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and door, which has been extensively researched and verified [5] [6]. Human
behavior, such as the behavioral preferences and movement characteristics of
pedestrians, plays an important role in the evacuation process [7] [8] [9] [10].
Researches have shown that pedestrian’s behavior in the next phase largely de-
pends on their behavioral preferences, in which case rational choice will be made
by weighing all available options and choosing what s/he thinks is adequate
rather than optimal [11] [12]. In addition, significant time pressures caused by
crisis or uncertainty can encourage pedestrians to search for more options [13]
[14]. Therefore, pedestrian’s behavioral differences should be studied to predict
the outcome of possible evacuation schemes and to reduce the possible nega-
tive effects of disasters [15]. When the situation is threatening pedestrian’s live
in a short period of time, s/he may speed up to escape and ignore the social
norms of politeness. However, when the situation is not so serious, the motion
characteristics of evacuation process are similar to normal conditions.

Most studies use modeling to simulate pedestrians’ behavior in emergencies.
Pedestrians’ behavior simulation models in the existing literature can be cat-
egorized into two categories: discrete model and continuous model [16]. Most
discrete models are based on cellular automata model, with space and time dis-
crete during the evacuation while the continuous models simulate the position
of each person per second in succession [17]. The social force model is a certain
example of continuous models [18]. Many researches have advanced the sim-
ulation progress of pedestrians’ behavior with discrete models and continuous
models. Discrete model needs to establish a series of rules to meet the discrete
requirement for time and space, which makes pedestrian behavior simulations
not as accurate as a continuous model. Moreover, the pedestrians in the conti-
nuity model are completely affected by the force, and the intelligent behavior of
the people is rarely considered. Some assumptions oversimplify the path discov-
ery process of pedestrians, so the continuity model cannot effectively imitate the
more complicated behavior of pedestrians. Though behavioral models have been
used to describe features of pedestrian flow in normal operation situations, few
studies analyze the interaction between individual pedestrians in emergencies.

In traditional P systems, cells were designed for computing rather than mov-
ing [19]. The computational results were usually defined according to objects
present in the output membrane in the halting condition. Recently, some mem-
brane systems have involved the concept of position, such as spatial P systems
[20] and the grid-exploring P system [21]. In this study, the intelligence deci-
sion P system (IDPS) was further expanded, taking into account the effect of
pedestrian preference [22]. Compared with the previous work, the most promi-
nent difference is modeling pedestrian behaviors in high-rise buildings. IDPS
has been adopted to model the effects of the factors which may affect pedestrian
behaviors in evacuation of high-rise buildings. The main contributions of this
paper can be summarized as follows.

(1) The IDPS is used to study pedestrian behavior considering pedestrian
preferences and random attributes. This work contains two behaviors, which
correspond to two types of pedestrians. Two types of pedestrians use different
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ways of interaction to adjust their behaviors. This model described the evac-
uation process as realistically as possible to contribute to develop behavioural
models for evacuation simulations in high-rise buildings.

(2) During the evacuation process, the difference in the cumulative effects
of the two behaviors was found. At the same time, there was no overtaking in
the process of evacuation for the queuing behavior. In the process of evacua-
tion for competitive behavior, a process similar to queuing evacuation occurs in
staircases.

In the remainder of this paper, some necessary preliminaries are noted in
Section 2 with respect to the formal definition of the IDPS model. The de-
tailed implementation method of simulating behavior evacuation is described in
Section 3. In Section 4, the evacuation simulation of competitive behavior and
queuing behavior is carried out with a discussion of the simulation results. The
conclusions are given in the last section.

2 Preliminaries

Formally, an intelligence decision P system of degree n ≥ 1 is defined as follows:

Π = (Γ, E(0), C
(0)
1 , . . . , C(0)

n ,R, G, ss, st),

where:

– n ≥ 1 (the system contains n cells, labeled with 1, 2, · · · , n; all these n cells
are placed in the environment and the environment is labeled with 0);

– Γ is the alphabet of objects;
– E(0) is the set of objects in the environment at the beginning of the simula-

tion, each with an arbitrarily number of copies; the environment is defined
as the place of cell movement. It includes signal objects, some of which help
start or end the migration and others that have a large influence on the
speed and directions of cells. It keeps a record of the current position of each
cell.

– C
(j)
i = {p

(j)
i , v

(j)
i ,K

(j)
i ,m

(j)
i } is the state of cell i at step j, where p

(j)
i =

(x
(j)
i , y

(j)
i ) is the real-time location of cell i; v

(j)
i is the speed of cell i at step

j; K
(j)
i = (k1, . . . , kn) describes the knowledge base of cell i at step j; and

m
(j)
i indicates the type of cell. C

(0)
i denotes the initial state of cell i.

– C
(0)
1 , . . . , C

(0)
n are strings over Γ , describing n knowledge bases placed in

1, . . . , n cells respectively at the beginning of the simulation;
– R includes four types of rules:

1. Knowledge base update rules :
Cells make decision based on their own knowledge bases. Their initial
knowledge bases are set according to their types mi, their initial loca-
tions, etc. Their knowledge bases are then updated in two different ways.
The first is by obtaining information from the environment. The second
is by exchanging information with other cells.
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(1) Interaction with the environment:
Cells obtain information from the environment, such as real-time traffic
data, route guidance signals, obstacles, the starting signal and the ter-
mination signal. Each piece of information has a perception region. If a
cell is in this region, then it can obtain the information as described by
the following rules:

K
(j)
i → K

0(j+1)
i , ∀i ∈ {1, . . . , n},

K
0(j+1)
i =

(

K
(j)
i ∪ {a}, pi ∈ Ra

K
(j)
i , pi /∈ Ra

where Ra indicates the perception region of information a. The knowl-
edge base of cell i is updated by adding information a, if cell i reaches
Ra.
(2) Communication with other cells:
Cells can share information with their neighbors. Assume that the dis-

tance of two neighbors is no more than a threshold d. If lbest ∈ K
0(j+1)
i ∪

K
0(j+1)
k , |pi − pk| ≤ d is the information that leads to the best running

plan of cell i or cell j, and if lbest is not in K
0(j+1)
i , then K

0(j+1)
i is

updated by adding information lbest.

K
0(j+1)
i → K

(j+1)
i , ∀i ∈ {1, . . . , n},

K
(j+1)
i =

(

K
0(j+1)
i ∪ {lbest}, lbest /∈ K

0(j+1)
i

K
0(j+1)
i , lbest ∈ K

0(j+1)
i

2. Type transition rules :
Cell type is defined according to the knowledge base in the cell. A knowl-
edge base change may lead to a cell type transition.

K
(j+1)
i m

(j)
i → K

(j+1)
i m

(j+1)
i .

3. Decision-making rules :
According to the knowledge base and the current position, cell i can
obtain several running schemes at step j.

K
(j)
i p

(j)
i → {Scheme

(j)
i,1 , . . . , Scheme

(j)
i,ik

}.

The best scheme Scheme
(j)
i,best is chosen according to a specific require-

ment (see Figure 1), e.g., minimizing the distance from the current po-
sition to the exit.

{Scheme
(j)
i,1 , . . . , Scheme

(j)
i,ik

} → Scheme
(j)
i,best.

Priorities can be easily added to these rules for decision-making.
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Scheme (2)

  

Scheme (k)

Scheme (best)

Fig. 1. Decision-making rules.

4. Position-updating rules :
The expected velocity and moving direction can be calculated from

Scheme
(j)
i,best,

Scheme
(j)
i,best → (v

0(j)
i , d

0(j)
i ).

In the process of moving, the actual situation may not allow cells to follow
the planned direction. In that case, the cells must adjust their behavior.
For example, when a cell encounters an obstacle, it must bypass the
obstacle to move forward. The actual velocity and direction of the cell i

at step j are denoted by v
(j)
i and d

(j)
i , respectively.

(v
0(j)
i , d

0(j)
i ){o1, . . . , oq} → (v

(j)
i , d

(j)
i ),

where o1, . . . , oq represents obstacles. Cell i updates its position accord-
ing to the current position and speed.

(x
(j)
i , y

(j)
i )(v

(j)
i , d

(j)
i ) → (x

(j+1)
i , y

(j+1)
i ),

where (x
(j)
i , y

(j)
i ) is the position of cell i at step j and (v

(j)
i , d

(j)
i ) is the

speed and the moving direction of cell i at step j.

– G is the set of destinations or exits of the moving cells.
– ss is the starting signal for cell movement and st is the termination signal.

The rules of a system as above are used in a nondeterministic maximally
parallel manner. When the starting signal ss appears in the environment, cells
move towards their goals under the guidance of the rules in R. At each step,
cells decide what is the next actions to be performed, i.e., velocities and direc-
tions. They usually stop moving when they reach their destinations or when the
termination signal st appears in the environment.

A configuration of IDPS Π is described by the multisets of objects in the cells

and the environment. C
(j)
1 , . . . , C

(j)
n represent the states of all the cells present in

the system at step j. They involve four basic cell characteristics, ie.e., position,
speed, knowledge base and type. The configuration of the next system is deter-
mined by rules in R applied to the previous system. All computations start from
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the initial configuration and proceed. Cells stop moving when they reach their
destinations or when they get the termination signal st from the environment.
The system stops evolving when all cells stop moving. The simulation results are
obtained by counting the number of cells going through the exits.

3 Model

The behavior of pedestrian evacuation in high-rise buildings is studied based
on an intelligence decision P system. Two behavior types are included: queu-
ing behavior, in which pedestrians adhere to the evacuation instructions and
maximize the efficiency of global evacuation; and competitive behavior, in which
pedestrians ignore the evacuation instructions and try to maximize the efficiency
of individual evacuation. The evacuation instructions usually contains: (1) No
overtaking, no scrambling, no pushing; (2) Follow the right-hand rule.

In the process of evacuation, pedestrians could walk freely from current loca-
tion to the door, and wait in line before leaving. Therefore, the estimated evac-
uation time is comprised of the time of pedestrian walking freely from current
position to the door and the time of queuing at the door. Estimated evacuation
time is calculated as follows [23]:

T b
i (t) = T b

Wi(t) + T b
Qi(t),

where T b
i (t) is the estimated evacuation time of pedestrian i going through the

door; T b
Wi(t) is the time of pedestrian i walking from current position to the

door, and T b
Qi(t) is the time of pedestrian i queuing at the door. According

to the principle of “first-come-first-served”, if a pedestrian arrives at the door
earlier, then s/he walks out earlier.

3.1 Knowledge base update

Cells update their knowledge bases in two different ways. The first is by obtaining
information from the environment. The second is by exchanging information with
other cells.

(1) Interaction with the environment:
Cells obtain information from the environment, such as real-time traffic data,
route guidance signals, obstacles, the starting signal and the termination
signal. Each piece of information has a perception region. If a cell is in the
region, then it can obtain the information as shown in Fig. 2. Cells can
perceive exits, fires and congestion through maximum visual angle (e.g.,
150�) and maximum visual distance (e.g., 10m). When the target exit is
congested, the cell A can re-direct another path. In contrast, the cell B
insists on its initial selection path because the alternative exit is beyond its
visual area. The cell may not notice the situation ahead unless the obstacle
is within the maximum visual distance. If there are obstacles in the field of
vision, cells will take action to avoid obstacles.
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Fig. 2. Visual observation of cells.

(2) Communication with other cells:
When the distance between two neighbors does not exceed the threshold
dnei, cell can share information with its neighbors in probability Pinteraction.

If lfire ∈ K
0(j+1)
i ∪ K

0(j+1)
k , |pi − pk| ≤ dnei is the information that leads

to the obstacle avoidance behavior of cell i or cell k, and if lfire is not in

K
0(j+1)
i , then K

0(j+1)
i is updated by adding information lfire.

K
(j+1)
i =

(

K
0(j+1)
i , lfire ∈ K

0(j+1)
i

K
0(j+1)
i ∪ {lfire}, lfire /∈ K

0(j+1)
i

3.2 Decision-making mechanism

According to the knowledge base, the current position and the type of cell, cell

can determine it’s own evacuation pattern and optimal running scheme. m
(j)
i

indicates the type of cell, where m
(j)
i(Q) denotes the queuer with queuing behavior,

and m
(j)
i(C) denotes the competitor with competitive behavior.

K
(j)
i p

(j)
i m

(j)
i → {Scheme

(j)
i,1 , . . . , Scheme

(j)
i,ik

}.

As shown in Fig. 3, when all cells are evacuated at the same speed, queuer give
priority to cells with short evacuation time according to the evacuation time.
However, competitor only consider the fastest evacuation method based on the
shortest distance. Note that the evacuation time and the shortest distance are
only for the next hop position in the overall evacuation direction.

3.3 Position-updating mechanism

Pedestrians have the requirements of keeping distances from the ones in the
front during their movement. According to [24], the crowd density is from 1.4
to 2.1 persons/m2. As shown in Fig. 4, (A) presents the larger neighborhood,
and (B) is the smaller neighborhood. The grid is designed to show the relative
position of each individual. As the density of pedestrians increases, pedestrians
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Fig. 3. Decision-making mechanism of different types of cells.

maintain a shorter distance than normal condition, and they try to push their
way through the bottleneck, their neighborhood will be changed from Type A to
Type B [25]. According to the pedestrian behavior, each pedestrian can choose
eight neighbors for interaction and evacuation. Different density conditions are
corresponding to Fig. 5, neighborhood type A and B are shown on the left and
on the right, respectively.

(A) (B)

Fig. 4. Neighborhoods in different density conditions.

P
m

(j)
i

indicates the probability that the queuer or competitor will take a step

forward when the next position of two or three pedestrians is the same square.

m
(j)
i P

m
(j)
i

(v
0(j)
i , d

0(j)
i ) → (v

(j)
i , d

(j)
i ),
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Fig. 5. The evacuation direction.

To be specific, there are four cases when the next position of the two pedestrians
is the same position:

8

>

>

<

>

>

:

PQx
= 0, PQy

= 1, Qx(t) > Qy(t)
PQx

= 1/2, PQy
= 1/2, Qx(t) = Qy(t)

PCx
= 1/2 + 3α/2, PCy

= 1/2− 3α/, Cx(t) < Cy(t)
PQx

= 0, PCy
= 1

The method of calculating probability is the same when the next position of
three and two pedestrians is the same square. Qx represents a queuer standing at
the x position, Cy represents a competitor standing at the y position. x, y and z
represent the current location of pedestrian, which are adjacent but not identical.
To describe that pedestrians try to walk up stairs at the shortest time and
distance, parameter α is introduced as the attraction value with−1/3 ≤ α ≤ 1/3.

3.4 Simulation scenario

A 12-story teaching building located at China University of Geosciences in Bei-
jing(CUGB) was the sample evacuation environment in this study. 300 pedes-
trians distribute randomly on each floor. The ground floor plan include four
staircases, two elevators and nine exits leading to outside, as shown in Fig. 6.
Considering the fact that the evacuees are not allowed to use elevators during a
fire emergency, the two elevators are set as occupied space. The floor plan from
the 2nd floor to the 12th floor is shown in Fig. 7, with 17 lecture rooms and
four doors leading to staircase. The size of each cell is 1.0m × 1.0m. Only one
pedestrians can be accommodated in a cell at most. The width of staircase is
three cells.

Three are three kinds of pedestrians in the simulation: fast pedestrians,
moderate-speed pedestrians and slow pedestrians which are marked as FD, MP
and SP, respectively. The three kinds of expectation speeds are defined as follow:
υFD = 0.608m/s, υMP = 0.416m/s, υSP = 0.224m/s [26]. This study mainly
concentrates on the influence of queuing behavior and competition behavior on
the evacuation efficiency, it simplifies the generation and spread of fire to some
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Fig. 7. The floor plan of the second floor and above.

extent. With these assumptions, three possible fire scenarios were designed. The
fire scenarios are follows:

– Scenario One: A minor fire occurs in the lecture room 4 on the seventh floor,
there are two cases of fire spread and no spread.

– Scenario Two: A minor fire occurs at the gate of Elevator 1 on the seventh
floor, the fire will not spread.

– Scenario Three: A minor fire occurs in the staircase 2 on the seventh floor,
the fire will not spread.

The semantic representation of the floor plan is constructed and contains
the inclusion relation, the connectivity relationship, and the accessibility rela-
tionship [27]. Using Scenario One as an example, the fire occurred near the left
door of Lecture Room 4, enabling the accessibility relationship between Lecture
Room 4 and corridor through the right door. When the pedestrians escape from
the Lecture Room 4, choose staircase 2 or 3 for evacuation. The potential es-
cape routes for pedestrians are unblocked routes in Scenario Two and Scenario
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Three, are listed in Table 1. During the evacuation, the pedestrians will eliminate
the blocked routes and turn back as it encounters the fire, and choose another
shortest route from all initial routes.

Table 1. Potential evacuation routes of evacuees evacuate from Lecture Room 4 in
three fire scenarios

Experiment Initial escape route Escape route
Staircase 1 Staircase 2 Staircase 3 Staircase 4

Scenario 1 Staircase 2 ×
√ √

×
Scenario 2 Staircase 2

√
×

√
×

Scenario 3 Staircase 2
√

×
√

×

3.5 IDPS-base simulation of evacuation

All cells have initial knowledge base K
(i)
i at the beginning. When the ss appears,

cells start moving. In detail, the evacuation process can be simulated according
to the following steps.

Step 1: The system checks whether there is a termination signal st. If there
is a termination signal st, the simulation is finished. Otherwise, go to step 2.

Step 2: If the cell finds itself in fire, the experiment of the cell is terminated.

Step 3: If the cell is a competitor, it moves toward the exit by elbowing the
crowd. Otherwise, go to step 4.

Step 4: If the cell is a queuer, it follows the evacuation instructions to evac-
uate.

Step 5: The cell interacts with its neighbours and share information with
them.

Step 6: The cell updates the knowledge base.

Step 7: The cell makes path planning according to the decision-making rules.

Step 8: The cell adjusts its direction and moves with the actual velocity.

Step 9: If the cells reach the exit, the evacuation is successful. Otherwise, the
simulation continues and goes to step 2.

4 Simulations and analysys

All the algorithms are implemented by using NetLogo. Experiments are run
on an Intel (R) Core (TM) i5-2520M CPU with a 4 GB RAM PC. To report
the reliable estimation of simulated evacuation times for various experimental
configuration settings, each configuration was simulated for 10 times, and the
estimates were averaged. The experiment ends when all surviving cells escaped
from the building.
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4.1 Effect of speed on two evacuation behaviors

In this subsection, the impact of speed on two evacuation behaviors is analyzed.
As shown in Table 2, the three kinds of speed are as follow: υFD = 0.608m/s,
υMP = 0.416m/s, υSP = 0.224m/s, the difference value between the evacuation
times of the two behaviors has almost doubled. As shown in Fig. 8, as the speed

Table 2. The evacuation time of two behaviors at different speeds on staircase 2

Experiment υSP υMP υFD

Queuing 4320.0s 2545.3s 1734.1s
Competition 4442s 2554s 1662s
Difference 680s 342s 166s

decreases, the evacuation time of both behaviors gradually increases. When the
minimum speed is 0.224m/s, both the competitive behavior and the queuing
behavior have cumulative effect on the 12th floor. With the decrease of floor
and the increase of speed, the cumulative effect of queuing behavior gradually
decreases and disappears, while the cumulative effect of competitive behavior
decreases but does not disappear.

4.2 The effect of two kinds of evacuation behaviors on the use of

stairs

In this subsection, the effects of two evacuation behaviors on the use of four
stairs are analyzed. In the scenario 1 and scenario 2, as shown in Fig. 9, at the
entrance of four staircases, the number of evacuees for queuing behavior over
per unit time is greater than that of the competitive behavior. And the evacuees
using staircase 3 are more than those using staircase 2. In scenario 2, staircase 1
takes the largest amount of evacuation. The specific evacuation time for scenarios
1 and 2 is shown in Table. 3.

Table 3. The evacuation time for scenarios 1 and 2

Experiment Exit 1 Exit 2 Exit 3 Exit 4

Scenario 1
Queuing 129s 90s 76s 196s

Competition 122s 91s 124s 129s

Scenario 2
Queuing 209s 12s 78s 155s

Competition 216s 20s 113s 120s

At the junction of staircase leading to the lobby of ground floor, capacity
changes are shown in Fig. 10, in the scenario 3, irrespective of competition
behavior or queuing behavior, the evacuee’s number and time of evacuation on
staircase 2 are the least, the evacuation time consumed in staircase 1 is the
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Fig. 8. Capacity changes at different speeds on the staircase 2

Fig. 9. The cumulative evacuees through each entrance of staircase during scenario 1
and scenario 2
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longest, and the evacuation times for staircase 3 and staircase 4 are in one time
interval. Meanwhile, the evacuation time of queuing behavior is the shortest.
The specific total evacuation time for scenarios 3 is shown in Table. 4.

Fig. 10. Capacity changes of two kinds of behavior in scenario 3

Table 4. The total evacuation time for scenarios 3

Experiment Staircase 1 Staircase 2 Staircase 3 Staircase 4

Scenario 3
Queuing 3512s 1102s 2433s 2339s

Competition 4746s 1325s 3207s 3155s

4.3 Casualties of two behaviors caused by propagating fire

In this section, the casualties caused by two types of behavioral evacuation in
a diffuse fire are summarized. When the speed of evacuator is less than the
diffusion rate of fire and the evacuee enters the burning range of fire, the evacuee
is deemed dead. The relationship between the ratio of fire spread area and the
number of evacuees casualty is shown in Table. 5. When the fire spread over time
in Scenario One, the casualties of the two behaviors increase gradually, and the
casualties of queuing behavior is less than that of competitive behavior.

Table 5. Number of casualties in different areas of fire spread

Experiment Proportion of fire diffused area
20% 40% 60% 80%

Queuing 8 23 52 80
Competition 25 41 93 129
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5 Conclusions

In this work, a series of evacuation simulations were carried out on the 12-story
campus building to study the behavior adjustment mechanism based on the
IPDS model. The simulation results show that the evacuation efficiency of queu-
ing behavior is much higher than that of competitive behavior, and in specific
fire scenarios, the number of casualties in queuing behavior is lower than that
in competitive behavior. There is a certain linear relationship between the evac-
uation time of queuing behavior and competition behavior. At the same time,
there has no overtaking in the process of evacuation for the queuing behavior.
In the process of evacuation in the staircases, competitive behavior is similar to
queuing behavior.

However, it is important to note that the simulation mainly focuses on the
impact of two behaviors on evacuation, excluding all the factors that affect the
accessibility of the architectural environment. Fire smoke and toxic gases will
lead to dynamic spatial accessibility and affect the movement speed and direction
of evacuees. In addition, evacuation process simplifies the evacuation movement
modeling without considering some factors, such as the representation of the
human body and the panic level. Therefore, more factors need to be considered
in the future work, such as the reaction of evacuees in the presence of smoke.
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Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
{dorellana,lvalencia,ariscosn,marper}@us.es

Abstract. The (presumed) efficiency of computing models is expressed
by means of their ability to solve (NP-complete) presumably intractable

problems in an efficient way or not. The relevance of this kind of frontier
lies in the fact that each of them provides a tool to attacking the P

versus NP problem.
In the framework of Membrane Computing, different borderlines of the
efficiency have been described by means of syntactical ingredients as-
sociated with the models. In this paper, a frontier of semantic type is
presented within the model of polarizationless P systems with active
membranes and membrane creation.

Keywords: Membrane Computing, Computational complexity theory,
Membrane creation

1 Introduction

Membrane Computing is a bioinspired computing discipline with contributions
by researchers from different fields (computer scientists, formal linguists, biol-
ogists, etc.) enriching each other with results, open problems and promising
new research lines. Specifically, it is a paradigm aiming to abstract computing
models from the structure and functioning of the living cell as well as from
the organization of cells in tissues, organs, and other higher-order structures. It
starts from the assumption that the processes taking place in the compartmental
structure of a living cell can be interpreted as computations. Membrane com-
puting provides very flexible and versatile distributed parallel non-deterministic
devices, generically called membrane systems. The main syntactical ingredients
are the following: a finite alphabet (the working alphabet whose elements are
called objects, which are abstractions of chemical substances); a finite set of
processor units delimiting compartments (called membranes, cells or neurons),
interconnected by a graph-structure, in such manner that initially each proces-
sor contains a multiset of objects; a finite set of rewriting rules (evolution rules),
abstractions of chemical reactions, that provide the dynamics of the system; and
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an environment. The objects to evolve in a computation/transition step and the
rules by which they evolve are chosen in a non-deterministic and maximally par-
allel manner: we assign objects to rules but in such a way that after that, no
further rule can be applied to the remaining objects.

According with the type of structure underlying the systems, there are basi-
cally three types of membrane systems: cell-like P systems where the compart-
ments are arranged in a hierarchical structure (formally, a rooted tree), like in a
living cell [9]; tissue-like P systems with a directed graph structure associated in-
spired from the living tissues where cells bump into each other and communicate
through pores or other membrane mechanisms [13]; and neural-like P systems
with a directed graph structure associated which mimic the way that neurons
communicate with each other by means of short electrical impulses, identical in
shape (voltage), but emitted at precise moments of time [11].

Basic transition P systems are a kind of cell-like membrane systems whose
membrane structure (a labelled rooted tree) does not grow, that is, there are
no rules producing new membranes in the system. It is well known ([3]) that by
using families of these membrane systems only problems in class P can be solved
in a uniform and polynomial time. Thus, the ability of a cell-like membrane
system to construct an exponential workspace (in terms of number of objects)
in polynomial time (e.g. via evolution rules of the type [ a ! a

2 ]h) is not enough
to efficiently solve NP–complete problems (assuming that P 6= NP).

In cell-like membrane systems, there are different bioinspired mechanisms
to produce an exponential workspace (both in terms of number of objects and
number of membranes) in polynomial time. For instance, Mitosis is a process of
cell division which results in the production of two daughter cells from a single
parent cell. Daughter cells are identical to one another and to the original parent
cell. Through a sequence of steps, the replicated genetic material in a parent
cell is equally distributed to two daughter cells. While there are some subtle
differences, mitosis is remarkably similar across organisms. Another mechanism,
called Membrane fission, is a process by which a biological membrane is split
into two new ones in such a way that the content of the initial membrane is
separated and distributed between the new membranes. As another example
observed in Nature, Autopoiesis is a general process referred to a system capable
of reproducing and maintaining itself. Membranes are created in living cells
through its own internal processes, for instance, in the process of vesicle mediated
transport, and to keep molecules close to each other to facilitate their reactions.
Membranes can also be created in a laboratory - see [5].

These biological phenomena of mitosis, membrane fission and autopoiesis
were incorporated in cell-like membrane systems through new kinds of rewriting
rules, called membrane division ([10]), membrane separation ([1, 8]), and mem-
brane creation ([6, 7]), respectively.

This paper deals with cell-like membrane systems with membrane creation.
In [7], passive P systems and active P systems are considered. The first ones
have the property that their membrane structure cannot increase during any
computation, while the second ones have the property that their membrane
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structure may increase during a computation (e.g. by creating new membranes
whose label is different from the existing ones). The first definition of P systems
with membrane creation is developed considering transition P systems with rules
for membrane creation of the form [ a ! [u ]h1 ]h, where a is an object, u is a
multiset of objects, and h, h1 are labels such that h1 is not the label of the
skin membrane. When such a rule is applied in a membrane labelled by h, the
object a is replaced by a new membrane, with the label h1 and the contents
as indicated by u. Thus, by applying a membrane creation rule there is no
replication of objects into the new membrane, which becomes a daughter of the
original membrane (the depth of the membrane structure can increase).

In [2], cell-like P systems with membrane creation are introduced in the
framework of polarizationless P systems with active membranes, in such man-
ner that membrane creation rules can be applied in a maximally parallel way.
A uniform and linear-time solution to the Subset Sum problem was given by
means of a family of such kind of membrane systems. This paper analyzes, from
a complexity perspective, the behavior of polarizationless P systems with ac-
tive membranes and membrane creation rules when the semantics is a natural
extension of the classical polarizationless P systems with active membranes,
that is, in particular membrane, creation rules can be applied at most once on
each membrane at each computation step. By using this new semantics, families
of polarizationless P systems with active membranes and membrane creation
rules, only problems in class P can be solved in a uniform and polynomial time.
Therefore, a new frontier of the efficiency, expressed in terms of the semantics,
is obtained.

The paper is organized as follows: first the methodology to attack the P
versus NP problem by means of the concept of frontier between the tractability
and the presumed intractability is recalled in the next section. In section 3
polarizationless P systems with active membranes and membrane creation are
presented, and two different semantics (called maximalist and minimalist) are
considered, and previous results are presented. Section 4 is devoted to show that
only problems in class P can be solved by families of polarizationless P systems
with active membranes and membrane creation only for elementary membranes,
when minimalist semantics is considered. Finally, some conclusions and open
problems are presented.

2 A new technique to tackle the P versus NP problem

Each computing model provides a mathematical definition of the informal idea
of solving abstract problems by means of a mechanical procedure or algorithm.
A computing model which is equivalent in power to Turing machines is called
universal.

An abstract problem is said to be tractable if it can be solved by a deter-
ministic Turing machine working in polynomial time (the upper bound of com-
putational resources is polynomial). The complexity class of tractable decision
problems is denoted by P. An abstract problem is said to be intractable if it
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cannot be solved by a deterministic Turing machine working in polynomial time
(the lower bound of the computational resources is exponential).

A computing model with the ability to provide polynomial-time solutions to
intractable problems is called efficient. In a non-efficient computing model, only
tractable problems can be solved in polynomial time. It is widely believed that
P 6= NP, so NP-complete problems (the hardest problems in class NP) are
commonly considered as presumably intractable problems. A computing model
with the ability to provide polynomial-time solutions to NP-complete problems
is called presumably efficient.

Given two computing models M1 and M2 we say that that M1 is a submodel
of M2, denoted by M1 ✓ M2, if each solution of a problem in M1 is also a
solution in M2, that is, M2 is an extension of M1 in the sense that M2 can be
obtained from M1 by adding some syntactic or semantic ingredients. If M1 is a
non-efficient computing model and M2 is a presumably efficient one such that
M1 ✓ M2, then the (syntactical or semantic) ingredients allowing to pass from
M1 to M2 provide a frontier between the efficiency and the presumed efficiency,
that is, passing from M1 to M2 amounts to passing from being able to solve only
tractable problems to solve presumably intractable problems. Therefore, it gives
us a novel tool to tackle the P versus NP problem as follows:

– In order to show that P = NP, it is enough to find a polynomial-time
solution to oneNP-complete problem inM2 and translate it to a polynomial-
time solution in M1, that is, the ingredients added to obtain M2 from M1

do not play a relevant role in that solution.
– In order to show that P 6= NP, it is enough to find one NP-complete

problem that cannot be solved efficiently in M1, that is, that the ingredients
added to obtain M2 from M1 are crucial to obtain the presumed efficiency.

M1 M2

Non
efficiency

Presumed
efficiency

Fr
ontie

rs

In this paper, a new frontier between the efficiency and the presumed non-
efficiency is obtained in terms of semantics ingredients of polarizationless P sys-
tems with active membranes and membrane creation.

3 Polarizationless P systems with active membranes and

membrane creation

In this section, membrane creation rules are considered in the framework of (cell-
like) polarizationless P systems with active membranes, and a new semantics
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different from the one given in [2] and [4] is defined and studied from a complexity
point of view.

3.1 Syntax

A polarizationless P systems with active membranes and membrane creation of
degree q � 1 is a tuple of the form Π = (Γ, H, µ,M1, . . . ,Mq,R, iout) where:

1. Γ and H are finite alphabets such that {1, . . . , q} ✓ H;
2. µ is a rooted tree with q nodes bijectively labelled with {1, . . . , q};
3. M1, . . . ,Mq are multisets over Γ ;
4. R =

S
h∈H Rh is a finite set of rewriting rules over Γ such that for each

h 2 H the set Rh consists of the following types:

(a) [a ! u]h, where a 2 Γ and u is a multiset over Γ (object evolution rules);
(b) a[ ]h ! [b]h, where h 6= 1 and a, b 2 Γ (send-in communication rules);
(c) [a]h ! [ ]h b, where a, b 2 Γ (send-out communication rules);
(d) [a]h ! b, where h 2 H \ {1, iout} and a, b 2 Γ (dissolution rules);
(e) [a ! [u ]h1

]h, where a 2 Γ , h1 2 H \ {1, iout} and u is a multiset over
Γ (creation rules).

5. iout 2 {1, . . . , q} [ {env}.

A polarizationless P system with active membranes and membrane creation of
degree q � 1, Π = (Γ, H, µ,M1, . . . ,Mq,R, iout), can be viewed as a set of q
membranes, labelled by 1, . . . , q, arranged in a hierarchical structure µ given by
a rooted tree whose root (labelled by 1) is called the skin membrane, such that:
(a) M1, . . . ,Mq represent the finite multisets of objects initially placed into the
q membranes of the system; (b) R is a finite set of rewriting rules over Γ (Rh

is associated with each membrane labelled by h 2 H); and (c) iout represents
a distinguished region which will encode the output of the system. We use the
term region i to refer to membrane i in the case 1  i  q and to refer to the
environment in the case i = env.

3.2 Semantics

The concept of applicability of a rule of the type (a), (b), (c), (d) is defined as
usual in polarizationless P systems with active membranes. With respect to
membrane creation rules, a rule of the type [a ! [ u ]h1

]h where h, h1 2 H,
a 2 Γ is applicable to a configuration Ct at an instant t � 0 if the following holds:
(a) there exists a membrane labelled by h (different of the skin membrane) at
Ct such that contains a copy of object a; and (b) h1 is not the label of the skin
membrane. When applying such a rule, under the influence of object a, a new
membrane with label h1 having inside the multiset u, is created in such manner
that it is a daughter of the membrane labelled by h.

In [2] and [4] the semantics considered (called maximalist) is defined in such a
way that the rules of the system are applied according to the following principles:

184



– The rules associated with membranes labelled with h are used for all copies
of this membrane.

– At one transition step, one object of a membrane can be used by only one
rule (chosen in a non-deterministic way).

– At one transition step, a membrane can be subject of several rules of types
(a), (b), (c) and (e), that is, these rules are applied in a maximally parallel
manner.

– At one transition step, a membrane can be subject of at most one rule of type
(d), that is, dissolution rules can be applied at most once on each membrane
at each computation step.

– Rules of types (a), (b), (c) and (e) can be simultaneously applied to a mem-
brane joint with one rule of type (d). In that case, object evolution rules are
applied in a maximally parallel manner.

– If at the same time a membrane labelled by h is dissolved and there are
objects in this membrane which can evolve by other types of rules, then we
suppose that first rules of types (a), (b), (c) and (e) are used, changing the
objects and creating new membranes, and then the dissolution is produced.
This process takes only one computation step.

– The skin membrane and the output membrane (if any) can never dissolve
and any membrane can be created with label 1, iout.

In this paper, a new semantics (called minimalist) is considered, following the
usual semantics of polarizationless P systems with active membranes and mem-
brane division, where the role of membrane division rules is played by membrane
creation rules. Specifically, the rules of the system are applied according to the
following principles:

– The rules associated with membranes labelled with h are used for all copies
of this membrane.

– At one transition step, one object of a membrane can be used by only one
rule (chosen in a non–deterministic way).

– At one transition step, a membrane can be subject of at most one rule of
types (b), (c), (d) or (e), that is, rules of these types can be applied at most
once on each membrane at each computation step.

– Object evolution rules can be simultaneously applied to a membrane joint
with one rule of types (b), (c), (d) or (e). In that case, object evolution rules
are applied in a maximally parallel manner.

– If at the same time a membrane labelled by h is dissolved and there are
objects in this membrane which can evolve by object evolution rules, then
we suppose that first the evolution rules are used, changing the objects,
and then the dissolution is produced. Of course, this process takes only one
computation step.

– The skin membrane and the output membrane can never dissolve.

The difference between the two semantics lies in how rules are applied: in the
first case, rules of types (b), (c) and (e) are applied in a maximally parallel way,
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while in the second one these rules (together with rules of type (d)) are applied
in a sequential manner (at most once on each membrane at each computation
step).

It is worth pointing out that the concept of elementary membrane is dy-
namic, in the sense that by applying a membrane creation rule to an elementary
membrane, it becomes non-elementary.

3.3 Recognizer P systems with membrane creation

Let us recall that recognizer P systems (introduced in [12]) are the natural frame-
work to study and solve decision problems since deciding whether an instance
has an affirmative or negative answer is equivalent to deciding if a string belongs
or not to the language associated with the problem. These systems have an input
membrane and the output region is the environment, the working alphabet has
two distinguished objects yes and no, all the computations of the system halt
and for each computation, either object yes or object no (but not both) must
have been released into the output zone (the environment), and only at the last
step of the computation.

In this paper, CAM

0
α(β, γ) denotes the class of all polarizationless P systems

with active membranes and with creation rules, where α,β, γ are parameters
associated with the kind of semantics, dissolution rules and membrane creation
rules, respectively. The meaning of these parameters is the following:

– If α = max (resp. α = min) the maximalist (resp. minimalist) semantics is
considered.

– if β = �d (resp. β = +d) then dissolution rules are forbidden (resp. permit-
ted).

– if γ = �ne (resp. γ = +ne) then membrane creation rules are restricted to
elementary membranes only (resp. membrane creation rules for elementary
and non-elementary membranes are permitted).

Previous results

In [2] a uniform and linear-time solution to the Subset Sum problem is provided
by using a family of polarizationless P systems with active membranes and mem-
brane creation with the maximalist semantics and allowing membrane creation
rules only for elementary membranes, that is, we have the following result:

Theorem 1. NP [ co-NP ✓ PMCCAM0
max(+d,−ne)

Moreover, in [4], a uniform and linear-time solution to the QSAT problem is
provided by using a family of polarizationless P systems with active membranes
and membrane creation with the maximalist semantics and allowing membrane
creation rules only for elementary membranes, that is, we have the following
result:

Theorem 2. PSPACE ✓ PMCCAM0
max(+d,−ne)
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4 A semantic frontier of tractability

The goal of this section is to provide a new borderline between the non-efficiency
and the presumed efficiency in terms of the semantics used by polarizationless
P systems with active membranes and membrane creation. Specifically, we show
that by using the minimalist semantics, only problems in class P can be solved
by families of polarizationless P systems with active membranes and membrane
creation only for elementary membranes.

In [3] it is shown that PMCT ✓ P, being T the class of basic recognizer
transition P systems. Specifically, if X is a decision problem such that X 2

PMCT and Π = {Π(n) | n 2 N} is a family of systems from T solving X

in a uniform and polynomial time, then for each n 2 N, a deterministic Turing
machine,M(n), with multiple tapes, working in polynomial time is constructed in
such manner that given an input multiset M of Π(n), the machine reproduces
(only) one specific computation of Π(n) with input M. Specifically, machine
M(n) has one input tape, that keeps a string representing the input multiset
received as well as:

– One structure tape encoding the current membrane structure.
– For each object of the working alphabet of the system: (a) one main tape,

that keeps the multiplicity of the object, in binary format, in the multiset
contained in the membrane; and (b) one auxiliary tape, that keeps temporary
results of applying the rules associated with the membrane.

– One rules tape that encodes the applicability of rules associated with different
membranes, assuming a total order in the set of rules.

– For each object we have one environment tape that keeps its multiplicity, in
binary, in the multiset associated with the environment.

The key of this construction lies in the fact that at any configuration of the
system, the total number of membranes is polynomially bounded for the size
of Π(n). Next, we show that systems from CAM

0
min(+d,�ne) verify the cited

property.
In order to prove this, we previously obtain some results and introduce some

new notations.

Proposition 1. Let Π be a membrane system from CAM

0
min(+d,�ne) of de-

gree q and with e elementary membranes. Let C = (C0, . . . , Cr), r 2 N, be a halting
computation of Π. Then we have:

(a) For each t, 1  t  r, at configuration Ct the number of elementary mem-
branes is at most e.

(b) For each t, 1  t  r, at configuration Ct the total number of membranes is
at most (t+ 1) · q.

Proof. (a) It suffices to note that a new elementary membrane with label h1

can appear at configuration Ct+1 when a membrane creation rule of the form
[ a �! [ u ]h1 ]h is applied to an elementary membrane labelled by h at config-
uration Ct. But in this case, the membrane where the rule is applied ceases to be
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elementary. Therefore, bearing in mind that in the minimalist semantics at most
one membrane creation rule can be applied to each elementary membrane, the
total number of elementary membranes at configuration Ct+1 does not increase
with respect to configuration Ct

(b) By induction on t. For the base case t = 1, let us note that the total number
of membranes (resp. elementary membranes) at the initial configuration C0 is
q (resp. e) and, at most, e new membranes can be created by the application
of membrane creation rules. Thus, by means of the application of membrane
creation rules to elementary membranes (by using the minimalist semantics), at
most e new membranes can be created. Therefore, the total number of mem-
branes at configuration C1 is at most q + e  2 · q.

Let t, 1  t < r, and let us assume by induction hypothesis that the total
number of membranes at configuration Ct is at most q+ te. Bearing in mind that
the total number of elementary membranes at configuration Ct is at most e, by
means of the application of membrane creation rules to elementary membranes
(by using the minimalist semantics), at most e new membranes can be created.
Thus, the total number of membranes at configuration Ct+1 is at most q+te+e =
q + (t+ 1) · e  (t+ 2) · q.

According with the previous remark we have the following:

Proposition 2. PMCCAM0
min

(+d,−ne) ✓ P.

On the other hand, for each non-empty recognizer membrane system class R
we have P ✓ PMCR. Indeed, if X = (IX , θX) is a decision problem in class P
and M is a deterministic Turing machine working in polynomial time solving X,
then it suffices to consider the family Π = {Π(n) | n 2 N} of systems from R,
where system Π(1) has only one membrane (labelled by 1), its working alphabet
is Γ = {yes, no}, and the set of rules is [ yes ]1 ! yes [ ]1 and [ no ]1 ! no [ ]1.
The polynomial encoding (cod, s) from X to Π is defined as follows: for each
instance u 2 IX , s(u) = 1 and cod(u) = yes (resp. no) if M(u) is an accepting
computation (resp. rejecting computation), certifying that X 2 PMCR.

Thus, we have the following:

Theorem 3. PMCCAM0
min

(+d,−ne) = P.

