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The advantages of quantum random number generators (QRNGs) over pseudo-random number
generators (PRNGs) are normally attributed to the nature of quantum measurements. This is
often seen as implying the superiority of the sequences of bits themselves generated by QRNGs,
despite the absence of empirical tests supporting this. Nonetheless, one may expect sequences of
bits generated by QRNGs to have properties that pseudo-random sequences do not; indeed, pseudo-
random sequences are necessarily computable, a highly nontypical property of sequences.

In this paper, we discuss the differences between QRNGs and PRNGs and the challenges involved
in certifying the quality of QRNGs theoretically and testing their output experimentally. While
QRNGs are often tested with standard suites of statistical tests, such tests are designed for PRNGs
and only verify statistical properties of a QRNG, but are insensitive to many supposed advantages of
QRNGs. We discuss the ability to test the incomputability and algorithmic complexity of QRNGs.
While such properties cannot be directly verified with certainty, we show how one can construct
indirect tests that may provide evidence for the incomputability of QRNGs. We use these tests to
compare various PRNGs to a QRNG, based on superconducting transmon qutrits and certified by
the Kochen-Specker Theorem, to see whether such evidence can be found in practice.

While our tests fail to observe a strong advantage of the quantum random sequences due to algo-
rithmic properties, the results are nonetheless informative: some of the test results are ambiguous
and require further study, while others highlight difficulties that can guide the development of future
tests of algorithmic randomness and incomputability.

I. INTRODUCTION

Randomness is an important resource in a diverse range of domains: it has uses in science, statistics, cryptography,
gambling, and even in art and politics. In many of these domains, it is crucial that the randomness be of high
quality. This is most directly the case in cryptography, where good randomness is vital to the security of data and
communication, but is equally, albeit more subtly, true in other areas such as politics, where decisions of consequence
may be made based on scientific and statistical studies relying crucially on randomness.

For a long time, people have predominantly relied on pseudo-random number generators (PRNGs) – that is,
computer algorithms designed to simulate randomness – to serve such needs. Problems with various PRNGs, often
only uncovered when it is already too late, are all too common and can have serious consequences.1 This has driven a
recent surge of interest in RNGs exploiting physical phenomena, and more particularly in quantum RNGs (QRNGs)
that utilise the inherent randomness in quantum mechanics [2–5]. QRNGs are generally considered to be, by their
very nature, better than classical RNGs (such as PRNGs), but how (or can) one test this in practice?

In fact, as we will see, there are two distinct aspects of randomness we may consider when asking this question.
Firstly, one may look at the randomness of the process upon which a QRNG operates. Testing this aspect of
randomness purely from the output of a device (rather than a priori considerations of its workings) is extremely
difficult; classically it is not even possible and it is remarkable that, if one has access to an initial source of randomness,
it is possible for certain QRNGs [4, 6]. Nonetheless, such tests are extremely demanding, often require additional
assumptions and are applicable only to QRNGs designed for such tests.

In practice, instead, one is restricted to studying the randomness of individual strings produced by QRNGs by, e.g.,
conducting batteries of tests on (finite) sequences they have produced [7, 8], and it is this problem that we concern
ourselves with here. Although this is a different aspect of randomness than that of the process itself, QRNGs should
also provide an advantage here: PRNGs are guaranteed to produce computable sequences in stark contrast to the
incomputability of QRNGs [9–12]. Standard tests, however, have focused on intuitive aspects of randomness, such as
the frequencies of certain (strings of) bits, but human intuition about randomness is notoriously poor [13, 14] and many
other symptoms of randomness remain untested. Indeed, the randomness of strings and sequences is an incomputable
property and thus cannot be verified completely; moreover, it is characterised by an infinity of properties [15]. One

1
An example is the discovery in 2012 of a weakness in the encryption system used worldwide for online shopping, banking and email; the

flaw was traced to the numbers a PRNG had produced [1]. As of 2018, Java still relies on a linear congruential generator, a low quality

PRNG.
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may wonder, however, whether there are tests more appropriate for analysing QRNGs and perceiving the advantage
they can provide.

With this goal, we formulate and study several tests of randomness based on algorithmic information theory. In
particular, we consider tests based on Borel normality [16, 17] as well as novel tests based on the Solovay-Strassen
probabilistic primality test [18, 19] – an algorithm which can be made deterministic when given access to algorithmic
randomness [20]. These latter tests allow one to probe indirectly the algorithmic randomness – and consequently also
the incomputability – of sequences produced by a RNG, and thus have the potential to identify differences between
QRNGs and PRNGs that are not captured by more traditional statistical tests. We test several classical RNGs
as well as a semiconductor-based QRNG [21] using these tests to see assess their utility for real RNGs. While the
first few tests we consider fail to find any significant difference between the quantum random sequences and those
produced by the PRNGs, they bring to light certain issues useful for guiding future tests of algorithmic randomness
and incomputability. Our final test finds some significant differences between the QRNG and PRNGs, but it is unclear
whether these are really due to algorithmic properties of the strings; limitations of this test mean that further study
is needed.

II. RANDOMNESS

In order to guide the development of tests for QRNGs, it is important to understand what randomness is and
thus what one should test. Historically, the quest to develop a formal understanding of randomness focused on the
problem of determining whether a given (finite) string or (infinite) sequence of bits is random. One of the first
attempts to formalise such a notion of randomness is due to Borel, who defined the concept of Borel normality for
infinite sequences [16]. Borel normality formalises the notion that bits should be evenly and equally distributed within
a sequence. Although this captures one of the most intuitive features of randomness, it does not alone capture fully
the desired concept. For example, the Champernowne sequence 0 1 00 01 10 11 000 001 011 100 . . . [22] contains every
string of length k with the same limiting frequency of 2�k, and yet the sequence has a simple description: concatenate
the binary representation of all the strings of length k in lexicographical order for k = 1, 2, . . . . Given this description,
it is clear that the Champernowne sequence is not random, but highly ordered.

The study of algorithmic information theory, developed in the 1960s by Solomonoff, Kolmogorov and Chaitin,
provides more robust and acceptable definitions of a random sequence. In this framework, random strings and
sequences are those that are incompressible [23]. The incompressibility of strings depends on the choice of universal
Turing machine; this shortcoming disappears when the definition is extended to infinite sequences [15, 24]. Notions
of randomness – both for finite strings and infinite sequences – defined in terms of incompressibility are generically
called algorithmic randomness.