From Theorems 1 and 3 we deduce that passing from mimimalist semantics to
maximalist semantics in the framework of polarizationless P systems with active
membranes and membrane creation, amounts to passing from non-efficiency to
presumed efficiency.

5 Conclusions

The ability of a computing model for solving intractable problems in an efficient
way provides its computational efficiency. Different uniform and polynomial-
time solutions to many NP-complete problems or PSPACE-complete problems
have been given by using families of membrane systems. Also, the limits of the
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efficiency of some models in membrane computing have been established. In this
context, some syntactical ingredients have been identified to be the responsible
to passing from non-efficiency (only problems in class P can be solved in an
efficient manner) to the presumed efficiency (NP-complete problems can be
solved in polynomial time).

In this paper, a new frontier expressed in terms of semantic ingredient is
presented in the framework of polarizationless P systems with active membranes
and membrane creation. Specifically, passing from applying membrane creation
rules in sequential manner to applying them in a maximally parallel manner,
amounts to passing from non-efficiency to presumed efficiency.

Finally, it would be interesting to study new semantics in the framework of
CAM

0(β, γ), as well as to analyze the computational efficiency of membrane
systems from CAM

0
min(+d,+ne), CAM

0
min(�d,+ne) and CAM

0
max(�d,�ne),

in the attempt to find new frontiers, possibly optimal ones (based on the inclusion
or not of a single ingredient).
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12. M.J. Pérez-Jiménez, Á. Romero-Jiménez, F. Sancho-Caparrini: Complexity classes
in cellular computing with membranes. Natural Computing, 2, 3 (2003), 265-285.
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Abstract. RSA algorithm is one of the most widely used public key en-
cryption algorithm. Breaking RSA encryption is considered very difficult
and is well-known as RSA problem. The difficulty of this problem lies in
prime factorization of large integers. In this paper, WSN P systems with
rules on synapses are constructed to factorize large integers to study the
breaking of RSA encryption. Also, we show that WSN P systems with
rules on synapses can factorize large integers in linear time.

Keywords: SN P systems, WSN P systems with rules on synapses, RSA
algorithm

1 Introduction

RSA algorithm [1] was proposed in 1977 by Ron Rivest, Adi Shamir, and Leonard
Adleman at Massachusetts Institute of Technology. It is one of the most influen-
tial public key encryption algorithm [2]. The security of this algorithm depends
on the prime factorization of large integers which is a very well-known diffi-
cult mathematical problem [3]. To ensure the security of RSA algorithm, the
length of keys in the algorithm is continuously increasing and along with that
the difficulty of cracking RSA encryption is also increasing.

For many years cryptographers are trying to break RSA encryption. In recent
years several attempts have been made to break it using unconventional comput-
ing models. The quantum algorithm for breaking RSA encryption was initiated
by Shor in [4], where an efficient algorithm for factorization of large integers
was introduced. A new quantum algorithm to break RSA encryption based on
phase estimation and equation solving has been discussed in [5]. The distribut-
ed factorization computation to break RSA encryption was introduced in [6].

⋆ Corresponding author. 191



Furthermore, factoring large integers using DNA computing was expounded in
[7].

Membrane computing was initiated by Păun in [8], and the complexity of
membrane computing models has been discussed in [9]. The distributed and
parallel computing devices in membrane computing are called P systems [10].
These models are powerful and different variants of P systems have been used
to solve computationally difficult problems. Since, the parallel and distributed
architecture of P systems can provide exponential workspace, these models have
been widely used to solve the NP-complete, PSPACE problems in polynomial
as well as in linear time [11–18]. Hence the membrane computing models are a
suitable choice for solving prime factorization of large integers.

In [19], a RSA algorithm based on P systems has been discussed. Howev-
er, how to use the P system to break RSA encryption has not been considered
before. Spiking neural P systems (i.e., SN P systems) are a variant of P sys-
tems, which were introduced in [20] as a new biological computing device. SN P
systems have strong computing power and have the potential to solve difficult
problems of computing [21]. Various variants of SN P systems were constructed
by considering different biological sources [22–29], and the computing power,
efficiency etc. of these variants were discussed in [30–35]. Also, SN P systems
have wide range of applications [36] in optimization [37], fault diagnosis [38, 39]
and logic gate [40]. Moreover, the distributed and parallel characteristics of SN
P systems were used to solve the directional Hamiltonian path problem [41],
implementation of the sorting function [42, 43], and simulation of Boolean cir-
cuits [43]. In [44], the high flexibility of weighted spiking neural P systems with
rules on synapses (i.e., WSN P systems with rules on synapses) [35] is used to
optimize the addition and multiplication systems in [45] effectively, by reducing
the number of neurons.

In this paper a WSN P system with rules on synapses is constructed to
realize the factorization of large integers using the input module, random number
module, multiplication module, comparison module, and output module. These
modules explain the working of the system in detail. The parallelism of the
SN P systems is used to construct the system and the factorization modules
working in parallel help the system to factorize a large integer. The input of the
system is a natural number expressed in binary form, which is further encoded
as appropriate sequence of spikes. The output neurons also emit the computed
numbers to the environment in binary forms which are also encoded as spike
trains.

This paper is organized as follows. Section 2 briefly introduces the WSN
P systems with rules on synapses. In Section 3, we discuss the structure of
WSN P systems with rules on synapses for large integer factorization and the
detailed implementation of each module is given. Section 4 verifies the correctness
and feasibility of the system through examples, and finally analyzes the system
complexity. Conclusion and future work are presented in Section 5.192



2 WSN P Systems with Rules on Synapses

In this section, WSN P systems with rules on synapses are described. For more
details on SN P systems we refer to [20, 21].

A weighted spiking neural P system of degree m ≥ 1 with rules on synapses
[24] is a construct of the form:

∏
= (O,σ1,σ2, . . . ,σm, syn,σin,σout),

where:

(1) O = {a} is the singleton alphabet (a is called spike);
(2) σ1,σ2, . . . ,σm are neurons of the form σi = (ni), with 1 ≤ i ≤ m, where ni

is initial number of spikes in neuron σi;
(3) syn is the set of synapses between neurons. Each element in syn is a pair

of the form ((i, j), wij , R(i,j)), where (i, j) is a synapse from neuron σi to
neuron σj , i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . ,m, en}, i ̸= j, wij is a positive
integer representing the weight of synapse (i, j), and R(i,j) is a finite set of
rules on synapse (i, j) of the following forms:

(a) E/ac → ap; d, where E is a regular expression over O, c ≥ p ≥ 1 and
d ≥ 0. The rule also can be written as ac → ap when E = ac. Also the
rule is called a standard rule when p = 1 and extended when p > 1 ;

(b) as → λ, for some s ≥ 1, with the restriction that as /∈ L(E) for any rule
E/ac → ap; d from any R(i,j);

(4) σin and σout indicate the input neuron and the output neuron respectively.

If d = 0 and p = 1 in the rule E/ac → ap; d, then the rule can be simply
written as E/ac → a. A rule of the form as → λ is called a forgetting rule.

A firing rule E/ac → ap; d on synapse (i, j) with weight wij is applied as
follows. If E/ac → ap; d ∈ R(i,j), and neuron σi contains k spikes such that

ak ∈ L(E), k ≥ c, then the rule is enabled. This means c spikes (thus only
k− c spikes remain in σi) are consumed (removed) from neuron σi, and p spikes
are produced. Theses p spikes are multiplied wij times by the weight wij of the
synapse (i, j) in the process of transmission, and then reach neuron σj after d
time units. If d = 0, then wijp spikes immediately reach the neuron σj . If the
rule is used in step t and d ≥ 1, then in steps t,t + 1,. . .,t + d − 1, the synapse
(i, j) can not use any rules. In the step t+d, neuron σj receives wijp spikes, and
in the step t+ d+ 1, the synapse (i, j) can apply the rules again.

When neuron σi contains exactly s spikes, then forgetting rule as → λ ∈

R(i,j) is enabled. By using it, s ≥ 1 spikes are removed from the neuron σi.
As usual in SN P systems, a global clock is assumed, marking the time for

all neurons and synapses. In each time unit, if a synapse (i, j) can use one of its
rules, then a rule from R(i,j) must be used. Since two firing rules, E1/a

k1 → a; d1
and E2/a

k2 → a; d2, can have L(E1) ∩ L(E2) ̸= φ, it is possible that there are
more than one rule that can be used on synapse at some moment. In this case,
the synapse will non-deterministically choose one of the enabled rules to use.193



The initial configuration of the system is identified by the numbers n1, n2, . . . ,
nm of spikes present in each neuron. During the computation, configuration
of the system is described by the number of spikes present in each neuron.
< r1, r2, . . . , rm > represents the configuration of the system at any time instance
where neuron σi contains ri ≥ 0 spikes, i = 1, . . . ,m. The initial configuration
is C0 =< n1, n2, . . . , nm > where n1, n2, . . . , nm represent the number of spikes
present in the respective neurons initially. Using the rules as described above,
we can define transitions. Any series of transitions starting from the initial con-
figuration is called a computation. A computation is successful if it reaches a
configuration where no rule can be applied on any synapse. The result of a com-
putation of the system is defined as the number of spikes sent to the environment
by the output neuron.

We use a circle with the initial number of spikes inside to represent a neu-
ron and the directed edge associated with rules and weights to represent the
synapse. The input/output neuron has an incoming/outgoing arrow, suggesting
their communication with the environment.

When the standard spiking rules on more than one synapses are emitted by
a neuron at the same time, the rules are going to work in the following manner:

(1) The number of spikes consumed by each rule on different synapses must be
equal;

(2) The sum of the number of spikes consumed by each rule on different synapses
must be less than or equal to the number of spikes contained in the neuron.

3 Large Integer Factorization with WSN P Systems with

Rules on Synapses

In RSA algorithm the public key consists of a large integer N (modulus) and
public exponent e. The private key consists of the modulus N and private expo-
nent d.

The RSA public-key / private-key pair can be obtained in the following
manner:

• Generate a pair of large, random primes P and Q.
• Compute the modulus N where N = PQ and φ(N) = (P − 1)(Q− 1).
• Select an odd public exponent e between 3 and N − 1 relatively prime to
both P − 1 and Q− 1 (i.e., relatively prime to φ(N)).

• Compute the private exponent d from e.d = 1(mod φ(N)).
• Output (N, e) as the public key and (N, d) as the private key.

From the above algorithm, it is clear that if the prime factorization of the
large integer is known, the private key (N, d) can be obtained easily. Hence, it will
be possible to break RSA encryption. In this work, we use the WSN P systems
with rules on synapses to perform the large integer factorization. With the high
parallelism of SN P systems, all possible P and Q can be tested in parallel
through hundreds of millions of neurons participating in the computation. With194



the increase of the number of parallel structures, the probability of obtaining the
correct solution will approach to 1. Moreover, because of the space-time tradeoff,
RSA problem can be solved in linear time.

We construct an SN P system with rules and weights on synapses as shown
in Fig. 1 to perform the large integer factorization.

Random number 

module 1

Multiplication module 1

Comparison module 1

Factorization module 1

Output module 1

Input module

Random number 

module 2

Multiplication module 2

Comparison module 2

Factorization module 2

Output module 2

Random number 

module s

Multiplication module s

Comparison module s

Factorization module s

Output module s

Fig. 1. The WSN P system with rules on sysnapses
∏

RSA
for the large integer factor-

ization

As shown in Fig. 1, the system
∏

RSA consists of an input module and s
parallel factorization modules. The number of neurons is massive, in fact s is
an exponential number. So it is enough to have at least one parallel structure
that can find the correct P and Q. Each factorization module also includes a
random number module to generate random numbers, a multiplication module
to compute product, a comparison module to compare the product with the
large integer N , and an output module to collect the output of the correct P
and Q.

The input of this system is a large integer N expressed in binary form, which
is further encoded as an appropriate sequence of spikes. After receiving the input
N , the input module sends the spike signal to the random number module in
each factorization module after a series of processing, and sends the large integer
N to the comparison module in each factorization module after a certain delay to
compare it with the product. After receiving spikes, the neuron σinr

in random
number module starts to generate random numbers P and Q, and sends them195



to the two input neurons σinp
and σinq

of the multiplication module to calculate
the product. The generated random numbers P and Q are sent to σoutp and σoutq

of the output module after a certain time delay for preprocessing of output. The
product calculated by multiplication module is sent to the comparison module
through its output neuron σoutm . When the input neuron σinm

of the comparison
module starts to receive the product, the another input neuron σinN

starts to
receive N sent from the input module (by setting a certain delay, N and the
product can arrive at the comparison module at the same time). After comparing
each bit of two binary numbers, neuron σoutp of the output module receives the
spike train of P sent from the random number module, and σoutq receives the
spike train of Q. Both P and Q are processed in σoutp and σoutq respectively
according to the comparison results. If each bit of the product and N is equal,
the spike trains of P and Q are sent to the environment. If there are unequal
bits, then both P and Q are discarded. In the s factorization modules, two
prime divisors are successfully found and sent by several factorization modules.
But only P and Q that can factorize the large integer N will be obtained by the
factorization modules.

Fig. 1 shows the overall structure of the system
∏

RSA, and its specific work-
flow. The detailed implementation process of each module with WSN P systems
with rules on synapses is given in the following subsections.

3.1 Input Module

The input module of Fig. 1 implemented by the WSN P system with rules on
synapses is shown in Fig. 2.

n+1 n+1 (2)(2)

(1)
(1)

Fig. 2. The input module of
∏

RSA196



The input neuron σin contains 2 spikes initially. After the system
∏

RSA

starts working, neuron σin receives the spike train of the large integer N which
is a product of two large prime numbers. Since P and Q are odd, N must be an
odd number. Since N is odd , its lowest bit input is 1, and there are 3 spikes in
neuron σin at time t = 1. The rule a3/a2 → a on synapse (in, aux1) and the rule
a3/a → a on synapse (in, aux2) are activated at the same time, sending 1 spike
to neurons σaux1 and σaux2 respectively. If there is 1 in the remaining bits of N ,
it is directly sent to σaux2 through the rule a → a on the synapse (in, aux2).

At time t = 2, both neurons σaux1 and σaux2 contain 1 spike. Then the
same rule a → a on synapses (aux1, inr1), (aux1, inr2), ..., (aux1, inrs) emitted
by σaux1 are enabled at the same time, and n + 1 spikes are sent to the input
neurons σinr1 , σinr2 , ..., σinrs

of the corresponding random number modules (
the weight on synapse is n + 1 ). The rule a → a; 7 on synapses (aux2, inN1),
(aux2, inN2), ..., (aux2, inNs) emitted by σaux2 are also enabled at the same
time, and 1 spike is sent to the input neurons σinN1

, σinN2
, ..., σinNs

of each
comparison module after 7 time units, respectively. In the next moment, σaux1

will no longer receive spikes, and σaux2
will continue to work until the input

ends.

The neuron σaux1 is connected with the input neurons of each random number
module, and it sends spikes to start each factorization module. The neuron σaux2

is connected with the input neurons of each comparison module, to compare the
product with the given large integer N .

3.2 Random Number Module

According to the structure of the large integer factorization system
∏

RSA in
Fig. 1, we can see that P and Q need to be given before calculating the product.
Assume that the valid bit length (the valid bit length of 010012 is 4) of P is k1,
and the valid bit length of Q is k2 where k1 ≤ k2. The general multiplication
mode is shown in Table 1.

Table 1. the general binary multiplication mode

n0 n1 n2 ... nk1−1 ... nk2−1 ... nk1+k2−2 nk1+k2−1

pk1−1 pk1−1q0 ... pk1−1qk2−k1 ... pk1−1qk2−1 +

... ... ... ...

p2 p2q0 ... p2qk1−3 ... p2qk2−3

p1 p1q0 p1q1 ... p1qk1−2 ... p1qk2−2

p0 p0q0 p0q1 p0q2 ... p0qk1−1 ... p0qk2−1

q0 q1 q2 ... qk1−1 ... qk2−1
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From Table 1, we can see that for P and Q whose valid binary bit lengths are
k1 and k2 respectively, the valid binary bit length of the product is either k1+k2
(the highest bit has a carry) or k1 + k2 − 1 (the highest bit has no carry). Then,
for a given large integer N with a valid binary bit length n, the sum of the valid
binary bit length of its prime factors P and Q must satisfy either k1 + k2 = n
or k1 + k2 = n+ 1 . The values of each of the numbers produced in this module
are random, so the highest bit of them is not necessarily 1. The case where the
sum of the bit length of two random numbers is n + 1 contains the case where
the sum of the bit length is n. As a result, the input module sends n+ 1 spikes
to each random module to generate P and Q after reading a large integer N .

The random number module of Fig. 1 implemented by the WSN P system
with rules on synapses is shown in Fig. 3.

i j

2 2

Fig. 3. The random number module of
∏

RSA

At time t = 3, the input neuron σinr
of the random number module receives

n + 1 spikes sent by the input module, and these n + 1 spikes are allocated
to neurons σaux3 and σaux4 by using rules an+1/ai → a and an+1/aj → a on
synapses (inr, aux3) and (inr, aux4), where 1 < i < n, i + j = n + 1. Then at
time t = 4, σaux3 and σaux4 contain i and j spikes, respectively.

When neuron σaux3 contains any number of spikes, a rule on synapse (aux3,
ranp) is selected non-deterministically. If the forgetting rule ax/a → λ is selected,
one spike will be consumed and no new spike will be generated, which means
that the binary bit of P is 0. If the rule ax/a → a is fired, one spike will be
consumed and 2 spikes will be sent to the neuron σranp

at the next time (weight
is 2), indicating that the binary bit of P is 1. After receiving these 2 spikes, rule198



a2/a → a on synapse (ranp, inp) emitted by σranp
is fired, and 1 spike is sent

to the neuron σinp
at the next moment. The rule a2/a → a;n + 5 on synapse

(ranp, outp) is also fired and 1 spike is sent to neuron σoutp after n+ 5 steps.
Neuron σaux3 continues to select the rules non-deterministically until no spike

in it remains to be consumed. The analysis of neuron σaux4 is the same as that
of σaux3 .

3.3 Multiplication Module

The numbers P and Q are generated in random number module and are sent
to the neurons in multiplication module. WSN P system with rules on synapses
performs the multiplication module according to the figure shown in Fig. 4.

Oo
k

a
2

1#k
b

22 #k
d

Fig. 4. The multiplication module of
∏

RSA

This module can calculate the product of two k bits binary numbers. Since
the binary bit length of large integer N is n, the maximum effective binary bit
length of P and Q is n− 1. So the multiplication module of k = n− 1 is selected
in Fig. 1.

Assuming that P and Q are two natural numbers with k binary bits, and P
and Q are rewritten as follows: 199



P =
k−1∑

i=0

pi2
i, Q =

k−1∑

j=0

qj2
j ,then:

P ×Q = (
k−1∑

i=0

pi2
i)× (

k−1∑

j=0

qj2
j)

=
k−1∑

i=0

k−1∑

j=0

piqj2
i+j

= q0p02
0 + (q0p1 + q1p0)2

1 + . . .+ (q1pk−1 + q2pk−2 + . . .+
qk−1p1)2

k + . . .+ qk−1pk−12
2k−2

From the above expression we can see that the product of P and Q can be
decomposed into the sum of (2k − 1) terms. The specific operation process of
this module consists of the following parts:

(1) Storing the bits of P
At time t = 6, the input neurons of this module receive the spike trains of
P and Q sent from the random number module. When each of the corre-
sponding binary bits of P is input to σinp

, the auxiliary neuron σai
sends

2(i + 1) spikes to σinp
, where i = 0, 1, ..., k − 1. Then different bits of this

k-bit binary number are sent to different neurons according to different rules
on synapses (inp, b0), (inp, b1), ..., (inp, bk−1).
The natural number P is input in the order from the digit which is associated
with the power 20 to the digit which is associated with the power 2k−1. At
time t = 6, the digit which is associated with the power 20 in the binary
representation of P is provided to neuron σinp

and at the same time the
auxiliary neuron σa0 sends 2 spikes to σinp

. Now we can divide the future
behavior of σinp

in two cases, depending on the number of spikes in it.

(a) If there are 2 spikes, then application of the rule a2 → λ on synapse
(inp, b0) will consume 2 spikes and no spike is sent out.

(b) If there are 3 spikes, then the rule a3 → a2 on synapse (inp, b0) is trig-
gered. As a consequence, two spikes are sent to neuron σb0 .

Thus, k binary bits of P can be stored in neurons σb0 , σb1 , . . . , σbk−1
by

repeating the above operations, where the i-th binary bit of P is stored
in neuron σbi . If there are 2 spikes, it means the i-th binary bit of P is 1
and if there are no spikes, that means the i-th binary bit of P is 0, where
i = 0, 1, ..., k − 1.

(2) Input the bits of Q
At time t = 6, the digit which is associated with the power 20 in the binary
representation of Q is provided to the neuron σinq

. If the digit is 1, then the
rule a → a on synapse (inq, b0) is triggered, and neuron σb0 will receive one
spike at next step. The rules a → a; i on other synapses (inq, bi) which is
emitted by neuron σinq

are also triggered, and neurons σbi receive one spike
after i steps respectively, where i = 0, 1, 2, ..., k − 1.

(3) Obtaining the coefficients

The number of spikes of each binary bit of P in neuron σbi(i = 0, 1, ..., k−1)
is either 2 or 0. Hence, after receiving q0 the number of spikes in the neuron
σbi can be 0, 1, 2 and 3. So we have the following four cases.200



(a) If σbi contains 0 spikes, then no rule can be applied and no spikes are
sent out. This encodes the operation q0pi = 0× 0 = 0.

(b) If σbi contains 1 spike, then it is received from σinq
. The rule a → λ

on synapse (bi, di) consumes one spike and no spike is sent out. This
encodes the operation q0pi = 1× 0 = 0.

(c) If σbi contains 2 spikes, then all of them are received from σinp
. No rules

can be applied further. This encodes the operation q0pi = 0× 1 = 0.
(d) If σbi contains 3 spikes, then two of them are received from σinp

and the
other one is received from σinq

. The rule a3/a → a on synapse (bi, di) is
triggered and one spike reaches neuron σdi

after consuming one spike. It
leaves two spikes in the neuron σbi for the next step. This encodes the
operation q0pi = 1× 1 = 1.

When q1 reaches neurons σb0 , σb1 , . . . , σbk−1
, these neurons receive four

spikes from neuron σg2 (the rule ak/a → a; 7 + i on synapse (g2, bi) is ac-
tivated at the initial time, and the one spike produced is multiplied by the
weight 4 on synapses (g2, bi) during the transfer, and will reach σbi after
7 + i steps delay, where i = 0, 1, . . . , k − 1). Therefore, the number of spikes
contained in neurons σb0 , σb1 , . . . , σbk−1

at this time can be 4, 5, 6, and 7,
respectively, corresponding to the four cases 0, 1, 2, and 3. Hence, the rules
on synapses (bi, di+1) is ready to fire and the result q1pi is sent to neuron
σdi+1 , where i = 0, 1, ..., k − 1.
Similarly, we can get q2pi, ... , qk−1pi (i = 0, 1, . . . , k− 1) and qjpi is sent to
neuron σdi+1 , where 0 ≤ i ≤ k − 1, 0 ≤ j ≤ k − 1.
At t = 8, q0p0 arrives at neuron σd0 through synapse (b0, d0).
At t = 9, q1p0 and q0p1 arrive at σd1 , and this encodes the operation q1p0 +
q0p1.
. . .
At t = 8+k, q1pk−1, q2pk−2, . . . , qk−2p2 and qk−1p1 arrive at σdk

, and encode
the operation q1pk−1 + q2pk−2 + . . .+ qk−1p1.
. . .
At t = 8 + 2k − 2, qk−1pk−1 arrives at σd2k−2

.
(4) Output the result

The number of spikes contained in neuron σdi
above is same as the binary

bits of P ×Q. The spikes in neurons σd0 , σd1 , ... , σd2k−2
above are sent to

the neuron σoutm in turn. According to the number of spikes in the output
neuron σoutm , we have the following cases.
(a) If the number of spikes is odd, the rule a2j+1/aj+1 → a on synapse

(outm, inm) is applied. Hence, one spike is sent to environment after
consuming j + 1 spikes, and j spikes remain in σoutm for the next step.

(b) If the number of spikes is even, the rule a2j/aj → λ on synapse (outm,
inm) is applied. Hence, no spikes are sent to environment after consuming
j spikes and j spikes remain in σoutm for the next step.

At time t = 6, the spikes from the random number module starts to en-
ter the multiplication module and at t = 10 the spikes starts to leave the
multiplication module. The coefficient corresponding to 20, i.e., p0q0 leaves
the multiplication module first. The other coefficients corresponding to the
power of 2 also leave the multiplication module in sequence.
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3.4 Comparison Module

In the large integer factorization system
∏

RSA, the comparison module only
needs to determine whether the product is equal to the given large integer N
or not. It can be compared from the lowest bit to the highest bit of two binary
numbers. If any difference is found, the two numbers are not equal. The compar-
ison module of Fig. 1 implemented by the WSN P system with rules on synapses
is shown in Fig. 5.

2 2

Fig. 5. The comparison module of
∏

RSA

At time t = 10, the input neuron σinm
of the comparison module receives

the product sent by the multiplication module, and the other input neuron σinN

receives the large integer N sent by the input module (after 7 time steps). If the
value of the same bits of two binary numbers is 1, then the rules a → a on both
synapses (inm, comp) and (inN , comp) fire. At the next moment, neuron σcomp

will get 2 spikes and use the rule a2 → λ to forget these 2 spikes. When one
of these two values is 1 and the other is 0, only one rule a → a is triggered on
synapse (inm, comp) or (inN , comp). The neuron σcomp will get 1 spike at the
next time, and then the rule a → a on synapses (comp, outp) and (comp, outq)
will fire at the same time and send 2 spikes (the weights are 2) to neurons σoutp

and σoutq of the output module respectively. When the values of the same bits
of two binary numbers are all 0, no rules can be applied.

If the value in the same bits of two binary numbers are always same, then
the number of spikes received by neurons σoutp and σoutq from neuron σcomp is
0, and if there is any difference, the number of spikes received by neurons σoutp

and σoutq from neuron σcomp is a multiple of two.

3.5 Output Module

As shown in Fig. 6, WSN P system with rules on synapses is used to perform
the output module of Fig. 1. 202



Fig. 6. The output module of
∏

RSA

After comparing two numbers, at time t = n + 11, the neurons σoutp and
σoutq receive P and Q sent from neurons σranp

and σranq
of the random number

module (the rules on synapses (ranp, outp), (ranq, outq) fire at t = 6 and are
delivered after n+5 time steps). Next, the number of spikes contained in neurons
σoutp and σoutq can be divided into four cases. We take σoutp as an example, and
σoutq can be explained in the same manner as σoutp .

(1) If the neuron σoutp has only 1 spike, then this 1 spike is received from random
number module. Moreover, this spike is sent to the environment by using the
rule a → a. Hence, the product is equal to N , and the binary bit of P is 1.

(2) If the neuron σoutp contains (2i+1)(i=1,2,...,n+1) spikes, then even number
of spikes are received from σcomp and 1 spike is received from random number
module at the same time. 1 spike is consumed by rule a2i+1/a → λ. It means
that the product is not equal to N , and the binary bit of P is 1.

(3) If there are 2i spikes, where i = 1, 2, ..., n+1, no rules can be used. It means
that the product is not equal to N , and the binary bit of P is 0.

(4) If there are 0 spikes, no rules can be used. It means that the product is equal
to N , and the binary bit of P is 0.

Therefore, the output of each factorization module can be summarized in
two cases. If the neurons σoutp and σoutq of a factorization module have sent
spikes to the environment, it means that the factorization module has found the
correct P and Q, and the output values of neurons σoutp and σoutq are P and
Q. If the neurons σoutp and σoutq do not send any spikes to the environment, it
means that the two random numbers randomly generated in this factorization
module cannot factorize the large integer N .

With the above explanation of different modules the reader can verify the
prime factorization of large integers using WSN P systems with rules on synaps-
es. In the next section, we explain the above procedure for N = 101012.203



4 System Analysis

4.1 Example Analysis

To better illustrate the correctness of the system and its specific operation pro-
cess, we analyze the following example of factorizing integer N = 101012, which
is product of two prime numbers 112 and 1112.

First, we give the integer N = 101012, and the bit length of it is n = 5. Then
the binary bit length of P and Q satisfies 1 < k < 5, and the multiplication
module of k = 4 is used to compute the product.

Table 2 reports the spikes contained in each neuron of the input module at
each step during the computation. The input and output sequences are written
in bold.

Table 2. The configurations of the input module at each time step during the compu-
tation

t in aux1 aux2 inri(i = 1, 2, ..., s) inNj(j = 1, 2, ..., s)

0 2 0 0 0 0

1 1+2 0 0 0 0

2 0 1 1 0 0

3 1 0 0 6 O(7)

4 0 0 1 0 O(6)

5 1 0 0 0 O(5)O(7)

6 0 0 1 0 O(4)O(6)

7 0 0 0 0 O(3)O(5)O(7)

8 0 0 0 0 O(2)O(4)O(6)

9 0 0 0 0 O(1)O(3)O(5)

10 0 0 0 0 1

11 0 0 0 0 0

12 0 0 0 0 1

13 0 0 0 0 0

14 0 0 0 0 1

The following is a case of the factorization module that finds the correct P
and Q. Other factorization modules are not discussed in detail.

Assume that the value of P generated by the random number module in the
factorization module i(1 ≤ i ≤ s) is 112, and the value of Q is 01112. In this case,
the number of spikes contained in each neuron of the random number module at204



each step during the process of generating random numbers P and Q is shown
in Table 3.

Table 3. The configurations of the random number module at each time step during
the process of generating random numbers P = 112 and Q = 01112

t inr aux3 aux4 ranp ranq inp inq outp outq

3 6 0 0 0 0 0 0 0 0

4 0 2 4 0 0 0 0 0 0

5 0 1 3 1 1 0 0 0 0

6 0 0 2 1 1 1+2 1 O(10) O(10)

7 0 0 1 0 1 1+4 1 O(9)O(10) O(9)O(10)

8 0 0 0 0 0 0+6 1 O(8)O(9) O(8)O(9)O(10)

9 0 0 0 0 0 0+8 0 O(7)O(8) O(7)O(8)O(9)

... ... ... ... ... ... ... ... ... ...

15 0 0 0 0 0 0 0 O(1)O(2) O(1)O(2)O(3)

16 0 0 0 0 0 0 0 1 1

17 0 0 0 0 0 0 0 1 1

18 0 0 0 0 0 0 0 0 1

19 0 0 0 0 0 0 0 0 0

The generated random numbers P = 112 and Q = 01112 are input to the
multiplication module of k = 4. The multiplication module begins to work at
t = 6.

Table 4 reports the spikes contained in each neuron of the multiplication
module of k = 4 at each step during the computation P × Q = 00112 × 01112.
The larger valid length of binary bit is 3, therefore, the extra neurons of the
multiplication module are not listed in Table 4.

From Table 4, it is known that P × Q = 0101012. While calculating the
product, the multiplication module directly inputs this result to the comparison
module. Since output of the multiplication module is send to neuron σinm

at
time t = 10, the comparison module starts at t = 10.

During the process of comparing the value of P × Q = 0101012 and N =
101012, the number of spikes contained in each neuron of the comparison module
at each step is reported in Table 5.

According to the result in Table 5, at time t = 16, the output module receives
the P and Q sent from the random number module. The spikes contained in
each neuron of the output module, as well as the number of spikes sent to the
environment at each step are shown in Table 6.205



Table 4. The configurations of the multiplication module at each time step during the
computation P ×Q = 00112 × 01112

t inp inq a0 a1 a2 g2 g3 b0 b1 b2 d0 d1 d2 d3 d4 outm inm

5 0 0 2 0 0 3 3 0 0 0 0 0 0 0 0 0 0

6 1+2 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1+4 1 0 0 2 0 0 3 0 0 0 0 0 0 0 0 0

8 0+6 1 0 0 0 0 0 7 3 0 1 0 0 0 0 0 0

9 0+8 0 0 0 0 0 0 11 7 1 0 2 0 0 0 1 0

10 0 0 0 0 0 0 0 2 11 5 0 0 2 0 0 2 1

11 0 0 0 0 0 0 0 2 2 9 0 0 0 1 0 3 0

12 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 2 1

13 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 1 0

14 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 1

15 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0

From the result in Table 6, we know that the two prime numbers that can
factorize large integer N = 101012 are P = 112 and Q = 1112 respectively. The
system ends.

4.2 Complexity Analysis

The complexity of the system in this paper is based on the required time and
space to analyze the algorithm. The time complexity is represented by the num-
ber of steps taken by the system to obtain the prime factorization and the space
complexity is represented by the number of neurons present in the system.

From the above tables we know that if the length of the input N is 5, then
the neuron σoutm in the multiplication module receives input at t = 10. If the
length of the valid output bits is n + 1, then the time at which the P and Q
are input to the neurons σoutp and σoutq of output module is t = n+11. Hence,
the first valid output time of the neurons σoutp and σoutq of the output module
is t = n + 12, and the valid output is n − 1 bits at most cases, so the end time
of the system is t = n + 11 + n − 1 = 2n + 10. On the basis of enough parallel
structures, it can be concluded that:

T = 2n+ 10 = O(n)
The number of neurons required in the rules on synapses of WSN P system is

analyzed from the above figures. The number of neurons required for the input
module is 3 (the neurons in last row in each graph are the input neurons of
next module). The number of neurons required for the random number module
is 5 and the number of neurons required for the multiplication module is 2 +206



Table 5. The configurations of the comparison module at each time step during the
the process of comparing the value of P ×Q = 0101012 and N = 101012

t inm inN comp outp outq

10 1 1 0 0 0

11 0 0 2 0 0

12 1 1 0 0 0

13 0 0 2 0 0

14 1 1 0 0 0

15 0 0 2 0 0

16 0 0 0 1 1

17 0 0 0 1 1

18 0 0 0 0 1

19 0 0 0 0 0

Table 6. The configurations and outputs of the output module at each time step

t outp outq outputp outputq

16 1 1 0 0

17 1 1 1 1

18 0 1 1 1

19 0 0 0 1

20 0 0 0 0

k + k + (k − 1) + (2k − 1) + 1 = 5k + 1, where k = n − 1. So the number of
neurons needed in the multiplication module is 5n−4. Furthermore, the number
of neurons required for the comparison module is 3 and the number of neurons
required for the output module is 2. Therefore, the number of neurons required
for a large integer factorization system

∏
RSA containing only one factorization

module is S = 3 + 5 + 5n − 4 + 3 + 2 = 5n + 9 = O(n). The space complexity
of the whole large integer factorization system is also related to the number
of parallel factorization modules, i.e., s which is exponential in nature. Hence,
to test all possible P and Q, exponential workspace is required. So, the prime
factorization of the large integer N can be obtained in linear time with the
exponential workspace provided by the rules on synapses of WSN P systems.207



4.3 Discussion

In this paper, WSN P systems with rules on synapses are used to implement
large integer factorization. In fact, this is the first time to use the P systems
to break RSA encryption. Although the system constructed in this paper can
break RSA encryption in theory, it still has some limitations. 1. The two natural
numbers to compute product in the large integer factorization SN P system∏

RSA are randomly generated by the random number module, which makes the
system uncertain; 2. The integers in the RSA algorithm are large numbers, so
the system

∏
RSA designed in this paper can successfully factorize large integer

based on the parallel structures whose number is exponential. The number of
the required neurons in the system is also exponential, making the system space
too complex.

5 Conclusions and Future Work

In this paper, a WSN P system with rules on synapses is used to break RSA
encryption by solving the prime factorization of large integers. Moreover, through
the input module, random number module, multiplication module, comparison
module and output module the working of the system is analyzed in detail. Since
the number of neurons is massive, the probability of successfully factorizing a
large integer can approach to 1 by using parallel structures. So, solving the
computationally hard problems using SN P systems can be a future direction of
research.
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26. Wu, T., Zhang, Z., Păun, Gh., Pan, L.: Cell-like spiking neural P systems. Theo-
retical Computer Science. 623, 180-189 (2016).

27. Pan, L., Wu, T., Su, Y., Vasilakos, A.V.: Cell-like spiking neural P systems with
request rules. IEEE Transactions on Nanobioscience. PP(99), 1-1 (2017).

28. Song, T., Rodriguez-Paton, A., Zheng, P., Zeng, X.: Spiking neural P systems
with colored spikes. IEEE Transactions on Cognitive & Developmental Systems.
PP(99), 1-1 (2017).

29. Wu, T., Păun, A., Zhang, Z., Pan, L.: Spiking neural P systems with polarizations.
IEEE Transactions on Neural Networks & Learning Systems. PP(99), 1-12 (2017).
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Abstract. Synthesis of different formalisms is a key element in devel-
oping accurate models when some of their components are known or
when only some limited information on their behaviour is available. In
this case, different learning methods have been developed in order to de-
fine models satisfying specific constraints. Amongst the most developed
learning methods and techniques are those referring to finite state mod-
els and regular languages. Some of these approaches can be applied to
other classes of models either be adopting the finite state machine learn-
ing methods to those models or by inferring these models from adequate
finite state machines defined through learning algorithms.
P systems are computational models inspired by the structure and be-
haviour of the living cells or other, more complex, similar biological enti-
ties, such as tissue, organs, bacterium colonies. These models have been
intensively investigated and some learning like methods have been in-
troduced for synthesising such systems. All these approaches had relied
on optimisation techniques based on evolutionary computing methods.
Here we propose a learning approach based on X-machine learning; an
X-machine is a generalisation of finite state machine model. Knowing
the association between X-machines and various classes of P systems,
one can the translate the X-machine model, obtained via a learning ap-
proach, into a P system.
Learning regular languages from queries was introduced by Angluin in a
seminal paper that also provides a learning algorithm, called L

∗. How-
ever, while finite state machines can successfully model the control as-
pects of a system, their capability of modeling the system data is quite
limited. Extended finite state machine formalisms, such as stream X-
machines, that combine the control aspects of the system with system
data, exist and can be used to alleviate this limitation. We investigates
the problem of learning deterministic stream X-machines from queries
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and provides solutions to this problem. This involves an adaptation of the
L

∗ algorithm to the more complex case of stream X-machines, in which
additional constraints to the underlying automaton appear and, hence,
additional, non-trivial, issues need to be solved. Learning X-machines
(and consequently P systems) from queries has important practical ap-
plications since it provides a way of inferring a complete state based (or
a P system) model of a system from specification, with very promising
applications, ranging from microbiology, neuroscience to software and
industrial automation systems.
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Abstract. It is well known that the kind of P systems involved in the
definition of the P conjecture is able to solve problems in the complexity
class P by leveraging the uniformity condition. Here we show that these
systems are indeed able to simulate deterministic Turing machines working
in polynomial time with a weaker uniformity condition and using only one
level of membrane nesting. This allows us to embed this construction into
more complex membrane structures, possibly showing that constructions
similar to the one performed in [1] for P systems with charges can be
carried out also in this case.

1 Introduction

The construction of P systems simulating Turing machines (TM) using as few
membranes (or cells) as possible and limiting the depth of the system is one
of the “tricks” that allowed the nesting of multiple machines to solve problems
in large complexity classes. For example, nesting of non-deterministic machines
(where the non-determinism was simulated by membrane division) and a counting
mechanism allows to characterize P#P, the class of all problems solvable by a
deterministic TM with access to a #P oracle [1,3]. The same ideas can be applied
to tissue P systems [4], where the different communication topology makes even
more important to keep TM simulations compact [2].

The P conjecture is a long-standing open problem in membrane computing
first presented in 2005 [7, Problem F] that, in its essence, asks what is the power
of one charge when compared to two charges. We feel that one important step to
determine the computational power of active membrane systems without charges
and with membrane dissolution is to see which is the minimal system able to
simulate a deterministic polynomial-time TM. Here we show that a shallow
system is sufficient to perform such a simulation without delegating everything to
the machine of the uniformity condition. Hopefully, this construction will allow
us to define systems in which different TM can be “embedded” at different levels
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in a large membrane structure, thus making possible to mimic the construction
performed in [1] for P systems with charges.

This paper is organized as follows: Section 2 will recall some basic notions
on P systems. The main construction and result is presented in Section 3, while
ideas for further research are presented in Section 4.

2 Basic Notions

For an introduction to membrane computing and the related notions of formal
language theory and multiset processing, we refer the reader to The Oxford
Handbook of Membrane Computing [8]. Here we recall the formal definition of
P systems with active membranes using weak non-elementary division rules [6,9].

Definition 1. A P system with active membranes with dissolution rules of
initial degree d � 1 is a tuple

⇧ = (�,⇤, µ, wh1
, . . . , whd

, R)

where:

– � is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;
– ⇤ is a finite set of labels;
– µ is a membrane structure (i.e., a rooted unordered tree, usually represented

by nested brackets) consisting of d membranes labelled by elements of ⇤ in a
one-to-one way;

– wh1
, . . . , whd

, with h1, . . . , hd 2 ⇤, are multisets (finite sets with multiplicity)
of objects in � , describing the initial contents of each of the d regions of µ;

– R is a finite set of rules.

The rules in R are of the following types:

(a) Object evolution rules, of the form [a ! w]h.
They can be applied inside a membrane labelled by h and containing an
occurrence of the object a; the object a is rewritten into the multiset w (i.e., a
is removed from the multiset in h and replaced by the objects in w).

(b) Send-in communication rules, of the form a [ ]h ! [b]h.
They can be applied to a membrane labelled by h and such that the external
region contains an occurrence of the object a; the object a is sent into h

becoming b.
(c) Send-out communication rules, of the form [a]h ! [ ]h b.

They can be applied to a membrane labelled by h and containing an occurrence
of the object a; the object a is sent out from h to the outer region becoming b.

(d) Dissolution rules, of the form [a]h ! b.
They can be applied to a non-skin membrane labelled by h and containing
an occurrence of the object a; the object a is sent out from h to the outer
region becoming b, the membrane h ceases to exist and all the other objects
it contains are sent into the outer region.
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A computation step changes the current configuration according to the fol-
lowing principles:

– The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, or division rules must be subject
to exactly one of them. Analogously, each membrane can only be subject
to one communication or dissolution rule (types (b)–(d)) per computation
step; for this reason, these rules will be called blocking rules in the rest of
the paper. As a result, the only objects and membranes that do not evolve
are those associated with no rule.