Let us briefly give some technical details useful later in the paper; we refer the reader to [15] for further details.
Consider Turing machines operating on binary strings. A Turing machine U is universal if for every Turing machine M
there exists a prefix p (depending only on U and M) such that U(px) = M(x), for every program x. The Kolmogorov
(or algorithmic) complexity of a Turing machine M is defined by KM (x) = inf{|s| : M(s) = x}, where by |s| we denote
the length of the string s. We can see that U is universal if and only if for every Turing machine M there exists a
constant c such that KU (x)  KM (x) + c, for every string x. For this notion of complexity, the running time and the
amount of storage required for computation are irrelevant. One can prove that for every M the maximum value of
KM (x) over all strings x of a fixed length |x| = n is n+O(1). Furthermore, the overwhelming majority of strings x of
length n have KM (x) very close to n. This means that almost all strings of length n are incompressible by M : more
formally, very few such strings have KM (x) < n (i.e., are compressible). If U is a universal Turing machine, then the
condition KM (x) < |x| means that KU (x) < |x|� c, that is, x is c-incompressible (or c-Kolmogorov random). These
incompressible strings are highly random, patternless and typical. It is easy to prove that less than 2n�c strings of
length n are not c-incompressible. An infinite sequence x is called Martin-Löf random if there exists a constant C

such that infinitely many prefixes of x are C-Kolmogorov random. This definition is equivalent to the condition that
x passes all Martin-Löf tests of randomness [25]; see Section VIIB for more details.

While algorithmic information theory provides a sound notion of randomness for strings and sequences, two impor-
tant points must be mentioned. Firstly, it is not effectively decidable whether a string or sequence is random, so the
notion does not provide a practical way to test the randomness of a finite or infinite sequence of bits. Secondly, it is
possible to define ever stronger notions of randomness: from an algorithmic perspective, no notion of “true”, “perfect"
or “absolute” randomness exists, only degrees of randomness [15, 26, 27]. This should temper any desire to verify the
randomness of a RNG by tests on its output. Instead, we can only hope to compare the quality of strings produced.

As interest in generating random numbers soared, the concept of randomness received increased philosophical
attention and it became clearer that the algorithmic notion of randomness fails to capture aspects of randomness
important for RNGs [28]. Indeed, as von Neumann noted, “there is no such thing as a random number – there are
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only methods to produce random numbers” [29]. The insight of von Neumann is not that the algorithmic notion
of randomness is problematic – indeed, it is highly satisfactory as a notion of random objects – but that there is
a dual concept of randomness, that of random processes [28, 30, 31]. Such a concept has historically received little
attention, but the most convincing attempts to make it rigorous are perhaps those which define it as a form of maximal
unpredictability: the outcome of such a process should be unpredictable for any physical observer [32, 33].

The randomness of a process is often quantified in terms of entropy, but it is important to note that, entropy being
a function of the probability distribution associated to a process, such a quantification requires i) knowing that the
process is indeed unpredictable, and ii) knowing the probability distribution modelling its behaviour. Although one
can empirically estimate the distribution from the output of a RNG, the entropy calculated from such data can only
be interpreted as a measure of randomness if (i) is satisfied, and this cannot be directly verified from the empirical
data alone.

There are thus two legitimate notions of randomness to be reconciled: that of process randomness (which is
applicable to RNGs – viewed as processes – themselves), and that of product randomness (which is applicable to the
strings – i.e. objects – obtained from RNGs). The distinction between these notions is important for understanding
tests of randomness.

III. RANDOM NUMBER GENERATORS (RNGS)

An ideal random number generator is normally taken to be a random process producing the same probability
distribution as the ideal (but unphysical) unbiased coin. It thus produces bits sequentially, thereby generating a
sequence x = x1x2 . . . with each bit xi being equiprobable, i.e. p(xi = 0) = p(xi = 1) = 1/2, and with successive bits
produced independently. Hence, all strings x of length k have probability p(x) = 2�k and, in the infinite limit, one
obtains the Lebesgue measure over all infinite sequences [15]. This type of ideal source has maximal entropy. It is
important to recognise that this conception of an ideal RNG embodies the notion of random processes, not products,
and concerns the distribution produced by said process and not its output.

If one tries to implement such a device in practice, two issues immediately become apparent.
Firstly, how is one to know that the process exploited is really random and actually produces the expected ideal

distribution? This issue touches on the interpretation of probability [34] (although this is beyond the scope of the
present article). For example, a physical process thought to be represented by the uniform distribution might only
exhibit epistemic randomness, and a more precise, deterministic model of the process might be possible which reveals
its non-randomness. The most direct way to avoid such possibilities is to harness an indeterministic process to ensure
its unpredictability [33].

Secondly, how does one test or verify the randomness of a RNG given that one only has access to (finite) strings
produced by it? Although the concepts of process and product randomness are indeed distinct, they are nonetheless
related: long enough strings produced by an ideal RNG will, with high probability, be incompressible, while in the
infinite limit the sequences produced will be Martin Löf random (and thus also incomputable) with probability 1 but
not with certainty : an ideal coin can in principle produce non-random or even computable sequences. However, as
mentioned earlier, the randomness of sequences is already an incomputable property. Thus, one can do no better than
verifying finitely many properties of randomness to gain confidence in a RNG.

A. Pseudo RNGs (PRNGs)

The predominant approach to generating randomness is to use algorithms to produce “pseudo-randomness”, and
such PRNGs are ubiquitous as a result of their practicality and speed. However, the very fact that such devices use
computational methods to produce their outcomes distinguishes them from ideal RNGs. PRNGs typically use a short
string from an external source – generally assumed to be random – as an initial “seed” for an algorithm [35]. Thus,
PRNGs can only produce computable sequences, whereas such sequences should be produced only with probability 0
by an ideal RNG. Instead, effort is made to make PRNGs difficult to distinguish from an ideal RNG given limited
(typically polynomial time) computational resources [36], so that the PRNG appears to be a high entropy source.
This provides a degree of security against cryptographic attacks, even if the resulting distribution (induced by the
distribution over the initial seeds) is far from uniform in reality.

PRNGs generally produce sequences that satisfy many intuitive aspects of randomness – such as the equidistribution
of the bits produced – and pass most standard statistical tests of randomness despite their computability. Nonetheless,
deficiencies resulting from the non-randomness of PRNGs are regularly exploited (see, e.g., [37]) and much of the
interest in quantum randomness has been driven by the potential to avoid the shortcomings of PRNGs.
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IV. QUANTUM RANDOMNESS

For some time now, quantum mechanics has garnered interest as a potential source of randomness for RNGs.
Such interest stems from the fact that certain quantum phenomena, such as the radioactive decay of an atom or the
detection of a photon having passed through a beamsplitter, are generally taken to be “intrinsically random” under
the standard interpretation of quantum mechanics [38]. We will first discuss these claims in a little more detail –
since it is important to base the randomness of QRNGs on more formal grounds rather than simply assuming such
randomness – before discussing one approach to the generation of quantum randomness in more detail.

Claims about quantum randomness originate with the fact that, as a formal theory, quantum mechanics differs
fundamentally from classical physics in that not all observable properties are simultaneously defined with arbitrary
precision. Instead, quantum mechanics, via the Born rule, only specifies the probabilities with which individual
measurement outcomes occur for the measurement of a physical quantity – i.e., a quantum observable. Formally, if a
system is in a quantum state | i and one measures an observable A with spectral decomposition A =

P
i aiPi, where

we adopt the notation Pi = |iihi| for rank-1 projection observables, then one obtains outcome ai with probability

P (ai| ) = |hi| i|2. (1)

Thus, whereas randomness in classical physics is due to incomplete knowledge of the precise initial conditions of
a system (e.g., as in chaotic systems) [39], in quantum mechanics it is intrinsic to the standard interpretation of the
formal theory.

Nonetheless, the Born rule is a purely formal statement, and interpreting the probability distribution specified by
the Born rule remains the subject of ongoing debate. The orthodox interpretation, however, is that the distribution
should be understood ontically as representing an indeterministic phenomenon [38]. Crucially, this interpretation
is more than a mere assumption: several well-known no-go theorems rule out classical statistical interpretations of
quantum randomness.

Bell’s Theorem [40] is the most well-known of these results, and shows that a classical, local hidden variable
theory cannot reproduce the statistics of quantum correlations that are observed [41] between entangled particles.
The Kochen-Specker Theorem [42], although perhaps lesser known, pinpoints this breakdown in determinism in a
more precise way: it shows that, for any quantum system with more than 2 dimensions, it is logically impossible
to predetermine all measurement outcomes prior to measurement in a noncontextual fashion (i.e., in a way which is
independent of other compatible – and thus non-disturbing – measurements one can perform).

More recently, this theorem has been refined to show that the only observables that can be predetermined in a
noncontextual way are those for which the Born rule assigns the probability 1 to a particular outcome [43, 44]. More
precisely, we say that an observable A is value definite for a system prepared in a state | i if it has a predetermined
measurement outcome v (A). The stronger result shows that for systems of more than 2 dimensions, if we assume
that any such value definite observables should be noncontextual, then A is value definite if and only if | i is an
eigenstate of A; all other observables must be value indefinite.

This result makes the extent of quantum value indefiniteness – and thus indeterminism – clear and pinpoints which
measurements are protected by such formal results. This not only allows some QRNGs to be based more rigorously
on physical principles but also to clarify the link between quantum randomness and indeterminism. Crucially, this
result also allows one to show that the measurement of such value indefinite observables satisfies a strong form of
unpredictability [12], proving that one really cannot provide better predictions than the Born rule specifies, and thus
giving a stronger theoretical grounding to claims about the form of quantum randomness proposed for QRNGs.

V. QUANTUM RNGS (QRNGS)

These properties of quantum measurements make them an ideal candidate for random number generation: if one
measures an observable for which the Born rule predicts a uniform distribution, then the QRNG embodies a perfect
coin. Moreover, the results discussed above show that – subject to very reasonable physical assumptions about how
classical objects should behave – this distribution cannot be given an epistemic interpretation and the corresponding
measurement outcomes are thus truly of indeterministic origin. The attractiveness of QRNGs is further enhanced by
the possibility of obtaining high bitrates and the simplicity of their physical models. This is in contrast to RNGs
based on classical physics, such as chaotic systems.

Early QRNGs relied on features such as radioactive decay [45], but simpler systems based, for example, on mea-
suring the polarisation [3, 46, 47] or detection times [48] of photons, have become the norm due to the practical
advantages they provide. Such approaches have led to the development of commercial QRNGs, such as ID Quan-
tique’s Quantis [49].



5

+

System prepared
in state

Projective measurement in basis

Inverse basis transformation
applied to system

Measurement in basis

01101...

FIG. 1. Schematic showing the QRNG based on the Kochen-Specker Theorem as implemented in [21]. A transmon qutrit
system is initially prepared in the state |0i (with respect to the computational basis B1 = {|0i , |1i , |2i} by thermal cooling.
The system is then measured in the basis B2 = {|00i , |10i , |20i} with h0|00i = 0 and h0|10i = h0|20i = 1p

2
. In practice, this

measurement is performed by first performing the inverse basis transformation on the system and measuring in the basis B1.
Since |h0|00i|2 = 0, this outcome never occurs in an ideal implementation, so the outcomes a1 and a2 corresponding to |10ih10|
and |20ih20| are mapped to a binary sequence.

Many successful QRNGs exploit two-dimensional systems to generate randomness (e.g. Quantis uses the polari-
sation of photons). This greatly simplifies the design and production of such devices but neither Bell’s Theorem
(which requires entanglement) nor the Kochen-Specker Theorem (which requires at least 3-dimensional systems) are
applicable, and these QRNGs thus lack the rigorous theoretical certification that quantum mechanics can provide,
even if it may be reasonable to think that the measurements they exploit should still be indeterministic.

The most direct approach to overcoming this shortcoming is to use higher dimensional systems for which the value
indefiniteness of measurement outcomes is, via the Kochen-Specker theorem, provable [9, 10] to certify a QRNG. Such
certification is necessarily “device dependent” – that is, it relies on knowledge of the functioning of the QRNG – but
nonetheless allows the randomness of the device to be more formally grounded. A simple example of a QRNG certified
in this way was proposed in [9, 10] for spin-1 particles, but its principle is applicable to any 3-dimensional system (i.e.,
an implementation of a qutrit). The approach proposed was to prepare a qutrit in the state |0i before measuring the
observable A = a0|00ih00| + a1|10ih10| + a2|20ih20| for which the orthonormal basis {|00i , |10i , |20i} is chosen such that
h0|00i = 0 and h0|10i = h0|20i = 1p

2
(see Figure 1 below). Since the state |0i is thus an eigenstate of the projection

observable P00 = |00ih00|, this observable is value definite with value v(P00) = 0 – that is, the measurement outcome
a0 never occurs.2 However, by the results of [10, 44], both P10 = |10ih10| and P20 = |20ih20| are value indefinite and,
moreover, both outcomes a1 and a2 occur with probability 1/2 according to the Born rule (1). Thus, the QRNG
operates as an ideal coin certified by value indefiniteness.