– When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

– In each computation step, all the chosen rules are applied simultaneously
in an atomic way. However, in order to clarify the operational semantics,
each computation step is conventionally described as a sequence of micro-
steps whereby each membrane evolves only after its internal configuration
(including, recursively, the configurations of the membrane substructures it
contains) has been updated.

– The outermost membrane (the root of the membrane structure) cannot be
divided, and any object sent out from it cannot re-enter the system again.

A halting computation of the P system ⇧ is a finite sequence C = (C0, . . . , Ck)
of configurations, where C0 is the initial configuration, every Ci+1 is reachable
from Ci via a single computation step, and no rules of ⇧ are applicable in Ck.

P systems can be used as language recognisers by employing two distinguished
objects yes and no: we assume that all computations are halting, and that either
one copy of object yes or one of object no is sent out from the outermost membrane,
and only in the last computation step, in order to signal acceptance or rejection,
respectively. If all computations starting from the same initial configuration are
accepting, or all are rejecting, the P system is said to be confluent.

In order to solve decision problems (or, equivalently, decide languages), we use
families of recogniser P systems Π = {⇧x : x 2 ⌃?}. Each input x is associated
with a P system ⇧x deciding the membership of x in a language L ✓ ⌃? by
accepting or rejecting. The mapping x 7! ⇧x must be efficiently computable for
inputs of any length, as discussed in detail in [5].

Definition 2. A family of P systems Π = {⇧x : x 2 ⌃?} is (polynomial-
time) uniform if the mapping x 7! ⇧x can be computed by two polynomial-time
deterministic Turing machines E and F as follows:

– F (1n) = ⇧n, where n is the length of the input x and ⇧n is a common
P system for all inputs of length n, with a distinguished input membrane.

– E(x) = wx, where wx is a multiset encoding the specific input x.

– Finally, ⇧x is simply ⇧n with wx added to a specific membrane, called the
input membrane.
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The family Π is said to be (polynomial-time) semi-uniform if there exists a
single deterministic polynomial-time Turing machine H such that H(x) = ⇧x

for each x 2 ⌃?.

Any explicit encoding of ⇧x is allowed as output of the construction, as
long as the number of membranes and objects represented by it does not exceed
the length of the whole description, and the rules are listed one by one. This
restriction is enforced in order to mimic a (hypothetical) realistic process of
construction of the P systems, where membranes and objects are presumably
placed in a constant amount during each construction step, and require actual
physical space proportional to their number; see also [5] for further details on
the encoding of P systems.

3 Simulation of Polynomial-time Turing machines

In this section we provide a simulation of a deterministic TM working in polyno-
mial time by a P system that uses only one level of nesting. Any information
exchange between objects can happen only via dissolution. By applying different
evolution rules, it is possible for an object to detect whether it is inside or outside
an elementary membrane (i.e., to “know” if the elementary membrane where it
was has been dissolved). By combining this mechanism with a timer, it is also
possible to encode the time when the membrane was dissolved, thus allowing to
evolve in different ways according to this additional information.

Let M be a polynomial-time deterministic TM having alphabet ⌃, set of
states Q, and transition function � : Q ⇥ ⌃ ! Q ⇥ ⌃ ⇥ {�1,+1}. We assume
that, for an input of length n machine M halts in time p(n) and, thus, it uses no
more than p(n) + 1 cells. We are going to define a P system ⇧ that simulates
the computation of M in O(p(n)|⌃|) steps. That is, the simulation of every step
of M will require a number of steps in ⇧ that is proportional to the size of the
alphabet of M , thus providing an efficient simulation.

The P system ⇧ has (p(n) + 1)2 + p(n)2 + p(n) + 1 labels, one for the skin
membrane and two for each pair of time and position in the TM tape:

⇤ ={0} [ {(i, j) | i, j 2 {0, . . . , p(n)}}

[ {(i, j)0 | i 2 {0, . . . , p(n)}, j 2 {0, . . . , p(n)� 1}} .

Since we assume that no kind of membrane division is present, in the following
we can identify membranes with labels, since each label is used by exactly one
membrane. The semantics of the labels is that a membrane with label (i, j) will
represent the i-th cell of the TM tape at time j. The additional membrane (i, j)0

is used in performing the transition between time steps j and j + 1, which also
explains why the label is not present for time p(n).
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The set of objects of the simulating P system will be:

� ={ai,j,k | i, j 2 {0, . . . , p(n)}, 0  k < m+ 5, a 2 ⌃}

[ {qi,j,k | i, j 2 {0, . . . , p(n)}, 0  k  m+ 5, q 2 Q}

[ {qi,j,k,a | i, j 2 {0, . . . , p(n)}, 0  k  m+ 5, q 2 Q, a 2 ⌃}

[ {ai | a 2 ⌃, i 2 {0, . . . , p(n)}} [ {qI}

where m = |⌃| and q
I is the initial state of the TM. The first three sets of the

union represent, respectively, the symbols on the tape, the states of the TM, and
the states of the TM together with the symbol currently present under the tape
head. The last two sets are only used to encode the initial configuration of the
TM. The value of k ranges from 0 to m+ 5 because each step of the TM will be
simulated in m+ 5 time steps.

Let a1, a2, . . . , ap(n) be the initial contents of the TM tape. It is encoded in
the initial configuration of ⇧ as the objects a1,1, a2,2, . . . , ap(n),p(n) inside the
skin membrane. As an example, if the initial content of the tape is abba, then it
will be encoded by the multiset a1b2b3a4. The initial state q

I is encoded by the
object q

I . The following rules send the objects representing the TM tape inside
the corresponding membranes: the object ai is sent into the membrane (i, 0) and
is rewritten as ai,0,0. At the same time the object q

I is rewritten as q
I
0,0,0:

ai [ ](i,0) ! [ai,0,0](i,0) for a 2 ⌃

[qI ! q
I
0,0,0]0

These rules will not be further applied during the simulation. After this first
“bookkeeping” step the actual simulation of one TM step can start; see Fig. 1 for
an example.

Let ' be a bijection from ⌃ to {1, . . . ,m} providing a total ordering of the
TM alphabet. The main idea is to have each object representing the symbol a
written on position i at time j on the TM tape dissolving the membrane (i, j)
when its subscript is i, j,'(a). This means that any other object present in the
same membrane (in our case, the object representing the current state of the TM)
can infer the symbol under the tape head and act accordingly. The evolution of
the objects representing the tape content for the first m+ 1 time steps of each
TM step simulation is described by the following rules:

[ai,j,k ! ai,j,k+1](i,j) for 0  k < '(a) and a 2 ⌃

[ai,j,k](i,j) ! ai,j,k+1 for k = '(a) and a 2 ⌃

[ai,j,k ! ai,j,k+1]0 for '(a) < k  m and a 2 ⌃

Notice how the objects simply “count” in the subscript, except that when k = '(a)
the membrane in which they are contained is dissolved.

At the same time the object representing the TM state enters the membrane
(i, j), representing that the tape head at time j is in position i and starts to count.
When membrane (i, j) is dissolved it is possible to infer the object that dissolved
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Fig. 1. The simulation of one computation step of the TM M by means of a P system
Π. The alphabet Σ is {a, b} and the tape contains four cells.
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it, and thus the symbol on the tape under the tape head, which is represented by
'�1(a) (which is well defined since ' is a bijection between ⌃ and {1, . . . ,m}.
The corresponding rules are:

qi,j,0 [ ](i,j) ! [qi,j,1](i,j) for q 2 Q

[qi,j,k ! qi,j,k+1](i,j) for 1  k  m and q 2 Q

[qi,j,k ! qi,j,k+1,'�1(k)]0 for 1  k  m, and q 2 Q

[qi,j,k,a ! qi,j,k+1,a]0 for 1  k  m, a 2 ⌃, and q 2 Q

At time step m + 1 in the simulation of the current TM step, all membranes
with label (i, j) (for all i and with j the current TM step being simulated) have
been dissolved. Now the object representing the TM state continues to wait in
the skin membrane while all the objects representing the TM tape are sent in
into the corresponding membranes (i, j)0. These membranes will be employed to
delete the current content of the cell under the TM head and to replace it with
the new symbol. The rules applied at time step m+ 1 are the following ones:

ai,j,m+1 [ ](i,j)0 ! [ai,j,m+2](i,j)0 for a 2 ⌃

[qi,j,m+1,a ! qi,j,m+2,a]0 for q 2 Q and for a 2 ⌃

Ones all the objects of the form ai,j,k have entered the membranes (i, j)0, they
wait for the object representing the TM state to enter:

[ai,j,m+2 ! ai,j,m+3](i,j)0 for a 2 ⌃

qi,j,m+2,a [ ](i,j)0 ! [qi,j,m+3,a](i,j)0 for q 2 Q and a 2 ⌃

At time step m+ 3 the membrane containing the object representing the TM
state is dissolved. In all other membranes the objects representing the TM tape
wait for one more step:

[ai,j,m+3 ! ai,j,m+4](i,j)0 for a 2 ⌃

[qi,j,m+3,a](i,j)0 ! qi,j,m+4,a for q 2 Q and a 2 ⌃

One of the focal point of this simulation algorithm happens at time step m+ 4
(always relative to the start of the simulation of the current TM step). Here, all
the objects representing the tape content dissolve the membrane (i, j)0 in which
they are in. The only object not performing this step is the one that was sent into
the skin membrane by the dissolution triggered by the object representing the
TM state. That object is deleted (by being rewritten into the empty multiset ✏)
and the state object produces its replacement according to the transition function
� of the TM:

[ai,j,m+4](i,j)0 ! ai,j,m+5 for a 2 ⌃

[ai,j,m+4 ! ✏]0 for a 2 ⌃

[qi,j,m+4,a ! qi,j,m+5,abi+d,j,m+5]0 for q 2 Q, a 2 ⌃,

and �(q, a) = (r, b, i+ d)
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Notice that the state object will be actually rewritten from q to r during the next
time step. Finally, the simulation of the next TM step can start by sending in all
the objects representing the TM tape to the membranes (i, j + 1) and resetting
the last component of their subscript. At the same time the object representing
the TM state actually applies the transition function � and rewrites itself:

ai,j,m+5 [ ](i,j+1) ! [ai,j+1,0](i,j+1) for a 2 ⌃

[qi,j,m+5,a ! ri+d,j+1,0]0 for q 2 Q, a 2 ⌃,

and �(q, a) = (r, b, i+ d)

Notice that all rules, labels, and objects can be constructed by a logarithmic
space TM. In fact, most of them are constructed by iterating either a constant
or a polynomial number of times to produce the necessary subscripts. Since the
counters are all at most polynomial in the number that they contain, they can
be encoded in a logarithmic number of bits.

We can thus state the main result:

Theorem 1. (L, L)-uniform families of confluent shallow P systems with active
membranes with dissolution and without division can solve all problems in P.

The result was already known for non-shallow system [5] but here there are
two main innovations: the systems here are shallow, i.e., of depth 1, and the
construction is via a direct simulation of a Turing machine, which allows one to
embed this construction into more complex membrane structures.

Notice that the construction presented here can be modified to simulate a
non-deterministic TM by replacing the only two types of rules involving the
transition function of the TM in a way to allow for a non-deterministic choice
(due to having multiple rules in conflict):

[qi,j,m+4,a ! qi,j,m+5,(r,b,i+d)bi+d,j,m+5]0 for q 2 Q, a 2 ⌃,

and (r, b, i+ d) 2 �(q, a)

[qi,j,m+5,(r,b,i+d) ! ri+d,j+1,0]0 for q 2 Q and a 2 ⌃

In the first rule the non-deterministic choice is remembered by writing it in the
subscript. In this way, the only rule of the second kind that can fire is the one
corresponding to the non-deterministic choice performed. We can then state the
following theorem showing that a weaker uniformity condition is still sufficient
to solve all NP problems with non-confluent systems:

Theorem 2. (L, L)-uniform families of non-confluent shallow P systems with
active membranes with dissolution and without division can solve all problems
in NP.

4 Conclusions

In this paper we showed that P systems without charges can still solve any
decision problem in the complexity class P even when the power of the Turing
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machines involved in the uniformity conditions is reduced. The TM simulation
presented here is quite modular and can be embedded in more complex membrane
structures. The resulting simulation is also efficient, requiring a slowdown of only
a constant multiplicative factor.

However, some problems remain open, and the most prominent one is to study
if the construction presented in [1] can be replicated for systems with charges,
possibly adding an additional nesting level to accommodate for the different TM
simulation technique. Such a result would show that even without charges the
entire counting hierarchy can be computed in constant depth. This is another
step in trying to understand what are the features that actually grant P systems
the power to go beyond the complexity class P and, in some cases, beyond the
entire polynomial hierarchy.
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Abstract. Spiking neural P systems (SNPS) are distributed and parallel comput-

ing models that incorporate the idea of biological spiking neurons into membrane

systems. Inspired by the adaptive learning ability of intelligent organisms and

mutations of gene in nature, in this paper we propose an adaptive optimization

spiking neural P system (AOSNPS) through introducing an adaptive learning rate

and an adaptive mutation into the optimization spiking neural P system (OSNPS).

With the adaptive learning rate, the efficiency of probability adjustment of the

guider is greatly improved and the probability of the guider never goes beyond

the upper or lower bound. With the adaptive mutation, the exploration and ex-

ploitation abilities for solving optimization problems are significantly improved

and the much better balance between convergence and diversity is captured. Fi-

nally, extensive experiments on knapsack problems and an application to power

system fault diagnosis have been reported to experimentally prove the viability,

adaptability and effectiveness of the proposed adaptive neural system.
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1 Introduction

Biological neural network [1–3] generally refers to a network of biological brain

neurons, cells, contacts, etc., used to generate biological awareness, and to help crea-

tures think and act. Artificial neural networks (ANNs), also referred to as neural net-

works (NNs) or connection models, are mathematical computational models consisting

of interconnected neurons [4, 5] that mimic the behavioral characteristics of biological

neural networks and perform distributed parallel information processing. ANNs relies

on the complexity of the system to adjust the relationship between a large number of

internal nodes to achieve the purpose of self-adaptability, self-organization, machine

learning, and information processing. ANNs have been extensively investigated and

widely used in various fields, such as signal and image processing [6, 7], classification

[8], pattern recognition [9, 10], earthquake prediction [11–13], epilepsy and seizure de-

tection [14, 15], and optimization [16–20].

In the last decades, ANNs has passed three developmental generations with notable

characteristics. The fundamental feature of the first generation is McCullochitts neurons

[21] (perceptrons or threshold gates). Only Boolean functions [22] can be processed and

output digital results. The salient feature of the second generation is activation function

with weighted learning ability and processing of analog input and output. The introduc-

tion of time [23] (single action spiking of the neuron) concept when neurons encode

information is a prominent feature of the third generation [22] of ANNs. As both com-

putationally powerful and biologically more plausible models of neuronal processing,

spiking neural networks (SNNs) are increasingly receiving attentions [24–27].

Membrane computing [28] (initiated by Păun) is a branch of natural computing

which deals with abstract computing models (called P systems) inspired from the struc-

ture and the functioning of the biological cells, organs and colonies (of bacteria). The

obtained computing models are distributed computing devices, working in parallel, pro-

cessing multisets in the compartments defined by membranes. As a novel emerging

research front (listed by Thompson Institute for Scientific Information in 2003), mem-

brane computing models have been intensively investigated and used in various appli-

cations like in the areas of biology and biomedicine [29, 30], computer graphics [31],

cryptography [32], robot control [33, 34], distributed evolutionary computing [32, 35,

36], power system fault diagnosis [37, 38] and other real-life complex problems [31,

32, 39, 40].

Membrane computing models can be divided into three categories depending on

the membrane structure, i.e., cell-like, tissue-like and neural like. Where, spiking neural
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P systems include many different types like Cell-like spiking neural P systems[41, 42],

Spiking neural P systems with communication on request(SNQPS)[43, 44] and opti-

mization spiking neural P systems(OSNPS)[45]. Unlike cell-like and tissue-like P sys-

tems [31, 32, 39], spiking neural P systems (SNPS) [32, 46] deal with a unique object.

The spike is an electrical impulses of identical shape voltage, sent from a neuron to

another one along the synapses. Among the various investigations on membrane com-

puting, SNPS is one of the most promising and important research directions [32, 40,

47–50]. An SNPS consists of a set of neurons placed in the nodes of a graph and send-

ing signals (spikes) along synapses (edges of the graph), under the control of firing and

forgetting rules. One neuron is designated as the output neuron of the system and the

spikes can exit into the environment, thus producing a spike train. With the spike train,

SNPS can generate various semantics and solve an optimization problem. The first study

of solving combinatorial optimization problem based on optimization spiking neural

P system (OSNPS) was reported in [45]. Membrane-inspired evolutionary algorithms

(MIEAs) [35, 40, 51–54] combine P system framework with meta-heuristic algorithms

(evolutionary operators are integrated within P systems) to solve optimization problem-

s, but OSNPS tackle combinatorial optimization problems only with SNPS.

OSNPS is the first optimization algorithm of SNPS in the sense of the pure mem-

brane computing semantic framework. In [45], based on SNPS framework, an extended

SNPS(ESNPS) was obtained by introducing two additional neurons (continuous supply

of spikes to other neurons step by step), the probabilistic selection of evolution rules

and the output (spike train) collection from multiple neurons, and a family of ESNPS,

called optimization spiking neural P system(OSNPS), were further designed through

introducing a guider to adjust probabilities (learning from through continuous learn-

ing generation by generation). The experimental result of OSNPS appears promising

and competitive when compared with six other optimization algorithms by solving the

same Knapsack problem. As indicated in [45], OSNPS starts a new research approach

for solving optimization problems and other problems, such as the learning rate is con-

stant, the probability of the guider may go beyond the upper or lower bound, and easy

to be trapped in local optimum etc.

Charles Robert Darwin described in the Origin of the Species: It is not the strongest

of the species that survive, but the one most responsive to change. The natural selec-

tion mechanism gives humans a rich source of ideas [55] to solve the challenges and

problems we faced and the adaptability of nature is applied to various research fields by

humans, such as adaptive resonance theory, adaptive control theory and adaptive opti-
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mization technique etc. After a new algorithm emerged, we often introduce the adapt-

ability to the algorithm to improve the ability and robustness of the algorithm to solve

the practical problems, such as adaptive genetic algorithm [56, 57], adaptive particle

swarm optimization [58, 59], adaptive ant colony algorithm [60, 61], adaptive neural

network [62, 63] and adaptive spiking neural network [22, 64, 65]. and these adaptive

optimization techniques have made tremendous contributions and value when they are

applied to human activities. Therefore, based on the SNPS working framework, design-

ing an adaptive OSNPS is interesting, meaningful and promising.

This paper extends the work in [45] and proposes an adaptive optimization spiking

neural P system (AOSNPS) to solve combinatorial optimization problems. More specif-

ically, inspired by the adaptive learning ability of intelligent organisms and mutations

of gene in nature, an adaptive learning rate and adaptive mutation were introduced to

OSNPS. The learning rate is not a constant, but a dynamical variable that can adapt suit-

ably for each neuron at each generation. With the adaptive learning rate, the efficiency

of probability adjustment of the guider is significantly improved and the probability of

the guider never goes beyond the upper or lower bound. In addition, two dynamical-

ly changing indicator parameters are used to evaluate the evolutionary convergence of

global optimal solutions and diversity of probability matrices of the algorithm running

process. A triggering rule of mutation and a probability-based mutation mode consti-

tute the adaptive mutation. With the adaptive mutation, the exploration and exploitation

abilities of solving optimization problems are significantly improved and the much bet-

ter balance between convergence and diversity is captured. Finally, experimental results

and analysis illustrate the effectiveness of AOSNPS through analyzing the dynamic be-

havior of the process of solving the Knapsack problem with 1000 items, and comparing

the final optimal solution and the total execution generation of solving the Knapsack

problem with 5000, 6000, 7000,8000, 9000, and 10000 items using the same termina-

tion condition,respectively.

The remainder of this study is organized as follows: Section 2 briefly introduces

OSNPS. Section 3 presents the proposed AOSNPS consisting adaptive learning rate,

adaptive mutation and the novel guider. Experimental results and analysis are described

in Sec. 4. Conclusion and future work are given in Sec.5 and Sec.6 respectively.

2 Preliminaries

In this section, we briefly review the spiking neural P system and the optimization

spiking neural P system.
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2.1 Spiking Neural P System

A SNPS of degree m � 1 is a tuple Π = (O,σ1, · · · ,σm, syn, io), where:

(1) O = {a} is the singleton alphabet (a is called spike);

(2) σ1, · · · ,σm are neurons, identified by pairs

σi = (ni, Ri) , 1  i  m (1)

where:

(a) ni � 0 is the initial number of spikes contained in σi.

(b) Ri is a finite set of rules of the following two forms:

(i) E/ac ! a; d where E is a regular expression over O, and c � 1, d � 0;

(ii) as ! λ, for some s � 1, with the restriction that for each rule E/ac ! a; d

of type (1) from Ri, we have as /2 L (E);

(3) syn ✓ {1, . . .m} ⇥ {1, . . .m} with (i, i) /2 syn for i 2 {1, . . .m} (synapses

between neurons);

(4) σio(i 2 {1, . . .m}) is the output neuron.

The rules of type (i) are firing or spiking rules and are used in the following man-

ner: if neuron σi contains k spikes, and ak 2 L(E), k � c, then the rule E/ac ! a; d

can be applied. c spikes will be consumed and only k� c spikes will remain in the neu-

ron σi. After that the neuron is fired, sending a spike out along all outgoing synapses

after d time units (in synchronous mode). If d = 0, then the spike is emitted immediate-

ly. If d = 1, then the spike will be emitted in the next step, etc. If the rule is used at step

t and d � 1, then at steps t, t+1, ..., t+d�1 the neuron is closed, i.e., it cannot receive

new spikes from the other neurons (if a neuron has a synapse to a closed neuron and

tries to send a spike along it, the particular spike is lost). In the step t + d, the neuron

becomes open again, and it can receive spikes in step t+ d+ 1 from the other neurons.

In addition, if a rule E/ac ! a; d has E = ac, it can be simplified as ac ! a; d. If a

rule E/ac ! a; d has d = 0, it can be written as E/ac ! a.

The rules of type (ii) are forgetting rules and they are applied as follows: if neuron

σi contains exactly s spikes, the rule as ! λ in Ri can be applied, then s spikes are

consumed by neuron σi.

A configuration of Π at any instant t is a tuple (n1, d1), ..., (nm, dm), where ni

describes the number of spikes present in the neuron σi at the instant t and di represents

the number of steps to count down until it becomes open. The initial configuration of

Π is (n1, 0), ..., (nm, 0), that is, all neurons are open initially. Using the rules of the
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system in the way described above, a configuration C⇤ can be reached from another

configuration C, such a step is called a transition step.

A computation of Π is a (finite or infinite) sequence of configurations such that:

* The first term of the sequence is the initial configuration of the system and each

of the remaining configurations are obtained from the previous one by applying

rules of the system in a maximally parallel manner with the restrictions previously

mentioned;

* If the sequence is finite (called halting computation) then the last term of the se-

quence is a halting configuration, where no rule can be applied further.

With any computation we can associate a spike train. If the output neuron spikes, then

we have 1 and otherwise we have 0. Hence, the spike train can be represented by the

sequence of ones and zeros.

2.2 Optimization Spiking Neural P System

OSNPS was first proposed in [45]. The significant difference between OSNPS and

many other membrane-inspired evolutionary algorithms (MIEAs) is that the OSNPS

use the probabilistic selection of evolution rules to guide the algorithm to approximately

solve the optimization problems but the MIEAs use evolutionary operators of heuristic

approaches.

An extended spiking neural P system (ESNPS) is an important basic component of

OSNPS, where two additional different neurons σm+1 and σm+2 are added in spiking

neural P system. An ESNPS of degree m � 1 is a construct of the form

Π = (O,σ1, . . . ,σm+1,σm+2, syn, I0), (2)

where:

(1) O = {a} is the singleton alphabet (a is called spike);

(2) σ1, . . . ,σm are neurons of the form σi = (1, Ri, Pi), 1  i  m.

(a) Every neuron σi, has only 1 initial spike.

(b) Ri = {r1i , r
2
i } is a set of rules of firing or forgetting spike, where r1i = {a !

a} is firing rule and r2i = {a ! λ} is forgetting rule.

(c) Pi = {p1i , p
2
i } is a finite set of probabilities, where p1i and p2i are the selection

probabilities of rules r1i and r2i , respectively, and satisfy p1i +p2i =1.
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(3) The two additional neurons, σm+1 = σm+2 = (1, {a ! a}), work as a step by

step supplier of spikes to neurons σ1, σ2, . . . , σm.

(4) syn = {(i, j)|(1  i  m+ 1 ^ j = m+ 2) _ (i = m+ 2 ^ j = m+ 1)}.

(5) I0 = {σ1,σ2, . . . ,σm} is a finite set of output neurons, and the output is a spike

train formed by concatenating the outputs of σ1, σ2, . . . , σm.

The structure of an ESNPS [45] is shown in Fig. 1.
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Fig. 1. An example of ESNPS structure
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Spike trains 

Guider 

Rule probabilities 

Fig. 2. An example of OSNPS structure

In the ESNPS, at each time unit, each neuron σ1, σ2, . . . , σm receives a spike

from the cooperating neurons σm+1 and σm+2. Every neuron σ1, . . . ,σm performs

the firing rule r1i with probability p1i and the forgetting rule r2i with probability p2i ,

i = 1, 2, . . . ,m. If the ith neuron spikes, we obtain the output 1, i.e., we obtain 1 with

probability p1i . Otherwise, we obtain the output 0, i.e., we obtain 0 with probability p2i ,

i = 1, 2, . . . ,m. Thus, this system outputs a spike train consisting of 0 and 1 at each

moment of time. If we can adjust the probabilities either p11, . . . , p1m or p21, . . . , p2m, we
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can control the output of the spike train. In both OSNPS and AOSNPS, we choose to

adjust the probabilities p11, . . . , p1m.

Input: Spike train Ts, pa
j , �, H and m

1: Rearrange Ts as matrix PR

2: i = 1

3: while (i  H) do

4: j=1

5: while (j  m) do

6: if (rand < pa
j ) then

7: k1, k2 = ceil(rand ⇤ H), k1 6= k2 6= i

8: if (f(Ck1
) > f(Ck2

)) then

9: bj = bk1

10: else

11: bj = bk2

12: end if

13: if (bj > 0.5) then

14: p1
ij = p1

ij + �

15: else

16: p1
ij = p1

ij � �

17: end if

18: else

19: if (bmax
j > 0.5) then

20: p1
ij = p1

ij + �

21: else

22: p1
ij = p1

ij � �

23: end if

24: end if

25: if (p1
ij > 1) then

26: p1
ij = p1

ij � �

27: else

28: if (p1
ij < 0) then

29: p1
ij = p1

ij + �

30: end if

31: end if

32: j = j + 1

33: end while

34: i = i + 1

35: end while

Output: Rule probability matrix PR

Fig. 3. The Guider Algorithm of OSNPS

The optimization spiking neural P system is composed of a family of ESNPS. A

guider was used to adjust the selection probabilities of rules inside each neuron of each

ESNPS. The structure of OSNPS [45] is shown in Fig. 2.
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The guider algorithm [45] in Fig. 3., was designed for solving a (specific) single

objective and unconstrained combinatorial optimization problem. The detailed execu-

tion steps of the guider algorithm have been described in [45]. At the same time, the

authors pointed out that the guider can also be modified in order to be suitable for dif-

ferent types of optimization problems.

All of ESNPSi, 1  i  H , are the same as in Fig. 1. The guider is used to adjust the

probabilities. The input of the guider is a spike train Ts (the sequence of 1 and 0) with

H ⇥ m bits. The output of the guider is the rule probability matrix PR = [p1ij ]H⇥m,

which is composed of the firing rule probabilities of H ESNPS [45], i.e.,

PR =

0

B

B

B

B

B

@

p111 p112 . . . p11m

p121 p122 . . . p12m
...

...
. . .

...

p1H1 p1H2 . . . p1Hm

1

C

C

C

C

C

A

(3)

The guider algorithm in [45] was designed for solving a (specific) single objective

and unconstrained combinatorial optimization problems. At the same time, the authors

pointed out that the guider can also be modified in order to be suitable for different

types of optimization problems.

3 Adaptive Optimization Spiking Neural P System

Based on the work in [45] and inspired by the adaptive learning ability of intelli-

gent organisms and mutations of gene, an adaptive optimization spiking neural P system

was proposed in this paper. At first, an adaptive learning rate and an adaptive mutation

rule are designed to organize a novel adaptive guider.

3.1 Adaptive Learning Rate

Learning rate defined as ∆ in [45] is the step size of probability adjustment for

p1ij , 1  i  H , 1  j  m at each time unit in OSNPS. The probability adjustment

method is p1ij = p1ij + ∆ or p1ij = p1ij � ∆. Moreover, ∆, a random number between

0.005 and 0.02, is one of the initialization parameters as shown in Fig. 3 and its value

will not change during the execution of the algorithm. The efficiency of adjusting the

probability with this learning rate is very low because of the fixed step size. A novel

adaptive learning rate is proposed here and the probability adjustment efficiency al-

so has significantly increased. Before demonstrating the adaptive learning rate, let us

revisit the role of p1i in ESNPS as defined in Eqs.2.
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p1i is the selection probability of rule r1i and r1i is the firing rule in each neuron.

Then, if the value of p1i is larger, the rule r1i has a higher probability of execution and

the rule r2i has a lower probability of execution because p1i + p2i = 1. In the coding

method: if the output neuron spikes, the output is 1, otherwise the output is 0. So, if we

want to get 1, p1i must be large (the ideal situation is p1i = 1 ) and if we want to get 0,

p1i must be small (the ideal situation is p1i = 0 ).

In this paper we ingeniously designed an adaptive probability adjustment step size

for every neuron. At each time unit, the adaptive updating rule of probability is

p1ij = p1ij +∆
adaptive
ij (4)

where ∆
adaptive
ij is the adjustment step size and it is defined as

∆
adaptive
ij =

Pmax ormin � p1ij
2

(5)

∆
adaptive
ij is designed to take the half of the distance between the current probability p1ij

and the ideal probability. Pmax ormin is the upper or lower bound of the probability of

p1ij . Without loss of generality, we take 1 as the upper bound and 0 as the lower bound.

Now, whether to take the upper or lower bound value of Pmax ormin is determined

depending on the binary value (either 1 or 0) of the bit from we learn from. To be

specific:

If we learn from 1 (the binary value of the learned bit), Pmax ormin takes the upper

bound value 1. The updating rule of probability is

p1ij = p1ij +
1� p1ij

2
= 0.5 + 0.5p1ij (6)

If we learn from 0 (the binary value of the learned bit), Pmax ormin takes the lower

bound value 0. The updating rule of probability is

p1ij = p1ij +
0� p1ij

2
= 0.5p1ij (7)

Comparing with the learning rate ∆ defined in OSNPS, the adaptive learning rate

∆
adaptive
ij proposed in this paper have the following advantages:

* The novel learning rate ∆
adaptive
ij has a strong adaptive ability: ∆ is a constant and

∆
adaptive
ij can change for every different neuron at every different time unit during

the algorithm execution. If the distance between the current probability p1ij to the

ideal probability (either 0 or 1) is big, the size of the probability adjustment step is
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big too. If the distance between the current probability p1ij to the ideal probability

(either 0 or 1) is small, the size of the probability adjustment step is small too.

* Learning efficiency is significantly improved. If we want to ge 1 from a neuron, the

ideal probability of p1ij is 1. From an initial probability (e.g p1ij = 0.1), very few

steps ( after 4 steps, 0.9 < p1ij < 1 ) are needed for using the adaptive learning

rate ∆
adaptive
ij and much more steps are needed in OSNPS using ∆ (after 40 steps,

0.3 < p1ij < 0.9). Similarly, if we want to get 0 from a neuron, the ideal probability

of p1ij is 0. From an initial probability (e.g p1ij = 0.9), very few steps ( after 4

steps, 0 < p1ij < 0.1 ) are needed for using the adaptive learning rate ∆
adaptive
ij

and much more steps needed in OSNPS using ∆ (after 40 steps, 0.1 < p1ij < 0.7).

In addition, from an arbitrary initial probability, we can obtain 0.5  p1ij  1 or

0  p1ij  0.5 after only one step.

* The probability of p1ij does not overflow. In OSNPS, it will definitely appear 1 <

p1ij or p1ij < 0, which is not allowed and the additional amendments must be needed

if this situation occur. But the probability overflow never occurs in the paper, if the

probability was adjusted with the adaptive learning rate ∆
adaptive
ij .

3.2 Adaptive Mutation

In order to further improve the performance, we introduce the idea of mutation

from gene and establish an adaptive mutation rule suitable for AOSNPS. Two dynam-

ically changing parameters Pm1 and Pm2 are defined to characterize the evolutionary

state of AOSNPS running process. Pm1 is used to evaluate the evolutionary conver-

gence of global optimal solutions and Pm2 is used to evaluate the evolutionary diversity

of probability matrices.

The parameter Pm1 is defined as follows:

If Gbf (gen) > Gbf (gen� 1)

Pm1 = 0 (8)

If Gbf (gen) = Gbf (gen� 1)

Pm1 = Pm1 +
1

Nnimax gen

(9)

where Gbf represents the global best fitness and is always replaced by new better fit-

ness values during algorithm execution in generation by generation. It is a function

that only increases without decreasing (here we consider a maximization problem).

Gbf (gen) is the global best fitness at current generation, Gbf (gen � 1) is the global
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best fitness at previous generation and Gbf (0) is the global best fitness at the initial-

ization. Nnimax gen � 1 and Nnimax gen 2 N. If the global best fitness does not im-

prove for consecutive Nnimax gen generations, the algorithm terminates. Then, we have

Pm1 2 [0, 1].

The parameter Pm2 is defined as follows:

Pm2 =
DPa(gen)

DPa(0)
(10)

where DPa is the average probability distance of all individuals in PR shown in Eqs.(3).

DPa(gen) is the average probability distance of all individuals at the current generation

and DPa(0) is the average probability distance of all individuals at initialization. DPa

is calculated as

DPa =
2

(H � 1) (H � 2)

H�1
X

i=1

H
X

j=i+1

1

m

m
X

k=1

��

�p1ik � p1jk
�

�

�

(11)

From Eqs.10, we know that Pm2 is the ratio of current population diversity to popula-

tion diversity at initialization. The probability matrix PR is random initialization when

initializing the population. In general, the diversity of the probability matrix population

DPa(0) is good. Therefore, the general case is 0  Pm2  1, but Pm2 > 1 may be

possible. However, if Pm1 and Pm2 satisfy the condition then the mutation rule will

trigger.

rand1() < Pm1 and rand2() > Pm2 (12)

where rand1() and rand2() are two random number in [0, 1]. Only when both rand1() <

Pm1 and rand2() > Pm2 are satisfied, the mutation can be triggered. The mutation

mode of the probability matrix PR is designed such that if rand3() < Pm
j , for every

i = 1, 2, · · · , H , i 6= Rbestfit, and j = 1, 2, · · · ,m, then

p1ij = rand() (13)

where rand3() and rand() are two random number in the range [0, 1]. Pm
j is the mu-

tating probabilities in the range [0, 0.1]. Rbestfit 2 [1, H] is the row coordinate of the

best chromosome found at current generation. It means that the best chromosome does

not participate in the mutation. The purpose is to protect the current optimal solution

obtained.
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The mutation rule has a strong adaptive ability. From Eqs.8 to Eqs.13, we know

that Pm1 and Pm2 are two dynamically changing parameters that characterize the evo-

lution performance (convergence and diversity) of the probability matrix PR. The trig-

gering rule for mutation is explained in detail in the following.

* In the execution of the AOSNPS, if the global optimal solution is higher than the

previous generation, i.e, (Gbf (gen) > Gbf (gen � 1)), then the mutation is not

triggered because Pm1 = 0.

* If the global optimal solution is not improved compared to the previous generation,

i.e, (Gbf (gen) = Gbf (gen � 1)), then the probability of triggering the mutation

increases by generation to generation (Pm1 = Pm1+
1

Nnimax gen
). If the population

diversity (DPa(gen)) is good at current generation (compared to the population

diversity at initialization DPa(0)), then the probability of mutation being triggered

is still small because Pm2 is still big.

* If the global optimal solution (Gbf ) is not improved for many generations, and

the population diversity (DPa(gen)) of the probability matrix PR is poor, then the

probability of triggering mutation is greatly increased, because Pm1 is big, Pm2 is

small, and Eqs.12 is easy to satisfy at this time.

3.3 The Novel Guider of Adaptive Optimization Spiking Neural P System

Based on the adaptive learning rate and the adaptive mutation rule, a novel guider

algorithm (Fig. 4) is obtained for solving a (specific) single objective and unconstrained

combinatorial optimization problems.

To clearly understand the guider algorithm, we explain the details step by step as

follows:

Step 1: Input the learning probabilities paj and the mutating probabilities Pm
j , 1 

j  m. Rearrange the input spike train Ts in the rule probability matrix PR, where

each row comes from the identical ESNPS and can be used to represent a chromo-

some or an individual in an optimization application. gen is used to accumulate the

generations executed by the algorithm (gen = 0 represents initialization). Gbf (0) is

the best fitness at the initialization and DPa(0) represents the population diversity of

PR at initialization.

Step 2: If the parameter Pm1 is greater than 1, i.e., Pm1 > 1, then the algorithm goes

to Step 25.
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Input: Spike train Ts, pa
j , Pm

j , H , m, and Nnimax gen

1: Rearrange Ts as matrix PR, let gen = 0 and Pm1 = 0, calculate Gbf (0) and DPa(0)

2: while (Pm1  1) do

3: gen = gen + 1

4: i = 1

5: while (i  H) do

6: j=1

7: while (j  m) do

8: if (rand < pa
j ) then

9: k1, k2 = ceil(rand ⇤ H), k1 6= k2 6= i

10: if (f(Ck1
) > f(Ck2

)) then

11: bj = bk1

12: else

13: bj = bk2

14: end if

15: if (bj > 0.5) then

16: p1
ij = 0.5 + 0.5p1

ij

17: else

18: p1
ij = 0.5p1

ij

19: end if

20: else

21: if (bmax
j > 0.5) then

22: p1
ij = 0.5 + 0.5p1

ij

23: else

24: p1
ij = 0.5p1

ij

25: end if

26: end if

27: j = j + 1

28: end while

29: i = i + 1

30: end while

31: calculate Gbf (gen), DPa(gen) and Rbestfit

32: if (Gbf (gen) > Gbf (gen � 1)) then

33: Pm1 = 0

34: else

35: Pm1 = Pm1 + 1
Nnimax gen

36: end if

37: Pm2 =
DPa(gen)
DPa(0)

38: if (rand1() < Pm1 and rand2() > Pm2) then

39: i = 1

40: while (i  H) do

41: if i 6= Rbestfit then

42: j = 1

43: while (j  m) do

44: if rand3() < Pm
j then

45: p1
ij = rand()

46: end if

47: j = j + 1

48: end while

49: end if

50: i = i + 1

51: end while

52: end if

53: end while

Output: Rule probability matrix PR

Fig. 4. The Novel Guider Algorithm of AOSNPS235



Step 3: Algorithm execution generation increases by one generation, i.e., gen =

gen+ 1.

Step 4: Assign the row indicator the initial value i = 1.

Step 5: If the row indicator is greater than its maximum H , i.e., i > H , then the

algorithm goes to Step 12.

Step 6: Assign the column indicator the initial value j = 1.

Step 7: If the column indicator is greater than its maximum m, i.e., j > m, then the

algorithm goes to Step 11.

Step 8: If a random number rand is less than the prescribed learning probability paj ,

the guider performs the following two steps. Otherwise, it goes to Step 9.

(i) Choose two distinct chromosomes k1 and k2 that differs from the ith individual

among the H chromosomes, i.e., k1 6= k2 6= i. If f(Ck1
) > f(Ck2

) (f(·) is

an evaluation function to an optimization problem. Ck1
and Ck2

denote the k1th

and k2th chromosomes, respectively), i.e., if the k1th chromosome is better than

the k2th one in terms of their fitness values (here we consider a maximization

problem), the current individual learns from the k1th chromosome, i.e., bj=bk1
.

Otherwise, the current individual learns from the k2th chromosome, i.e., bj=bk2
,

where bj , bk1 and bk2 are intermediate variable, jth bit of the k1th and k2th

chromosomes, respectively.

(ii) If bj > 0.5, we increase the current rule probability p1ij to 0.5 + 0.5p1ij . Other-

wise, we decrease p1ij to 0.5p1ij .

Step 9: If bmax
j > 0.5, then current rule probability p1ij is increased to 0.5 + 0.5p1ij .

Otherwise, p1ij is decreased to 0.5p1ij , where bmax
j is the jth bit of the best chromo-

some found.

Step 10: The column indicator j increases by 1 and the guider goes to Step 7.

Step 11: The row indicator i increases by 1 and the guider goes to Step 5.

Step 12: Calculate the global best fitness at current generation (Gbf (gen)), the pop-

ulation diversity at the current generation (DPa(gen)) and the row coordinate of the

best chromosome found at current generation (Rbestfit).
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Step 13: Compared to the last generation, if the global optimal fitness is improved,

i.e., (Gbf (gen) > Gbf (gen�1), then Pm1 = 0, otherwise Pm1 = Pm1+
1

Nnimax gen

(i.e.,(Gbf (gen) = Gbf (gen� 1)).

Step 14: Calculate the ratio of current population diversity to population diversity at

initialization Pm2.

Step 15: If the conditions for triggering a mutation are met, i.e., rand1() < Pm1

and rand2() > Pm2, the guider performs the following eight steps (Step 16 to Step

23). Otherwise, it goes to Step 24.

Step 16: Assign the row indicator the initial value i = 1.

Step 17: If the row indicator is greater than its maximum H , i.e., i > H , then the

algorithm goes to Step 24.

Step 18: If i 6= Rbestfit, then the guider performs the following four steps (Step 19

to Step 22). Otherwise, it goes to Step 23.

Step 19: Assign the column indicator the initial value j = 1.

Step 20: If the column indicator is greater than its maximum m, i.e., j > m, then the

algorithm goes to Step 23.

Step 21: If a random number rand3() is less than the prescribed mutating probabili-

ties Pm
j , i.e., rand3() < Pm

j , then p1ij = rand() (mutating).

Step 22: The column indicator j increases by 1 and the guider goes to Step 20.

Step 23: The row indicator i increases by 1 and the guider goes to Step 17.

Step 24: The guider goes to Step 2.

Step 25: The guider outputs the modified rule probability matrix PR to adjust each

probability value of each evolution rule inside each of neurons 1, . . . ,m in each ES-

NPS.
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4 Experimentation and Analysis of Results

To illustrate the feasibility and effectiveness of AOSNPS for solving combinatori-

al optimization problems, and to compare with OSNPS, we chose the same knapsack

problems as an application example to conduct experiments.

4.1 Knapsack problems

The Knapsack problem is an NP-complete problem with combinatorial optimiza-

tion. The problem can be described as: given a group of items, each item has its own

weight and price. So within a limited total capacity, how we choose that to make the

total price of the items highest. The mathematical description of the knapsack problem

is to select a subset from the given number of items to maximize the profit f(x):

f(x) =
K
X

i=1

pixi (14)

subject to
K
X

i=1

ωixi  C (15)

where K is the number of items, pi is the profit of the ith item, ωi is the weight of the

ith item, C is the capacity of the given knapsack, and xi is either 0 or 1.

This study uses strongly correlated sets of unsorted data, i.e., the knapsack problem

has a linear relationship between the weights and profit values of unsorted items. It was

used in [35, 66–69] to test the algorithm performance.

ωi = uniformly random[1,Ω] (16)

pi = ωi +
1

2
Ω (17)

where Ω is the upper bound of ωi, i = 1, . . . ,K, and the average knapsack capacity C

is

C =
1

2

K
X

i=1

ωi (18)

4.2 Comparative Analysis of Experimental Results of AOSNPS and OSNPS

In this subsection, we use AOSNPS and OSNPS to solve the same Knapsack prob-

lem (with the same items),respectively. In order to illustrate the difference between
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AOSNPS and OSNPS in solving the optimization problem, we performed a dynamic

behavior analysis of seven aspects (four of these indicators have also been discussed in

[70]) of the experimental testing process, including:

(1) Gbf : global optimal fitness convergence trend. A larger value of Gbf gives a better

solution with regard to a maximization optimization problem.

(2) Dqbw: binary-bit distance between the best and worst binary-bit individuals corre-

sponding to the best and worst fitness values in a population, respectively. A larger

value of Dqbw gives a hint of larger distance between the best and worst binary-bit

individuals.

(3) Dqa: average binary-bit distance of all binary-bit individuals in a population. A

larger value of Dqa suggests a larger distance between each pair of binary-bit indi-

viduals in a population.

(4) Dhbw: Hamming distance between the best and worst binary individuals in a popu-

lation. A larger value of Dhbw indicates more varieties between the best and worst

binary individuals.

(5) Dhm: Hamming distance of all binary individuals in a population. A larger val-

ue of Dhm indicates more varieties between each pair of binary individuals in a

population.

(6) DPbw: distance between the best and worst probability individuals in PR corre-

sponds to the best and worst fitness values in a population, respectively. A larger

value of DPbw gives a hint of larger distance between the best and worst probability

individuals in PR.

(7) DPa: average probability distance of all probability individuals. A larger value of

DPa indicates more varieties between each pair of probability individuals in PR.

The calculation method of Gbf is determined according to the specific optimization

problem (for Knapsack problems, according to Eqs.(14) and taking the maximum). For

the detailed description and calculation method of Dqbw, Dqa, Dhbw and Dhm should

see [70]. DPa was defined in Eqs.(11). DPbw is defined as follows:

DPbw =
1

m

m
X

k=1

�

�p1bk � p1wk

�

� (19)
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where p1bk and p1wk are the the best and worst probability individuals in PR correspond-

ing to the best and worst fitness values in a population, respectively.

At first, we use OSNPS and AOSNPS to solve the the same knapsack problem

with 1000 items (Ω = 50), respectively. Both OSNPS and AOSNPS consist of H = 50

ESNPS, and each of which has 1002 neurons (m = 1000).

In OSNPS, the learning probability paj (j = 1, . . . ,m) and the learning rate ∆ are

prescribed as a random number in the range [0.05, 0.20] and [0.005, 0.02], respectively

(the same initialization conditions were used in [45]).

In AOSNPS, the learning probability paj (j = 1, . . . ,m) uses the same value used

in OSNPS (a random number in [0.05, 0.20]), the mutating probabilities pmj = 0.01

(j = 1, . . . ,m) and Nnimax gen = 500.

It is worth to pointing out that, since algorithm OSNPS does not specify the condi-

tions for calculating how many generations to stop, we artificially set the total execution

generations to 8000 (the average generations over 30 independent runs were 7123 as

shown in [45]). In order to better compare the dynamic behavior of OSNPS and AOS-

NPS, the total execution generations of AOSNPS are also set to 8000 (e.g., in Step 2,

(Pm1  1) is replaced by (gen  8000) in Fig. 4).
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Fig. 5. Experimental result Gbf of OSNPS and AOSNPS

Based on the same random initial probability matrix PR50⇥1000, we obtained the

comparisons shown in Fig.5 - 11.

From Fig.5, we can see that after performing the same evolutionary optimization

generations, AOSNPS (30351) captures a better solution than OSNPS (29402). In ad-

240



dition, AOSNPS exhibits better transient convergence response performance due to the

contributions of adaptive learning rate.
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Fig. 6. Experimental result Dqbw of OSNPS and AOSNPS

In binary-bit space, Dqbw and Dqa can be regarded as genotypic diversity mea-

sures. Dhbw and Dhm can be regarded as phenotypic diversity measures indicated in

[45, 71]. From Fig.6 - 9, we can see that, in the early stage, the four diversity evalua-

tion indicators Dqbw, Dqa, Dhbw and Dhm of AOSNPS drop more rapidly than that of

OSNPS. But in the middle and late stages, AOSNPS maintains a better diversity than

OSNPS. This is the result of the joint contributions of the adaptive learning rate (the

rapid decline of diversity in early stage is mainly due to the improved learning efficien-

cy using ∆
adaptive
ij ) and the adaptive mutation (better diversity obtained in the middle

and late stages is due to the frequent triggering of mutation rule).

In probability individuals space in PR, the experimental results of DPbw and DPa

are shown in Fig.10 - 11. They also illustrate the better ability of AOSNPS to main-

tain the diversity of probability individuals in comparison with OSNPS. This is due

to the contribution of the adaptive mutation. During the entire execution of the AOS-

NPS (8000 generations), the adaptive mutation is triggered 1971 times. The first time

to trigger mutation is at the 572th generation, the second time to trigger mutation is at

the 629th generation, etc. The histogram of the distribution of mutation triggered times

during running AOSNPS 8000 generations is shown in Fig.12.

At the beginning of the algorithm execution, the mutation was not enabled because

the optimal solution improved quickly. In the middle and later stages of algorithm ex-
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Fig. 7. Experimental result Dqa of OSNPS and AOSNPS
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Fig. 12. The histogram of the distribution of mutation triggered times

ecution, the global optimal solution grows weakly, and the mutation is often enabled

to explore possible better solutions. In order to better understand the dynamic working

behavior of adaptive mutation, we count the interval generations between two adjacent

mutations triggered as shown in Fig.13.

Statistical results shown in Fig.13 well validated the adaptive working mechanism

of mutation. More specifically, when the interval generation of mutation is one genera-

tion, it indicates that mutation has occurred in two consecutive generations. At this time,

in AOSNPS, the global optimal solution has not been improved for many generations

(Pm1 is large), and the difference between the populations is small (Pm2 is small). So

it is trapped in the local optimum. Therefore, mutations are needed to explore possible
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new excellent solution. If the interval generation of mutation is large, AOSNPS can ob-

tain new global optimal solution (Pm1 is reset to zero) or the difference between the

populations is large (Pm2 is large).
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Fig. 13. The interval generations between two adjacent mutations triggered

To further test the optimization capability of AOSNPS, we solved the Knapsack

problem with 5000, 6000, 7000, 8000, 9000 and 10000 items separately. For Knapsack

problem with different items, the solution set space is different, and it is unreasonable

to solve them with a certain execution generations. Therefore, both algorithms use the

same termination criteria: when the global optimal solution has not improved for 500

consecutive generations, the algorithm terminates. The total execution generations (TG)

of AOSNPS and OSNPS and the final optimal solution (OS) explored are shown in

Table 1.

From Table 1, we can see that comparison with the OSNPS, AOSNPS got a better op-

timal solution when solving the Knapsack problem with 5000, 6000, 7000, 8000, 9000

and 10000 items respectively. Furthermore, under the same algorithm termination con-

dition (the global optimal solution has not improved for 500 consecutive generations,

the algorithm terminates), the total execution generations of AOSNPS are much more

than OSNPS which indicated the much stronger exploration and exploitation abilities

of solving combinatorial optimization problem such as Knapsack problem.
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Table 1. The total execution generations of AOSNPS and OSNPS and the final optimal solution

K-problems
OSNPS AOSNPS

OS TG OS TG

5000 138011 10373 142716 8841

6000 165366 14924 172901 29606

7000 190531 9248 199617 24002

8000 217610 11385 225838 18272

9000 244211 11897 256390 40041

10000 271191 13782 283167 38280

4.3 An Application to Power System Fault Diagnosis

In this subsection, AOSNPS is applied to solve the problem of power system fault

diagnosis with 39 nodes. In Fig.14, a typical IEEE 39 node electric power system, is

used to carry out the simulation. It contains 39 buses, 45 lines and 99 Circuit breakers.

39 buses and 45 lines are B1, ..., B39, and, L1�7, ..., L29�39, 99 Circuit breakers are

CB(1)�7, ..., L(39)�29, where, CB(1)�7 represents the breaker that L1�7 is near the B1

side. For instance, line L3�4 has three types of protective relays including main protec-

tive relay L(3)�4m and L3�(4)m, first backup protective relay L(3)�4p and L3�(4)p,and

second backup protective relay L(3)�4s, L3�(4)s, L4�(5)s and L4�(8)s. The operational

rules of the protective relays of buses and lines are described in the following manner

[38].

(1) Protective relays of buses

If the main protective relays of a bus operate, all breakers connected to the bus

will be tripped. For example, if bus B11 fails, the main protective relays B11m

of the bus B11 operates to trip CB(11)�18, CB7�(11) and CB(11)�12. Similarly,

if bus B31 fails, the main protective relay B11m of the bus B31 operates to trip

CB(31)�33, CB26�(31) and CB27�(31).

(2) Protective relays of lines

If the main protective relays of a line operate, all breakers connected to the line will

be tripped. For instance, if line L18�19 fails, the main protective relays L(18)�19m

and L18�(19)m of the line L18�19 operate to trip CB(18)�19 and CB18�(19), re-

spectively. Likewise, when the main protective relays of a bus fail to operate, the

first backup protective relays operate to trip all breaker connected to the line. For

example, when line L18�19 fails and the main protective relay L(18)�19m fails to
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operate, the first backup relay L(18)�19p operate to trip breaker CB(18)�19. If adja-

cent regions of a line fail and their main protective relay and first backup relay fail

to operate, then the second backup relay of a line operate. For instance, if B20 fails

and breaker CB18�(19) fails to operate, the second protective relay CB(18)�19s of

line CB(18)�19 operate to trip CB(18)�19.

Fig. 14. IEEE 39 node electric power system

Four cases in typical IEEE 39 node electric power system is considered. Some sta-

tus information about four cases in Fig.14 is shown in Table 2, where, case 1 is a single

fault, case 2 is multiple faults, case 3 and case 4 are multiple faults with incompleteness
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and uncertainty. Four cases are estimated by the adaptive optimization spiking neural

P systems methods. The estimation results are shown in Table 2 with comparison with

other fault diagnosis methods.

Table 2. Status information about four cases

case protective relays breakers

1 L(18)−19moperated,L18−(19)p operated CB(18)−19 operated,CB18−(19) operated

L18−(19)m refused to operated

L(18)−19m operated, L18−(19)m operated CB(18)−19 operated,CB17−(19) operated

2 L(17)−19m operated, L19−(23)s operated CB19−(23) operated

L(17)−19m operated, L19−(23)s operated CB18−(19) refused to operate

L(18)−19m operated, L18−(19)m operated CB(18)−19operated, CB18−(19) operated

3 B19m operated, L(17)−19s operated CB(17)−19 operated, CB19−(23) operated

L19−(23)m misoperation CB17−(19) refused to operated

L(11)−12m operated, L11−(12)m operated CB(11)−12 operated, CB12−(13) operated

L12−(13)m operated, L(18)−19p operated CB(17)−19 operated, CB17−(19) operated

4 L18−(19)p operated,L(12)−13m misoperation CB11−(12) refused to operated

L(18)−19m refused to operated

L18−(19)m refused to operated

In Table 3, the result of the estimation of AOSNPS is the same as [72] and [73] in

case 1. The estimation result of AOSNPS is the same as [73], but is different with [73]

in case 2. From case 3 and case 4, we known that the estimation results of AOSNPS are

different from those in [72] and [73]. From [74], we learn that the results of AOSNPS

are correct. Therefore, in the previous examples, AOSNPS is more effective and precise

than other methods in [72] and [73] in fault section estimation of power systems.

The fault section estimation process of case 3 is described in detail as follows:

(1) According to SCADA data, operated protective relays are L(18)�19m, L18�(19)m, B19m

and L(17)�19s, tripped breakers are CB(18)�19, CB18�(19), CB(17)�19, CB19�(23)

and CB(19)�23. We use network topology analysis method which is descried in

detailed in [75] to identify passive networks, which is shown in Fig.15, where,

B19m, L17�19, L18�19 and L19�23 are candidate faulty sections and their corre-

sponding status vector is S = [s1, s2, s3, s4].

(2) From the Fig.15, the real status vector of the protective relays is R = [r1, r2, r3, r4,

r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19] = [1, 0, 0, 1, 1, 0, 1, 0,
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0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], where, r1⇠r19 represent B19m, L(17)�19m, L17�(19)m,

L(18)�19m, L18�(19)m, L(19)�23m, L19�(23)m, L(17)�19p, L17�(19)p, L(18)�19p,

L18�(19)p,L(19)�23p, L19�(23)p, L(17)�19s, L17�(19)s, L(18)�19s, L18�(19)s,

L(19)�23s, L19�(23)s, respectively. The real status vector of the breakers is C =

[c1, c2, c3, c4, c5, c6], where, c1⇠c6 represent CB(17)�19, CB17�(19), CB(18)�19,

CB18�(19), CB(19)�23, CB19�(23), respectively.

Table 3. Comparisons between AOSNPS and two methods

case candidate

sections

The results in

[72]

The results in

[73]

The results in

this study

1 L18−19 L18−19 L18−19 L18−19

2 B19, L17−19,

L18−19, L19−23

L17−19,L18−19 L18−19 L18−19

3 B19, L17−19,

L18−19, L19−23

B19, L17−19,

L18−19

B19, L17−19,

L18−19

B19, L18−19

4 B12, L11−12,

L12−13, L17−19

B12, L12−13,

L17−19

B12, L11−12,

L17−19

L11−12, L17−19

(3) According to the logical relationship among section fault, protective relays and the

corresponding circuit breakers. The expected values of the protective relays and

circuit breakers are computed in [76]. We will utilize a 0-1 integer programming

model with an objective function, as shown in Eqs.(20), which is obtained accord-

ing to the relation between a fault and the status of protective relays and circuit

breakers in [77].

E(S) =

Nr
X

i=1

|ri � rei(S)|+

Nc
X

j=1

|cj � cej(S,R)| (20)

Where:

(a) Nr and Nc represent the numbers of the protective relays and circuit breakers,

respectively;

(b) E(S) represents a status function of all the sections in power system;

(c) S is an n dimension vector, where, si represents the status of section, si = 1

and si = 0 represent the fault status and normal status of section i, respectively;

(d) ri (1 6 i 6 Nr) represents the real status of the protective relay i. ri = 1

and ri = 0 represent the operation and non-operation of the protective relay i,
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respectively. rei(1 6 i 6 Nr) represents the expected status of the protective

relay i. If the ith protective relay is expected to operate,then rei = 1, otherwise,

rei = 0;

(e) cj(1 6 j 6 Nc) represents the real status of the circuit breaker j. If the jth cir-

cuit breaker trip, then cj = 1, otherwise, cj = 0. cej(S,R)(1 6 j 6 Nc) rep-

resents the expected status of the circuit breaker j. If the jth circuit breaker trip,

then cej(S,R) = 1, otherwise,cej(S,R) = 0. Therefore, in case 3, we obtain

the expected value vector re(S) of the protective relays and the expected value

vector ce(S,R). The circuit breakers,where,re = [re1, re2, re3, re4, re5, re6, re7,

re8, re9, re10, re11, re12, re13, re14, re15, re16, re17, re18, re19] = [s1, s2, s2, s3,

s3, s4, s4, s2, s2, 0, 0, s4, s4, s1, 0, 0, 0, 0, 0], ce = [ce1, ce2, ce3, ce4, ce5, ce6] =

[s1, s1, 0, s1, s1, s4].

 

Fig. 15. Passive network

(4) According to the real status vector r and the expected status vector re(S) of the

protective relays and the real status vector c and the expected status vector ce(S,R)

of the circuit breaker, we get that E(S) = 11�4s1+4s2�2s3+s4.Therefore, we

can obtain the minimum value of the objective function by performing AOSNPS

algorithm. First of all, there are some parameters which need to be set in the AOS-

NPS algorithm. For example, in this study, the number of ESNPS is 100(H=50), the

value of the learning probability paj (j = 1, . . . ,m) is set as a random number in
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[0.05, 0.20], which is the same with the learning probality in OSNPS, the mutating

probabilities pmj = 0.01 (j = 1, . . . ,m) and Nnimax gen = 500. Then perform

AOSNPS algorithm. If si=1, there are faults in the ith section. Otherwise, the ith

section is normal. Finally, B19 and L18�19 are diagnosed as the fault section after

performing AOSNPS algorithm.

In the case simulations above, the results of case simulation manifest that AOSNPS

algorithm is viable and effective to power system fault diagnosis. It is practicable for

AOSNPS algorithm to deal with single fault, mutiple fault and complex fault. From

table 6, the results of the study are more correct than the method in [72].

5 Conclusions

As an extension of the work in [45], an effective AOSNPS is proposed to solve

combinatorial optimization problems. In this study, an adaptive learning rate ∆
adaptive
ij

is ingeniously designed to adjust the probability of PR. Two dynamically changing in-

dicator parameters Pm1 and Pm2 are used to evaluate the evolutionary convergence of

global optimal solutions and diversity of probability matrices of the algorithm running

process, a triggering rule of mutation and a probability-based mutation mode consti-

tute an adaptive mutation. With the ingenious and reasonable adaptive learning rate

and adaptive mutation, the efficiency of probability adjustment of the guider is great-

ly improved and the probability of the guider never goes beyond the upper or lower

bound. The exploration and exploitation abilities of solving combinatorial optimization

problems are significantly improved by the AOSNPS and the better balance between

convergence and diversity is captured. Finally, experimental results and analysis illus-

trate the effectiveness of AOSNPS. More diverse probabilistic learning mechanisms,

mutation modes and more applied study are interesting subjects for further research.
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31. Frisco, P., Gheorghe, M., Pérez-Jiménez M.: Applications of Membrane Computing in Sys-

tems and Synthetic Biology. Emergence, Complexity and Computation, (2014).
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Abstract. In this paper we propose a novel multi-behaviors co-ordination con-

troller model using enzymatic numerical P systems for autonomous mobile robot-

s navigation in unknown environments. An environment classifier is constructed

to identify different environment patterns in the maze-like environment and the

multi-behavior co-ordination controller is constructed to coordinate the behaviors

of the robots in different environments. A 11 sensory prototype of local environ-

ments is presented to design the environment classifier, which needs to memorize

only the rough information, for solving the problems of poor obstacle clearance

and sensor noise. A switching control strategy and multi-behaviors coordinator

are developed without detailed environmental knowledge and heavy computation

burden, for avoiding the local minimum traps or oscillation problems and adapt

to the unknown environments. Also, a serial behaviors control law is constructed

on the basis of Lyapunov stability theory aiming at the specialized environment,

for realizing stable navigation and avoiding actuator saturation. Moreover, both

environment classifier and multi-behavior coordination controller are amenable

to addition of new environment models or new behaviors due to the modularity

of the hierarchical architecture of P systems. Extensive experiments conducted

on the simulated wheeled mobile robots show the effectiveness of this approach.

Keywords: Membrane computing, reactive navigation, autonomous mobile robot,

behaviors coordination.

1 Introduction

P systems (PS) are bio-inspired parallel distributed computing models. Since the in-

troduction in 1998 by Păun, these models have gained significant attention from the

formal language theorists, mathematicians, biologists and computer scientists. Many

variants of P systems have been introduced, inspired from the functioning and inter-

cellular communication of cells, neurons etc [1, 80, 83]. The computation power and

⋆ Corresponding author.
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complexity aspects of these models have been studied extensively [1, 79, 83]. More-

over, these variants have been used to solve the computationally hard problems, i.e., the

NP-complete, PSPACE-complete problems in polynomial time or even on linear time

[73–77]. In recent years the use of the membrane computing to solve many real-life

problems has also gained interest, especially to solve engineering problems. Some vari-

ants such as spiking neural P systems have been used for fault diagnosis of the power

systems [25], image processing [26], approximation modelling [28]. The variants nu-

merical P systems, tissue P systems have been used in robotics, image segmentation

[81, 82] respectively. Also, the complementary methods of meta heuristics and differ-

ent types of PS have been developed to solve various optimization problems, such as

parameter optimization problems in manufacturing [24], optimal approximation mod-

els [28], etc. P systems are also used for some real-life applications such as modeling

problem in ecological systems with probabilistic P systems [27].

Numerical P Systems (NPS) were introduced by Păun in [33] with an inspiration to

model economic and business processes. Many variants of NPS are discussed in [7–10].

Enzymatic Numerical P Systems (ENPS) are a variant of NPS introduced in [30]. Both

NPS and ENPS have been proved to be Turing universal [31]. Moreover, mobile robot’s

behavior controllers in the framework of NPS and ENPS have been developed and

shown that membrane controllers have an excellent performance [29, 30, 32, 34]. But

most of the controllers considered in these works are relatively simple or single tasks,

such as obstacle avoidance [29], location [30], trajectory tracking [34], etc. Because of

the inherent parallel and distributed nature along with powerful numerical computation

power, NPS and ENPS are a good choice for modeling parallel and distributed con-

trol systems, especially for modular and complex tasks of autonomous mobile robotics

(AMR).

One of the most fundamental problem in robotics is obtaining a path for the robot

from the starting point to the goal. When a robot moves in the complex and unknown

environment, it faces many situations. To reach the goal by overcoming these situations

is the main challenge. These problems can be solved by recognizing the environment

patterns, planning a path and executing the navigation safely and efficiently [46–69].

The concept of membrane controllers based on numerical P systems was introduced

in [29] and has been further discussed in [34] to design the control of autonomous

mobile robots using enzymatic numerical P systems. Still now the controllers based on

P systems, considered in the research of robotics are simple in nature. In this work we

investigate the navigation of the robots with more complex controllers based on ENPS

which can identify the 11 environment prototypes and coordinate the behaviors of the

robots using multi-behavior coordination controller. Although the problems in robotics

have been solved by using these computational paradigms, the domain of application

of membrane computing, specifically numerical P systems and enzymatic numerical P

systems can be extended further by investigating the navigation of the robots with more

complex controllers.

In this study, an environment classifier and a novel multi-behaviors control ap-

proach based on ENPS are proposed to enhance the reactive navigation performance

of the AMR. The novelty of this approach is mainly in three aspects: (1) 11 proto-

types of comprehensive topological maps describing the local environments are con-
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sidered together to design the classifier for environment identification module; (2) A

multi-behavior coordination membrane controller (MBCMC) is presented for behavior

coordinator module; (3) A serial control algorithm is developed to guide AMR to avoid

obstacle, tend to target and follow a wall, etc. In order to reduce the error impact of sen-

sor noise and poor obstacle clearance, the membrane classifier is designed based on the

"binarized rough model" to produce the precisely desired environment pattern, which

is used as the input of the behavior coordinator module. Behavior coordinator uses an

enzymatic numerical P system to integrate specialize behaviors by a well-thought out

local path planning strategy, without large memory size and heavy computation burden.

The specialized behavior control algorithm is designed based on the Lyapunov stability

theory to produce the precisely desired velocity. Furthermore, the effectiveness of the

introduced control approach is verified by applying into the simulated AMR.

The paper is organized as follows. Section 2 describes MBDSP. In Section 3, we

depict the proposed behavior based membrane controller in detail and discuss hybrid

control architecture for solving MBDSP of AMR reactive navigation. Section 4 presents

experimental results. Conclusions are drawn in Section 5.

2 Multi-Behaviors Dynamic Selection Problems and ENPS

The autonomous robots are capable of self-judgment and independent navigation in an

unknown environment. We describe the AMR mechanical system, and MBDSP in the

following section.

2.1 AMR description and Problem Statement

In this study, the AMR mechanical system schematic is shown in Fig.1(a) which con-

sists of two actuated wheels and a back unpowered universal wheel. The passive wheel

does not affect the degree of freedom of the kinematic model, and can work with the

nonholonomic constraints as follows:

.
y ·cosθ +

.
x ·sinθ = 0 (1)

The posture of AMR in global coordinates frame XOY is represented by using the

Cartesian coordinate vectors with three degrees of freedom p = {x,y,θ}T . The positive

direction of θ is anti-clockwise, which is used to guide the angle of a robot. The motion

posture of AMR is determined by linear velocity v and angular velocity ω , which is

denoted by vector V = (v,ω)T . Note that, the two wheels are driven by independent

torques from two DC motors, where the radius of two wheels are represented by r,

while the distance between two driving wheels is denoted by 2R. It is assumed that

the AMR mass center is located at Oc and mounted with non-deformable wheels. The

kinematic model for AMR can be represented as (2) in [43], where vr and vl are the

linear velocities of the left and right wheel, respectively.

⎡

⎣

ẋ

ẏ

θ̇

⎤

⎦ =

⎡

⎣

(vr + vl)∗ cosθ
/

2

(vr + vl)∗ sinθ
/

2

(vr − vl)
/

2R

⎤

⎦ (2)
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Fig. 1. AMR description and getting trapped in U-shape trip

Now we discuss what is multi-behaviors dynamic selection problems (MBDSP). Let

us imagine that a robot wants to reach some destination in an unknown environment.

At first, the robot follows the planned path and will avoid if some obstacle is blocking

the path. If the obstacle is very large, it may decide to walk along the periphery of the

obstacle. The robot should stop immediately if some motion obstacle suddenly appears

in front, etc. So there can be many unknown situations in front of the robot and it

must have the ability to handle the movements safely and effectively. Hence a group

of distinct behavior modes is supposed to help the robot to co-ordinate at each time

instant. This is the so-called Action Selection Problem in robotic reactive navigation

[44], which we have referred to as the MBDSP. The reactive navigation is one of the

most challenging problems in AMR. The behavior-based systems are proved to be very

responsive to an unknown environment, and the performance of reactive navigation

greatly relies on its behavior selection mechanism module. Moreover, there are several

aspects about MBDSP which should be paid more attention to

(1) Behavior control law model: current controllers usually implement processing

of sense-plan-action separately, and do not consider the unity kinematic control law

model of different behaviors deliberately, while robots need to wander free not only in

maze but also in outdoor and indoor unknown environment;

(2) Control architecture mode: current action based architecture is not clear about

designing an architecture which allows the dynamic switching among different types of

behavior (such as reactive or reflective behavior) selection strategies;

(3) Multi-behaviors coordination mode: AMR can very easily fall into the local

minima trap when reactive navigation has no prior knowledge of the complex environ-

ment. It is also likely to be caused by the first two factors. But an excellent coordinator

can prevent from these faults. Hence, the dynamic switching strategy, subdivision of

different types of behaviors and designing of the corresponding control law are intro-

duced. Furthermore, the behaviors that are usually needed for AMR to wander free in

an unknown environment (including outdoor, indoor and maze) are defined clearly in

the following:

* Environment classification;
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* Path tracking;

* Goal reaching;

* Obstacle avoidance;

* Wall following;

* Corridor walking;

* Emergency U-turn;

* Self rotation;

* ...;

2.2 Related Work

The study on the control for mobile robots was introduced by Brooks [46] and Lumel-

sky [47]. Following these methods, more and more advanced modern control approach-

es have been proposed and successfully applied to AMR in industrial contexts, see also

[13–22, 34, 36, 37, 39–41]. These control approaches can be classified into the follow-

ing categories according to different control theories: artificial potential field (APF)

[48], vector field histogram methods [49], virtual target approaches [50], dynamic win-

dow approaches [51], fuzzy logic control (FLC) [52], neural network methods [53],

bug methods [54], and many others. Among the various local or reactive navigation

methods, some problems continue to bother them, such as local minimum trap, com-

plex scenarios, lack of prior knowledge, etc. The well-known traditional APF [48] and

its extended methods [52, 55, 56] are suitable for underlying on-line control in dynam-

ic environments and low processing needs, but it has a problem of local minima [55],

which needs to resort global knowledge of the environment at a higher layer. The Bug

family methods [54, 57–59] are inspired by bug’s behavior on crawling along the obsta-

cle. These approaches are well known for local navigation with minimum sensor, and

also for shorter timing, shorter path planning, a simpler algorithm and better perfor-

mance. But the performance of these approaches depends on the shape of the obstacles

in the environment and need some global visual information. Moreover, the Bug fami-

ly algorithm usually ignores robotic’s practical setting (e.g., for kinematic or dynamic

constraints). FLC is indeed one of the most fundamental methods and widely used to

coordinate numerous basic tasks involved in path planning of behavior-based robots.

Many FLC approaches with other complementary techniques were developed to solve

some of mobile robot navigation problems in obstacle avoidance [52, 61], path tracking

[60] and behavior coordination [62, 63]. Although FLC rules offer possible implemen-

tations of human knowledge and experience which do not require a precise analytical

model of the environment, they cannot obtain the optimal solution and mostly fail while

dealing with trap situations and complex scenarios [66].

AMR behavior based reactive navigation usually involves many aspects such as en-

vironment identification, control structure, dynamic behavior selection strategies, robot

physical setting, etc. The study of MBDSP [42, 43, 45, 64–66] usually emphasizes on

one or two aspects and the other properties are simplified or ignored. In this study, most

of them are carefully considered to obtain the desired behaviors of the corresponding

environment models and reduce the influence of the local minimum traps of complex

unknown environments. Unlike APF and bug family methods [55, 56, 58, 59], which

do not care about the robotic physical characteristics completely. But in this paper, the
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kinematic behaviors are considered to be designed by Lyapunov theory in accordance to

robotic characteristics which are suitable for indoor and outdoor environments. Design

of the specialized behaviors control law is beneficial for multi behaviors co-ordination.

This study also uses an enzymatic numerical P system to improve the parallel compu-

tation performance of the environment classifier and behavior coordinator. In order to

coordinate these behavior controller for different tasks, a novel membrane hybrid con-

trol architecture is proposed to manage those reactive and reflective controllers. Also,

the computations can be performed in parallel. Thus, the computations are flexible and

are in accordance with reactive navigation.

2.3 Enzymatic numerical P systems:

ENPS are naturally distributed and parallel computing models, in which numerical vari-

ables store information. Also a set of evolving rules in each membrane region can it-

erate simultaneously according to the activation conditions, and transmit information

between the nodes (membranes). A standard ENPS is as follows [31]:

Π =(m,H,µ ,(Var1,E1,Pr1,Var1(0)), ...,(Varm,Em,Prm,Varm(0))) (3)

where

1. m is the number of membranes, m ≥ 1;

2. H is an alphabet that contains m symbols;

3. µ is a membrane structure;

4. Vari is the set of variables from membrane i, and Vari(0) is the initial values for

these variables;

5. Ei is a set of enzyme variables from membrane i, i.e., Ei ⊂Vari;

6. Pri is the set of programs (rules) in membrane i, composed of a production function

and a repartition protocol.

ENPS have flexible computing feature. Because of the hierarchical membrane struc-

ture with multiple rules in one region characteristics, enzyme variables can be used for

conditional transmembrane transport and decide on the rules of evolution direction.

The active rules are performed simultaneously inside their membranes, but unneces-

sary rules are not carried out and the results are distributed in globally uniform way. The

computing power of the ENPS, and efficiency of the membrane structure representation

for designing robotic behaviors have been investigated in [31] and [29], respectively.

3 Design of Environment Classifier and Behavior Coordination

Controller

In order to realize the AMR reactive navigation in unknown and complex environments,

at first we need a reasonable control structure to organize environment classifier and

behavior coordination controller modules. Fig.2 shows the hybrid control architecture

proposed in this paper based on P system. A three-layer (organization management,

deliberative, reactive) architecture is adopted and the structure of the reactive layer is
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Fig. 2. membrane hybrid control architecture

discussed. The focus of this paper is mainly on the execution level (Reactive layer in

Fig.2) of the proposed hybrid control architecture. Exact geometrical modeling is both

time-consuming and unnecessary. But environment model knowledge module only has

the "binarized rough model", and the membrane classifier module is designed based on

the ENPS to produce the precisely desired environment pattern as the input of the be-

havior coordination module. In Behavior Coordination module, we give motivation for

a mechanism for dynamic behavior selection which can switch between reflective and

reactive behaviors (see in Fig.2). From the behavioral consciousness of the human brain

we know that some basic behaviors are conditional reflective ones and can be executed

without going through the brain. But some behavior’s action is well thought-out. So,

the reflective behaviors in this paper (such as obstacle avoidance, wall following, corri-

dor walking. etc) have been carefully designed by the similar control law and "virtual

target", and the purpose is to conveniently coordinate these co-operative behaviors. But

those behaviors (such as emergency stop, U-turn, self-rotation, etc) need not precisely

control law design, which are more likely a conditioned reflex action and is classi-

fied as reactive behavior and can be executed individually. Unlike reflective behaviors

which are usually active as cooperative method, the reactive behaviors are usually ac-

tive as competitive method. Once a status of the robot is selected by using the outputs

of environment classifier, the behavior coordination controller can produce an appro-
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priate behavior according to the relationship among robot, goal and environment. This

behavior-based pattern is similar to human information processing, which has a low

level of conditional reflective behavior and is executed according to the behavior mem-

ory or pre-taught action. Also, it can execute a high level complex behavior according

to the information from the sensory organs.

3.1 Design of Environment Classifier

In order to respond according to the appropriate behavior, AMR should know the re-

lationship between its current status and the local environment at first. The output of

the environment prototype will work as the features of the essential environment for

navigation, and need not store or deal with unnecessary details.

Local environment prototype: Based on our understanding of the outdoor or indoor

navigation, there are ten cases for a robot, such as: following a left-side wall, wandering

in open area, crossing a corridor or meeting a right-side obstacle, etc. At the first row of

Fig.3 five following cases have been shown: left wall (LW), right wall (RW), hallway

wall (HW), left corner wall (LC) and right corner wall (RC). The five cases of meeting

an obstacle are defined at the second row of Fig.3, i.e., front wall (FW), left side (LS),

right side (RS), two side (TS) and dead end (DE).

Left wall

(LW)

Right wall

(RW)

Left corner

(LC)

Hall way

(HW)

Dead end

(DE)

Right corner

(RC)

Front wall

(FW)

Left side

(LS)

Right side

(RS)

Two side

(TS)

Fig. 3. Ten prototypes of local environment robots may meet

Before classification of the various local environments by sensor, the robot’s sensor

feature must be defined. In order to reduce the cost of a sensor device, e-puck has

only eight 8 Infra-red(IR) distance sensor around the body in Fig.4(a). The Fig.4(b)

shows the sensors IR1···8 layout and the probing direction from the top of the robot.

The values from the 8 IR are grouped into (G0,G1, . . . ,G7) as they meet some obstacle
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or follow some wall. For instance in Fig.4(b), the values for the groups (G4, G5) and

(G1, G2) will be bigger than the other groups when they meet the left wall and right

side obstacle conditions (bigger value means smaller distance to obstacle), respectively.

Fig.5 shows the 11 sensory patterns registered for the entire prototype environment

which correspond to the 10 cases of maximum possibility according to the assumptions

in Fig.3 and NO represents there is no obstacle in the environment.
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Fig. 5. Sensory patterns for 11 cases
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Environment classifier design based on ENPS: In this paper, we propose a local en-

vironment classifier based on ENPS to quickly identify the sensory patterns when AMR

is surrounded by obstacles. Fast and accurate environment classification is beneficial for

the response to the appropriate behavior.

As shown in Fig.6, the environment classifier is designed by using a membrane

system with a hierarchical membrane structure containing four membranes. The in-

ner membrane Compute Environment Model is used to match the 11 case environment

model. According to the sensor data, it has 11 variables, where s j

[

(

sensor j − pi
j

)2
]

,

( j = 1 · · ·8) represent the 8 infrared sensor match errors. The pi
j (i = 1 · · ·11) represent

the 11 cases of environment patterns in Fig.5. The enzyme Ec [vin] has the threshold in-

put value vin as the initial value, and it is used to decide whether the rules Pri_ j,sensor j

should be executed according to the values of the variable of s1···8. Rule Pri_ j,sensor j

is executed when sensor j is matched with i-th environment pattern patti_ j successfully

and the variables sumi [0] and Sumall [0] are assigned with value 1 simultaneously. A-

gain, sumi is used to store the number of successful match of the ith pattern (i = 1 · · ·11),
where larger value represents higher match degree. Then, the numbers are sorted from

big to small. The Variable Sumall is proposed to store the total number of successful

matches in 11 sensory patterns, which is further used to understand the accelerated

sorting instead of traditional sorting method (such as Bubble Sorting, Hill sorting, etc).

The inner membrane Find Out Several Possible Pattern is designed to find out

several more likely patterns with nine variables, where Saver [0] is the set of average

time of total successful match through rule Pr1, patterni. The variable pati [0] repre-

sents the distance difference between pati [0] and Saver [0] though the rule Pr2, patterni.

The Enzyme Eaver [0] is combined with pati in Pr3, patterni to verify whether this rule

is applicable or not. The execution of this rule means, this sensory pattern is a match-

ing environment prototype and the next rules are applicable. The Enzyme Emax [0] is

set to 9 in Pr3, patterni. Since the pattern variable sumi must be less than 9, the rule

Pr4, patterni can be applied, and the enzyme Epat_i [0], Epatt_i [0] are set to pattern value

sumi. The pattern sum variable Msum [0] also accumulate one copy of sumi. Then the

rule Pr5, patterni is executed and the initial value 1 of variable numi [1] accumulate to

the sum variable Numsum [0] which works as a counter.

The innermost membrane Find Out Optimal Model has two variables. The average

variable Spat_i [0] is assigned to the number of the group pattern whose values are bigger

than Saver in membrane Find Out Several Possible Pattern. So, Spat_i must be larger

than Saver, and it can decide whether rule Pr2 can be activated while combined with

the enzyme Epatt_i. It can also find out the optimal pattern and the output of the most

possible result in the i-th pattern is stored into No. Note that, the enzyme EH in skin

membrane Output Environment Model No must be assigned to double value of ith. For

instance, if the most possible pattern happens at i = 1 and EH only get one part value of

ith, then Pr2,main in skin membrane cannot be activated because of the initial value of

variable CT being 1, and the computing cannot be finished. It is used to ensure that the

rule Pr2,main in the skin membrane must be executed and the computing is terminated.

Meanwhile, the variable Outno in the skin membrane collects the output result of the

computation.

266



! "_1 1 1Pr , : 0 +2 1| +1|i c i allsensor s E sum Sum# o

! "_ 2 2 2Pr , : 0 +2 1| +1|i c i allsensor s E sum Sum# o

! "_3 3 3Pr , : 0 +2 1| +1|i c i allsensor s E sum Sum# o

! "_ 4 4 4Pr , : 0 +2 1| +1|i c i allsensor s E sum Sum# o

! "_5 5 5Pr , : 0 +2 1| +1|i c i allsensor s E sum Sum# o

! "_6 6 6Pr , : 0 +2 1| +1|i c i allsensor s E sum Sum# o

! "_7 7 7Pr , : 0 +2 1| +1|i c i allsensor s E sum Sum# o

! "_8 8 8Pr , : 0 +2 1| +1|i c i allsensor s E sum Sum# o

! "4 max _ _Pr , : 3 1| +1| +1|i i pat i sum patt ipattern sum E E M E# o

> @0averS

! "5 _Pr , : 1|i i pat i sumpattern num E Numo

> @_ 0pat iE> @1inum > @0sumNum > @0sumM> @c inE v! "2
i

j j js sensor pª º)« »¬ ¼ > @0isum> @0allSum

> @0ipat

FindOutOptimalModel

! "2 _ _Pr , : 0* +3* 1| 2 |i pat i patt imostpossible S i E No EHo .

> @_ 0pat iS

> @_ 0patt iE

> @0No

1Pr , : /11 1|i all averpattern Sum So

! "3 maxPr , : 0* +9 1|i i averpattern pat E Eo

1 _Pr , : / 1|i sum sum pat imostpossible M Num So

FindOutSeveralPossiblePattern! " ! "1 11 , 1 8ComputeEnvironmentModel i j  " ! "1 81 81 81 81 8j" !1 11 ,1 ," !1 11 11 11 11 11 ,1 ," !

2Pr , : 1|i aver i ipattern S sum pat) o

> @0averE > @max 0E

OutputEnvironmentModelNo

> @0noOut > @0EH > @1TC

! "2Pr , : 1|T Tmain C EH Eo
1Pr , : 1| nomain No Outo

> @0TE

 

Fig. 6. Membrane classifier for 11 environment patterns

3.2 Multi Behavior Design

In order to adapt to the local environment, AMR reflective behavior and reactive behav-

ior are properly designed according to the physical characteristics of the robot.
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Fig. 7. Defining Path tracking and Goal reaching
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Goal reaching: Goal reaching is a behavior that orders the robot to move from the

current position to a destination by receiving the desired goal position from the top of

the deliberative layer. The description for goal reaching is shown in Fig.7. The current

position of AMR with respect to the goal position is expressed in form of the polar

coordinates where d represents the distance between goal point G1 and AMR current

point Oc. Again, ds specifies the safety distance of goal reaching, and θ is the angle

error between the current robot heading vector θR and goal vector θG, θ = θR − θG.