A QRNG based on this proposal has recently been implemented experimentally [21], not with spin-1 particles but
by exploiting a superconducting transmon coupled to a microwave cavity as a qutrit. Figure 1 shows a schematic of
the QRNG proposed in [9, 10] based on the implementation used by Kulikov et al. [21]. This implementation was used
to generate a large number of bits, and in the subsequent sections we will analyse sample sequences produced by this
QRNG implementation. In particular, we will look to detect differences between such sequences and pseudo-random
sequences arising from algorithmic properties of the sequences.

This approach to certifying a QRNG via value indefiniteness implies some additional interesting algorithmic proper-
ties of the output sequences of the device if one is willing to accept slightly stronger physical assumptions (in particular,
about whether being able to compute properties in advance implies well-defined physical properties). Specifically, it
was shown in [10] that such a device, if used repeatedly ad infinitum to generate an infinite sequence x of bits, will
produce a sequence that is strongly incomputable (technically, “bi-immune” [24]) not just with probability 1, but with
certainty. Although such a result will not alone lead to observable advantages for finite strings – recall that, from the
Born rule, an ideal QRNG will produce an incomputable sequence with probability 1 – this nonetheless highlights the
differences between pseudo and quantum randomness in relation to computability.

More recently there has also been growing interest in a different type of QRNG which can provide a stronger form
of certification but requires initial random seeds as input. (Such devices are thus technically randomness expansion

2
This is, of course, only true in the ideal case. In the non ideal scenario, any such outcomes can simply be discarded.
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devices, rather than RNGs.) Typically, such devices rely on violating a Bell inequality, which allows one to certify
that the QRNG indeed uses a value indefinite system without assuming a priori anything about the workings of the
device [4, 6, 50]. Such certification is thus termed “device independent”, and allows one to place lower bounds on the
entropy of the source; it is particularly important in cryptographic settings, where one perhaps does not wish to trust
the workings of a given RNG. Such schemes are very costly, however: not only is an initial random seed required, but
one also must separate the QRNG into two space-like separated (or at least isolated) components and the stringent
requirements of loophole-free Bell tests reduce the obtainable bitrate by several orders of magnitude compared to
“standard” QRNGs [4].

Other related randomness expansion schemes have also been proposed which are less experimentally demanding but
require additional physical assumptions [51]. In particular, we note that “noncontextuality inequalities” obtainable
from proofs of the Kochen-Specker Theorem can be used to provide such a certification [52–54]. In doing so, rather
than trusting outright that the QRNG uses a system in which the Kochen-Specker Theorem applies, one actively
verifies this under a weaker physical assumption about the workings of the device. Nonetheless, such schemes are
still significantly more demanding than that described in Fig. 1. Here we thus focus on the similar device-dependent
type scheme described in detail above. Indeed, our focus is on testing the algorithmic properties of individual strings
produced by a QRNG; such tests are complementary to those aimed at certifying the indeterministic nature of the
process itself, and the simplicity of this scheme, along with its high bitrate, facilities such an analysis.

VI. TESTING RNGS

While it is crucial to have a good theoretical understanding of any RNG, there are several reasons why testing
experimentally their outputs is nonetheless crucial. Firstly, one can never be sure that the implementation of a RNG
matches its theoretical description, a fact that is equally as true for hardware RNGs as for software RNGs. Indeed,
in the extreme limit, one might not wish to trust any theoretical claims about a given RNG, and thus confidence
in the RNG can only be gained from performing carefully selected tests. Secondly, thorough testing gives one the
opportunity to detect any issues with assumptions made in the theoretical analysis of a device or in its practical
deployment (e.g., if the distribution of seeds does not match that assumed theoretically the performance of a RNG
might be compromised).

It is nonetheless important to recognise that experimental testing can never allow one to perfectly characterise a
device. Instead, with access to only finite strings produced by it and the ability to perform a finite number of tests,
one can only ever gain increasing confidence in the operation of the device. One can never be certain, for instance,
that the output obtained was not a simply atypical behaviour obtained purely by chance. This is doubly true since,
as we discussed earlier, randomness is characterised by an infinity of properties, so one must carefully choose the tests
one performs.

The issues arising when testing the outputs of RNGs can be illustrated pointedly with an example. Imagine a device
which deterministically outputs the digits of the binary expansion of ⇡ = ⇡1⇡2⇡3 . . . starting from the 1010th bit. If
we are unaware of the behaviour of this device and believe it to be a RNG, its output will appear extremely random
to us; indeed, ⇡ passes all standard statistical tests of randomness [55] despite the fact that it is not even known to be
Borel normal [56, 57]. Nevertheless, the sequence produced by this box would be computable and thus not random
at all. Similarly, any attempt to estimate the entropy of the source from the empirically observed distribution would
lead one to believe the source to be a highly random process, despite the fact it is completely deterministic.

Standard statistical tests of randomness focus on properties of the distribution of bits or bit strings within sequences,
properties more closely related to Borel normality than algorithmic complexity. Many such tests were developed with
the aim of testing PRNGs, where reproducing such statistical predictions is a primary issue, particularly since failing
to do so may leak information about the seed and thus break the security of the PRNG [1]. QRNGs3 have generally
been tested against similar tests, such as the NIST [8] and DIEHARD [7] batteries, and generally perform well. For
example, Quantis is officially certified as passing these tests on 1000 samples of 1 million bits [49]. Such tests, however,
far from confirm the randomness of the device; indeed, analysis of longer sequences (of 232 bits) revealed (albeit it
very small) bias and correlation amongst the output bits [58].

Such statistical non-uniformity is, however, to be expected in RNGs exploiting physical phenomena due to exper-
imental imperfections and instability [9]. Inasmuch as this form of non-uniformity is small enough for the required
application, this is not necessarily problematic as long as a QRNG remains certified by value indefiniteness: unlike for
PRNGs, where non-equidistribution is often a symptom of deeper issues, the unpredictability of QRNGs is a result of

3
As we discussed in the previous section, we restrict our discussion henceforth to standard QRNGs, rather than device-independent

randomness expansion schemes. These devices remain the standard approach to QRNGs in practice, and developing tests for their

output remains a crucial problem despite the increased interest in device-independent QRNGs.
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the indeterministic nature of the device, and is thus assured even if the resulting distribution is biased [12]. Moreover,
bias can be reduced by careful post-processing [29, 59, 60], allowing quantum indeterminism to still be exploited
sufficiently. Although testing such properties is crucial in order to ensure any bias remains tolerably low, such tests
do not directly probe crucial advantages of quantum randomness, such as the degree of algorithmic randomness or
incomputability of their output.