Let the robot safety distance and AMR speed limited are as depicted in Fig.7, then the

kinematic equations of AMR can be described by the following formulas

ḋ =−v∗ cosθ

θ̇ =−ω + v∗sinθ
d

(4)

where v and ω represent the robot’s linear and angular velocities, respectively. First,

select the Lyapunov candidate function

V = θ 2
/

2+
∫ d

0
S (τ)τdτ (5)

which is a positive definite function and the time derivative of Formula (5) is

V̇ = θ ∗ θ̇ +S (d)∗d ∗ ḋ (6)

From formula (4), one gets

V̇ = θ ∗
(

−ω + v∗sinθ
d

)

+S (d)∗d ∗ (−v∗ cosθ) = V̇1 +V̇2 (7)

The control law of linear velocity is

v = vmax ∗S (d)∗ cosθ (8)

where vmax is the maximum of linear speed and S function is defined below

S (d) =

{

1, d > ds

1−
(

ds−d
ds

)2

, 0 < d ≤ ds

(9)

The variable ds in (9) decides the deceleration distance of AMR while reaching the

goal. When the robot is far from the goal (i.e.,d > ds), AMR approaches the target as

fast as possible, and begins to slow down while reaching the desired target. Substituting

(8) into the second partial V̇2 of (7), since vmax > 0, d > 0, one gets the semidefinite

negative function

V̇2 =−vmax ∗d ∗S2 (d)∗ cos2θ ≤ 0 (10)

Then, Substituting (8) into the first partial of (7), V̇1 rewriting as

V̇1 = θ ∗

(

−ω + vmax∗S(d)∗cosθ∗sinθ

d

)

(11)

So, the control law of angular velocity is proposed as
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ω = k ∗θ + vmax∗S(d)∗cosθ∗sinθ

d
(12)

where k is a proportional constant and k > 0. Substituting (12) into (11) which

results in another semidefinite negative function V̇1 =−k∗θ 2 ≤ 0. Hence, one can con-

clude that the first derivative of the Lyapunov function (13) is the semidefinite negative

function, d = 0 and θ = 0, which results in V̇ = 0, i.e.,

V̇ = V̇1 +V̇2 ≤ 0 (13)

The proposed controller guarantees that v ≤ vmax for all t ≥ 0, and drives the states

d(t) and θ(t) asymptotically to zero. In addition, the goal reaching strategy is based on

the Lyapunov function which utilizes the target distance information, has good portabil-

ity. Moreover, it is inclusive and is applied to design control laws of obstacle avoidance,

wall following, corridor walking with a unified "virtual target". In addition, the control

laws take into account the safety distance close to the target and the maximum speed of

AMR, for which it has better performance of efficiency and safety.

Obstacle avoidance: This controller is responsible for avoiding the obstacles that may

appear randomly when AMR is moving towards the target or following a wall. It is a

reflective action and is designed by the goal reaching method described above. When

an obstacle is detected, we suppose that a dynamic goal will appear ahead of the robot

motion direction to lead it to walk around obstacle smoothly. In Fig.8, an obstacle is

around the robot and the environment classifier accurately judge it to locate it on the

right side of the robot. Thus, one should set a new "virtual target" on the left side of the

robot to make ARM turning left in order to prevent the collision. First, it must select

the appropriate sensor IRi (since several sensors detect the obstacle simultaneously,

we must select the suitable ones to define the reference direction of "virtual target" ).

Since the obstacle is located at the right side of the robot, first find the non-zero value

sensors (represent obstacle detection) from the front of left side layout sensor IR6 to the

front of right side ones IR3 (IR6 → IR7 → IR8 → IR1 → IR2 → IR3). If the obstacle

is located at left side of the robot, then find the first non zero sensors from IR3 to IR6

(IR3 → IR2 → IR1 → IR8 → IR7 → IR6).

In this case, IR1 is found as the candidate sensor, where dmax is the maximum mea-

surable distance of sensor, dsa f ety is the safety turning distance of the robot, dIR_1 is

the distance reading of IR1. The virtual pressure radius is denoted by Rv and Rv =
dmax −dIR_1, dos is the distance between Oo and Os, where Oo is the contact point from

the ray of sensor IR1 to the surface of the obstacle. In fact, dos = dIR_1 −dsa f ety. So, the

virtual turn angle of robot θT is

θT = arctan

(

Rv

dos

)

= arctan

(

dmax −dIR_1

dIR_1 −dsa f ety

)

(14)

The direction of the new goal Onew is parallel to the line segment OrOs. Thus, the

desired new goal position can be given by

Onew =

[

xg

yg

]

=

[

xr + k ∗dw ∗ cosθNew

yr + k ∗dw ∗ sinθNew

]

(15)
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where dw is the desired distance of the new goal ("virtual target"), k is the propor-

tional coefficient and the variable θNew is the orientation of new goal Onew attached on

the robot platform centroid Oc measured from the horizontal axis (OX). Moreover, θNew

is reduced to

θNew = θe +θT

θe = θR −θIR1
(16)

where θR is the orientation of the robot measured from the horizontal axis (OX),

and θIR1 is the mounted angle of the sensor IR1 attached to the robot local coordinate

frame (u,Oc,v). Hence, θe is equivalent to the angle of the sensor vector (IR1) relative

to the horizontal axis (OX).

Formula (15) defines a local new goal ahead of the robot motion direction, precisely

it converts the repulsive force field of the obstacle into a gravitational field of "virtu-

al target". Obviously, as the robot-obstacle distance starts decreasing, θT will become

bigger and the new goal of the robot is shifted to the opposite direction rapidly. Then,

a deviation control signal of angular velocity ωoa and line velocity voa are generated by

goal reaching methods

voa = kr ∗dw ∗ cosθoa

ωoa = koa ∗θoa +κoa ∗ sinθoa ∗ cosθoa

θoa = θNew −θR = θT −θIR1

(17)

where kr, koa and κoa are the proportional coefficients. The reaction capability of

the controller is regulated by a proper pre-definition of those constants. In this way, the

proposed obstacle avoidance controller can merge with the goal of reaching navigation

capability.
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Fig. 9. State describe for wall following

Wall following: Wall following is the robot’s ability to follow a wall. These abilities are

intended to complement other reflective behaviors in narrow spaces and corridors. The

basic objective of the wall following is the generation of a reference trajectory, parallel

to a wall (even to a bigger obstacle surrounding). If the distance and angular information

between the robot and wall are considered, it can use the goal reaching method to design

the wall following controller. In [68, 69], the wall of the surface followed by the robot is

supposed to be parallel or perpendicular and the coordinates (X ,O,Y ) are used in order

to simplify the design. Consider a more practical situation as in the wall in Fig.9 which

is an arbitrary arrangement. The angle θrw between the direction of robot motion and

the parallel line of the wall can be computed by the angles between the infrared sensors

ray and wall surface. In Fig.9, environment classifiers judge the wall located at the right

side of the robot. So, several right side group of sensors (G1,G2,G3) in Fig.4(b) are used

to compute θrw. In this case, G1 is used to get θG1. For instance, G1 has two sensors IR1

and IR2. The θIR1 is the angle between the vector of IR1 and wall surface. Moreover, L1

and L2 are the line length from the centroid Oc to the wall surface through sensors IR1

and IR2, respectively. Again, L1 = dIR_1 +R, L2 = dIR_2 +R, where dIR_1 and dIR_2 are

the reading data of IR1 and IR2 and R is the robot’s radius. Hence, θIR1 can be given by

θIR1 = arctan
(

L3
L4

)

L3 = L2 ∗ sinθ12

L4 = L1 −L2 ∗ cosθ12

(18)

where, θ12 is the angle between sensor IR1 and IR2, θ01 is the angle between the

sensor IR1 and the robot motion direction. So, θG1 is represented by

θG1 = θIR1 −θ01 (19)
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The error angle between the robot motion direction and the wall surface is θrw, and

hence we can get

θrw =

n

∑
i=1

θGi

n
(20)

where n is the number of effective group sensors, and by effective group it means

that both the sensors can be obtained from the distance information, θGi, also can be

obtained by Formula (18) and (19).

In this case, if the assumed AMR walk along the wall at uniform speed vcon, then

the kinematic formula is reduced to

ḋer = v∗ sinθrw

θ̇rw = ω
(21)

where der is the error distance between the robot centroid Oc and reference trajec-

tory. If the Lyapunov candidate function is as in the Formula (5), then the control law

of the angular velocity ωw f is obtained in the following manner

ωw f =−kw f ∗θrw −κw f ∗ vcon ∗der ∗
sinθrw

θrw
(22)

where kw f and κw f are the positive proportional coefficients. Again, der = dpw−drw,

dpw is the distance of the given reference trajectory to wall, drw is the distance from the

robot centroid Oc to the right side wall and can be represent by

drw =

n

∑
i=1

dGi

n
+R (23)

dGi =
dIR_i1 +dIR_i2

2
(24)

where dIR_i1 and dIR_i1 are the distance datas of two sensors in right side effective

group Gi, respectively.

Corridor walking: The control law can be extended to solve the corridor walking as

considered in Fig.3. For this case (i.e., HW), both the left and right side group sensors

get the distance data. If ∑
4
i=1 dIR_i > ∑

8
i=5 dIR_i, it means that the robot is closer to the

right side wall and hence it should follow the right side wall. Otherwise, follow the left

side wall. In order to let the robot running in the middle of the hallway as far as possible,

dpw is reset to

dpw =
drw +dlw

2
(25)

where dlw is the distance from the robot centroid Oc to the left side wall and can be

obtained by Formula (23) and (24). The Lyapunov candidate function is also treated as

Formula (5) and the der can be replaced by dpw.
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Self rotation: When the robot meets with one of the cases such as corner of the

wall, ending of the corridor, local trap points, etc, the robot needs to do a self ro-

tation in clockwise mode (vl = vpc,vr = −vpc) for (LC) and counterclockwise mode

(vl = −vpc,vr = +vpc) for (RC), where vl and vr are the linear velocities of the left

and right driving wheels, respectively. The predetermined driving velocity is denoted

by vpc.

Emergency U-turn: The emergency U-turn means that the robot should do a U-turn

while meeting the environment mode, as in the case of (DE) in Fig.3. It is activated

when the distance between the robot and the obstacle becomes smaller than a certain

value. Also, after U-turn, the robot continue the navigation module according to the

environment classification. Since no well thought-out control law is required for the

self-rotation and U-turn, they can be treated as the reactive behaviors.

3.3 Dynamic Multi-Behavior Coordination

In order to explore complex and unknown environments, AMR not only need to feel

sensitive, it also must act safely and smoothly. Moreover, AMR can break away from lo-

cal minima trap and arrive at the goal finally. This section describes how to co-ordinate

with these behaviors by dynamic selection mechanism.

Multi-behavior coordination strategy The proposed flow chart of dynamic multi-

behavior selection is depicted in Fig.10. In Fig.10, Flag = 1 means AMR is moving

towards the goal until some "obstacles" are detected, where dgr is the distance between

goal and robot. It is defined as dgr =
√

(xg − xr)
2 +(yg − yr)

2
, where (xg,yg) and (xr,yr)

represents the coordinate of goal and robot, respectively. It should be getting smaller

and smaller while running towards to the goal, but in contrast, if it is becoming bigger,

it means that the obstacle avoidance or wall following mode is operated and the robot

has moved far away. AMR can determine the accurate status relationship between itself

and the obstacle by environment classifier at once. The "obstacles" can be grouped as

obstacle case 6,7,8, wall follow case 1, . . . ,5 (corridor walking also classified as this

case), and the dead end case 9,10. AMR might fall into the trap while avoiding the

obstacle or following the wall. In order to resolve the local minimum problem, AMR

must investigate the problems such as positional relationship among goal, obstacle, wall

and robot. Also must investigate whether the distance dgr is minimal and what kind of

obstacle is around? For instance, if some obstacles or walls are located at the right

side of the AMR according to the environment model case, then the goal is located

at the left side of the robot, and dgr is the minimal distance. Also, AMR should enter

the goal reaching mode. On the other side, if the goal and obstacle are located on the

same side of AMR, then even if dgr is minimal, the goal reaching mode cannot be

activated. In another example, in order to go out of the maze, if the robot has just

passed the wall (obstacle) and entered into the open area, it should go to the judge

state and select goal reaching mode directly or self-rotation mode to follow wall again.

In this work, an interesting dynamic multi-behavior selection strategy is constructed to
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Fig. 10. Flow chart of multi behavior coordination controller

speed up the behavior coordination by parallel processing. Moreover, the corresponding

co-ordination controller based on P system is shown in Fig.11.

Multi-behavior coordination membrane controller design: MBCMC is shown in

Fig. 11. It is designed by using a P system with a hierarchical membrane structure

containing eight membranes. The skin membrane Main has 27 variables and Ci =
[

(inputno − i)2
]

, i = 1,2, . . . ,11 are the environment case variables. These variables

have the initial value (inputno − i)2
, inputno and it is one of the 11 patterns from en-

vironment model membrane classifiers. Agr1

[

inputangle

]

and Agr2

[

−1∗ inputangle

]

are

the angle variables and have the input value θ = θR − θG as initial value, which de-

picts the positional relationship between robot and goal. θ < 0 means that the goal is

located at the left hand of robot and vice versa (Fig.7(b)). Also, Com
le f t

ob [0],Com
right
ob [0]

and Com
f ront

ob [0] are left, right side and front obstacle avoidance behavior control output

variable, respectively. Again, Com
le f t
w f [0], Com

right
w f [0] and Comhall

w f [0] are left, right wal-

l following and hall crossing behavior computation output variable, respectively. The

variable Comde [0] is the U-turn output variable for dead end case and Comgr [0] is the

goal reaching output variable. Moreover, Comrs
no [0] is the self-rotation behavior control

output variable. All of the output variables have the initial value 0, but when some of the
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Fig. 11. Dynamic multi-behavior coordination membrane controller

behavior gets triggered, then the corresponding variable value is set to 1. The variable

T h [1] is the threshold variable with initial value 1 and Dmin [0] is the minimal distance

variable with initial value 0. The enzyme variable Ea [0] and ET [0] have the initial val-

ue 0, but when ET is not equal 0, the controller is terminated. The Out putdist
min

[0] is the

minimal distance output variable which has initial value 0.

The inner membrane Judge Environment Model has five enzyme variables, where

Eno [0], Ede [0], Eob [0] and Ewa [0] work as trigger enzymes for not any obstacle case,

meet dead end case, meet obstacle case and wall case, respectively. Enzyme Ec has

initial value 1, and is used to decide whether the 11 rules Pri=1,...,11,case should be

executed or not according to the environment case variables Ci=1,...,11. For instance, if

inputno = 9, then the initial value of C11 = (9−11)2 = 4 and hence enzyme Ec <C11.

So, the rule Pr11,case can not be activated. On the contrary, for rule Pr9,case, the initial

value of C9 = 0, hence Ec >C9, and rule Pr9,case is executed. Moreover, Comde has set

value 1, U-turn behavior is selected, ET is set to 1 and controller ends.

The inner membrane Judge Distance If Minimal has two variables. The enzyme

Emin
dist

with the input value inputmin
dist , which is also the minimum distance of all the dis-

tances between the robot and goal. The variable Dcur has the input value inputcur
dist as the

initial value, which is the current distance between the robot and goal. Both of those

variables decide whether the rules Pr1,distmin and Pr2,distmin should be applied or not.

If Dcur < Emin
dist , both rules are activated and the minimal distance variable Dmin [0] is set

to 1. Meanwhile, the minimal current distance variable Dcur is collected as the output

of the variable Out putdist
min

[0].
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The inner membrane Select Goal Reaching Case has two enzyme variables, Esr
no [0]

and E
gr
no [0] with initial value 0. This membrane will be activated by enzyme Eno = 1 as

case 11 (no obstacle around the robot). Rule Pr1,not_any is used to judge the robot. If

there is any reverse movement away from the goal, then the value of Dmin is equal to

0. It means that the robot has just left the obstacle or wall case. The rule Pr2,not_any

is activated when Esr
no = 1 and Comsr

no is set to 1. The robot will implement the rotation

mode. It will turn left or right according to the previous behavior case. For instance,

the robot will turn left when the previous case is left obstacle avoidance or left side

wall following, and vice versa. This mode helps the AMR to find the wall or obstacle

surface again while running around the maze or to avoid the U shape obstacle. Rule

Pr3,not_any will let enzyme E
gr
no be equal to 1 as Dmin = 1 (trend to goal movement).

Again, E
gr
no = 1 will activate the rule Pr4,not_any and the robot will obtain the goal

reaching mode. Moreover, ET is set to 1 and the controller ends.

The inner membrane Select Obstacle Avoidance Case has two enzyme variables

E lr
ob [0] and ERS

ob [0] and one sub membrane. This membrane is activated by the en-

zyme Eob = 1 as in case 6,7,8 (front, left or obstacle). Rule Pr1,obstacle is also used

to judge the robot wether there is any reverse movement away from the goal like

rule Pr1,not_any in membrane Select Goal Reaching Case, and rule Pr2,obstacle,

Pr3,obstacle or Pr4,obs tacle is activated according to the values of C6, C7 and C8.

For instance, if C8 = 0, then the rule Pr4,obstacle is executed, Com
right
ob is set to 1 and

the robot implements right side obstacle avoidance. Moreover, ET is set to 1 and the

controller ends. On the other side, rule Pr5,obstacle assigns ERS
ob = 1 as Dmin = 1 (trend

to goal movement), and it activate the rules in sub membrane Judge Robot State Ob-

stacle.

Judge Robot State Obstacle has 5 enzyme variables and 4 common variables. En-

zymes Eogle f t [0], Eogright [0], EOGlr [0], EOGlr [0], EOGrl [0] have initial value 0 and

Eog [−1] has initial value −1. The common variables Ole f t [−1] and Oright [−1] are used

to mark the obstacle and locate it at the left or right side of the robot by changing the

initial value from −1 to 1. Similarly, Go
le f t

[−1], Go
right

[−1] are used to record the goal

and locate it at the left or right side of the robot. The rule Pr1,obstaclers is activated as

C6 = 0 (case 6: the obstacle is located at the front of the robot) and both Com
f ront

ob and

ET are set to 1. The AMR should compute the obstacle avoidance at once and without

any further analysis. Rule Pr2,obstaclers should be activated as case 7, two contribu-

tion is assigned to Ole f t , one contribution is assigned to Oright , then Ole f t =−1+2 = 1,

Oright = −1+ 1 = 0 (means obstacle is located at left side of the robot). It is same as

rule Pr2,obstaclers to represent the right side of the obstacle. Both rules Pr4,obtaclers

and Pr5,obtaclers are used to judge the location of the goal at the left side or right side

of the robot according to the variables Agr1 and Agr2. Enzyme Eog can obtain contri-

bution from rules Pr2,...,5,obtaclers. Also if Eog is large enough (2 is obtained in this

controller), then it will activate rules Pr6,obtaclers and Pr7,obtaclers. Moreover, both

the rules are used to judge whether the obstacle and goal are located on both sides of the

robot. If rule Pr8,obtaclers or Pr9,obtaclers is activated, and both of Comgr and ET are

set to 1, then the AMR should be able to compute the goal reaching. On the contrary, if

the rules Pr10,...,13,obtaclers are executed while the obstacle and target are located at the
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same side of the robot, Com
le f t

ob or Com
right
ob is set to 1. So, AMR continues to maintain

obstacle avoidance despite closer to the goal.

The operating mechanism of inner membrane Select Wall Follow Case and its sub

membrane Judge Robot State Wall for wall following are similar to obstacle avoidance.

To restrict the length of the paper, we do not expand the description further.

4 Experimental Results

In this section, the performance of the proposed environment model classifier and dy-

namic multi-behavior co-ordination controller is verified based on the Matlab simula-

tion. Furthermore, the simulation under Webots (robot simulation software) environ-

ment is used to test the performance of mobile robot navigations in different environ-

ment models. All the experiments are conducted on the PC with CPU 2.8GHz, 4GB

RAM, and the software platform MATLAB7.4 and Windows 7 OS.

4.1 Experiment for Environment Classifier

Since the navigation environment is usually unpredictable, complex and partially un-

known, a single environment model membrane classifier can hardly take charge of the

whole task. If a single membrane classifier (SMC) is used, it must have a complex

structure with many internal parameters to solve the problems of navigation in com-

plex environment. Therefore, a multi-membrane classifier (MMC) (in this paper, two or

three) has been employed to identify the environment model with good fault-tolerance

capabilities. Since the MMC uses the SMC modules (each covering a specific local

environment), it can quickly and easily find good local solutions.

The experiments on e-puck robot with 8 infra-red sensors around have been shown

in Fig.4(a). The main parameter of e-puck is presented in Table.1. In order to reduce

the impact of sensor noise, the sensor’s value is filtered with a given threshold before

being sent to the membrane classifier. All values smaller than 70 are ignored. At the

same time, in order to simplify the environmental identification model, once the value

of some sensor is greater than 70 (close to the obstacle), it activates this channel and is

set to 1. Otherwise, is set to 0.

Table 1. Features of the E-puck robot

Features Technical information

Size, weight 70 mm diameter, 55 mm height, 150 g

Motors, Distance between wheels 2 stepper motors, 55 mm

SpeedRange, Given speed range [-1024,1024], [-300,300]

IR sensors 8 infra-red sensors (proximity of objects up to 40 mm)

Max IR value, Given threshold 4096, 70

Using aforementioned informations, three kinds of SMC can be constructed in the

following manner:

277
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⎢
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0 0 0 0 1 1 1 0

0 1 1 1 0 0 0 0

0 1 1 1 1 1 1 0

1 0 0 0 0 1 1 1

1 1 1 0 0 0 0 1

1 0 0 0 0 0 0 1

0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0

1 1 0 0 0 0 1 1

1 1 1 0 0 1 1 1

0 0 0 0 0 0 0 0
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(26)

Note that row 1, . . . ,11 of the binary encoding of C1, C2 and C3 modular represent

the 11 environment patterns shown in Fig.5. The last row is all zeros that represents not

any obstacle is around the robot. Figure .12 shows that the actual paths are taken by

SMC and MMC. SMC uses C1 and MMC uses C1 and C2.

 

(a)
 

(b)
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Fig. 12. Escape from a local minimum in a complex environment

There are several local minimum traps in Figure.12(a) and (b). As shown in Figure.12,

MMC can break away from both of the local minimum trap and arrive at the destina-

tion successfully as in Figure.12(a) and (b). But SMC can not struggle to break away

from the local minimum trap (A) point in Figure.12(a), and sometimes can not break
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away from the local minimum trap (A) or (B) in Figure.12(b). It has been shown in

Figure.12(c) that the SMC meets one local minimum trap at (A) point while navigating

towards the goal in Figure.12(a). SMC alternately judge the environment patterns by

switching from case 2 to 7 constantly while reaching the edge of the trap. The environ-

ment pattern changes to case 3 (Hall way) while reaching the bottom of the neck trap.

But if the robot size is bigger than the spacing of the hall way, it will fall into the trap

and the robot speed will become zero while the left and right wheel are still running.

But MMC can move away from the trap successfully because MMC judge this pattern

as 9 cases and would activate U-turn behavior to break away from the trap.

Table 2. Performance comparisons between SMC and MMC while escape from local minimum

Nmodule N f ail Ttog (s) Ltog (mm) Dmin
obs (mm) Ncoll

Figure.12(a) SMC 1 10 fail fail fail fail

MMC 2 0 48.7 355.3 1.32 0

Single NN [53] 1 10 fail fail fail fail

M-NN [53] 5 0 49.1 357.6 1.37 0

Figure.12(b) SMC 1 4 64.2 564.2 1.53 4

MMC 2 0 57.1 528.3 1.68 1

MMC 3 0 56.9 526.9 1.71 0

Under the same obstacle configuration as in Figure.12, we have changed the start

and goal positions and ran the experiment ten times. For the same navigation task, Table.

2 is listed in the performance of SMC and MMC. The Nmodule is the number of modular

and N f ail is the number of failures. Whenever SMC fall into the trap in Figure.12(a)

every time, N f ail is 10. But MMC can have better identification of the environment and

can move away from the trap successfully, where N f ail is 0 and Ttog is the total execution

time. Since MMC has a low elapsed time, it has better performance than SMC. The Ltog

is the total length of the path and SMC has the longer path length than MMC because

it walks a duplicate path due to the environment model identify error. Again, Dmin
obs is

the minimum distance between obstacle and robot’s sensor and this index indicates that

the risk taken through the entire movement. The number of collisions Ncoll indicates

a safe navigation. The results in Table.2 show that MMC has a better performance

than SMC. In addition, unlike in [53] where “5-by-1" modular neural network (M-NN)

environment classifier is required to replace single NN classifier to realize successful

navigation in Figure.12(a). This paper considers only two kinds of modular (C1, C2)

to achieve the same task. As shown in Table.2, the performance of different sizes of

MMC(2,3) for Figure.12(b) is not obvious. So, the number of modules used depends

on the specific local environment. Furthermore, NN environment classifiers need larger

and greater amount of samples to train the controller. There is a need for about 3000

ultrasonic patterns to train NN classifiers [53] and 50,000 samples with speed of 4.5

hours for training the navigation reservoirs [70]. But SMC or MMC based on ENPS

does not need to train any processing and is simple to initialize the environment model.

279



4.2 Experiment for Multi-Behavior Coordinator

Several behavior coordination schemes are employed to evaluate the performance, such

as fuzzy logic approach [65], expert fuzzy cognitive map (FCM)-based approach [66],

fuzzy discrete event systems FDES-based approach [62], optimized modular NN ap-

proach [53], modification of potential field method [71]. Throughout the experiments,

we have adopted modular (C1, C2) as in MMC in Test I and Test II, modular (C1,...,C3)

as MMC in Test III. The following simulation tests are carried out for validating the

proposed approach.

Test I: G-shape and snail shape environment: Figure.13 shows the expected re-

sults as previously depicted in MBCMC. In [65], a new fuzzy logic controller for robot

navigation has been developed, which has adopted an actual-virtual target to escape

from the local minimum by defining a sum of turning angles. If the sum of turning an-

gles throughout the way is near 0o, the robot would decide to go toward the real target.

If the total amount of turning angles is negative, then the robot will have a counterclock-

wise motion to compensate the amount at the opening point. Since the sum of turning

angles is −360o at point “(B)" in Figure.13(a), the robot will not execute goal reaching

and will turn counterclockwise to continue following the wall until the point “(B)". But

MBCMC will switch the control scheme and run towards the goal directly. Although

after breaking away from the G-shape obstacle [65], it will spend more time and run

more distance than MBCMC to get goal point.

 

(a) G-shape

 

(b) snail shape

Fig. 13. Escape from a G-shape and snail shape environment

Snail shape in Figure.13(b) is more complicated trap than G-shape. The distance

between the corridors of the snail must be wide enough. The robot in [65] after encoun-

tering the first wall (left side or right side), follow the left side or right side wall and then

break away from the snail shape obstacle successfully. But the snail shape environment

in this paper has a very narrow corridor and with a dead end. Hence, it will effect the

definition of the virtual target [65] and event weights of the expert-FCM graph [66]. Al-

so, the robot falls into a trap at dead ends “(A)" as shown in Figure.13(b). Since hall way

and dead end are in the general definition of environment patterns and MBCMC can i-

dentify those cases in this paper. Moreover, the wall following method is also modified
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by Formula (25) to a suitable corridor environment. The results of Figure.13(b) prove

that the robustness of the proposed approach is better than the approaches in [65, 66],

whether it is a wide corridor or narrow corridor.

Test II: Building environment: The robot starts in room 1 and navigates to the

goal at room 2. Figure.14 shows that both MBCMC and M-NN [53] started at room 1,

crossed the narrow corridor and arrived at the turning point “(A)". MBCMC can imple-

ment self-rotation strategy according to the environment model and aim the room 2 as

the goal. But the robot (M-NN [53]) failed to enter through the “door" at (A), because

it was confused by the corridor module and the left turn module (adopt the competitive

coordination). The robot ([53]) can break away the dead end “(B)" in Figure.14, but it

spends more time to reach the goal than the proposed approach.

 

Fig. 14. Robot starts at room 1 and goes to room 2

Test III: Maze environment: The performance of MBCMC was examined in the

similar environments ([62]) with more complex mazelike traps in Figure.15. Figure.15(b)

shows the similar navigation scenarios of the robot moving in the maze environment

with irregular obstacles. FDES-based approach [62] employs supervisory control theo-

ry of fuzzy discrete event systems to model and control several navigation task of a mo-

bile robot. Two deliberative behaviors ("Go to Target"(GT) and "Route Follow" (RF))

and three reactive behaviors ("Wall Follow"(WF), "Avoid Obstacle"(AO) and "Avoid

Dead ends"(AD)) are weighted through FDES and navigate the robot to the final target

successfully. In this method, target seeking is based on following a series of immediate

sub-targets (waypoint). GT is used for path optimization and aims to find the next near-

est waypoint. RF is used to navigate the robot through way points. Therefore the robot

can trace a collision-free path with optimum distance towards the actual target in maze-

like environments. Unlike in [62], the start and end points are identified and moreover

the waypoints are given manually. The robot in this paper only knowns the start point

and goal point and also can identify the surrounding unknown environments by MMC
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accurately. The dynamically chosen reasonable behaviors by MBCMC, the AMR can

help to walk out of the maze safely. Figure.15 shows the traveled trajectory with these

environments, where both MBCMC and FDES-based approach have the similar path.

Also, Figure.16 depicts the angle error between robot direction and goal, environment

pattern and speed control results of MBCMC related to the complex maze-like environ-

ment.

 

(a) Maze 1

 

(b) Maze 2

Fig. 15. Escape from a maze environment

5 Conclusions

In this paper, we presented a hybrid control framework for robust robot navigation tasks

based on P systems. A simple and effective environment pattern membrane classifier is

proposed, which can be identified by 11 environment patterns and can build or modify

environment modules quickly. The proposed MBCMC possesses multi behavior dy-

namic coordination scheme in reactive layer. It is observed that the proposed MMC and

MBCMC are able to provide a robust and successful navigation with a smooth path

in different type of environments, while the other approaches failed to do so in more

complex environments. The proposed approach eases the design of the behavior-based

hybrid control architectures with the higher modularity which is obtained by associat-

ing P systems. Moreover, MMC with binary environment model is able to cope with

sensor imprecision and ambiguous situations. Reflective (such as obstacle avoidance

and wall following) and reactive behavior co-ordination have succeeded by properly

blending the outputs with the ambiguous situation modules. Also, introduction of more

behaviors to the membrane hybrid control architecture is easily performed by adding

more environment models to MMC and events to MBCMC. To address the more com-

plex navigation tasks, studies on decentralized and modular membrane controller can

be carried out in the future.
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(a) Control result to maze 1
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(b) Control result to maze 2

Fig. 16. Control results of MBCMC related to mazelike environment
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1. Gh. Păun, G. Rozenberg and A. Salomaa, The Oxford Handbook of Membrane Computing.

NY, USA: Oxford University Press, (2010).
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6. M., Gheorghe, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, Research Frontiers of Membrane

Computing: Open Problems and Research Topics. International Journal of Foundations of

Computer Science, 24(5)(2013), 547-624.

283
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33. Gh. Păun, R. Păun. Membrane computing and economics: Numerical P systems. Fundamen-

ta Informaticae, 1(73)(2006), 213-227.

34. Wang X, Zhang G, Neri F, Zhao J, Gheorghe M, Ipate F, Lefticaru R, Design and imple-

mentation of membrane controllers for trajectory tracking of nonholonomic wheeled mobile

robots. Integrated Computer-Aided Engineering, 23(2016), 15-30.
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Abstract. In this paper, we propose a preliminary microfluidic comput-
ing system design for spiking neural P systems. The system is designed
particularly to solve the computational hard problem Boolean satisfiabil-
ity SAT by implementing the model studied in [10]. We have also devel-
oped a computer model for the considering system and have been doing
in silico experiments. Dielectrophoretic force (DEP), generated in the
microfluidic channels by AC voltage facilitated electrodes, is employed
as the main functioning tool of the proposing computing system.

Keywords: Microfluidic system, spiking neural P systems, parallel and dis-
tributed computation, computational hard problems

1 Introduction

Application and implementation related research of membrane computing (also
so-called P systems) theory have been conducted actively in the recent years [30,
2, 26].

In the present work we aim to propose a biochip based implementation design
for Spiking Neural P Systems (SN P systems, for short).

The approach used in the proposing biochip device design is microfluidic
systems technology, where information is encoded in biological atomic particles

? Corresponding author.
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such as blood cells and bacteria. The computation on the encoded information
takes place in parallel in the microfluidic network channels while the information
carries fluid flows throughout the device.

Main functioning characteristic of the considering system is physical proper-
ties of biological particles, microfluid, and fluidic microchannel geometry as well
as particle motion related to governing forces of fluidic velocity, viscosity, drag
forces, electric field gradient, dielectrophoresis DEP, etc.

DEP force is considered as a rather efficient and easier tool to govern biopar-
ticles in microchannels than other approaches of acoustic, inertia and magnetic
forces.

The considering computing device design is a type of implementation of a
particular SN P systems, which solves a computational hard problem of the
Boolean satisfiability SAT presented in [10]. A computation model for the mi-
crofluidc system is developed on COMSOL multiphysics software and have been
carried out in silico experiments, which is presented in Section 4.

Another approach of microfluidic system design for P systems to solve com-
putational hard problems has been introduced in [13], where DNA molecules
are facilitated for data storage and manipulation mechanism rather than cells
and/or biophysical forces. A number of studies on Tissue P Systems have been
conducted recently [25, 23, 24].

Spiking neural P systems (in short, SN P systems) were introduced in [15]
as a class of computing devices inspired from the way the neurons cooperate by
exchanging spikes, electrical impulses of identical shapes. Other type of SN P
systems we refer reader to [17, 19] and [27, 26]. Details can be also found at the
membrane computing website, at http://ppage.psystems.eu.

The paper is organized as follows: in the next section we specify some general
definitions and notations; µfluidic P systems design with interpretation of SN
P systems is introduced in Section 3, and computer model architecture and
simulation are described in Section 4. Final remarks are provided in Section 5.

2 Preliminaries and notions

The reader is assumed to be familiar with general Spiking neural P systems (SN
P systems, for short) [15, 18, 28] and a class of Spiking neural P systems with
pre-computed recourses [10] as well as microfluidic systems [1, 12].

2.1 Microfluidics and Bio-Chip

Microfluidics is the science of studying fluid flow behavior at the microscale and
the development of miniaturized analysis systems that take advantage of the
unique physics emergent at these small scales.

Biochips can be defined as microelectronic-inspired devices that are used for
delivery, processing, analysis, or detection of biological molecules and species.
Microfluidics-based biochips have become an actively researched area in recent
years. Sometimes also referred to as lab-on-a-chip, biochips integrate different
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biochemical analysis functionalities (e.g., dispensers, filters, mixers, separators,
detectors) on-chip, miniaturizing the macroscopic chemical and biological pro-
cesses to a sub-millimetre scale [5]. Like a computer chip that can perform mil-
lions of mathematical operations in one second, a biochip can perform thousands
of biological reactions, such as decoding genes, in a matter seconds.

Dielectrophoresis. Dielectrophoresis (DEP) has been used for characterizing [5,
14, 21] and separating [22, 29, 3] small artificial and biological particles since H.
A. Pohl discovered it in the 1950s [20]. Fig. 1 illustrates the basic principle of
the dielectrophoresis process.

The AC signals applied to electrodes generate the DEP force which makes
cells move in the mixture flow in the direction where the DEP forces and direc-
tions are dependent on cell properties. Due to the different DEP force directions,
the cells with different DEP responses move continuously to the different loca-
tions.

However, if the field is non-uniform, then the forces on either side of the cells
will be different, and the net DEP force can induce the movement of cells [9].
If electrical polarizability of cells exceeds that of the suspending medium, the
DEP force will be in the same direction as the gradient of electric fields.

In this case, cells move to the strong electric field region (positive dielec-
trophoresis or pDEP). On the contrary, when the electrical polarizability of cells
is less than that of the medium, the direction of DEP force is reversed to the
gradient of electric fields and cells move to the weak electric field region (negative
dielectrophoresis or nDEP), (Fig. 1). The polarizability of cells depends strongly
on their composition, morphology, phenotype and the electric field frequency;
therefore, the cells of different types or physiological states including viability
can be discriminated by the DEP. The time-averaged DEP force is given by [8,
7]:

FDEP = 2πεmr
3
Re[fCM ] · O | Erms |

2 (1)

In (1), r is a radius of cell; εm the permittivity of the medium; fCM the Clausius-
Mossotti factor and Erms is the root mean square value of an electric field.
Re[fCM ] means a real part of the fCM which can be represented as follows:

fCM = (ε∗p � ε∗m)/(ε∗p + 2ε∗m) (2)

In (2), ε∗ is the complex permittivity ε∗ = (ε � jδ/ω). δ the conductivity
and ω is the electric field frequency. Subscripts p and m mean cells and the
medium, respectively. Re[fCM ] > 0 means that cells show pDEP response while
Re[fCM ] < 0 means nDEP response.

Fluid flow and velocity. When a specimen is forced into the microfluidic channel,
the hydrodynamic force (FHD) applied on a cell is influenced by the flow velocity.
It can be described with Stokes Law, as follows:

�!
F HD = 4πηR�!

v .

In which v is the relative velocity between the cell with a radius of R and the
flow. This equation shows that the flow velocity is directly proportional to the
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Fig. 1. Dielectrophoresis DEP force. Dielectric particle motion in fluidic and non-
uniform electric field

hydrodynamic force. It must be noted that apart from the hydrodynamic force,
the cell will experience a DEP force in a microchannel. Therefore, as the cells
are directed into the DEP microchamber, there are some points corresponding
to the electrical field gradient in the tangential direction relative to the flow.
These forces cause deviation of the flow direction of the cells and direct them to
their targeted outlet under FHD.

The incompressible Navier-Stokes flow is used to direct the fluid flow:

ρ
du

dt
�r · σ + ρu ·ru = F

In this equation, u is the velocity vector containing u and v components
along the x, y, and z direction. Meanwhile, ρ is the fluid’s density, p is the
flow’s pressure, and σ represents the total stress tensor of Newtonian fluid which
consists of pressure stress and viscous stress.

Electric Field. The electric current interface was used to model the DEP stage,
whereby the magnetic-inductive effects were neglected in this stage and only
resistive-conductive and electric-capacitive effects were accounted for. In this
simulation, the electric potential in the microchannel was governed by Laplace’s
equation of continuity such that:

�r · ((σ + jωεrεo)rϕ)
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where σ represents the electrical conductivity of the cell, ω is the angular fre-
quency of the driving field, εr is the relative permittivity of the medium, and εo
is the relative permeability of the vacuum.

The voltage is defined as a sine wave at a particular frequency, whereby
electric potentials of +5V and �5V are assigned across alternating electrodes
embedded within the microchannel. A non-uniform electric field is established
either vertically or laterally, depending on the microelectrode configuration.

Particle Trajectory. The trajectory of cells, which were suspended in the blood
sample, move through microchannels is calculated by solving the equition of
motion for each set of cells. The equition is governed by Newton’s second law
such that: mdv

dt
= Fc where m is the mass of cells, v is the cell velocity, and Fc

is the total force experienced by the bioparticles such as cells.

2.2 Spiking neural P systems with pre-computed resources

In this work we consider a special class of SN P systems that a pre-computed
recourse of possibly exponential size are give in advance. This model has been
introduced and studied in a number of works and proved to be an efficient
problem solving abstract machine [6, 10, 11].

In SN P systems the cells (also called neurons) are placed in the nodes of a
directed graph. The contents of each neuron consists of a number of copies of a
single object, called spike, and a number of firing and forgetting rules.

Firing rules allow a neuron to send information to other neurons in the form
of spikes (electrical impulses) which are accumulated at the target cells. The
applicability of each rule is determined by checking the contents of the neuron
against a regular set associated with the rule. In each time unit, if a neuron can
use some of its rules then one of such rules must be used. The rule to be applied
is non-deterministically chosen. Thus, the rules are used in a sequential manner
in each neuron, but the neurons function in parallel with each other.

If no firing rule can be applied in a neuron, there may be the possibility to
apply a forgetting rule, that removes a predefined number of spikes from the
neuron.

Formally, a Spiking Neural P Systems (SN P systems, for short) of degree
m � 1, as defined in [16] in the computing version (i.e., able to take an input
and provide an output), is a construct of the form

Π = (O,σ1,σ2, · · · ,σ, syn, in, out)

where:

1. O = {a} is the singleton alphabet (a is called spike);

2. σ1,σ2, . . . ,σ are neurons, of the form σi = (ni, Ri), 1  i  m; where

(a) ni � 0 is the initial number of spikes contained in σi;

(b) Ri is a finite set of rules of the following two forms:
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i. firing (also spiking) rules E/a
c ! a; d, where E is a regular expres-

sion over a, and c � 1, d � 0 are integer numbers; if E = a
c , then it

is usually written in the simplified form: ac ! a; d; similarly, if d = 0
then it can be omitted when writing the rule;

ii. forgetting rules as ! λ, for s � 1, with the restriction that for each
rule E/a

c ! a; d of type (1) from Ri, we have a
s
/2 L(E) (the regular

language defined by E);

3. syn ✓ {1, 2, . . . ,m} ⇥ {1, 2, . . . ,m}, with (i, i) /2 syn for 1  i  m, is the
directed graph of synapses between neurons;

4. in, out 2 {1, 2, . . . ,m} indicate the input and the output neurons of Π, re-
spectively.

A firing rule E/a
c ! a; d 2 Ri can be applied in neuron σi if it contains k � c

spikes, and a
k 2 L(E). The execution of this rule removes c spikes from σi (thus

leaving k�c spikes), and prepares one spike to be delivered to all the neurons σj

such that (i, j) 2 syn. If d = 0 then the spike is immediately emitted, otherwise
it is emitted after d computation steps of the system. As stated above, during
these d computation steps the neuron is closed and it cannot receive new spikes
(if a neuron has a synapse to a closed neuron and tries to send a spike along
it, then that particular spike is lost), and cannot fire (and even select) rules. A
forgetting rule as ! λ, can be applied in neuron σi if it contains exactly s spikes;
the execution of this rule simply removes all the s spikes from σi.