Some authors have also looked at the compressibility of quantum random sequences using standard compression
algorithms [61] as a proxy for direct tests of Kolmogorov complexity. In practice, however, just like the aforementioned
tests, this approach fundamentally relies on statistical properties of the sequence and suffers from similar problems
as the above tests (such as being fooled by computable sequences). Indeed, it is not possible to directly compute the
Kolmogorov complexity since it is an incomputable quantity. Nevertheless, one may still ask whether there are useful
tests that indirectly probe this to try and differentiate PRNGS – which always produce computable sequences – from
QRNGs [19]. In the following sections we investigate more closely this question.

VII. EXPERIMENTALLY TESTING FOR EVIDENCE OF INCOMPUTABILITY AND ALGORITHMIC
RANDOMNESS

In this section we describe several tests based on algorithmic properties which we use to study random bits obtained
from both PRNGs and the QRNG detailed in Figure 1. We tested 80 sequences of 226 bits4 obtained from each of
the following six sources: the initial bits of the binary representation of ⇡ (which can be seen as a form of pseudo-
randomness [57]), the PRNG used by Python v3.5.4 (a Mersenne Twister algorithm) [62], Random123 v1.09 [63],
PCG v0.98 [64], xoroshiro128+ [65], and the QRNG described in Section V (see [21]).

A. Tests of Borel normality

As mentioned earlier, the notion of Borel normality was the first mathematical definition of algorithmic random-
ness [16], and although, like many standard tests of randomness, it focuses on the distribution of bits within a sequence,
it is nonetheless worth looking at in its own right.

An infinite sequence x 2 {0, 1}1 is (Borel) normal if every binary string appears in the sequence with the right
frequency (which is 2�n for a string of length n). Every Martin-Löf random infinite sequence is Borel normal [15],
but the converse implication is not true: there exist computable normal sequences, such as Champernowne’s sequence
mentioned earlier. Normality is invariant under finite variations: adding, removing, or changing a finite number of
bits in any normal sequence leaves it normal.

The notion of normality was subsequently transposed from infinite sequences to (finite) strings [15]. In doing so,
one has to replace limits with inequalities, and one obtains the following definition. For any fixed integer m > 1,
consider the alphabet Bm = {0, 1}m consisting of all binary strings of length m, and for every 1  i  2m denote by
N

m
i the number of occurrences of the lexicographical ith binary string of length m in the string x (considered over

the alphabet Bm). By |x|m we denote the length of x over Bm; |x|1 = |x|. A string x 2 Bm is Borel normal (with
accuracy 1

log2 |x| ) if for every integer 1  m  log2 log2 |x| and each 1  j  2m we have:

����
N

m
j (x)

|x|m
� 2�m

���� 
1

log2 |x|
. (2)

Almost all algorithmic random strings are Borel normal with accuracy 1
log2 |x| [15]; in particular, they have approxi-

mately the same number of 0s and 1s. Furthermore, if all prefixes of a sequence are Borel normal, then the sequence
itself is also Borel normal.

The fact that Borel normality for finite strings is only defined up to the accuracy function arises from the fact
that the definition is well behaved (and converges to the definition for sequences in the limit) if the right-hand-side
of Eq. (2) is replaced by any decreasing computable real function in |x| converging to 0. Fixing a specific accuracy
function allows one to test explicitly the normality of finite sequences (and such tests have previously been performed
on strings produced by QRNGs [19, 66, 67]), but such a choice of accuracy function is necessarily somewhat arbitrary.
However, the relative normality of strings can be tested by comparing the values of a metric based on (2); a reasonable

4
The sequences were obtained from 10 longer sequences of 229 bits, each obtained during separate experimental runs. We split them

further into smaller sequences in order to provide a more detailed statistical analysis.
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FIG. 2. Borel normality test: Box-plot showing the distribution of the quantity max
⇣���

Nm
j (x)

|x|m � 2�m
���
⌘
log2 |x| for the 80 strings

of length |x| = 226 bits produced by each the six RNGs tested.

choice of such a metric is the quantity max
⇣���N

m
j (x)

|x|m � 2�m
���
⌘
log2 |x| over the values m = 1, . . . , blog2 log2 |x|c and

each 1  j  2m. We recorded this metric for the six sources of random bits under consideration, and the resulting
distributions are shown in Figure 2.

The results show clearly that the bits produced by the QRNG are significantly less normal than those produced
by the other sources. This is, however, not surprising, since the experiment implementing the QRNG was known to
exhibit bias due to experimental imperfections [21]. Although it is possible to use normalisation procedures to unbias
a source, simple techniques significantly reduce the length of the output strings (and thus the obtainable statistical
power) and can alter various computability theoretic properties of a sequences [60]; conversely, the consequences of
more complicated techniques on such properties of the output are poorly understood, so we opted against performing
any such normalisation. Nonetheless, as discussed at the end of Section VI, a sufficiently small bias may be less
problematic in practical applications for QRNGs than for traditional PRNGs.

While examining the normality of sequences produced by any RNG is important, this algorithmic property fails
to test properties of algorithmic randomness or incomputability in the way we aim to do. The example of Cham-
pernowne’s sequence again testifies to this. To probe such behaviour of QRNGs we thus need to delve further into
algorithmic properties of randomness.

B. A Martin-Löf test of incomputability

Is it possible to give formally a test which rejects every computable sequence as nonrandom? Martin-Löf randomness
is an important, if not the most important, form of algorithmic randomness and is based on the notion of Martin-Löf
test of randomness. A test of randomness is defined by a uniformly computably enumerable shrinking sequence of
constructive open sets in Cantor space (the components of the test) whose intersection is a constructive null set (with
respect to Lebesgue measure); see [15] for more details. A sequence passes the test if it is not contained in this null
set. A sequence is Martin-Löf random if it passes all Martin-Löf tests. There exist countably many such tests: some
test normality, others test the law of large numbers, etc. The answer to the question above is affirmative: such a
Martin-Löf test exists.

Testing incomputability rather that randomness directly is an important initial step: indeed, all algorithmically
random sequences are incomputable and it is this property of randomness that PRNGs fail most starkly, since they
necessarily produce computable sequences. Moreover, the robustness of incomputability to bias in a sequences makes
such tests potentially more robust in practice. To specify a Martin-Löf test for computability, we must define the
sequences contained in its nth component for all integers n > 0. To do so, one can take the nth component to be
the union of all �{0, 1}⇤{0, 1}1 for which there is an e such that �(0) = 'e(0), . . . ,�(e+ n+ 1) = 'e(e+ n+ 1) and
� 2 {0, 1}⇤. This is an open computably enumerable class that contains all computable sets, as each computable set
has a computable characteristic function 'e. Furthermore, the measure of the nth component is bounded from above
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by
P

e 2
�n�e�2, which in turn is bounded from above by 2�n�1, as the string � derived from 'e has length e+ n+ 2

and is a prefix of the set for which 'e computes the characteristic function.
It is not difficult to see that the above test for computability depends on the enumeration ('e), and there is

no obvious “natural” choice. Furthermore, invariance under finite variations renders the test unsuitable for finite
experiments. As a result, it is necessary to consider more indirect methods to test the incomputability of sequences
produced by RNGs.

C. Chaitin-Schwartz-Solovay-Strassen tests

In this section we propose and carry out several related tests based on a rather different property of random
sequences: their ability to de-randomise the Solovay-Strassen probabilistic test of primality [18]. In contrast with
most standard tests of randomness which check specific properties of strings of bits, these tests are based on the
behaviour of the strings with respect to certain “secondary” tasks. We first briefly describe the Solovay-Strassen
primality test and the advantage offered in this task by random strings, before presenting the tests themselves.

The Solovay-Strassen test checks the primality of a positive integer n: take k natural numbers uniformly distributed
between 1 and n�1, inclusive, and, for each i(= i1, . . . , ik), check whether a certain, easy to compute, predicate W (i, n)
holds (W is called the Solovay-Strassen predicate). If W (i, n) is true then “i is a witness of n’s compositeness”, hence
n is composite. If W (i, n) holds for at least one i then n is composite; otherwise, the test is inconclusive, but in this
case the probability that n is prime is greater than 1� 2�k. This is due to the fact that at least half the i’s between
1 and n� 1 satisfy W (i, n) if n is composite, and none of them satisfy W (i, n) if n is prime [18].

Chaitin and Schwartz [20] proved that, if c is a large enough positive integer and s is a long enough c-Kolmogorov
random binary string, then n is prime if and only if Z(s, n) is true, where Z is a predicate constructed directly from
O(log n) conjunctions of negations of W predicates (see Section VII C 3 below for more details). The crucial fact is
that the set of c-Kolmogorov random strings is highly incomputable: technically the set is immune, that is, it contains
no infinite computably enumerable subset [15]. As a consequence, de-randomisation is thus non-constructive, and
thus without practical value.

Drawing on this result, we propose several tests that operationalise it in order to test the randomness of a sequence
based on whether certain numbers obtained from RNGs succeed in witnessing the compositeness of well chosen targets.
We will make particular use of Carmichael numbers as these target composites. A Carmichael number is a composite
positive integer n satisfying the congruence b

n�1 ⌘ 1 (mod n) for all integers b relatively prime to n. Although
Carmichael numbers are composite, they are difficult to factorise and thus are “very similar” to primes; they are
sometimes called pseudo-primes. Many Carmichael numbers can pass Fermat’s primality test, but less of them pass
the Solovay-Strassen test. Increasingly Carmichael numbers become “rare”.5

In what follows we thus present four different tests based on the Chaitin-Schwartz Theorem and the Solovay-Strassen
test. Since the proposed tests rely directly on the algorithmic randomness of a string, they can potentially give direct
empirical evidence of incomputability, in stark contrast to most tests of randomness. For example, the Borel normality
test discussed previously is unable to do so: the normality of Champernowne’s sequence mentioned earlier is evidence
of this.

Since the Chaitin-Schwartz Theorem relies on the Kolmogorov randomness of the sequences it involves, these tests
also go beyond the previous one in not only probing incomputability, but also algorithmic complexity more generally.
Indeed, an ideal QRNG should produce c-Kolmogorov random strings with very high probability, while PRNGs
produces strings of very low Kolmogorov complexity (since, in the limit, they are computable). Nonetheless, we focus
on probing the incomputability of strings from QRNGs rather than their Kolmogorov complexity or randomness, a
doubly motivated choice. Firstly, the fact that incomputability is a weaker property than Kolmogorov randomness
and less affected by bias means that any difference between pseudo and quantum randomness will potentially be easier
to observe. Secondly, as mentioned earlier, subject to an additional physical assumption, QRNGs can be shown to
produce incomputable sequences with certainty, and not just probability one [10].

As in [19], we conduct various statistical tests to determine whether any observed difference is statistically significant
or not. If a difference is found to be significant, we then look at whether this really provides evidence of incomputability
or not. As it is not a priori clear what distribution the various test metrics we employ should follow, we utilise the
non-parametric and distribution free Kolmogorov-Smirnov test for two samples [68] to determine whether two datasets
differ significantly. This test returns a p-value6 indicating the probability, given the observed test statistic, that the
observed distributions were indeed drawn from the same distribution. We conclude that “the difference between the

5
There are 1,401,644 Carmichael numbers in the interval [1, 1018].

6
Exact p-values are only available for the two-sided two-sample tests with no ties.
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FIG. 3. First Chaitin-Schwartz-Solovay-Strassen test on 80 samples: Box-plot showing the distribution in the minimum number
of witnesses needed to verify the compositeness of all Carmichael numbers of at most 16 digits.

two datasets is statistically significant” if the p-value is less than 0.005. We choose this relatively strict p-value to
lower the chance of false positives arising from the fact that we will perform several tests between several different
data sources: the probability of observing a spurious difference (simply by chance) on at least one of the many tests is
much higher than the critical p-value of 0.005 of obtaining such a spurious result on any single test. A higher critical
p-value (such as the commonly used 0.05) would mean such false positives would be highly probable.

When no significant difference is found by the Kolmogorov-Smirnov test, we additionally check whether the test
metric distribution is consistent with a normal distribution by performing a Shapiro-Wilk test [69];7 if it is,8 we then
use the (parametric) Welch t-test [70], which is a version of Student’s test, to determine whether there is a significant
difference between the means of the test statistics for the different RNGs under the assumption of normally distributed
test metrics.

1. First Chaitin-Schwartz-Solovay-Strassen test

The first test we look at, which was previously used in [19], probes directly the efficacy of a set of random bits in
simulations (in our case for checking primality).