Boolean satisfiability problem. Let us consider the NP-complete decision
problem SAT ([4]). The instances of SAT depend upon two parameters: the number
n of variables, and the number m of clauses. We recall that a clause is a disjunc-
tion of literals, occurrences of xi or ¬xi built on a given set X = {x1, x2, . . . , xn}
of Boolean variables. Without loss of generality, we can avoid the clauses in which
the same literal is repeated or both the literals xi or ¬xi, for any 1  i  n occur.
In this way, a clause can be seen as a set of at most n literals. An assignment of
the variables x1, x2, . . . , xn is a mapping a : X ! {0, 1} that associates to each
variable a truth value. The number of all possible assignments to the variables of
X is 2n. We say that an assignment satisfies the clause C if, assigned the truth
values to all the variables which occur in C, the evaluation of C (considered as
a Boolean formula) gives 1 (true) as a result.

We recall a way of encoding of any given instance γn of SAT (n,m) in spikes
from [10]. Each clause Ci of γn can be seen as a disjunction of at most n literals,
and thus for each j 2 {1, 2, . . . ,m} either xj occur in Ci, or ¬xj occurs, or none
of them occurs. In order to distinguish these three situations, we define the spike
variables αij , for 1  i  m and 1  j  n, as variables whose values are the
amounts of spikes, and we assign to them the following values:

αij =











a if xj occurs in Ci

a
2 if ¬xj occurs in Ci

λ otherwise.
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In this way, clause Ci will be represented by the sequence αi1αi2 . . .αin

of spike variables; in order to represent the entire formula γn we just con-
catenate the representations of the single clauses, thus obtaining the sequence
α11α12 . . .α1nα21α22 . . .α2n . . .αm1αm2 . . .αmn. As an example, the representa-
tion of γ3 = (x1 _ ¬x2) ^ (x1 _ x3) is the sequence aa

2λaλa.

3 Designing biochips for SN P systems

We start with translation of SN P systems notion in terms of microfluidic P
systems (µfluidic P systems) which we propose. The proposing µfluidic P system
is a kind of computing device which implements the SN P system model studied
in [10].

SN P system Fluidic Neural P system

Neuron � @ Chamber

Spike a a Particle,

Number of spikes ad diametr d of particle a,

Synapse �! P Microchannel ,

Input and output neurons Inlet and Outlet chambers,

Spiking rules ad ! a
k DEP ruled particle separation,

Pre-computed spiking neural network Pre-designed biochip circuit.

3.1 Architecture of the µfluidic P system

The architecture sketch of the µfluidic P systems is illustrated in Fig. 2, while its
corresponding original version of the SN P systems structure is depicted in Fig.
3. Note that both structures are devoted to an example of SAT problem with 2
variables and m number of clauses (SAT(2,m) for short).

The µfluidic P system architecture consists of three main modules:

– Input module with duplication channels (IDM);
– Parallel and distributed computing module (PDCoM);
– Decision, detection and output module (DOM).

The first module IDM is composed of an input chamber and tree-like struc-

tured duplication channels leading to the base-channels.
A canyon-like shape is placed in the middle of microchannels which supports

divides the flows and separates the particles equally in advance to bifurcate
towards pair-branch channels.

Corresponding to the main computation unit of the computing model de-
scribed in [10], the main computing module considering µfluidic P system is
designed as PDCoM.
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Input and Distribution Module (IDM)

Electrode

Outlet

Valves

Parallel and Distributed Computation Module (PDCoM) Decision, Detection & Output Module (DOM)

Flow Split

Inlet

Valve Base channel

Drain channel

Downstream Decision
chamber

Control
unit

Waste
chamber

Detection
area

Fig. 2. µfluidic P system architecture for SAT(2,m). Its original SN P systems design
is depicted in Fig. 3.

PDCoM has been facilitated with two types of microchannels: a) the base-

channels and b) the drain-channels. These two microchannels are connected by
several downstream microchannels from the base-channel to the drain-channel.
There are a number of control units (corresponding to the generator block in [10],
see Fig.3) attached to each base-channel. On the junction of the base-channel
and the control unit, an On/Off valve is placed to regulate downstream. Every
drain-channel of the module ends up with a waste-chamber. Main functioning
tool of PDCoM are DEP chambers of electrodes embedded within the bottom
of the base-channels.

The last module DOM consists of the decision chambers, the detection region

and the Outlet chamber. Each decision chamber has two valves attached, one to
the drain-channel and another to the output channel, see Fig. 2.

3.2 Functioning of the µfluidic P system

Input and duplication phase. Input data (or signal) spikes are encoded into the
data-particles dpi, with different sizes entering into the Inlet chamber consequen-
tially one after another with a certain microsecond delay to distinguish data.

For each signal data, a 2n number of identical copies of corresponding data-
particles flow simultaneously into the input chamber.

Furthermore, these entered data-particles are equally separated and flow
firstly into layer of duplication channels, then again separate into the ith layer
channels, then finally a single copy of each data-particle arrive at the beginning
of each base-channel (there are 2n base-channels), see Fig. 4 A). The s copies
of a spike a (as a

s) of SN P systems have been translated into the µfluidic P
systems as the size s of a particle dps .

Computation phase. The main functioning unit of the SN P systems with pre-
computed recourses from [10] is constructed in the nth layer of the design struc-
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Fig. 3. SN P system design for SAT(2,m), [10].

A) B)

Fig. 4. Input and Output modules: A) IDM, 2n copies of each particle represents a
spiking signal which encodes a logical variable entering the Inlet. Spike duplication
is modeled by particle bifurcation through the tree-like structured microchannels. Fi-
nally, the particles are distributed uniformly and arrive at the base-channels. B) DOM,
Decision chambers count the number of particles accumulated and open either the de-
tection channel or the waste channel in order to drain its content. Meanwhile, if there
are any particles detected in the detection range which flow YES particles towards the
Outlet, the waste particles collected in the waste chambers are sucked out.
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ture, see Fig. 3. This unit’s function is to check whether the considering problem
has been satisfied or not by assigning all possible truth assignments to all propo-
sitional variables and then it tests all assignments which satisfy the Boolean
formula.

In the current microfluidic system model, the main computing module is
constructed in PDCoM, see Fig. 2, as mentioned above. At some points, an
n number of data-particles dpk, 1  k  n, corresponding to an n number of
Boolean variables xik, 1  k  n of a clause Ci take place at its related Boolean
control units, respectively.

At that moment, the valves of the control units switch to On mode and
release a Boolean control-particle, either dp3 for truth value true or dp4 for
truth value false with size of 3 and 4, respectively, into the base-channels and
immediately turn back on the Off mode. The meaning of the valve On/Off

function is that it mimics Boolean computations illustrated in Table 1 of [10]),
where Boolean values are assigned to the variables. Checking satisfiability of a
clause is performed in the DEP chambers by separating the data-particles at the
electrode region and streaming them towards the base-channel and down to the
drain-channel, respectively. A detailed scheme of particle separation in the DEP
chambers is illustrated in Fig. 5.

Fig. 5. Particle separation scheme in DEP chambers. One big and two small particles
are separated in the first DEP region by pushing down the big one into the drain
channel where the electric field is strong while the smaller particles flow towards the
next DEP region following the weaker electric field. Then in the next step, the smallest
particle is pushed into the weak electric field region in the second DEP chamber while
the other small particle flows through the base-channel towards the next DEP region.
See Section 2.1 for the theory explanation of DEP based separation.
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Simulation of SN P systems rules in the µfluidic P systems. A detailed simulation
of the spiking rules in terms of µfluidic P systems and its function for particle
separations are explained in Fig. 6. The rules of neurons with labels t and f of the
nth layer of the system structure depicted in Fig. 3 are simulated as described
in Fig. 6 A) and B). Whereas spikes a, a2 and a

3 are expressed by data-particles
dp1, dp2, and dp3 with size 1, 2, and 3, respectively. The spike a

4 is composed
of data-particles dp1 and dp3, with size 1 and 3, and spike a

5 is composed of
data-particles dp2 and dp3 with size 2 and 3, respectively.

As long as the AC voltage applies, simulations of the spiking rules are per-
formed by separating the particles using DEP force in the electric field regions.
Fig. 6 A) depicts the simulation of the rules in neuron with label t: rule a

3 ! λ

is done as particle dp3 is pushed into the drain channel, rule a
4 ! a is done as

particle dp3 is pushed into the drain channel while particle dp1 flows along the
base-channel towards the next DEP chamber. Rule a

5 ! λ is simulated as both
particles dp2 and dp3 are thrushed into drain channel. First two rules a ! a

and a
2 ! a

2 are used in placing spike variables of a clause in the computation
unit, which is simulated by just flowing the data-particles dp1 and dp2 towards
the next DEP chamber along the base-channel, because no DEP force effect is
applied to the particles as well as to the medium since no AC voltage has been
plugged-in yet.

Rules in neuron with the label 2 are simulated in a method similar to the
rules of neuron with the label t as it has illustrated so in Fig. 6 D).

One might have already observed from Fig. 6 that not all spiking rules of
the neurons are simulated in the same way as in the microfluidic channels. For
instance, one can see that rules in neuron with label f0 are simulated differently
from similar rules of neuron t.

Rules a2 ! a and a
6 ! a in neuron f0 are simulated in a chamber of type B

as sending data-particle dp2, but not dp1, towards the next level.

The rule a
5 ! λ is simulated by expelling two particles dp1 and dp4 into

the drain channel in the following two stages: firstly, the bigger particle, dp4,
is separated and pushed into the drain channel while the smaller particle, dp1,
keeps on going along the base-channel towards the next region, but it is drained
too in the next stage. Therefore, the simulation has been completed.

One can see from Fig. 5 that the electrodes in the two DEP regions are
positioned opposite of each other. After passing the first DEP region, the bigger
particle is attracted to the area with stronger electric field close to the drain
channel and then drained while the smaller particle is expelled to the base-
channel because of the weak electric field. Consequently, the small particle arrives
in the next DEP region, which again gets expelled to the weak electric field area,
which eventually streams down into the drain channel. It is worth noting that
each DEP region has its own functions for particle separation which performs
the task independently from each other.

In Fig. 6 C), a computation step of the layer n + 1 of SN P systems model
has been simulated, where the translation of the spiking rules is similar with one
presented in Fig. 6 B).
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Fig. 6. Spiking rules Vs. Scheme for particle separation.
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In the SN P systems model, we finally check if there exists any assignments
that satisfy the Boolean formula by counting the number of spikes accumulated
in the neurons with the label 3 of layer n+ 3.

If the counted number of spikes is equal to the number of clauses of the
Boolean formula, then a spike is sent to the output neuron, signaling YES solution.

To do it in our µfluidic computing system, we design a decision chamber at the
end of each base-channel which has two valves placed on the connections to the
Outlet and the drain channels, respectively. A particle-counter function executes
in the decision chamber. If the amount of accumulated data-particles satisfy a
certain condition, then the valve to the Outlet opens yielding data-particles flow
towards the Outlet. Otherwise, the data-particles are wasted into the drain chan-
nel as the second valve opens. This process is applied to all decision-chambers
of DOM.

At the end of the microfluidic computation, one detects whether if any parti-
cles appear in the detection region or not. If at least one particle is detected this
would mean that we have computed a solution for the problem and so, a YES

signal is sent out to the Outlet. If not, a NO solution is concluded as the result
of the computation.

4 Modelling and in silico experiment

4.1 Fluidic network architecture and geometrical design

As described in Section 3.1, the overall architecture of the µfluidic P system is
composed of three main modules: IDM, PDCoM and DOM.

The single phase microfluidic system does not change its state during ther-
modynamic changes and shows the high suitability for DEP application due to
its ability to control pressure within channel.

Fluidic laminar flow in the Input-Duplication (IDM) part and the Decision-
Detection-Output (DOM) part of the system are mainly controlled by the hy-
drodynamic mechanism. In general, the hydrodynamic force influences the fluid
flow and force distribution within the microfluidic network, see Section 2.1. A
geometrical design with a canyon-like shape, positioned in the middle of the mi-
crochannels of the IDM, improves the particle separation efficiency by splitting
the flow symmetrically toward the bifurcation branches, see Fig. 7 B.

PDCoM is the main functioning block of the system, where DEP force is
employed for the computation of sorting and separation of data-particles by
their intrinsic characteristics. In total, 2n−1 number of pair base-channels and
the same number of drain channels are placed in the middle of two base-channels,
connecting them by an equal numbered, symmetric downstream microchannels
- constructing the computation block.

Moreover, m + 2 pieces of control units/inlets with valves on the junctions
are connected to each base-channel. The control units are devoted to providing
control-particles of types true and false logical values into the DEP computation
chambers.
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A) B)

Fig. 7. A) On/Off valves. B) Fluid flow velocity magnitude.

The valves of PDCoM function prevents pressure leak out of the control
units into the base-channels - the fluid flow should not be affected because of
side pressure.

The valves have a periodic On/Off switch property. When the data-particles
approach the valves, the valves are opened for a moment and releases the control-
particles into the base-channels.

The valves that we considered in the microfluidic system are designed as the
valve region is filled in with liquid, see Fig. 7 A. When the valve switches to the
Off mode, the density and the viscosity of the liquid increase enough to prevent
single particles and pressure from possibly leaking through the valve region to
the base-channels. On the contrary, by decreasing the valve region’s density and
viscosity, the valve is switched to the On mode, then the particles from the
control units enter into the base-channels.

All the valves connected to the base-channels alter between On and Off

modes, periodically. According to the SN P system model depicted in Fig. 3
and its microfluidic design in Fig. 2, each control unit of the first two levels
pump a control-particle of type dp4 simultaneously into the base-channels at
the time t1 then the valves are switched to the On mode for a while releasing
the particles, then switch back to Off. At the moment of t2, the valves of the
3rd level switch to the On mode which allow control-particles of type dp3 to be
released. The valves of the 1st, 2nd, and 4th levels are switched to the On mode
at the moment of t3, then releases the corresponding control-particles of either
dp3 or dp4 types. The valves of the 3rd level and 4th level are switched to the
On mode at the moment of t4 in order to release the necessary control-particles.
The valves of the fourth level are again flushed at the moments t5 and t6, respec-
tively, then execute its function. In other words, the main computation of the
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PDCoM part of the system took place at the time series t1, t2, · · · , t6, parallel
in each base-channel.

To implement the above mentioned function of the PDCoM, time dependent
periodic functions of types rectangle f(x) = f(x+T ) and sin y = Asin(ϕt+πk)
have been utilized.

When a bunch of the data-particles and the control-particles pass through a
DEP chamber, those non-uniform electric field and frequency affect the particles’
private physical characteristics and then cause them to separate, see Fig. 5 and
Section 2.1.

The architecture scheme of the final part of the system (DOM) is a compo-
sition of five basic parts, namely 1) the decision chambers on the base-channels;
2) a couple of valves attached to each decision chamber; 3) the waste-chambers
at the end of each drain-channel; 4) the detection area; 5) the Outlet, see Fig. 2.

The main function of the DOM is to decide whether or not to send a signal to
the detection region depending on the PDCoM computation result. The particles
in each decision chamber accumulated from a base-channel are counted. If the
total amount of particles satisfies a certain condition such as being equal to
the number clauses of considered propositional formula, then the valve to the
detection area is opened, allowing the particles flow forward. Otherwise, the valve
to the waste chamber opens to thrush all the particles.

The valve type used in the DOM is different from the one used in the PDCoM
part. The functioning scheme of the accumulators and the end valves can be
illustrated as follows:

Initial states: valveOk.Off and valveNo.Off.
if acc(amount of particles) � condition and time � T ime

then valveOk.On and the accumulated particles flow forward,
otherwise valveNo.On and thrush the accumulated particles.

Finally, one checks the detection area in case it contains any particle to be sent
to the Outlet.

In the end, the computation halts and the device is reset fully as the fluid
is sucked out of the waste-chambers, as well as the Outlet, which renders the
system to be ready for the next computation to proceed, Fig. 4 B.

In the next section, a computer model for the µfluidic P systems and its
simulation experiments will be introduced.

4.2 Computer simulation and analysis

The 2D microfluidic architecture of the µfluidic P system was created by using
AutoCAD 2017 (Autodesk Inc., USA). The design geometry was imported into
COMSOL. The µfluidic system was simulated with COMSOL Multiphysics 5.3
(COMSOL Inc., Palo Alto, USA), using AC/DC (Electric Currents) module and
Fluid Flow (Laminar Flow, Particle Tracing for Fluid Flow) module. The reader
is referred to Section 2.1 for physical meaning of these modules.

The steady state Navier-Stokes model has been used, where the fluid inside
the microchannels was simulated as liquid (non-Newtonian fluid). The model
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Electrical properties Shell

size, µm | conduct., s/m | permittivity | thickness, nm | conduct., S/m | permittivity

ParticleX 2 0.25 50 8 1e-6 4

Fluidic properties

density, kg/m3 | dynamic viscosity, Pa ∗ s | medium conductivity, S/m

Liquid 1000 1e-3 55
Table 1. Particle and Fluid properties. Four different particles, ParticleX, 0 ≤ X ≤ 4,
are used.

particles are chosen so as to have dynamic viscosity of particles suspended in an
aqueous solution.

The dimension of the particles was set to range from 0µm to 4µ. Missing
Boolean variable xj in the propositional formula is represented by an empty
particle dp0 meaning that no particle is carried in the corresponding time slots.
Simulation was done with parameters of electric potential in the range 2V-5V,
frequency between 50kHz-100kHz, and fluid velocity 100µm/s-800µm/s.

The initial configuration of the µfluidic P system is set up as illustrated in
Table 1 and Fig. 9. The particles, fluidic, and electric properties can vary in
order to adapt the device functionality and task dimension.

In the simulations, Stationary, Frequency domain, and Time dependent anal-
ysis have been used. As mentioned above, the control valves alter On/Off modes

t0 t1 t2 t3
Time (s)

t4 t5 t6

Fig. 8. Time dependent periodic control of On/Off type valves which governs the fluid
density and viscosity.

periodically to release the control-particles into the base-channels. As an ex-
ample, a diagram in Fig. 8 shows the oscillation of the control valves’ periodic
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switching: at time t1, valve1 and valve2 switch to the On mode and at time t2,
valve3; at time t3, valve1, valve2, and valve4; at time t4, valve3 and valve4; at
time t5 and t6, valve4, respectively, change the state to the On mode. Note that
a valve keeps its On state only for a moment to release a particle and switches
back to Off mode immediately, preventing extra leak.

The channel fluid flow and particle tracing studies were computed and from
the results, the model surface plots for the velocity magnitude, pressure distri-
bution, and electric gradient have been generated as depicted in Fig. 9.

A) B)

C) D)

Fig. 9. Simulation of µfluidic P system: A) Fluid flow and particle tracing domain,
B) Pressure distribution throughout the microchannel network, C) Electric current
conservation domain and electric field gradient, D) Particle trajectory.

Depending on the amount of particles accumulated in the decision region,
either wall, valveOk or valveNo, switches to the On mode from Off allowing
particles to pass through the trough for the further flow, see Fig. 10.

accumulator

valveNo.On/Off

valveOk.On/Off

A) B)

Fig. 10. Decision region of DOM. A) The accumulator and the wall valves, B) Counted
particles in the decision regions

304



The µfluidic P systems model simulation has been introduced with certain
parameters.

5 Final Remarks

The µfluidic P systems for parallel and distributed computing device design and
its corresponding computation model have been introduced in the present work.
Computer simulations in silico experiments have been carried out for different
parameters. Further in-depth elaborations of the device design and parameter
estimations of computer simulations have to be calibrated for physics and bio-
logical requirements, as well as the mission of the computing system functioning.

In the next stages of the research, device fabrication of the µfluidic P systems
as bio-chips should be considered.
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The Computational Complexity of Tissue P Systems with Evolutional Sym-
port/Antiport Rules. Complexity 2018, 3745210 (May 2018), 21.

19. Pan, L., Wu, T., Su, Y., and Vasilakos, A. V. Cell-Like spiking neural P
systems with request rules. IEEE Transactions on Nanobioscience 16, 6 (2017),
513–522.

20. Pohl, H. A. The Motion and Precipitation of Suspensoids in Divergent Electric
Fields. Journal of Applied Physics 22, 7 (2004), 869.

21. Satoshi, T., and Hitoshi, W. Dielectrophoresis of microbioparticles in water
with planar and capillary quadrupole electrodes. IEE Proceedings - Nanobiotech-

nology 150, 2 (Nov 2003), 59–65.
22. Satoshi, T., Katsuyuki, Y., and Hitoshi, W. Flow Fractionation of Micropar-

ticles under a Dielectrophoretic Field in a Quadrupole Electrode Capillary. Ana-

lytical Chemistry 73, 23 (2001), 5661–5668. PMID: 11774905.
23. Song, B., Hu, Y., Adorna, H. N., and Xu, F. A Quick Survey of Tissue-Like P

Systems. Romanian Journal of Information Science and Technology 21, 3 (2018),
310–321.

24. Song, B., Song, T., and Pan, L. A time-free uniform solution to subset sum
problem by tissue p systems with cell division. Mathematical Structures in Com-

puter Science 27, 1 (2017), 17–32.
25. Song, B., Zhang, C., and Pan, L. Tissue-like P systems with evolutional sym-

port/antiport rules. Information Sciences 378, C (Feb 2017), 177–193.
306
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Abstract. The K-means algorithm gets widely used due to its simplic-
ity and effectiveness. But it is sensitive to the selection of initial clus-
ter centers. In this paper, we proposed a initialization method to select
initial clustering centers for K-means algorithm. Furthermore, because
of the boundedness of the initialization method, we modified it and de-
signed a Tissue-like P system to realize the new method. The experiments
are operated on five UCI datasets, the results proved that the designed
Tissue-like P system based on the new initialization method is effective.

Keywords: Initialization, K-means, Tissue-like P system

1 Instruction

Clustering becoming more and more popular nowadays because it has shown
its usefulness in several fields like industry, business and processing. The K-
means algorithm, which is a nonhierarchical clustering algorithm,gets widely
used due to its simplicity and effectiveness[1]. But it is sensitive to the selection
of initial cluster centers, it gets trapped in local optimum easily when serval bad
initial cluster centers have been selected. Many researchers are devoted in the
initialization of K-means algorithm.

Khan and Ahmad[2] proposed the cluster center initialization algorithm (C-
CIA) to solve the cluster initialization problem. It initiates by calculating the
mean and the standard deviation for data attributes and then separates the data
with a normal curve into a certain partition. Redmond and Heneghan[3], first
constructed a kd-tree of the points to perform density estimation and then used a
modified maximin method to select K centers from densely populated leaf buck-
ets. In the FSDP[4] method, the density of a point is estimated by a gaussian
kernel, whereas the computation complexity will increase correspondingly due
to the fact that the gaussian kernel is a nonlinear function. Arthur and Vassil-
vitskii[5] proposed the k-means++ approach. In k-means++, the point will be
chosen with the probability proportional to the minimum distance of this point
from already chosen seeds. Due to the random selection of the first seed and
the lack of the density definition of points, different runs have to be performed
to obtain good clustering. Bai, Liang, Dang, and Cao[6] integrated the distance
and the density together to select initial cluster centers. They used the total
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distance between an object and all objects from a data set as the density of
the object. Khan and Ahmad[7] proposed a new method for selecting the most
relevant attributes, namely Prominent attributes, compare it with another exist-
ing method to find Significant attributes for unsupervised learning, and perform
multiple clustering of data to find initial cluster centers. The proposed algorithm
ensures fixed initial cluster centers and thus repeatable clustering results.

In this paper, we proposed a initialization method for K-means and designed
a Tissue-like P system for the modified initialization method. Five UCI[8] data
sets are used to evaluate the performance of the proposed method and system.

The article is organized as follows. Section 2 gives the preliminaries. Section
3 presents the proposed new initialization method for K-means. Section 4 shows
the Tissue-like P system we designed for the modified initialization method.
Section 5 provides an experimental validation of the proposed algorithm. Section
6 draws the conclusions.

2 Preliminary for Tissue-like P System

2.1 Tissue-like P System

Membrane computing is a new branch of natural computing, which derived from
the construct and functions of cells or tissues. The membrane are arranged as a
hierarchical structure and operates in a parallel way thus can reduce the time
complexity greatly.

Fig. 1. A basic membrane structure

As depicted in Fig.1, a membrane m with no upper neighbor is called a
skin membrane and a membrane m with no lower neighbor is called elementary
membrane. The membranes always have objects and rules with it. The whole
system is divided into different regions by the membranes. The space outside the
skin membrane is called environment. A region is either a space delimited by an
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elementary membrane or a space delimited by non-elementary membranes. In
the membrane, there are some rules and objects to execution the algorithm.

Formally, The Tissue-like P system(of degree q>0) with symport/antiport
rules is a construct

Π = (O,ω1, . . . ,ωq, R1, . . . , Rq, R
′

, i0) (1)

where
(1) O is a finite alphabet, whose symbols are called objects;
(2) ωi(1 ≤ i ≤ q) is finite set of strings over O, which represents multiset of

objects initially present in cell i;
(3) Ri(1 ≤ i ≤ q) is finite set of evolution rules in cell i;
(4) R

′

is finite set of communication rules of the form (i, u/v, j), which repre-
sents communication rule between cell i and cell j, i ̸= j, i, j = 1, 2, . . . , q, u, v ∈

O∗ ;
(5) i0 indicates the output region of the system.
As usual in the framework of membrane computing,every cell in tissue-like P

systems,works as a computing unit in a maximally parallel way. In a computing
step, each object in a cell can only be used for one rule (non-deterministically
chosen when there are several possibilities), but any object which can participate
in a rule of any form must do it, i.e, in each step we can apply a maximal set of
rules.

A computation in a tissue-like P system of degree q is a sequence of steps
which start with the cells 1, . . . , q containing the multisets w1, . . . , wq and where,
in each step, one or more rules are applied to the current multisets of symbol
objects. A computation is successful if and only if it halts. When it halts, it
produces a final result in output cell.

3 A Initialization Method For K-means Algorithm

In this section, we present the method for selecting the initial cluster centers in
detail. To begin with, several definitions are described.

The average distance of the data set X within n data points is defined as

AVD(X) =
2

n(n− 1)

n
∑

i=1

n
∑

j=j+1

d(Xi, Xj) (2)

where d(Xi, Xj) is the Euclidean distance between data point Xi and data
point Xj .

The density of the data point Xi in data set X is defined as:

ρ(Xi) =
n
∑

j=1

f [d(Xi, Xj)−AVD(X)] (3)

where f(x) = 1 if x < 0, otherwise f(x) = 0.
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The average distance between the data point Xi and its neighborhoods is
defined as

D(Xi) =
1

ρ(Xi)

∑

Xj∈Ni

d(Xi, Xj) (4)

where Ni = {Xj |0 < |Xi −Xj | ≤ AVD(X)} .
S(Xi) which represents the distance of the data point Xi is defined as

min{d(Xi, Xj)} if existing Xj satisfy ρ(Xj) > ρ(Xi). Otherwise, it is defined
as max{d(Xi, Xj)}, that is

S(Xi) =

⎧

⎨

⎩

min
j:ρ(Xj)>ρ(Xi)

{d(Xi, Xj)}, ∃j, ρ(Xj) > ρ(Xi)

max{d(Xi, Xj)}, otherwise
(5)

The possibility of the data point is a clustering center is defined as

P (Xi) = ρ(Xi) ∗
1

D(Xi)
∗ S(Xi) (6)

The possibility P (Xi) is not limited to [0, 1], it’s a value represents the data
point is actually a clustering center to what extent. The value of ρ(Xi) repre-
sents the quantity of the data points around data point Xi. D(Xi) represents the
tightness and degree of concentration to potential clustering center Xi, the s-
maller the value D(Xi), the tighter and more concentrated the neighbors around
the clustering center. S(Xi) represents the dissimilarity between the two clus-
ters. To sum up, the greater value the P (Xi), the data point Xi more likely to
be a clustering center.

To improve the quality of clustering results of K-means algorithm, we pro-
posed a new selection method of initial clustering centers. Firstly, given the data
set X and clustering number k, the average distance of the data set X is calcu-
lated according to equation (3) and the value of ρ(Xi), D(Xi), S(Xi) of each data
point in data set X is calculated according to equation (4)(5)(6) in sequence.
Then, the k data points which have larger value of P (Xi) than the remaining
data points are set clustering centers.

4 The Designed Tissue-like P system For K-means With

Improved Initialization Method

In section 3,we proposed a new initial clustering centers determining method for
K-means. However, the quality of clustering results with the improved K-means
algorithm is mainly depend on the value of average distance of the data set.
The data points that belongs to different clusters will be grouped into the same
cluster if the value of average distance becomes larger than former value. The
data points will be divided into several different clusters if the value is too small.
Thus, the value is essential to the quality of the clustering results. Also, the value
is difficult to determined and to solve this problem, we designed a P system to
execute the improved K-means algorithm.

311



4.1 A Tissue-like P system designed

As depicted in Fig.2, the P system contains q + 1 cells in total. The cell which
labeled by 1 is input cell, it stores the data objects and delivers them to cells
which labeled 2 to q. These q − 1 cells are called initialization cell which will
run independently, they are used to select the initial objects by the proposed
method and passing them to cell which labeled q + 1. The cell q + 1 executes
K-means algorithm with objects passed by cell 2 to q, then pass the best object
to the output region which labeled by 0, that is, the environment in Tissue-like
P system.

In the initialization cell 2 to q, the initialization method are modified. we
set a multiplier λ changes between 0.1 to 10 except 1 for average distance. For
each initialization cell, the value of multiplier λ are determined by two steps.
Firstly, the value of multiplier λ are chosen in interval [0.1, 1) or (1, 10] by a
equal possibility. Then the specific value are determined randomly. Thus, the
system can produce a more robust results compared to original method.

Fig. 2. The loop structure of designed P system

4.2 Objects

Each cell in the Tissue-like P system contains a number of objects. Cell 1 has n
objects, each object is considered as a d dimensional vector with the form

zi = zi1, zi2, . . . , zid (7)

where d are number of dimensions the object has. i represents the ith object
in cell 1 and i = 1, . . . , n.
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For objects in cell 2 to q + 1 and the environment, each object is considered
as a (k ∗ d) dimensional vector. Each object is denoted as the following form

Z = (z11, . . . , z1d, . . . , zi1, . . . , zid, . . . , zk1, . . . , zkd) (8)

where k are number of the cluster centers and 1 ≤ k ≤ n. According to
equation (8), that is

Z = (z1, . . . , zi, . . . , zk) (9)

The initial object Z generates in the initialization cell according to the objects
within cell 1 by the proposed method. Each initialization cell generates one object
thus q initialization cells generate q objects. Initialization cells pass the q objects
to the cell q + 1, then cell q + 1 selects the best object from the q objects and
delivers it to environment.

4.3 Rules

Except for object, there are two types of rules in the Tissue-like P system:
evolution rules and communication rules. The evolution rules aim to evolve the
objects in cells and the communication rules aim to exchange and share the
objects. Evolution rules are used to evolve the objects associated with cluster
centers, so the Tissue-like P system is able to find the optimal cluster centers
for a data set via the evolution of objects. Moreover, communication rules will
realize the exchange and sharing of better objects between adjacent cells.

Evolution rules Evolution rules is to evolve the objects in cells to generate new
objects used in next computing step. For the designed Tissue-like P system, the
initialization cells is used to generate objects Z which represent a set of cluster
centers. The evolution rules associated with initialization cells are:

(1)r1 = {z1z2 . . . zn → z1i z
2
i . . . z

k
i , 1 ≤ i ≤ n}. Rule r1 express that initializa-

tion cells select k objects by the modified method. Because of the different value
of λ, the k objects maybe different.

(2)r2 = {z1i z
2
i . . . z

k
i → Z, 1 ≤ i ≤ n}. Rule r2 express that initialization cells

generate a new object Z represent cluster centers.
The evolution rule within the cell q + 1 is:
r3 = {Z1, . . . , Zq → Zj , 1 ≤ j ≤ q}. The rule express that cell q + 1 select

the best object from previous q cells.

Communication rules Communication rules are used to exchange the objects
between each cell and update the best object found so far in the environment.
In the designed Tissue-like P system, cell 1 to q pass the object to its following
cell.

The communication rules are:
(1) (1, z/λ, i), i = 2, ..., q. The rule expresses that object z is communicated

from cell 1 to cell 2-q.
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(2) (i, Z/λ, q + 1), i = 2, ..., q. The rule expresses that object Z is communi-
cated from cell 2-q to cell q + 1.

(3) (q + 1, Z/λ, 0), The rule expresses that object Z is communicated from
cell q + 1 to the environment.

where λ represents no object will be transport inversely.

4.4 Halting and output

The designed Tissue-like P system is single-track and cell can only passes the
object to its following part. So when the environment is not null anymore, that
is, cell q + 1 has delivered a object to the environment, the system halts. The
object stored in the environment will be regard as the best object, which is same
as optimal cluster centers.

5 Experiment Analysis

5.1 Data Set Description

We tested the proposed algorithm on five data sets from the UCI, including the
Wine, Glass, Haberman, Soybean-small and Zoo. The detailed descriptions are
in Table 1.

Table 1. Descriptions of the 5 Data Sets

Data Set Number of Data Points Number of Attributes Number of Classes

Wine 178 13 3
Glass 214 9 6
Haberman 306 3 2
Syebean-small 47 35 4
Zoo 101 16 7

5.2 Experimental results

In order to check the influence of different numbers of initialization cells in
the Tissue-like P system. We applied the system within different numbers of
initialization cells on the five datasets. The numbers of initialization cells in
three P systems are set to 4 cell, 8 cells, 16 cells. Because of the stochastic
mechanism existed in the P system, we run the algorithm for 50 times with
different numbers of cells independently. We use the number of correct points
to represent the clustering quality. The mean values and standard deviations
of the 50 runs are calculated to represent the average clustering quality and
robustness of the P systems. Table 2 shows the performance of Tissue-like P
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systems with different numbers of initialization cells. We can observe that the
Tissue-like P system with 16 initialization cells can always gets a higher mean
value and a higher value of standard deviation compared to the other two Tissue-
like P systems. In fact, the Tissue-like P system with 16 initialization cells gets
the largest mean value and smallest standard deviation, that is, the Tissue-like
P system with 16 initialization cells produce a pretty good clustering result with
high clustering quality and robustness.

Table 2. The performance of P systems with different numbers of initialization cells

Data Set 4 cells 8 cells 16 cells

Wine 127.96±1.7545 128.9±0.9000 129.12±0.5879

Glass 187.14±6.8819 188.36±4.0731 188.94±0.4200

Haberman 170.82±1.5961 171.60±1.6248 172.30±2.1932

Syebean-small 41.72±4.0102 43.66±2.8608 45.50±2.2913

Zoo 86.72±3.2621 88.38±1.2632 88.94±0.2375

Fig. 3. The average correct rates obtained by the algorithms for 50 runs

In order to further evaluate clustering performance, the proposed initializa-
tion method for K-means (IMFK instead in Table 3) and the Tissue-like P system
designed for the modified initialization method based K-means algorithm(TP-
IMFK instead in Table 3) is compared with algorithms:classical k-means, CCIA,
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kd-tree, K-means++, FSDP, Bai’s, Khan’s. We computed the average correct
rates by the average correct points obtained from the 50 runs and the results
of TP-IMFK in Table 3 are from the Tissue-like P system with 16 initialization
cells. Table 3 gives the average correct rates obtained by the algorithms for 50
runs on the five data sets and the corresponding line graph are in Fig.3. The
comparison results show that the Tissue-like P system designed for the modi-
fied initialization method based K-means algorithm provides the largest value of
correct rates in compare to those of other algorithms. For data sets except Zoo,
the proposed initialization method also shows good performance compared with
other algorithm except the TP-IMFK.

Table 3. The average correct rates obtained by the algorithms for 50 runs

Data Set K-means CCIA kd-tree K-means++ FSDP Bai’s Khan’s IMFK TP-IMFK

Wine 0.6704 0.5674 0.5674 0.5978 0.7022 0.7022 0.7022 0.7022 0.7254

Glass 0.5193 0.5421 0.4626 0.5086 0.4953 0.4626 0.5421 0.7330 0.8829

Haberman 0.5132 0.5196 0.5000 0.5196 0.5000 0.5000 0.5000 0.5392 0.5631

Syebean-small 0.6996 0.7234 0.7234 0.7204 0.7234 0.5532 0.7234 0.7234 0.9680

Zoo 0.6995 0.5941 0.7327 0.7855 0.6634 0.6931 0.5050 0.7326 0.8806

6 Conclusion

In the paper, we designed a Tissue-like P system with communication rules and
evolution rules for the modified initialization method. The initialization method
was proposed in order to improve the clustering quality of K-means algorithm.
We evaluated the system with different number of initialization cells: 4 cells, 8
cells, 16 cells. Finally, we compare the system(16 cells) with the other algorithms
on five UCI data sets to prove the validity of the system.
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Abstract. This paper presents a novel approach for thresholding of image seg-

mentation using a modified membrane-inspired algorithm based on particle swar-

m optimization (PSO) with hyperparameter, namely MIPSOH. In this approach,

to solve the optimal thresholding problem in image segmentation, a cell-like P

system with a specially designed membrane structure is presented and an im-

proved PSO evolution mechanism is integrated into the cell-like P system with

hyperparameter. With the merits of fast convergence of improved PSO and high

parallelism of P systems, the proposed approach can achieve better segmentation

results effectively and quickly. Both the qualitative and quantitative experimental

results in the proposed approach verify the computational efficiency and segmen-

tation effectiveness.

Keywords: Image segmentation; particle swarm optimization; membrane com-

puting; P system; hyperparameter optimization; thresholding approach

1 Introduction

Image segmentation is generally one of the first stages in any attempt to analyze or in-

terpret an image automatically. It bridges the gap between low-level image processing

and high-level image processing. Low/mid-level image processing algorithms are usu-

ally designed to make the input image easier to process for the application in high-level

image processing. Image segmentation is a basic pre-processing step to deal with sub-

sequent practical problems [1]. Thresholding is widely used as a popular tool in image

? Corresponding author.
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segmentation, due to its simplicity and efficiency. The goal of thresholding is to sepa-

rate objects from background in an image or discriminate objects from objects that have

distinct gray levels [2]. The pixels with gray values greater than a certain threshold are

classified as object pixels, and those with gray values lesser than the threshold are classi-

fied as background pixel [2]. Otsus method [3] and Kapurs method [4] find the optimal

thresholds by maximizing the between-class variance of gray levels and the entropy

of the histogram respectively. In addition, thresholding-based approaches occasionally

have been used in color image segmentation [5,6], mostly for medical image process-

ing, and their usages are often investigated on grayscale image segmentation [7]. More

detailed division which roughly covers algorithms in image segmentation algorithms

includes six main categories: histogram thresholding-based methods, clustering-based

methods, edge detection-based methods, region-based methods, graph-based methods,

and hybrid methods [1,8].

Image thresholding is an important method in image segmentation. The key point

in image thresholding is to find an appropriate threshold, which is assumed to be an

optimal problem in the gray levels. There are many intelligent optimal methods in this

fields. PSO is an important optimal method for image segmentation. The algorithm was

initially inspired by the social behavior of the birds and then used swarm intelligence

to build a simplified model [9]. PSO algorithm is a kind of evolutionary algorithm like

genetic algorithm (GA) and differential evolution (DE). It starts from the random so-

lutions, and obtains the optimal solution by the iterative search. The fitness is used to

evaluate the quality of the solution, because it is simpler than rules of GA, i.e., with-

out ‘crossover‘ and ‘mutation‘ operation in GA. In PSO, the potential solutions, called

particles, search the problem space by following the current optimum particles. This

algorithm has gained research attention since it was proposed and is widely applied in

solving practical problems [1,9,24,37,49,50].

In recent years, some new intelligent algorithms are introduced in image segmen-

tation using membrane computing (MC). A comprehensive literature review pertaining

to image segmentation using MC models has been presented in [27]. MC was initiat-

ed by Păun [12,13,14]. It focuses on the investigations of computational model, called

membrane system or P system. Many researchers in the field of MC have proposed

various techniques inspired by cell biology for applications. More especially, they con-

sidered cell organization in tissues, organs, and most recently, from the organization of

neurons. MC is an interdisciplinary research directions and has been widely applied in

the areas of computer science, biology, biomedicine, bio-informatics and several other

fields such as mathematics, artificial intelligence, automation, economics. These mod-

els are abstracted from the structure and functioning of living cells, as well as from

the way the cells are organized in tissues or high order structures [15]. P systems have

the characteristics of distribution, parallelism and expansibility. It is also suitable for

solving a variety of practical problems [17], such as engineering optimization [18,19],

fault detection [20], image processing [21,22], and modeling biological and ecological

systems [23].

Inspired by the the characteristic of pixels clustering excellent schema recording

and parallelism of PSO, transformation or communication-like rules in P systems for

each pixel is introduced to design thresholding method. The main contributions of this
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paper can be summarized as follows: (1) A membrane-inspired algorithm based on par-

ticle swarm optimization with hyperparameter optimization is proposed, here we name

it MIPSOH. A dynamic double one-level membrane structure (D-OLMS) with mem-

brane division and dissolution is presented to combine with PSO to allocate the parti-

cles and execute the communications between elementary and skin membranes. (2) The

proposed approach is used to obtain best thresholding in image segmentation. The solv-

ing of image thresholding process is considered as an optimal problem to maximize

the variance of the different classes (or minimize the within-class) in gray levels. (3)

Extensive experiments are carried out by considering maximization of between-class

variance and minimization of within-class variance to verify the effectiveness and prac-

ticality of the proposed approach, and it outperforms several existing methods in terms

of the computational efficiency and segmentation effect.

The organization of this article is as follows. Section 2 describes the particle swarm

optimization and structure of membrane. Section 3 presents the proposed approach in

detail. In Section 4, the effectiveness of algorithm is verified in the experiments. Con-

clusions and future works are finally drawn in Section 5.

2 Related works

This section starts with a brief introduction of PSO and the structure of membrane with

OLMS.

2.1 PSO

PSO is a population-based stochastic algorithm that starts with an initial population

of randomly generated particles [9]. For a search problem in a D-dimensional space,

each particle keeps track of its coordinates in the problem space which are associated

with the best solution (fitness) it has achieved so far. The fitness value is also stored.