We performed this test on all of the 246,683 Carmichael numbers n with at most 16 digits as computed in [71],
using strings of bits from each random source to specify the numbers tested as potential witnesses of compositeness.
More precisely, for a fixed k (see below) and each Carmichael number n we take k strings of dlog2 ne bits from the
source string and reject and resample those which specify the binary representation of a number greater than n� 1.
These k strings, interpreted as the binary representation of k numbers i1, . . . , ik, serve as the witnesses to test the
primality of n (i.e., the i in W (i, n)). Initially we take k = 1 and increase k until all the Carmichael numbers are
correctly determined to be composite.

The metric for the test is taken to be the smallest k such that at most k witness numbers were required to obtain a
verdict of non-primality for all of the Carmichael numbers. For each k, new bits are read from the sample string for
each Carmichael number to be tested; we only restart reading from the start of the string (and thus recycling bits)
when there was a need to try a larger value of k to pass this test.

Figure 3 shows the performance of the 80 bit strings from each RNG (i.e., the same ones as tested for Borel normality
in Section VII A) using the metric described above.

The full results of the statistical analysis of this test (as well as the following) are given in the Appendix. The
Kolmogorov-Smirnov tests found no statistical significant difference between any of the sources of randomness (see

7
More precisely, the Shapiro-Wilk test examines the null hypothesis that the samples z1, . . . , zn come from a normally distributed

population. This test is appropriate for small samples, since it is not an asymptotic test.
8

Here we consider evidence for non-normality to be a p-value below 0.05.
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Table A1). The Shapiro-Wilk tests showed that the distribution of test statistics were not normally distributed
(see Table A2), so further parametric tests were not performed. This test therefore did not provide any evidence of
significant differences between the RNGs, let alone evidence of incomputability of the QRNG.

2. Second Chaitin-Schwartz-Solovay-Strassen test

We next consider a closely related (and similarly motivated) test with a slightly different metric. For each Carmichael
number n, we repeatedly obtain a witness from the string being tested (in the same manner as in the first test and
using new bits for each Carmichael number) until the compositeness of n is successfully witnessed. For this test
metric we take the total number of bits used (for a given string to test) to confirm the compositeness of all 16 digit
Carmichael numbers. We calculate this as the sum, over all such Carmichael numbers n, of dlog2 ne times the number
of Solovay-Strassen trials needed to witness the compositeness of n. (In this way, bits that are read but then rejected
because they give a witness larger than n do not contribute to the metric.)

(a) (b)

FIG. 4. Second Chaitin-Schwartz-Solovay-Strassen test: total number of bits required to verify the compositeness of all
Carmichael numbers of at most 16 digits using (a) the 80 strings from each RNG, and (b) the complement of these strings.

Figure 4(a) shows a boxplot of the results for the 80 strings from each RNG being tested. The visible difference
between the QRNG and the other sources is confirmed by the Kolmogorov-Smirnov tests (see Table A3), which
showed a statistically significant difference between the QRNG and ⇡, Random123 and xoroshiro128+. There is not,
however, a general trend of normality for the test metric across all sources (in particular, there is weak evidence to
reject normality of the distribution for the Python strings; see Table A4), so it is not appropriate to use Welch’s t-test
to look for a difference between the QRNG and Python.

Although a significant difference was found between the QRNG and most the other sources, this is not necessarily
a result of the incomputability we wish to test. Indeed, we have already seen from the Borel normality test that
the QRNG has a small statistical bias, so we should thus verify that the difference seen here is not also a result of
this bias. As mentioned earlier, we opted against trying to normalise the data to see if the bias is indeed to origin
of the effect, not only because, with the amount of data available to us, this would markedly reduce our statistical
power, but also because the effect of normalisation on the algorithmic complexity of the sequence is not entirely
understood. Instead, a simple way to test whether bias is behind the observed differences is to perform the same
test on the complement of the strings we have tested (i.e., exchanging 0 and 1). Since this transformation preserves
randomness and incomputability, if the difference observed is evidence of such properties it should not be affected by
such a transformation.

Figure 4(b) shows the result of the test on the complemented sequences. Here we see that again there is an apparent
difference between the QRNG and some of the other sources. This is confirmed by the Kolmogorov-Smirnov tests
(see Table A5) to be the case between the QRNG and ⇡, Python and Random123. In this case, the test metric
is consistent with being normally distributed (see Table A6), so it is reasonable to use Welch’s t-test to try and
confirm this difference further under an assumption of normality. Doing so (see Table A7) shows that there is indeed
a statistically significant difference between the QRNG and all the other sources on the complemented strings.

However, as is clear from Figure 4(b), this difference is in the opposite direction to (and of the same magnitude as)
that in Figure 4(a): in the latter the QRNG appears to perform better, while in the former, it performs worse. It
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thus appears that this difference was indeed due to the bias of the QRNG rather than incomputability. Nonetheless,
we note that it is strange that biased sequences (in particular, biased towards having more zeroes) perform better in
proving the compositeness of Carmichael numbers; we are not aware of any number theoretic explanation for this.

To conclude, this test shows that the QRNG behaves significantly differently from almost all the other sources on
this test (whether we use either the original bits or the complemented bits), but that this difference is likely due to
the bias of the QRNG. Understanding better why this bias makes such a difference would nonetheless be interesting.

3. Third Chaitin-Schwartz-Solovay-Strassen test

While the above tests are inspired by the Chaitin-Schwartz Theorem [20], they do not directly test the predicate
Z(s, n) appearing therein that we mentioned earlier. A key difference between these tests and the previous ones is
the method they use to convert strings of random bits into potential witnesses to test.

Consider s = s0 . . . sm�1 a binary string (of length m) and n an integer greater than 2. Let k be the smallest integer
such that (n� 1)k+1

> 2m � 1; we can thus rewrite the number whose binary representation is s into base n� 1 and
obtain the unique string dkdk�1 . . . d0 over the alphabet {0, 1, . . . , n� 2}, that is,

kX

i=0

di(n� 1)i =
m�1X

t=0

st2
t
.

The predicate Z(s, n) is defined by

Z(s, J) = ¬W (1 + d0, n) ^ · · · ^ ¬W (1 + dk�1, n), (3)

where W is the Solovay-Strassen predicate from Section VII C. The digits of s (rewritten in base n� 1) define the
witnesses used to test the primality of n.

The main result from [20] is:

Theorem 1 For all sufficiently large c, if s is a c-Kolmogorov random string of length `(`+ 2c) and n is an integer
whose binary representation is ` bits long, then Z(s, n) is true if and only if n is prime.

In order to carry out these tests we first fix c. For each Carmichael number n (with an `-bit binary representation)
we take c = `� 1.9

(a) (b)

FIG. 5. Third Chaitin-Schwartz-Solovay-Strassen test: Box-plot showing the distribution of total number of bits used to identify
all 16-digit Carmichael numbers as composite by (a) the 80 strings from each RNG, and (b) the complement of these strings.