This value is called pbest. Another ‘best‘ value that is tracked by the particle swarm

optimizer is the best value, obtained so far by any particle neighborhood of the particle.

When a particle takes all the population as its topological neighbors, the best value is a

global best and is called gbest. During a search process, each particle is attracted by its

previous best particle (pbest) and the global best particle (gbest) as follows [28,29].

vij (t+ 1) = w · vij(t) + c1 · rand1ij · (pbestij(t)� xij(t))

+ c2 · rand2ij · (gbestj(t)� xij(t))
(1)

xij (t+ 1) = xij (t) + vij (t+ 1) (2)

where i = 1, 2, . . ., N is the particles index, N is the population size, Xi = (xi1, xi2, ...,
xiD) is the position of the ith particle. Vi = (vi1, vi2, ..., viD) represents the velocity

of the ith particle. The pbesti = (pbesti1, pbesti2, ..., pbestiD) is the best previous

position yielding the best fitness value for the ith particle. gbest = (gbest1, gbest2, ...,
gbestD) is the global best particle found by all particles so far. The parameter w is called

inertia factor, which is used to balance the global and local search abilities of particles
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[28]. Larger inertia weights indicate larger exploration through the search space while

smaller values of the inertia weight restrict the search on a smaller space [11]. Generally,

PSO starts with a larger w, and decreases gradually over the iterations [1]. rand1ij and

rand2ij are two uniform random numbers generated independently within the range of

[0,1], c1 and c2 are two learning factors which control the influence of the social and

cognitive components, and t = 1, 2, . . . indicates the iteration number [29].

2.2 The structure of membrane with OLMS

In the MIPSO, a P system with a distributed parallel framework is used to properly orga-

nize PSO. To keep a good balance between exploration and exploitation with a limited

computational work. The OLMS with m elementary membranes is shown in Fig.1, and

is used to design the membrane structure, labeled with 1 ⇠ m elementary membranes

and a skin membrane. The structure in OLMS is listed as follows [38,37,40].

(1) Initialize a one level membrane structure as [[ ]1, [ ]2, [ ]3, ...[ ]m]0, where m

elementary membranes are labeled by 1, ...,m, and the skin membrane is labeled

by 0;

(2) Initialize the population X = (x1, x2, x3, ..., xn), through D�dimensional s-

pace with n particles. xi = (xi1, xi2, xi3, ..., xiD) denotes the position of ith

particle in this population. vi = (vi1, vi2, vi3, ..., viD) denotes the current speed

of ith particle in population. Put the particles into m elementary membranes

by equal distribution from the population X , and make sure every elementary

membrane have at least one individual, and skin membrane is empty. The re-

maining (n � m) individuals are randomly assigned to m elementary mem-

branes. The specific operations are as follows: ω0 = λ, ω1 = q1q2q3...qn1 , ω2 =
qn1+1qn1+2qn1+3...qn2 , ......, ωm = qnm−1+1qnm−1+2...qnm

, n1+n2+ ...nm 

n, where n is the population size, qi(1  i  n) denotes the particle individual.

(3) G = (g1, g2, ..., gm) is the evolution iteration in each elementary membrane.

They are mutually independent. gi(i = 1, 2, ...,m) is the evolution iteration for

ith particle, which is a random number in [1, gmax].
(4) Conduct the optimal operation with PSO separately in each elementary mem-

brane, and the detailed operation is as follows.

(i) Evaluate the fitness value for each particle in the membrane.

(ii) Compare the best value of the pbest to the fitness value of each particle

experienced. If it is better, assume it to be the optimal value of the current

particle.

(iii) Compare each particle’s optimal value pbest with the group’s optimal value

gbest. If it is better, set it as the optimal value of the current group.

(iv) Update the speed and location of each particle by the equation (1) and (2).
(5) Perform transformation and communication rules, i.e., information exchange be-

tween the elementary membranes and the skin membrane. PSO is guided by the

current optimal self and the optimal overall population. It passes through speed

and location to complete evolution for new species. Therefore, PSO transmits the

optimal individual (from the m elementary membranes) in each membrane to the

skin membrane by transshipment operation as well as [26].
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3 The Proposed Approach

In this section, we introduce the structure based on a cell-like P system where the lo-

cal optimization is performed in each elementary membrane. Through the exchange of

individual information from the elementary membrane, the optimal individual is select-

ed, and returned to each region to replace the worst solution. The next generation of

PSO evolution is influenced in the elementary membrane to complete the population

evolution. For more robustness and more quick convergence, the set of local optimal

solution (SLOS) and the set of hyperparameter optimization (SHO) are used to adjust

the fitness function. The relationships between the membrane system model here used

and the evolution-communication p-system model are: Similarities: The evolutionary

computing is performed inside the elementary membrane, Each elementary membrane

task is carried in multiple processes. Differences: 1. The surface membrane interferes

with the global optimal solution of PSO in each elementary membrane, that is, the op-

timal one in the elementary membrane is selected and sent back to the submembrane;

2. The results of each elementary membrane operation is sorted and combined for the

new round in hyperparameters.

3.1 The description of MIPSO with OLMS

PSO has become a popular optimizer and is applied in practical optimization problems.

In the past decades, many variants of PSO have been proposed. As researchers have

learned about the technique, they derived new versions aiming at different demands

and published theoretical studies of the effects of the various parameters and proposed

many variants of the algorithm [31]. The research status and the current application of

the algorithm as well as the development in the future direction are reviewed in [32].

The different variants of PSO with respect to initialization, inertia weight and mutation

operators are listed in [33]. The important factors and parameters of PSO are summa-

rized with the available literature of the PSO algorithm [34]. It provided the advances

in PSO, including its modifications, hybridization, extensions, theoretical analysis, and

parallel implementation. Also, provided a survey on applications of PSO in the fol-

lowing eight fields: electrical and electronic engineering, automation control systems,

communication theory, operations research, mechanical engineering, fuel and energy,

medicine, chemistry, and biology [35]. This study comprises of a snapshot of particle

swarm optimization from the authors perspective, including variance in the algorithm,

modifications and refinements introduced to prevent swarm stagnation and hybridiza-

tion of PSO with other heuristic intelligent algorithms [36]. After the first process of

PSO, their optimal convergence solution will send to the skin elementary from elemen-

tary membrane, then the best individual will be selected in the skin elementary, and

send back to the elementary membrane for replacement as the global optimal solution.

The convergence results in each elementary are sent to the skin membrane, the variance

is used to determine the performance of results, and lead to the next round of hyperpa-

rameter in PSO evolution for elementary membrane.

In this paper, to consider the superiority of a global and local optimization algo-

rithm, we use a membrane-inspired optimization algorithm with OLMS [25,26] struc-

ture. OLMS is currently the most widely used membrane structure, which is a spe-
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cial hierarchical membrane structure derived from a cell-like P system. It has a certain

number of elementary membranes inside the skin membrane. The communication in

OLMS is usually a global process and can be executed between any two or more el-

ementary membranes. The membrane computing algorithm with OLMS shows better

optimization performance than their counterparts because of their improved capacity of

balancing exploration and exploitation, which is derived from their better balance be-

tween convergence and diversity [40]. For example, the membrane-inspired algorithm

and particle swarm optimization (MIPSO) [37,38] are used to optimize the design of

a proportional-integral-derivative controller [39], mobile robot path planning [40,41].

Moreover, MIPSO uses the representation of individuals, evolutionary rules of particle

swarm optimization, one-level membrane structure (OLMS) [46] and transformation or

communication-like rules in P systems to design its algorithm.

3.2 The modified MIPSO structure

Membrane computing can provide flexible evolution rules and parallel-distributed frame-

work [15], which is very beneficial to the membrane-inspired evolutionary algorithms

(MIEAs). In [16], a certain number of hierarchical membrane structures in the skin

membrane were combined with evolutionary algorithms (EAs) for multi-objective opti-

mization problems. The quantum-inspired evolutionary algorithms are combined with P

systems to solve image processing problems [21]. Also PSO with one-level membrane

structure is used to solve broadcasting problems of P systems [25]. The investigations

verify the usefulness of the introduction of P systems into EAs to solve many real-world

applications [41]. In our search, there is no work which focuses on the use of membrane

computing to solve image thresholding by PSO, which is one of very significant appli-

cations.

The modified membrane-inspired particle swarm optimization (MIPSO) structure is

shown in Fig.1. It is a hierarchical arrangement of membranes in a cell-like P systems

[42]. Several membranes can be placed in the skin membrane, and separates the system

from the environment. A membrane without any other membranes inside is called an

elementary membrane. Each membrane determines a compartment or a region. Each

region contains a multi-set of objects, which evolve in terms of various rules such as

transformation/communication rules [37].

Formally, a cell-like P system with an output membrane set of objects is as follows

[43,44].

Π = (V, T, µ,ω1, ...,ωm, R1, ..., Rm, i0) (3)

where

(1) V is an alphabet and its elements are called objects;

(2) T ✓ V (the output alphabet);

(3) µ is a membrane structure consisting of m membranes, with the membranes la-

beled by the elements of a given set H containing m labels, i.e., H = 1, 2, ...,m,

where m is called the degree of Π;

(4) ωi , 1  i  m, are strings which represent multisets over V associated with the

regions 1, 2, ...,m of µ ;
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Fig. 1. The structure of cell-like P system in modified MIPSO

(5) Ri, 1  i  m, are finite sets of evolution rules over V associated with the

regions 1, 2, ...,m of µ;

(6) i0 is the from one of the labels of 1, 2, ...,m and region is considered as output

region of the system.

The rules of Ri, 1  i  m, have the form a ! v, where a 2 V and v 2

(V ⇥ (here, out, in))∗. The multiset v consists of pairs (b, t), where b 2 V and

t 2 (here, out, in), here means that b stays in the region where the rule is used; out in-

dicates that b exits the region and in means that b will be transferred to one of the mem-

branes contained in the current region. All the rules are chosen in a non-deterministic

way. Moreover, the rules can be cooperative, non-cooperative, or catalytic.

3.3 Hyperparameter optimization in MIPSO

By optimizing a series of hyperparameter [51,52,53,54], it is shown that the descending

of convergence speed can be achieved and the intelligent body with higher performance

can be obtained. The number of elementary membrane is m, from the equation of PSO,

we list the vectors of parameters (hyperparameter) , as follows:

�!
W =

2

6

6

6

4

w1

w2

...

wm

3

7

7

7

5

;
�!
C1 =

2

6

6

6

4

c11

c12

...

c1m

3

7

7

7

5

;
�!
C2 =

2

6

6

6

4

c21

c22

...

c2m

3

7

7

7

5

; �!
mv =

2

6

6

6

4

mv1

mv2

...

mvm

3

7

7

7

5

(4)
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Step 1: Construct hyperparameter optimization matrix:

M =

2

6

6

6

4

w1, c11, c21,mv1

w2, c12, c22,mv2

...,
...,

...,
...

wm, c1m, c2m,mvm

3

7

7

7

5

(5)

For 1-m, put them in descending order, that is, fit1 � fit2 � ... � fitm.

Step 2: Store the vector of fitness function according to variance.

�!
fit =

⇥

fit1, fit2, ..., fitm

⇤T
(6)

Step 3: Construct linear combination based on the fitness function.

�!
fit := (

�!
fit� fitm)/fitm (7)

Step 4: Make a strategy for the situation such that fitm may be 0.

fitm = 0.5 ⇤ fitm−1 (8)

Step 5: Add a random number to the fitness function for more robustness.

�!
fit =

�!
fit+ rand(0, 1) ⇤max(

�!
fit) (9)

Step 6: Normalize
�!
fit.

Step 7: Obtain new parameters (w∗
, c

∗
1, c

∗
2,mv

∗) from next computing.

�!
fit =

⇥

fit1, fit2, ..., fitm

⇤T
�

2

6

6

6

4

w1, c11, c21,mv1

w2, c12, c22,mv2

...,
...,

...,
...

wm, c1m, c2m,mvm

3

7

7

7

5

(10)

where ‘�‘ defines Hadamard product. Put the fitness function of new parameters and the

optimal individual to each elementary membrane.

In this paper, we consider the communication rules since the objects in the PSO

with cell-like P system evolve independently. The flowchart of the proposed MIPSOH

is shown in Fig. 2, and the details of the pseudo code of the MIPSOH is designed as

follows.

4 Experimental Results

In several experiments, the individual in each elementary membrane is randomly ini-

tialized. Compared with grid search, it has been proved that random search has greater

advantages in the scientific community. It is easy to implement. The elementary mem-

brane initializes itself with its own function, not need the skin membrane in the process
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Algorithm 1 The pseudo code of the MIPSOH

Input: The pixel values of image I(n ∗ n)
Output: The thresholding of image I(n ∗ n)

Begin

t = 1
(1) Initialization of parameters for PSO and membrane structure, number of iterations

(2) Allocate particles in each elementary membrane

While (not termination condition) do

for i = 1 : m
(3) Perform PSO in the ith elementary membrane by maximizing the variance

(4) Obtain the SLOS and SHO from each elementary membrane

(5) Select gbest from SLOS, construct linear combination based on SHO

(6) Add a random number to the fitness function

end

(7) Implement communication rules

t = t+ 1
end

end

of I/O. The parameters of the proposed multi-level thresholding method based on P sys-

tems are given as follows: (i) The cell-like P system includes 8 elementary membranes

(m = 8), where the number of objects (population) contained in each elementary mem-

brane is 32, and the maximum execution number step is 3, (ii) In the position-velocity

model, maximizing the between-class variance, or minimizing within-class variance is

regarded as our criterion to find the optimal segmentation thresholds in gray level im-

ages.

For PSO-based method, basic position-velocity model is employed and its param-

eters are: population size 32, randomly, Gmax ( maximum generation number )= 10,

c1 = random(m) * 4, m 2 (0, 1), c2 = 4 � c1 + 1, and w randomly varies from 0.0 to

1.0. For DE-based method, its parameters are: population size 30, F (scale parameter)

= 0.5, CR (crossover rate) = 0.3 and Gmax = 10. The experimental results are obtained

on a computer with a Core 8 Intel(R) Core(TM) 2.8 GHz, and 16.0GB RAM.

4.1 The relation of thresholding results and between-class variance

The higher between-class variance with better segmentation is obtained for the same

image in a certain extent in Fig.3 and Fig.4. Because the fitness function is decided by

the maximization of between-class variance, i.e., the discriminant criterion is to max-

imize the separability of the resultant classes in gray levels. In Fig.3, the lena face is

more intact in the higher convergence, which means better thresholding. To further ex-

press the relationship between segmentation effect and convergence value, we select a

bar image in Fig.4. The obtained convergence becomes larger, the subtle line part that

can be separated is more complete and consistent with the real target.
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Between variance: 1229 Between variance: 2485 Between variance: 4011Original image

Fig. 3. The lena segmentation result by different between-class variances

Between variance: 1786 Between variance: 2361 Between variance: 2889Original image

Fig. 4. The edge segmentation result by different between-class variances

Table 1. Time and between variance of different methods for lena test image

K-means DE PSO

time(s) between variance time(s) between variance time(s) between variance

4.621 3569.79 0.418 3727.16 2.738 4004.69

4.967 3569.79 0.584 3796.09 2.714 4011.44

5.362 3569.79 0.397 3730.14 0.880 3997.51

4.967 3569.79 0.225 2065.97 0.882 3931.10

4.2 The evaluation of time and between-class variance

From the above discussion, we know that for the same image, the larger between-class

variance is better segmentation through different methods. The time (in seconds) and

between-class variance of different methods for lena (512⇥ 512) and patch (231⇥ 34)
test image are listed in table [1-4]. It can be seen that the method MIPSOH has the best

and stable convergence in the lena and the patch images. If the between-class variance

of the image is bigger, the MIPSOH method has more advantage. In table 1 and 2, DE

method costs the shortest time. However, its between-class variance is obviously lower

than MIPSOH and with intense fluctuation. Compared to PSO method, the MIPSOH

possess more time, but has better between-class variance. The rapidity and stability of

between-class variance in MIPSOH are obviously superior to other methods.
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Table 2. Time and between variance of different methods for lena test image

DEPS MIPSO MIPSOH

time(s) between variance time(s) between variance time(s) between variance

4.448 3951.27 1.441 4004.56 0.934 4012.39

3.351 3978.41 1.124 4013.53 0.963 4011.93

3.341 3998.90 1.227 4003.76 0.934 4013.44

3.335 4003.92 1.230 4009.13 0.956 4010.96

Table 3. Time and between variance of different methods for patch image

K-means DE PSO

time(s) between variance time(s) between variance time(s) between variance

0.122 2890.603 0.021 2891.787 0.064 2526.152

0.105 2891.685 0.011 2436.941 0.064 509.9181

0.125 2890.603 0.014 1462.304 0.069 702.2191

0.103 2890.603 0.013 1495.740 0.019 1255.884

Table 4. Time and between variance of different methods for patch image

DEPS MIPSO MIPSOH

time(s) between variance time(s) between variance time(s) between variance

0.337 2889.614 0.251 2889.122 0.236 2850.66

0.334 2836.958 0.235 2891.076 0.234 2795.04

0.561 2648.647 0.241 2889.135 0.259 2886.31

0.328 2876.170 0.235 2892.008 0.258 2876.17

4.3 Statistical comparisons of test images

To compare the performance of several algorithms on the test suite, Friedman test

[29,30] is used. Table 5 shows the average ranking of Kmeans, PSO, PSOPS, PSOTPS[2],

DE, MIPSO, MIPSOH. The highest ranking is shown in bold. It can be seen that, the

order of the performance of the seven methods ranks are as follows: MIPSOH, differen-

tial evolution P system (DEPS) [?], PSO, PSOPS, DE, PSOTPS, Kmeans. The highest

average ranking is obtained by the MIPSOH method. It demonstrates that DNSPSO is

the best one among the seven methods. Furthermore, to compare the performance differ-

ences between MIPSOH and the other six methods, we conduct a Wilcoxon signed-rank

test [29]. Table 6 shows the resultant p-values when comparing MIPSOH and the other
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five algorithmssix methods. From the results, it can be seen that MIPSOH is significant-

ly better than all methods within-class variance and computation time.

Table 5. Average rankings achieved by Friedman test for the seven methods.

Methods Rankings of Within-class variance Rankings of computation time

MIPSOH 6.25 5.90

DEPS 4.80 3.90

PSO 3.95 7.00

PSOPS 3.85 2.60

DE 3.45 5.10

PSOTPS 2.85 1.65

Kmeans 2.85 1.85

Table 6. Wilcoxon test between MIPSOH with other methods on within-class variance and com-

putation time.

MIPSOH vs. p-Values of within-class variance p-Values of computation time

Kmeans 2.191e-04 8.857e-05

PSO 8.918e-04 8.857e-05

PSOPS 2.925e-04 8.857e-05

PSOTPS 2.191e-04 8.857e-05

DE 1.318e-04 2.535e-04

DEPS 4.274e-03 8.857e-05

If the assumption that ”The performance of all algorithms are equaled” is rejected,

the conspicuousness performance of the algorithms is different.At the time, the ”post-

hoc test” is needed to distinguish the algorithms further. Nemenyi post-hoc test is com-

monly used. From the friedman-test, the algorithm average order value in Nemenyi

post-hoc test is computed and the following results and obtained: 1) the conspicuous-

ness of MIPSOH is better than PSO, PSOPS, DE, PSOTPS and Kmeans in within-class

variance, 2) the conspicuousness of MIPSOH is better than PSOPS, PSOTPS and K-

means in computation time.
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4.4 The histogram distribution of test images

The well-known images of Lena, Peppers, Hunter and Baboon are shown in Fig. 5(a1,

b1, c1, d1). The size of images is 512⇥512. Fig. 5(a2, b2, c2, d2) shows the histograms

of the test images. The distribution of the histogram has multiple valley and peaks in

Fig. 5(a2, b2), there is a flat uniform distribution in Fig. 5(c2), and a wave peak in the

middle of the concentration in Fig. 6(d2).

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

Fig. 5. Histogram of four test images

4.5 The segmentation results

In the experiment, we conduct the 3 and 4 level gray thresholding segmentation. Table

7 lists the optimal thresholds obtained by different methods. Table 8 and 9 show the

comparisons of CPU time(s) and within-variance for different methods. The proposed

MIPSOH is almost the shortest time except for pure PSO method. However, PSO pos-

sesses the higher within-class variance, which means the PSO method has worse result.

To further demonstrate the subtle difference, the lena segmentation result by different

within variations are shown in Fig.7. The smaller within variance indicate better seg-

mentation result. For example, the hair on the shoulder, the transition is more natural

and smooth, especially in the black and white part.

The segmentation thresholding is shown in table 7 by three and four levels. Their

corresponding cost time and within-variance are listed in table 8 and table 9. We can

see that the proposed MIPSOH cost less time except the PSO in table 8, and obtain

the almost best within-variance in table 9. A Hyper-parameter optimization is added to

the MIPSO, called MIPSOH. It can get a smaller within-variance and less time than

MIPSO. Because of the search strategy, it makes the MIPSO better than PSO. MIPSO

can correct mistakes in time. MIPSOH cost less time and with smaller within-variance,

that is, the proposed method gain better results.
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Table 7. Optimal thresholds obtained by different methods

Images C Kmeans PSO MIPSO DE DEPS MIPSOH

baboon
2 13, 95 101, 153 97, 147 106, 153 102, 150 100, 150

3 1, 30, 93 83, 113, 155 91, 142, 157 112, 139, 159 104, 125, 162 87, 117, 155

butterfly
2 25, 69 79 ,155 74, 152 73, 143 67, 153 134, 219

3 2, 60, 65 56, 142, 222 72, 134, 239 78, 138, 224 77,155, 236 92, 154, 226

House
2 16, 74 91, 160 108, 176 103, 150 97, 166 94, 159

3 27,69, 102 54, 104, 170 49, 90, 166 86, 108, 161 59, 91, 157 94, 159, 223

Hunter
2 19, 91 78, 134 85, 121 90, 125 93, 143 96, 144

3 3, 44,82 87, 130, 151 87, 112, 154 105, 139, 188 69, 106, 166 85, 122, 145

Lena
2 21, 100 98, 142 108, 185 111, 193 107, 187 112, 184

3 12, 49, 98 6, 127, 187 104, 137, 183 79, 124, 170 83,142, 185 84, 127, 178

Peppers
2 18, 85 67, 139 65, 135 74, 146 63, 134 65, 137

3 17, 52, 98 59, 120, 151 47, 125, 165 61, 127, 171 79,143, 190 63, 131, 166

Table 8. Comparisons of CPU time(second) for different methods

Images C Kmeans PSO MIPSO DE DEPS MIPSOH

baboon
2 6.008 0.353 4.799 1.952 5.548 1.088

3 10.123 0.958 4.384 1.928 6.062 1.269

butterfly
2 7.241 0.152 4.342 0.666 5.151 0.564

3 8.603 0.473 4.042 1.088 5.154 0.590

House
2 1.129 0.144 4.373 0.359 4.199 0.346

3 3.030 0.059 3.837 0.385 4.225 0.241

Hunter
2 10.523 0.213 4.638 2.052 5.557 1.055

3 12.835 0.195 4.152 1.149 5.609 0.982

Lena
2 10.850 0.282 4.716 0.970 1.182 0.824

3 11.959 0.466 5.943 1.597 5.895 0.670

Peppers
2 11.103 0.483 4.518 1.113 5.523 0.812

3 10.712 0.762 4.317 1.115 5.902 1.023
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Table 9. Comparisons of within-variance for different methods

Images C Kmeans PSO MIPSO DE DEPS MIPSOH

baboon
2 112429.506 64508.220 64129.684 65032.446 64041.875 63983.384

3 113039.766 53859.849 54803.094 57198.104 56641.765 53657.78

butterfly
2 346776.735 206724.048 206988.749 210572.396 209088.022 221828.289

3 346776.735 145928.746 160087.634 141161.562 144216.758 140368.893

House
2 245458.759 57861.197 67402.838 63785.278 58747.846 57800.190

3 207427.622 55974.995 54413.223 51593.539 52627.199 45257.855

Hunter
2 137203.308 101098.105 100762.446 100648.895 97451.953 97276.595

3 145724.256 84746.151 82602.652 82405.701 90472.711 82231.434

Lena
2 130779.576 95418.374 90501.569 93110.191 90776.062 90619.838

3 133073.942 93425.283 64231.631 77758.786 69715.811 69208.137

Peppers
2 225563.980 116961.621 116490.022 121324.620 116531.881 116528.324

3 173192.824 90631.167 86674.646 83042.952 105550.733 84363.763

Within variations: 133073Original image Within variations: 93425 Within variations: 64231

Fig. 6. The lena segmentation result by different within variations

5 Conclusions and future work

In this paper, a novel approach is introduced by combining PSO, membrane comput-

ing and hyperparameter optimization to find best thresholding for image segmentation.

This work is motivated by two aspects. On the one hand, the application extension of

cell-like P systems requires further discussions. On the other hand, the image segmenta-

tion in computer vision is a very important problem and its thresholding accuracy needs

to be enhanced. Furthermore, the excellent schema recording and parallelism of PSO

is inspiring and energizing. The process of image segmentation is performed on the

appropriate thresholding through the strategy. The pixel is regarded as a particle, and

the particle swarm migration is carried out to obtain the local optimal solution. These

local optimal solutions are candidate for the skin membrane, and the result of select-

ed optimal solution will return to elementary membrane for the next iteration until the

requirement is met. Experiments conducted on several cases of images verify the feasi-
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bility and correctness of the presented approach. The proposed method is slightly slower

than PSO in speed. In the performance of convergence, on the one hand, the variance

is small in each algorithm performance test, on the other hand, the convergence effect

is better than others, and with better significance, the P value in significance testing is

less than 1

The proposed method has the below advantages: several membrane can be carried at

parallel mechanism, the results is more convergence. It is easier to do something more

upper operation such as transport operations, hyperparameter optimization. The higher

dimension will reflects the swarm intelligence, the membrane make it as a system, not

a bunch, and can assemble more abstract information. The selected PSO is easy to

realized by matrix, with the advantages in speed. Compared with genetic variation, the

transfer process of particle swarm is a simpler hypothesis with advantages brought by

simple hypothesis: It is easy to combine and optimize.

In future, we will focus on the improvement of thresholding accuracy and the relia-

bility of results. Following this work, histogram of image or other features will be also

considered in the future study. In addition, the most serious problem related to the tra-

ditional histogram-based thresholding is that they are incapable of separating different

regions having the same intensity but located in different locations of an image. Overal-

l, thresholding-based methods do not work well in images without recognizable peaks

and valleys, and cannot consider spatial relationships. Therefore, their applicability in

non-trivial image datasets are not still feasible. Noisy image segmentation is an impor-

tant topic in real world applications such as medical image processing. The clustering

algorithm has great potential to deal with both segmentation-oriented denoising and

segmentation at the same time. The clustering process is based on a similarity metric be-

tween a feature vector attributed to each datapoint and cluster centers. Therefore, using

a variety of features such as intensity, color, texture, and spatial, and spatial-frequency

features is possible.
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Fig. 7. Three-level thresholding images obtained by different methods. (a1)−(d1) K-means;

(a2)−(d2) DE; (a3)−(d3)DEPS; (a4)−(d4)MIPSO; (a5)−(d5)MIPSOH.)
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Fig. 8. Four-level thresholding images obtained by different methods. (a1)−(d1) K-means;

(a2)−(d2) DE; (a3)−(d3)DEPS; (a4)−(d4)MIPSO; (a5)−(d5)MIPSOH.)
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Abstract. This paper first presents a simulation of the Simple Kernel
P systems solution to the Graph 3-colouring Problem presented in a pre-
vious paper by Gheorghe et al., implemented in a programming style
named Concurrent ML, which is based in the concept of synchronous
communication between logical processing elements. Realising that in
fact the solution requires little communication, this paper then presents
a compact cP systems solution to the same problem, which has the ben-
efit of being easily adaptable to an n-colouring problem, where n is the
desired number of colours of the system (in fact, only the specified colour
symbols need to be changed). Successful and failing examples of that so-
lution are also presented.

Keywords: cP systems · Simple Kernel P systems · Graph Colouring
Problem · Concurrent ML

1 Introduction

The graph colouring problem is a deceptively simple problem in graph theory.
In its most basic form, it is the problem of assigning labels such as colours to the
nodes in a graph, such that no two connected nodes share a label, usually with
the addition of the extra requirement of finding a minimum or specific number
of required colours – clearly, for any graph with n nodes, it is trivial to colour
it using n colours. The problem finds applications in many areas, including in
timetabling and register allocation for compilers [5]. For the totally general case,
no polynomial time solution has been found so far, though they have been found
for specific forms of graph or particular numbers of colours. For example, in the
case of 3-colouring, the best known solution takes O(1.3289n) time [1].

Gheorghe et al. presented a solution to the 3-colouring problem, using com-
municating Simple Kernel P systems [4]. Based on this work, we first present
a Concurrent ML implementation of the Simple Kernel P systems solution in
[4] and then a fairly concise cP systems solution to the problem. We wish to
emphasise that we do not consider our simulations or cP systems solution to be
‘superior’ to that of Gheorghe et al. (though we do think it demonstrates the
utility of cP systems), but instead wish to complement their work with another
alternative.
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2 Simple Kernel P systems solution to the Graph

Colouring problem in Concurrent ML

Concurrent ML is an approach to concurrency originally created by Reppy [8]
for the programming language Standard ML of New Jersey (hence the name). It
is based in the concept of synchronous message passing between independently
executing logical processing elements over channels [6] (see Figure 1).

Fig. 1. In Concurrent ML, logical processing elements synchronously exchange values
over channels. When one PE offers to give a value on a channel, and another offers
to take on the same channel, they ‘rendezvous’ and exchange the value as a passed
message.

We were interested in exploring Concurrent ML as another methodology to
use for simulating P systems where communication is involved. Both Tissue
P systems with symport/antiport and Simple Kernel P systems using commu-
nication appear to be logical choices to simulate with Concurrent ML. In all
cases, communication is synchronous and involves a rendezvous between dis-
tinct processes/cells/compartments. We finally chose to implement Gheorghe et

al.’s 3-colouring problem solution from [4], as it involves communication between
compartments but is relatively low-complexity and thus appears to be suitable
for a first attempt.

We chose to use the programming language F# with the library Hopac,1

which is modelled on Concurrent ML and follows it closely.2 Insofar as possible,
the implementation has been created to faithfully follow the algorithm described
in [4], and thus perhaps is not optimal in its efficiency, as an idiomatic specifi-
cation of a Simple Kernel P system does not necessarily match to the idiomatic
or efficient form of an F# program. ‘Record’ types are used to represent the
individual compartments described in the paper. The program then advances
through multiple steps, applying the rules (encoded as functions that operate
on the record types) in accordance with the paper. Finally, once a solution is
found, or found not to be possible, that is communicated to the environment.

Ultimately, however, this example is relatively trivial and involves little com-
munication, and therefore does not test Concurrent ML significantly. Much

1 https://github.com/Hopac/Hopac
2 The final program can be found at https://github.com/jcoo092/acmc2018
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of the operation of the algorithm in fact does not involve different compart-
ments/processing elements at all. Instead, it is primarily based in the evolution
of objects contained within the compartments, with minimal communication be-
tween compartments at the end. While that is highly effective in P systems [7],
we think it would be interesting to see the results of using Concurrent ML for
other problems where synchronous communication is a much bigger part the
evolution of the system.

We do note here that, while our implementation is reasonably successful, it
is the case that it is not particularly customisable, and it does not comport as
well to the theoretical rules as the P-Lingua version created for the SKP system.
Neither does it have any form of verfication or invariant detection, as provided by
Spin and MeCoSim. We suggest that it may be worthwhile to pursue future work
that seeks to improve one implementation/simulation by incorporating relevant
parts of the other.

Concurrent ML seems to match to Simple Kernel P systems reasonably well,
but also looks like it would fit well with Tissue P systems with symport/antiport
[11] as well perhaps as Tissue P systems with Channel States [10], and General-
ized Communicating P systems with minimal interaction rules [3]. Technically,
the base form of Concurrent ML would only support antiport (i.e. one-way syn-
chronous communication), but it is fairly simple to build two-way communication
on top of it [9, Ch. 6].

2.1 Simulation results

We recorded the program’s runtime on a number of differing graphs. Firstly,
we used the graph shown in Figure 3 of [4], which took 2.6s to process. In
keeping with that paper and following its definition of G(n,k), we also tested
the graphs G(10, 1) and G(10,10), finding that it requires 0.3s for each. Here
G(n,k) is used to represent a graph with n nodes, where all nodes are connected
to node k in a hub-and-spoke formation.3 We also decided to test our simulation
using the classic Petersen graph, shown in Figure 2, and found that it required
approximately 0.3s.

We further tried it on some complete graphs. For a complete graph of n =
10, the algorithm again requires 0.3s. We then tried it on a complete graph of n
= 20, but the test had to be aborted after a matter of minutes due to a memory
shortage. We then recorded running times of 0.83s, 2.6s, 8.88s, 26.6s and 84s for
n = 11, 12, 13, 14 and 15, respectively. Given that we observed significant jumps
in memory use in the course of running the larger graphs, it appears that the
major cause of the rapid slowdown is likely to do with frequent ad-hoc memory
allocations, though we have not as of yet profiled this fully.

Our implementation is entirely invariant to the edges of the graph, and the
runing time depends only on the total number of nodes. This is to be expected,
since it works as a simple brute-force exploration of the potential solution space.

3 Note that this is different to the random graphs that are also commonly denoted by
this notation.

342



Fig. 2. The classic Petersen graph, with nodes labelled 1 to 10

In [4], a strategy of eliminating compartments for which there can be no
further rule applications is mentioned. Using said strategy, results are typically
achieved quite quickly. Our simulation does not have similar semantics as it
does not select rules to apply at each step, but we note that applying the colour
guard on rule r2,2n+1 of the SKP system throughout the process results in the
pruning of compartments which already contain invalid results (and so can safely
be eliminated). Doing this reduces the evaluation of complete graphs to around
60 milliseconds or slightly more, since every compartment in them can always
be entirely eliminated once four colours have been chosen. It also reduces the
running time of Figure 3 from [4] to around 0.25s, and the Petersen graph, G(10,
1) and G(10,10) to 0.1s

3 cP systems solution to the Graph colouring problem

In working to create the Concurrent ML simulation of the problem, we noticed
that in fact most of the work is performed by the instantiation of new objects,
rather than communication. Thus, the problem appears to be an excellent fit to
the pre-existing formulation of cP systems.

This problem, rather unsurprisingly, has a lot in common with the Hamilto-
nian Path Problem, and in fact our cP systems solution for the Graph Colouring
problem is similar in some regards to our previous Hamiltonian Cycle Problem
solution, as presented in [2]. Unfortunately, and unlike in [2], a lack of a time
meant that as of yet we have been unable to construct simulations of the cP sys-
tems solution in software. We have a number of potential methods for this in
mind, however.
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We start construction of the system with a conceptual finite set V ⊂ N repre-
senting the nodes of the graph4. We further start with a top-level cell containing
a set E of the edges in the graph where E ⊆ {e(n(i)n(j))}i,j2V ; i6=j , a starting
node s(S) where S ∈ V is an arbitrary node in the graph, a functor v containing
the labels of the nodes in V , and a set ∆ of the potential colours – in the case
of the three colour problem it might look like ∆ = {δ(r), δ(g), δ(b)}. Using sepa-
rate symbols in this fashion means that the algorithm can operate as an n-colour
problem, without any other modification. As currently constructed, however, it
makes no attempt to minimise the number of colours used.

3.1 Notation

A cP system can be described as a 6-tuple as shown below.

cPΠ(T,A,O,R, S, s)

Where T is the set of top-level cells at the start of the evolution of the system,
A is the alphabet of the system, O ⊆ A is the sets of initial objects in the top-
level cells, R is the sets of rules for each cell, S is the set of possible states of
the sytsem, and s is the starting state of the system.

Our graph-colouring system can be formalised as

cPΠ(1, A,O,R, S, s0)

where 1 is the single top-level cell of the system, A = ({b, c, e, l,m, n, s, v, δ}
∪{α}∪{E}∪{∆}) is all potential atoms, functors and other symbols of the system
(α is used here to represent the counting symbol contained within objects that is
typically represented using natural numbers), O = (s(S)∪{v}∪{E}∪{∆}) is the
set of initial objects contained within the top-level cell (where S is an arbitrarily
chosen member of v), R is the ruleset in Section 3.2, S = {s0, s1, s2, s3, s4} is
the potential states of the system, and s0 is the initial state of the system.

3.2 Rules

Our entire ruleset is presented in Figure 3. It consists of seven rules, which are
invariant to the problem graph at hand, listed in weak priority order. They are
explained below:

1. This rule begins the evolution of the system. It converts the functor v into a
functor b, which is used further to instantiate new objects with the possible
colourings of the system. It merely selects one the node described by S,
and assigns it a colour at random. The b object holds an l functor which
keeps track of which iteration a given b belongs to; a multiset of m functors
which track nodes and their assigned colours in a potential solution; and

4 In fact, any finite set of arbitrary symbols could be used, but we use the natural
numbers here for ease of reading.
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s0 v(SZ) (1)
→1 s1 b(l(1) m(n(S)c(C)) v(Z)) l(1)

| δ(C)
| s(S)

s1 b(M v(λ) ) (2)
→1 s3 M !env

s1 (3)
→+ s2 b(l(L1) m(n(X)c(C)) m(n(Y )c(D)) M v(Z))

| b(l(L) m(n(X)c(C)) M v(Y Z))
| e(n(X)n(Y ))
| δ(D)
¬ δ(C) = δ(D)

s1 b(l(L) ) (4)
→+ s2 λ

| l(L)

s2 b(m(n(X)c(C)) m(n(Y )c(C)) ) (5)
→+ s1 λ

| e(n(X)n(Y ))

s1 (6)
→1 s4

s2 l(L) (7)
→1 s1 l(L1)

Fig. 3. cP systems rules
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a v functor which continues to track the reducing unexplored nodes of the
graph. A separate global l functor is also instantiated at this point, which
tracks what iteration number the system is currently at, which is used in
later rules. This rule begins in state 0 and ends in state 1.

2. This rule is one of the potential end points of the evolution of the system.
If there are no further remaining nodes to explore in at least one b object,
then one of the bs is selected at random and the multiset of m functors
containing a solution to the colouring problem is output to the environment.
This rule begins in state 1 and ends in state 3. State 3 is used to indicate
to the environment that a solution has been found and the evolution of the
system has terminated. The change in state means that no other rule can be
applied if this rule is applied.

3. This rule is arguably the heart of the process. For every pre-existing b object,
a new one is generated with a random colouration assigned to an unexplored
node, so long as there exists an edge between those nodes in the graph and

the selected colours are not the same. It also increments the iteration counter
within the b object. This rule begins in state 1 and ends in state 2.

4. This rule is a ‘cleaning’ rule, which removes all the existing b objects with
the current iteration count, thus keeping the working space relatively clean.
Recall that in P systems, all rules that can be applied are applied simulta-
neously at the end of a step, and thus this does not delete objects that are
still being used in rule 3. This rule begins in state 1 and ends in state 2.

5. This rule is a complement to rules 3 and 4, and along with rule 7 occurs
immediately after the application of rules 3 and 4. It detects existing b objects
which have just been created where two connected nodes assigned the same
colour are included in its multiset.5 This rule is required because while rule
3 avoids choosing the same colour for the two nodes under consideration,
it is possible that the newly included node is also connected with another
pre-selected node with the same colour, which was not considered in a given
application of rule 3. Thus, this rule removes any other illegal b instances
before they can be operated upon further. This rule begins in state 2 and
ends in state 1.

6. This rule is the other possible termination rule. It merely transitions to state
4, which is used to signal to the environment that no solution is possible. The
key to this rule is that, because it transitions to state 4, it is only applicable
if none of the other pre-existing rules are. This effectively means that it can
only apply if all b objects have been removed from the system, indicating
that every possible combination explored so far has already found a colouring
conflict. This rule begins in state 1 and ends in state 4.

7. This rule merely increments the global iteration counter. It is placed last so
that the termination rules can trigger before it, as otherwise it will always
be applicable after the application of rule 1. This rule begins in state 2 and
ends in state 1, and thus is applied simultaneously with rule 5.

5 This is substantially similar to the guard on rule r2,2n+1 of the Simple Kernel P sys-
tems solution.
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3.3 Complexity

Our algorithm requires at most 2N steps, where N is the total number of nodes
in the graph. In the successful case it will require that many, but for graphs
where there is no possible n-colouring it may terminate early.

Rule 1 requires one application. Rules 2 and 6 between them require one
application. Rules 3, 4, 5 and 7 all each require N−1 applications, but those are
shared for 3 & 4 and 5 & 7, thus giving 2(N − 1). That expands and simplifies
to 2N overall, giving a complexity of O(N).

3.4 Comparison with the Simple Kernel P systems solution

Our cP systems solution requires only a handful of rules, which are invariant to
the problem graph under study – there is no definition of a family of rules that
are customised to the graph at hand. We require roughly equivalent starting
objects to the SKP solution, but note that in fact we appear to require generally
fewer symbols overall.

Table 1. skP systems vs cP systems

Type/specification skP systems cP systems

Alphabet n(n− 1)/2 + 7n+ 10 15 + |∆|+ |E|

Rules 2n & 2n+ 7 7
Maximum number of subcompartments 3n + 1 1
Number of steps 2n+ 3 ≤ 2n

Table 1 provides a comparison of the Simple Kernel P systems solution pre-
sented in [4] compared with our solution presented above, and is based upon
a table that appears in [4]. Note that the ‘alphabet’ and ‘maximum number of
subcompartments’ entries are not completely comparable, however. Our alpha-
bet consists of only 9 atoms and functors plus the unique counting symbol and
the five potential states, as well as the colour symbols (∆) used (therefore 18
symbols in the case of the 3-colouring problem), but with the potential nest-
ing of atoms and functors these can combine into myriad forms – although as
the semantic meaning of each never changes, we do not consider this to add a
great deal of complexity. We note though that the specification of the edges of
the graph are included in the alphabet for the SKP system, so we too count
the magnitude of the edges set E in the size of our alphabet. While we only
require one compartment, the top-level cell, it can potentially hold a large num-
ber of functors with their own sub-objects, with a maximum upper bound of
(n!× |∆|) + |∆|+ |E|+ 1 (though in practice it will never contain that many at
once due to the prohibition on creating new objects which share a colour with
the relevant connected edge).
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4 Examples

To demonstrate the operation of the cP systems algorithm in a 3-colouring con-
text, we provide a working example using the graph in Figure 4, and a failing
example (where no successful 3-colouring is possible) using the graph in Figure 5.

Fig. 4. Example undirected graph

Fig. 5. Example undirected graph with no 3-colouring solutions

4.1 Successful example

For the graph in Figure 4, we begin a single top-level cell situated in the envi-
ronment, with the hypothetical set of nodes V = {1, 2, 3, 4, 5} from which we
derive the object v(n(1)n(2)n(3)n(4)n(5)), and the set of objects

E = {e(n(1)n(2)) e(n(1)n(5)) e(n(2)n(3)) e(n(2)n(4)) e(n(4)n(5))},

as well as the set of colour objects ∆ = {δ(r) δ(g) δ(b)}, in this case representing
the colours red, green and blue. These latter sets of objects are all immediately

348



within the top-level cell, along with s(1) to select node 1 at the beginning of
the process. This beginning state (with the exception of the contents of the s
object) is mandatory, but all following discussion in this subsection is merely
one possible execution.

e(n(1)n(2)) e(n(1)n(5)) e(n(2)n(3)) e(n(2)n(4)) e(n(4)n(5))

δ(r) δ(g) δ(b)

v(n(1)n(2)n(3)n(4)n(5)) s(1)

Fig. 6. Initial set of objects inside the top-level cell for Figure 4

From this starting state, rule 1 is applied, choosing node 1 to start the process
with, and selecting red as its colouring. This creates the standard b and l objects.
No other rules are applicable at this point, as the system started in state 0. The
application of this rule leaves the subcell in state 1. Rule 1 will not be applicable
henceforth, as the rules provide no way to revert to state 0.

At the next step, rule 2 is checked but found inapplicable, as at this point v
will not be empty, instead containing v(n(2)n(3)n(4)n(5)). Rule 3, conversely,
is applicable and thus can generate further new b objects. In this instance, two
edges exist from node 1 to other nodes (2 and 5 specifically), meaning that both
executions can apply, generating new b objects containing chosen colourings.
There are two other nodes that can be chosen to connect to, but only two
other possible colourings to choose, as red is currently blocked. This leads to
the creation of four b objects b(l(2) m(n(1)c(r)) m(n(2)c(g)) v(n(3)n(4)n(5))),
b(l(2) m(n(1)c(r)) m(n(5)c(b)) v(n(2)n(3)n(4))) etc. (see Figure 7 for the full
listing).

Simultaneously, rule 4 is applied to sweep away the pre-existing initial b
object. Following that, at the next step, Rule 5 is not applicable because there
is no current b object with two or more m objects inside, and rule 6 is not
applicable because a state transition to state 1 has already been selected, and
thus a transition to state 3 is invalid. Finally, rule 7 is also applied to remove the
old l object and introduce a newly incremented one. Figure 7 lists the objects in
the top-level cell at the end of this step.

The next two steps proceed similarly to that described in the above two
paragraphs, with a key exception in that at this point there are b objects with
at least two m objects inside, meaning that rule 5 is potentially applicable,
though so far there are no matching b objects. In fact, these step proceed largely
equivalently to the previous two, except that there are a greater number of new
objects created (see Figure 8). At the previous steps, both the edges between
node 1 and node 5, and node 1 and node 2, were explored. In these next steps,
edges between node 1 and node 5, node 1 and node 2 (where these edges were
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e(n(1)n(2)) e(n(1)n(5)) e(n(2)n(3)) e(n(2)n(4)) e(n(4)n(5))

δ(r) δ(g) δ(b)

b(l(2) m(n(1)c(r)) m(n(2)c(g)) v(n(3)n(4)n(5)))

b(l(2) m(n(1)c(r)) m(n(2)c(b)) v(n(3)n(4)n(5)))

b(l(2) m(n(1)c(r)) m(n(5)c(g)) v(n(2)n(3)n(4)))

b(l(2) m(n(1)c(r)) m(n(5)c(b)) v(n(2)n(3)n(4)))

l(2)

Fig. 7. Set of objects inside the top-level cell after the third step (i.e. after application
of rules 3, 4, 5 & 7) for Figure 4

not explored previously for a given b object), node 5 and node 4, and node 2 and
node 3 are all explored with all objects that will not have direct colour conflicts
as per rule 3 instantiated.

At the sixth step, a large number of further objects are created, some of which
are listed in Figure 9. Note that some of those, however, contain instances where
two connected nodes have been assigned the same colour, e.g. the first three b
objects in Figure 9. They come into existence at the end of the sixth step, when
rules 3 and 4 are applied and the system transitions to state 2. At that point,
not only is rule 7 applicable, but here rule 5 will apply to every one of those
illegal objects, and remove them at the end of the current step. Thus, at the end
of the seventh step, those objects have been eliminated, and the working space
is back in state 1 with only ‘valid’ objects in it, ready for further processing.

Figure 10 presents the objects inside the top-level cell at the end of the
seventh step. Note that this is largely identical to the objects at the end of the
sixth step, except with the invalid b objects removed by rule 5 (shown here as
scratched out), and the l object incremented.

Steps 8 and 9 proceed in the same fashion as earlier. At the end of step 9 a
number of objects which contain valid colourings will be present inside the top-
level cell. Rule 2 will then select one of the solutions at random and emit it to
the environment. For example, Figure 11 shows some of the potential solutions
that could be generated, reflecting the state of the system at the end of the ninth
step. The fourth and sixth of those listed in fact have contiguous colours, and
so would have been removed by rule 5 at the end of the ninth step, but any of
the others may be selected. In fact, the first solution shows that in this case it
is possible to completely and validly colour this graph using only two colours.
This solution may or may not be chosen at random.

At the end of the tenth step, rule 2 will select one of the possible solutions and
emit it to the environment. The system will also transition to state 3, signalling
that the process succeeded.
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e(n(1)n(2)) e(n(1)n(5)) e(n(2)n(3)) e(n(2)n(4)) e(n(4)n(5))

δ(r) δ(g) δ(b)

b(l(3) m(n(1)c(r)) m(n(2)c(g)) m(n(5)c(g)) v(n(3)n(4)))

b(l(3) m(n(1)c(r)) m(n(2)c(g)) m(n(5)c(b)) v(n(3)n(4)))

b(l(3) m(n(1)c(r)) m(n(5)c(g)) m(n(2)c(g)) v(n(3)n(4)))

b(l(3) m(n(1)c(r)) m(n(5)c(g)) m(n(2)c(b)) v(n(3)n(4)))

...

b(l(3) m(n(1)c(r)) m(n(2)c(b)) m(n(3)c(r)) v(n(4)n(5)))

b(l(3) m(n(1)c(r)) m(n(2)c(b)) m(n(3)c(g)) v(n(4)n(5)))

l(3)

Fig. 8. Set of objects inside the top-level cell after the fifth step for Figure 4. Note that
there are some identical objects here which have been created independently.

e(n(1)n(2)) e(n(1)n(5)) e(n(2)n(3)) e(n(2)n(4)) e(n(4)n(5))

δ(r) δ(g) δ(b)

b(l(4) m(n(1)c(r)) m(n(5)c(g)) m(n(4)c(b)) m(n(2)c(r)) v(n(3)))

b(l(4) m(n(1)c(r)) m(n(2)c(g)) m(n(4)c(b)) m(n(5)c(r)) v(n(3)))

b(l(4) m(n(1)c(r)) m(n(2)c(b)) m(n(4)c(g)) m(n(5)c(r)) v(n(3)))

...

b(l(4) m(n(1)c(r)) m(n(5)c(g)) m(n(4)c(r)) m(n(2)c(g)) v(n(3)))

b(l(4) m(n(1)c(r)) m(n(5)c(g)) m(n(4)c(r)) m(n(2)c(b)) v(n(3)))

...

b(l(4) m(n(1)c(r)) m(n(2)c(b)) m(n(3)c(g)) m(n(5)c(g)) v(n(4)))

b(l(4) m(n(1)c(r)) m(n(2)c(b)) m(n(3)c(g)) m(n(5)c(b)) v(n(4)))

l(3)

Fig. 9. Set of objects inside the top-level cell after the sixth step for Figure 4
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e(n(1)n(2)) e(n(1)n(5)) e(n(2)n(3)) e(n(2)n(4)) e(n(4)n(5))

δ(r) δ(g) δ(b)

b(l(4) m(n(1)c(r)) m(n(5)c(g)) m(n(4)c(b)) m(n(2)c(r)) v(n(3)))/////////////////////////////////////////////////////////////////////////////////

b(l(4) m(n(1)c(r)) m(n(2)c(g)) m(n(4)c(b)) m(n(5)c(r)) v(n(3)))/////////////////////////////////////////////////////////////////////////////////

b(l(4) m(n(1)c(r)) m(n(2)c(b)) m(n(4)c(g)) m(n(5)c(r)) v(n(3)))/////////////////////////////////////////////////////////////////////////////////

...

b(l(4) m(n(1)c(r)) m(n(5)c(g)) m(n(4)c(r)) m(n(2)c(g)) v(n(3)))

b(l(4) m(n(1)c(r)) m(n(5)c(g)) m(n(4)c(r)) m(n(2)c(b)) v(n(3)))

...

b(l(4) m(n(1)c(r)) m(n(2)c(b)) m(n(3)c(g)) m(n(5)c(g)) v(n(4)))

b(l(4) m(n(1)c(r)) m(n(2)c(b)) m(n(3)c(g)) m(n(5)c(b)) v(n(4)))

l(4)

Fig. 10. Set of objects inside the top-level cell after the seventh step for Figure 4

e(n(1)n(2)) e(n(1)n(5)) e(n(2)n(3)) e(n(2)n(4)) e(n(4)n(5))

δ(r) δ(g) δ(b)

b(l(5) m(n(1)c(r)) m(n(5)c(g)) m(n(4)c(r)) m(n(2)c(g)) m(n(3)c(r)) v())

b(l(5) m(n(1)c(r)) m(n(5)c(g)) m(n(4)c(r)) m(n(2)c(g)) m(n(3)c(b)) v())

b(l(5) m(n(1)c(r)) m(n(2)c(b)) m(n(3)c(g)) m(n(5)c(g)) m(n(4)c(r)) v())

b(l(5) m(n(1)c(r)) m(n(2)c(b)) m(n(3)c(g)) m(n(5)c(g)) m(n(4)c(g)) v())////////////////////////////////////////////////////////////////////////////////////////////

b(l(5) m(n(1)c(r)) m(n(2)c(b)) m(n(3)c(g)) m(n(5)c(g)) m(n(4)c(r)) v())

b(l(5) m(n(1)c(r)) m(n(2)c(b)) m(n(3)c(g)) m(n(5)c(g)) m(n(4)c(b)) v())////////////////////////////////////////////////////////////////////////////////////////////

...

l(5)

Fig. 11. Set of objects inside the top-level cell after the ninth step for Figure 4
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4.2 Failure example

Here we step through the execution of the algorithm when there is no possible
valid 3-colouring solution, using the graph depicted in Figure 5. The system
begins with the objects depicted in Figure 12.

e(n(1)n(2)) e(n(1)n(3)) e(n(1)n(4)) e(n(2)n(3)) e(n(2)n(4)) e(n(3)n(4))

δ(r) δ(g) δ(b)

v(n(1)n(2)n(3)n(4)) s(1)

Fig. 12. Initial set of objects inside the top-level cell for Figure 5

After the first step, the application of rule 1, the objects shown in Figure 13
are inside the top-level cell. This is not substantively different from the successful
example above.

e(n(1)n(2)) e(n(1)n(3)) e(n(1)n(4)) e(n(2)n(3)) e(n(2)n(4)) e(n(3)n(4))

δ(r) δ(g) δ(b)

b(l(1) m(n(1)c(r)) v(n(2)n(3)n(4))) l(1)

Fig. 13. Set of objects inside the top-level cell at the end of step 1, for Figure 5

At the end of the third step, the objects shown in Figure 14 are in the top-
level cell. None of those created in the second step will be removed by rule 5
in the third step, because they all have been derived from the only other node
selected so far, and thus were selectively generated by rule 3 such that they
would not conflict.

Figure 15 shows the objects in the top-level cell at the end of step 4. Note
that in this case half of these, while having been validly generated by rule 3, in
fact contain colouring conflicts between two connected nodes and thus will be
removed by rule 5 at the end of the next step.

Finally, Figure 16 shows the objects in the top-level cell as at the end of step
6. Due to the fully-connected nature of the graph in Figure 5, every possible
solution will contain at least one instance of proposed contiguous colouration,
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e(n(1)n(2)) e(n(1)n(3)) e(n(1)n(4)) e(n(2)n(3)) e(n(2)n(4)) e(n(3)n(4))

δ(r) δ(g) δ(b)

b(l(2) m(n(1)c(r)) m(n(2)c(g)) v(n(3)n(4)))

b(l(2) m(n(1)c(r)) m(n(2)c(b)) v(n(3)n(4)))

b(l(2) m(n(1)c(r)) m(n(3)c(g)) v(n(2)n(4)))

b(l(2) m(n(1)c(r)) m(n(3)c(b)) v(n(2)n(4)))

b(l(2) m(n(1)c(r)) m(n(4)c(g)) v(n(2)n(3)))

b(l(2) m(n(1)c(r)) m(n(4)c(b)) v(n(2)n(3)))

l(2)

Fig. 14. Set of objects inside the top-level cell at the end of step 3, for Figure 5

e(n(1)n(2)) e(n(1)n(3)) e(n(1)n(4)) e(n(2)n(3)) e(n(2)n(4)) e(n(3)n(4))

δ(r) δ(g) δ(b)

b(l(3) m(n(1)c(r)) m(n(2)c(g)) m(n(3)c(g)) v(n(4)))

b(l(3) m(n(1)c(r)) m(n(2)c(g)) m(n(3)c(b)) v(n(4)))

b(l(3) m(n(1)c(r)) m(n(2)c(g)) m(n(3)c(r)) v(n(4)))

b(l(3) m(n(1)c(r)) m(n(2)c(g)) m(n(3)c(b)) v(n(4)))

b(l(3) m(n(1)c(r)) m(n(2)c(g)) m(n(4)c(g)) v(n(3)))

b(l(3) m(n(1)c(r)) m(n(2)c(g)) m(n(4)c(b)) v(n(3)))

b(l(3) m(n(1)c(r)) m(n(2)c(g)) m(n(4)c(r)) v(n(3)))

b(l(3) m(n(1)c(r)) m(n(2)c(g)) m(n(4)c(b)) v(n(3)))

...

l(2)

Fig. 15. Set of objects inside the top-level cell at the end of step 4, for Figure 5
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thus making every possible solution invalid. At the end of step 7, rule 5 will
eliminate all of these, and leave the system empty of b objects.

e(n(1)n(2)) e(n(1)n(3)) e(n(1)n(4)) e(n(2)n(3)) e(n(2)n(4)) e(n(3)n(4))

δ(r) δ(g) δ(b)

b(l(4) m(n(1)c(r)) m(n(2)c(g)) m(n(3)c(g)) m(n(4)c(g)) v())

b(l(4) m(n(1)c(r)) m(n(2)c(g)) m(n(3)c(g)) m(n(4)c(b)) v())

b(l(4) m(n(1)c(r)) m(n(2)c(g)) m(n(3)c(g)) m(n(4)c(r)) v())

b(l(4) m(n(1)c(r)) m(n(2)c(g)) m(n(3)c(g)) m(n(4)c(b)) v())

b(l(4) m(n(1)c(r)) m(n(2)c(g)) m(n(3)c(g)) m(n(4)c(r)) v())

b(l(4) m(n(1)c(r)) m(n(2)c(g)) m(n(3)c(g)) m(n(4)c(g)) v())

...

l(4)

Fig. 16. Set of objects inside the top-level cell at the end of step 6, for Figure 5

After rule 7 finishes, the top-level cell will contain only those objects depicted
in Figure 17. With no b or v objects available in the system, none of rules 1-5
will be applicable (in fact, at the end of rule 7 the system would be in state 1,
so only rules 2, 3 and 4 would potentially be applicable anyway). Thus, the first
rule selected is rule 6, which merely transitions the system to state 4, signalling
to the environment that the evolution of the system has ceased after determining
that there was no possible valid colouring using the colours provided.

e(n(1)n(2)) e(n(1)n(3)) e(n(1)n(4)) e(n(2)n(3)) e(n(2)n(4)) e(n(3)n(4))

δ(r) δ(g) δ(b)

l(5)

Fig. 17. Set of objects inside the top-level cell at the end of rule 7, for Figure 5
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5 Conclusions

Firstly we implemented a version of Gheorghe et al.’s Simple Kernel P systems
solution to the 3-colouring problem using F# and a Concurrent ML-derived
library, Hopac. On the small sample of graphs tested this produces reasonable
results for smaller graphs, not entirely dissimilar to those achieved by the P-
Lingua simulation. Including a test for already-invalid compartments has the
potential to significantly improve the outcomes, as it prunes the search space.

Concurrent ML appears to be a good fit in principle to P systems variants
that use communication between cells/membranes, but this particular problem
had fairly minimal communication and instead relied heavily upon cell division.
Further testing with other problems is required to determine the efficacy of
Concurrent ML for sure.

We secondly provided a cP systems solution to the graph colouring problem,
which is capable of solving the problem for arbitrary graphs with an arbitrary
number of potential colours in at most 2N steps. Its operation was demonstrated
with two 3-colouring examples based on two different graphs, for which it was
and was not possible, respectively, to find a valid 3-colouring.
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simple kernel P systems. International Journal of Computer Mathematics 90(4),
816–830 (Apr 2013). https://doi.org/10.1080/00207160.2012.743712

5. Lewis, R.M.R.: Introduction to Graph Colouring, pp. 1–25. Springer International
Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-25730-3 1

6. Panangaden, P., Reppy, J.: The Essence of Concurrent ML, pp. 5–29. Springer
New York, New York, NY (1997). https://doi.org/10.1007/978-1-4612-2274-3 2
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cP systems Solution of the Santa Claus Problem

(extended abstract)
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Abstract. We briefly summarize a few known solutions to a classic and
challenging concurrency problem, called the Santa Claus Problem. We
then introduce cP systems and provide an elegant solution to this prob-
lem. Finally, we evaluate this novel solution and mention the importance
of formal verification.

1 Introduction

As it is now often repeated, the free lunch is over—we can no longer make our
code run faster by simply waiting for faster hardware. Modern high performance
systems need to exploit concurrency, yet writing concurrent code can easily in-
troduce bugs and complexities, making people spend more time worrying about
and satisfying the computer rather than solving the domain problem.

The Santa Claus Problem is a classic concurrency challenge, introduced by
Trono [11] in 1994:

Santa Claus sleeps at the North Pole until awakened by either all of the
nine reindeer, or by a group of three out of n elves (typically n = 10, or
a larger number). He then performs one of two indivisible actions:

– If awakened by the group of nine reindeer, Santa harnesses them to
a sleigh, delivers toys, and finally unharnesses the reindeer who then
go on vacation.

– If awakened by a group of three elves, Santa shows them into his
office, consults with them on toy R&D, and finally shows them out,
so they can return to work on constructing toys.

A waiting group of reindeer must be served by Santa before a waiting
group of elves. Since Santas time is extremely valuable, marshaling the
reindeer or elves into a group must not be done by Santa.

The problem seems simple at first sight, but has become a tough testbed for
the expressiveness of concurrency constructs. As noted by Benton [3], attempts
to solve this problem can easily introduce errors such as:

– Santa takes off to deliver toys, while one or more (possibly all nine) reindeer
may still be waiting to be harnessed.
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– Santa ends its consulting time and goes to sleep, while one or more (possibly
all three) elves haven’t yet asked their questions.

– One or more additional elves sneak into the consultation room after Santa
invites the group of three who have initially registered for consultation.

– The priority rule is quite tough to fully implement. There is frequently a
(possibly very narrow, but not null) opportunity for a group of three elves
to get Santa’s attention even when all reindeer have returned and are ready
to be harnessed.

Trono’s own first solution [11], based on semaphores, highlighted all the above
problems. Subsequent solutions tried to remedy this, but even recent solutions
may exhibit some of the above problems, or else are excessively complex and
fragile (qualifying them as “messy” would not be a great exaggeration). While
primitive constructs such as semaphores can successfully model simple scenarios,
they seem less adequate for high-level models of complex scenarios.

Therefore, the Santa Claus Problem has become a great testbed for test-
ing the expressiveness of numerous concurrency constructs and models, such as:
semaphores, monitors, locks, barriers, select-type constructs, guards, message
passing (cf. MPI [5]), software transactional memory (STM) [7], actors and ac-
tor extensions (multiple heads, multiple mailboxes [10]), rendezvous (cf. Ada
[2]), communicating sequential processes (CSP, cf. occam [1]), join calculus (cf.
Polyphonic C# [3]), etc. The next section offers a brief overview of some of these
proposals.

Essentially, there are two distinct problems that must be properly solved, cf.
Ben-Ari [2]: (1) how to synchronize a set of processes (here elves or reindeer)
and release them as a group; (2) how one process (e.g. Santa) provides more
than one distinct service, with different priorities.

2 Overview

The shared memory model implemented in the form of threads is usually adopted
as the first attempt to solve any concurrency challenges, since the thread li-
braries are conveniently available in many popular programming languages such
as C/C++, Java, and C#. In the shared memory model, the program is split into
two or more tasks running on different threads which operate on shared data,
and the underlying operating system is in charge of scheduling and dispatching
these threads for execution. The first solution to the Santa Claus Problem given
by Trono utilizes such construct with semaphores [11]. However, Trono’s solution
is only partially correct because it “assumes that a process released from wait-
ing on a semaphore will necessarily be scheduled for execution” [2]. Hurt and
Pedersen [6] implemented and compared a few different solutions using barriers,
locks, semaphores, mutexes, and monitors. However, all these constructs suffer
from various problems such as race conditions, deadlocks, and livelocks. Besides,
it is a non-trivial task to prove the correctness, as all possible interleavings of
program execution have to be considered.
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Message Passing Interface (MPI) [5] is a message-passing standard for a dis-
tributed memory architecture e.g. a cluster. Most MPI implementations consist
of a specific set of API directly callable from C\C++, Fortran and any lan-
guages able to interface with such libraries, including C#, Java or Python. In
MPI, each of a program’s tasks is separated onto a different process, mimicking
a distributed memory model. The MPI Barrier method can be used to syn-
chronize a group of processes, and synchronous receives replaces wait/notify to
simply the asynchronous logic. These techniques can be used to synchronize the
individual Santa, elf, and Reindeer processes [6]. Due to the lack of shared mem-
ory in MPI, a separate process for each of the Reindeer and elf waiting groups
are needed. When a process receives a pieces of data, it processes the data and
then pass it onto one or multiple processes. Therefore the same piece of data is
never operated on by more than one process at a time, eliminating the data race
problem plagued by the shared memory model [6].

Jones [7] proposed another solution using the Software Transactional Mem-
ory (STM) model in Haskell. STM enables people to write programs in a more
modular way i.e. building large programs by gluing smaller programs together,
without needing to expose their implementations [7]. The STM solution to the
Santa Claus Problem introduces the abstraction of a Gate and a Group for mod-
ularity and ease of action coordination. Santa creates two groups, one for the
elves and the other for the reindeer. The elves and the reindeer try to join their
group if needing to wake Santa up. Santa controls the Gates for marshalling the
elves and the reindeer [7]. The shared memory model makes such modularity im-
possible: any newly added actions, which operate on the shared data, need to be
carefully coordinated by synchronizing constructs, such as locks and conditional
variables, to avoid data races.

The actor model is gaining momentum in solving concurrency challenges.
It provides high-level concurrency abstractions via message passing. Each actor
comes with a queue, called a mailbox, for storing any incoming messages. Actors
communicate by sending and receiving messages. Sending is an asynchronous
operation, meaning any actors can send any number of messages at a time. Re-
ceiving is a synchronous operation, meaning each of the actors can only process
one message at a time. Sending and Receiving of a message are usually imple-
mented by pattern matching. However, as noted by Sulzmann et al. [10], the
classic actor model implemented in languages such as Erlang is restricted to a
single-headed message pattern—that is, each receive only matches one message
at a time. This restriction makes the priority in the Santa Claus Problem a
non-trivial task to implement, since the messages coming from the three elves
might come before the nine reindeer, and the receive procedure can only match
the messages that arrive first. To address this limitation, Sulzmann et al. [10]
proposed and designed an extension of Erlang style actors with receive clauses
containing multi-headed message patterns i.e. matching multiple messages at a
time, extending the ability to easily express complex synchronization patterns.

Ben-Ari [2] highlighted the errors in the original Trono’s paper [11], discussed
various problems that low-level semaphore-based solutions may have, and pro-
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posed a high-level solution in Ada. This solution uses Ada’s unique rendezvous

construct, inspired from join calculus. It also uses the more recent protected ob-

ject construct, essentially an extension of Hanson’s monitors. The solution is
fairly neat and covers all requirements well, except the last and tricky one, to
ensure that reindeer have priority over elves. This priority requires a subtle in-
teraction between more sophisticated concepts, such as requeuing tasks, using
additional accept (i.e. select) guards, and finally still needs a pragma requiring
a textual order queuing policy.

Benton [3] proposed a very neat solution, possibly the most elegant, based
on Polyphonic C#, a fairly direct implementation of join calculus ideas [4] in
the C# programming language. It solves most problems by extensively using the
new chord concept, which allows one to associate the header and body of one
synchronous function with one or more asynchronous function headers. Calls to
a chord only succeed when all functions have been called, i.e. the synchronous
base and all additional asynchronous headers. Calling the synchronous entry
proceeds synchronously, as expected, possibly waiting for all associated asyn-
chronous calls. Calling an asynchronous entry does not block ; if needed, the pa-
rameters of the call are implicitly queued in system provided “message” queue
(like in actor systems). Space does not allow us to delve deeper in this topic here,
but we illustrate these concepts by the exceptionally simple implementation of
a semaphore, cf. Fig. 1. Still, unless the compiler and runtime ensure a textual
order for chord matching, implementing the required priority is not simple and
requires a few non-trivial additions.

pub l i c async S igna l ( ) & pub l i c void Wait ( ) {}

Fig. 1. Semaphore in Polyphonic C#.

3 A Membrane Computing Model with Structured Data

For this paper, we will use a structured model of P systems, called cP systems,
that allow for “compound” structured data, like lists and annotated objects
(functors) instead of being restricted to the traditional basic data type consisting
of only multi-sets of objects. See [8] for a lengthy introduction to cP systems.

These cP systems are an extension of traditional cell-like (tree-based) and
tissue (graph-based) P systems. They consist of state-based rewriting rules with
inter-cell communication. Additionally, intra-cell parallelism is supported where
the rules run in a weak (i.e. top-down) priority mode.

We now highlight from [8] the main features of cP systems that we use:

– Top-level cells (distributed nodes) are organised in digraph networks and are
differentiated by unique IDs.
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– Each arc represents an unidirectional communication channel and each has
two (not necessarily distinct) labels for the source and target cells.

– Top-level cells contain nested (and labelled) sub-cells, with the sub-cells
(i.e. compound terms) representing local data that can be processed either
sequentially or in the max-parallel mode.

– The evolution is governed by multiset rewriting+communication rules, run-
ning in exactly-once (→1) or max-parallel (→+) modes.

– Only top-level cells have evolution rules.
– In a synchronous evolution, each internal step takes zero time, and each

message takes exactly one time unit to transit from source to target.
– In an asynchronous evolution, each message may take any finite real time to

transit from source to target.
– Top-level cells send messages—via the right-hand-side of rewriting rules,

using symbol ‘!’ —over outgoing arcs, to their structural neighbours.
– Top-level cells receive messages—via the left-hand-side of rewriting rules,

using symbol ‘?’—over incoming arcs, from their structural neighbours.
– Messages which arrive at the target cell are not immediately inserted among

the target’s contents; instead, these messages are conceptually “enqueued”
and there is one message “queue”—read “multiset”—for each incoming arc.

– Receiving cells have full control over the time and format of messages ac-
cepted from the message “queues”.

– Messages not yet accepted remain in their message “queues”.

The basic grammar of cP systems is shown in Fig. 2. We use standard con-
ventions: the symbol � denotes the empty multiset, numbers are represented in
base 1 (lists of special symbol ‘1’, with length representing its value), atoms de-
noted by lower case characters, variables denoted by uppercase letters, functors
are sub-cell labels with their arguments enclosed in parentheses ‘()’ and ’. . .0

represents zero or more repetitions.
In the grammar given in Fig. 2, we use ↵ ∈ {1,+} to represent application

of the rule is in exactly-once or max-parallel mode. The symbol � (for commu-
nication channels of the rules) denotes either a specific node label, set of node
labels, or wildcard symbol ‘ ’, where the data comes from/to.

Rules are evolved using pattern matching unification of atoms to variables.
Only if all conditions of the left-hand-side ’<lhs>’ of a rule must match before
a rule can be executed (in addition, to the promoter and inhibitor constraints).
We want to point out that cP rules allow algorithm descriptions with fixed-size

alphabets and fixed-sized rulesets, independent of the size of the problem and
number of cells in the system.

Examples of rules

1. Change state from s0 to s1 and rewrite one pair of a and b into one c,
provided that at least one p is present (and stays in the cells):

s0 a b →1 s1 c | p
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<ru le> : := <lhs> →↵ <rhs> <promoters> < i n h i b i t o r s>
<lhs> : := <s ta te> (<term> | ?� ‘{ ’ <term> ‘} ’ ) . . .
<rhs> : := <s ta te> (<term> | !� ‘{ ’ <term> ‘} ’ ) . . .
<s ta te> : := <atom>

<promoters> : := ( ‘ | ’ <term−or−eq>). . .
< i n h i b i t o r s> : := ( ‘¬ ’ <term−or−eq>). . .

<term> : := <s imple−term> | <compound−term> | <number> | < l i s t >
<term−or−eq> : := <term> | ’ ( ’ <term> ’= ’ <term> ’ ) ’
<s imple−term> : := <atom> | <var i ab l e>
<compound−term> : := <functor> ’ ( ’ <argument> ’ ) ’

<functor> : := <atom>

<argument> : := <term > . . .
<number> : := 1 . . .
< l i s t > : := ’ [ ] ’ | ’ [ ’ <head> ’ | ’ < l i s t > ’ ] ’
<head> : := <term > . . .

Fig. 2. Basic cP system rule grammar.

2. Change state from s0 to s1 and rewrite all a, b pairs into c’s, in the max-
parallel mode, provided that at least one p is present:

s0 a b →+ s1 c | p

3. If there is an a coming from channel ◆, then accept it (“read” it), change
state from s0 to s1, rewrite the incoming a and one local b into one c, while
sending one d over channel !:

s0 ?◆{a} b →1 s1 c ! !{d}

4. Change state from s0 to s1, rewrite one compound symbol a() by adding one
1 to its contents; variable X is unified to the actual contents of a.

s0 a(X) →1 s1 a(X1 )

If the current a already has two copies of 1 , i.e. a(11 ), the result will be an
updated copy with three 1 ’s, i.e. a(111 )—thereby incrementing its base 1
contents.

5. Change state from s0 to s1, rewrite one compound symbol a() by removing
one 1 of its contents, if there is at least one 1 among its contents.

s0 a(Y 1 ) →1 s1 a(Y )

If the current a already has three copies of 1 , i.e. a(111 ), the result will be
an updated copy with two 1 ’s, i.e. a(11 )—thereby decrementing its base 1
contents.

6. A complex operation, highlighting the weak priority order, with resulting
state depending on the current cell contents.
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s0 a →1 s1 e (1 )
s0 b →1 s2 f (2 )
s0 c →1 s1 g (3 )

(a) If the cell contains a and c, then rules (1) and (3) apply; new state: s1,
new contents: e and g.

(b) If the cell contains b and c, then only rule (2) applies; new state: s2, new
contents: f and c. Rule (3) is not applicable, because rule (2) has already
set the target state to s2.

(c) If the cell contains a, b and c, then only rules (1) and (3) apply; new
state: s1, new contents: e, b, and g. Rule (2) is not applicable, because
rule (1) has already set the target state to s1.

4 Santa System

The cP system used to solve the Santa Claus Problem is described using five cell
types:

– One Santa cell, denoted .
– One elf registry cell, denoted ✏̄.
– One reindeer registry cell, denoted ⇢̄.
– Nine reindeer cells, denoted ⇢1, ⇢2, ...⇢9.
– n elf cells, denoted ✏1, ✏2, ...✏n.

An example graph of the system for two reindeer, and two elves is shown in
Fig. 3. A diagram of the message senders and receivers is shown in Fig. 4.

Fig. 3. cP system graph, for two reindeer and two elves. The dashed lines represent
connections between the cells.

The system messages can be interpreted as:
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Fig. 4. An overview of the cP system and messages sent.

– w means that the elves are working. Due to the system being asynchronous,
the message w can take any length for the different elves. For example Fig. 5
we show two elves sending messages, the two messages could arrive at very
different times. This is why all arbitrary length jobs are simulated using
self-addressed messages.

– v is a similarly self-addressed message which simulates the time the reindeer
spend on vacation.

– d is a similarly self-addressed message which simulates the time that Santa
spends delivering the presents.

– e1 sent by an elf to tell the registry that they want to consult with Santa.

– e2 sent from the elf registry, to Santa, to tell him a group of three elves are
ready to consult.

– e3 from Santa to the elf registry to say he is ready to consult the group of
elves.

– e4 which tells elves that they can now consult with Santa, sent from the elf
registry.

– e5 from Santa to the elf registry to tell the registry he is finished with the
most recent group of elves.

– q from an elf to Santa representing the elf’s part of the consulting process.

– a from Santa to the elf that asked a question represents his part of the
consulting process.

– r1 from a reindeer to the reindeer registry represents the reindeer finishing
it’s vacation.

– r2 from the reindeer registry to Santa represents when all nine reindeer have
finished vacation.

– r3 represents Santa harnessing the reindeer.

– r4 represents that a reindeer is harnessed and ready to deliver.

– r5 represents Santa telling the reindeer to unharness and go on holiday once
again.
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Fig. 5. Two elves sending their self-addressed w messages.

The rulesets for each cell type are in Figs. 6 to 10, respectively, where each
rule is numbered by the cell symbol followed by a dot (“.”) and then the rule
index. For example, the reindeer’s second rule is listed as ⇢.2.

S0 ?⇢{r2} →1 S1 (.1)

S1 →+ S2 !R{r3} ⇡(9) | ⇢(R) (.2)

S2 ?R{r4} ⇡(X1) →1 S2 ⇡(X) (.3)

S2 ⇡() →1 S2 !{d} (.4)

S2?k{d} ⇡() →1 S3 (.5)

S3 →+ S0 !R{r5} | ⇢(R) (.6)

S0 ?✏{e2} →1 S3 !✏{e3} ⇡(3) (.7)

S3 ?E{q} ⇡(X1) →1 S3 !E{a} ⇡(X) (.8)

S3 ⇡() →1 S0 !✏{e5} (.9)

Fig. 6. Ruleset for the Santa cell, .

S0 r(9) →1 S0 !{r2} r() (⇢̄.1)

S0 ?R{r1} r(X) →1 S0 r(X1) (⇢̄.2)

Fig. 7. Ruleset for the reindeer registry, ⇢̄.
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S0 →1 S1 !{e2} | e(3) (✏̄.1)

S0 ?E{e1} e(X) →1 S0 !(E) e(X1) (✏̄.2)

S1 ?{e3} →1 S2 (✏̄.3)

S2 !(E) →+ S3 !E{e4} (✏̄.4)

S3 ?{e5} e(X) →1 S0 e() (✏̄.5)

Fig. 8. Ruleset for the elf registry, ✏̄.

S1 ?I{v} →1 S2 !⇢{r1} (⇢.1)

S0 →1 S1 !I{v} | ✓(I) (⇢.2)

S2 ?{r3} →1 S3 !{r4} (⇢.3)

S3 ?{r5} →1 S0 (⇢.4)

Fig. 9. Ruleset for a reindeer cell, ⇢.

S1 ?I{w} →1 S2 !✏{e1} (✏.1)

S0 →1 S1 !I{w} | ✓(I) (✏.2)

S2 ?✏{e4} →1 S3 !{q} (✏.3)

S3 ?{a} →1 S0 (✏.4)

Fig. 10. Ruleset for an elf cell, ✏.

Initial configuration We assume that all reindeer and elf cells contain ✓(x)
where x is the unique identifier of the cell (in our case numbers). We also as-
sume that Santa contains ⇢(x1), ⇢(x2), ...⇢(x9), where xi

0s are the unique reindeer
identifiers.

Example

We illustrate the system evolution with a simple scenario with two reindeer and
two elves. Obviously, this does not fully describes all possible concurrency issues.
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However, it presents an intuitive description of the rule set. See Fig. 3 for the
cP graph and Fig. 4 for an overview of the message senders and receivers.

Initially the elves are working and the reindeer are on vacation, this is denoted
in the rule set by rules ✏.2 and ⇢.2. Where the time working and on vacation
is represented by the time it takes for a self-addressed message to arrive. When
an elf receives this self-addressed message, he knows that he needs to consult
with Santa, and so tells the elf registry that he is ready to see Santa (rule ✏.1).
Similarly when the reindeer receives the message, they know they are rested
enough to deliver presents and inform the reindeer registry (rule ⇢.1).

Once a group of three elves have all told the registry that they are ready,
the registry tells Santa to wake up and help (rule ✏̄.1). Santa then tells the elf
registry that he is ready to see the elves (rule .7). He also sets his question and
answer counter to be three. The registry then tells everyone in the group that
Santa is ready for questions (rule ✏̄.4).

When an elf receives the message that Santa is ready for questions, they send
a question to Santa (rule ✏.3). Santa answers in turn each of the elf’s questions,
decrements his question and answer counter until it becomes zero (rule .8 ).
When an elf gets an answer, they then return to work (rules ✏.4 and ✏.2). When
Santa’s question and answer counter is zero, he tells the elf registry that he is
finished with the current group, and returns to sleeping (rule .9).

When the reindeer registry has been informed by all the reindeer that they
are ready to deliver the presents, the registry tells to Santa wake up and deliver
the presents (rule ⇢̄.1). Santa wakes up and then harness all of the reindeer
(rules .1 and .2). When a reindeer is harnessed and ready, they confirm with
Santa (rule ⇢.3). When all of the reindeer are harnessed and ready to deliver,
Santa delivers all of the presents (rule .4). Delivery time is represented by a
self-addressed message. When Santa finishes delivery, he tells the reindeer to
go on vacation (rules .5 and .6) and returns to sleeping. When the reindeer
receive the message to go on vacation, they do as they are advised (rules ⇢.4 and
⇢.1).

Possible pitfalls

As mentioned previously there are four common pitfalls in solutions to the Santa
Claus Problem.

– Santa takes off to deliver toys, while one or more (possibly all nine) reindeer
may still be waiting to be harnessed.

Our solution to this is that Santa sends a message (r3) to all of the reindeer to
get harnessed. The reindeer once harnessed, respond with a message (r4). Santa
does not start to deliver presents until, he has received confirmation from all of
the reindeer (counted nine r4’s).

– Santa ends his consulting and goes to sleep, while one or more (possibly all
three) elves have not yet asked their questions.

368



When Santa starts consulting with the elves, he starts a question and answer
counter. Santa will not finish consulting until, he has received questions from the
entire group. This ensures that the entire elf group has asked there questions,
before Santa will sleep again. Otherwise, his counter is greater than 0, and would
still be consulting.

– One or more additional elves sneak into the consultation room after Santa
invites the group of three who have initially registered for a consultation.

Elves are invited into the consulting room by the elf registry (rule ✏̄.4). The elf
registry is only able to add three elves to the set of elves before it changes state
(rules ✏̄.1 and ✏̄.2), and no longer accepts more to the group.

– The priority rule is quite tough to fully implement. There is frequent oppor-
tunity (possibly very narrow, but not null) for a group of three elves to get
Santa’s attention even when all reindeer have returned and are ready to be
harnessed.

Although difficult in many programming languages, implementing the preference
in cP is achieved simply via the weak order priority of the rules of Santa.

5 Conclusions

We think that our cP solution compares very favourably with other extant solu-
tions, in term of elegance and conciseness. We should also stress that our system
is completely formal, directly executable (in principle), and – in contrast to all
other solutions – is totally self contained (does not require specialised libraries).
Table 1 from [6] summarizes a simple but useful complexity measure, lines of
code (LOC). In our case, we have a total of 24 rules, roughly corresponding to
24 LOC.

Table 1. LOC for various Santa Claus solutions, cf. [6]

SM DM PO

C# C Java Groovy MPI JCSP

Total 642 420 564 315 352 315
Synchronisation/Communication 48 49 46 46 34 27

Prevent Race Condition 14 8 8 8 N/A N/A
Exception/Error Handling 35 0 177 18 41 0

Custom Barrier Implementation 42 35 N/A N/A N/A 55
GUI 145 N/A N/A N/A N/A N/A

The runtimes of different solutions varies very widely. Table 2 from [9] pro-
vides some interesting timing figures, but is far from complete. We are working
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Table 2. Runtimes of various Santa Claus solutions, in the real/user/system format,
cf. [9]

Repetitions of Santa Lime(guards) C(semaphores) Go(channels) Java (monitors)

10,000 0.04/0.04/0.00 0.87/0.26/1.18 0.08/0.12/0.01 6.38/2.48/5.30
100,000 0.30/0.30/0.00 8.82/2.50/12.0 0.77/1.18/0.06 60.3/21.6/52.0
1,000,000 2.91/2.90/0.01 93.0/24.8/234 75.1/11.6/0.55 ≈534/159/509

to provide a more uniform fair testbed, which should also consider a direct trans-
lation of our model into an existing or adapted open source runtime.

Last, but not least, this exercise suggests that complex concurrency problems
should be verified with formal methods or tools. The Santa Claus Problem high-
lights how easily one (even experts) can make mistakes while modelling complex
concurrency scenarios; convincing intuitions and explanations are not enough.
This is a theme for further research.
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