The metric of the third test has some similarities to that used in the second test. For each such n we take ` (`+2c)
bits. Rewriting s in base n � 1 as described above, we then compute W (1 + dj , n) for 0  j  k until the first j is

9
This is somewhat arbitrary; other choices could of course be made, but would make little difference to our test.
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found such that W (1 + dj , n) holds (and the compositeness of n is thus witnessed). The metric itself is then taken
as the sum (over all 16-digit Carmichael numbers n tested) of j ⇥ dlog2(n� 1)e. Note that, if no first j  k is found
such that W (1 + dj , n) holds (which occurs very rarely), then we simply count all the bits used when testing that
Carmichael number, i.e., ` (`+ 2c). Figures 5(a) shows the performance of the 80 strings from each of the six sources
according to this metric. In order to be able to do decouple any potential difference between the QRNG and the
other sources due to algorithmic randomness from those resulting from the bias of the QRNG, we similarly perform
the same test on the complement of each of the strings, the results of which are shown in Figure 5(b).

The results of the Kolmogorov-Smirnov tests on the data shown in Figures 5(a) and 5(b) are given in Tables A8
and A11, respectively. No statistically significant differences between any of the sources were found, reinforcing the
impression given by Figure 5 that the RNGs all give similar results. The Shapiro-Wilk test shows (see Tables A9
and A12) that there is no strong evidence against the normality of test metric for the non-complemented strings (but
there was weak evidence against it for the complemented ones), so we were able to use Welch’s t-test to look for any
further evidence of differences between the sources on these strings (see Table A10). No significant differences between
the sources were found by these tests either. We therefore conclude that the third Chaitin-Schwartz-Solovay-Strassen
test with this metric, which counts the total number of bits required to verify the compositeness of all Carmichael
numbers of at most 16 digits, failed to find significant differences between the QRNG and the PRNGs tested.

4. Fourth Chaitin-Schwartz-Solovay-Strassen test

The final test is based more closely on the Chaitin-Schwartz Theorem out of the tests we consider. Rather than
looking at how many witnesses need to be tested until a Carmichael number’s compositeness is verified, we look
directly at the ability of the entire set of witnesses evaluated in (3) to verify the compositeness of a number. In other
words, we look for direct violations of the Chaitin-Schwartz Theorem: a violation appears when for all j = 0, . . . , k�1,
W (1 + dj , n) are false; that is, all tests wrongly conclude that n is “probably prime”.

However, as the Solovay-Strassen test guarantees that W (1 + dj , n) is true with probability at least one half when
n is a composite number, it quickly becomes difficult, in practice, to observe such violations for even the smallest
Carmichael numbers used in the previous tests. In order to observe some violations with the length of random strings
(and time) we have access to, we have to severely restrict ourselves and be content with testing the performance of
the strings on only the odd composite numbers less than 50: 9, 15, 21, 25, 27, 33, 35, 39, 45, 49. For these numbers, we
compute Z(s, n) by reading `(` + 2c) bits and following the same procedure as in the third test. When Z(s, n) = 1,
a violation of the Chaitin-Schwartz Theorem is thus observed. Since testing this predicate a single time on the ten
numbers above would give insufficient statistics to observe any difference between the sources, we then repeated the
above procedure reading from then 2nd bit of each string, then the 3rd, etc., until all the random bits have been
used. The metric is thereby taken as the average number of violations observed for the 10 composites tested (where
the average is taken over all the repetitions). Figures 6(a) and 6(b) show the results of this test for the 80 strings of
each of the six sources used in the previous tests: again, the tests in the former figure use the original strings from
each source while the tests in the latter use the complemented strings.

(a) (b)

FIG. 6. Fourth Chaitin-Schwartz-Solovay-Strassen test: Box-plot showing the distribution of the average count of violations of
the Chaitin-Schwartz Theorem for all odd composite numbers less than 50 by (a) the 80 strings from each RNG, and (b) the
complement of these strings.
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We apply the same statistical tests to determine whether there are any statistically significant differences in perfor-
mance between the different RNGs. The results of the Kolmogorov-Smirnov tests for the data in Figures 6(a) and 6(b)
are given in Tables A13 and A15, respectively. Unlike the results for the previous metrics, the QRNG exhibits signif-
icantly different behaviour on the original (i.e., non-complemented) strings from the PCG, Python and Random123
PRNGs. However, no significant difference is found on any of the complemented strings. The Shapiro-Wilk tests (see
Tables A14 and A16) find strong evidence against the normality of the distribution of the test metric, so Welch’s
t-test was not applied to see if further evidence of significant differences was present.

Again, the reason for the apparently significant differences in performance between the QRNG and some of the
sources (at least for the non-complemented strings) is unclear, and further investigation is required. The fact that
only very small composite numbers were able to be tested means that, in the absence of strong evidence of differences
between the sources, the results should be interpreted cautiously. Indeed, the Chaitin-Schwartz Theorem is an
asymptotic result, and a significant difference on larger composites (ideally Carmichael numbers), would be preferable.
We thus cautiously conclude that the fourth Chaitin-Schwartz-Solovay-Strassen test with the violation-count metric
potentially identifies differences between QRNGs and the other sources, but that further testing and study is needed
to confirm the robustness of the initial results observed here.

VIII. CONCLUSIONS

In this paper we looked at the ability to formulate tests that probed the incomputability and algorithmic randomness
of strings produced by QRNGs. Standard tests used to assess the quality of strings produced by PRNGs and QRNGs
alike focus on simple statistical properties of the sequences, yet the most marked differences between QRNGs and
PRNGs are the algorithmic properties of strings produced by such devices. Such tests thus provide an important and
novel approach to evaluating the performance of QRNGs. This type of test, which probes the randomness of outputs
of QRNGs, is complementary to the certification of a QRNG as exploiting random processes, either via theoretical
analysis of the device [9, 10] or the use of device-independent randomness expansion schemes [4, 6].

The properties of incomputability (and, consequently, of algorithmic randomness too) mean that one must resort
to indirect tests of incomputability in practice, and we discussed several such approaches. We considered testing the
Borel normality of sequences – a necessary property of algorithmic randomness – which probes the bias of a sequence
rather than its incomputability per se. This served as a useful preliminary probe for the analysis of later tests. We then
focused on a different approach based around the Chaitin-Schwartz Theorem, which shows a practical consequence of
algorithmic randomness in probabilistic primality testing algorithms. We proposed four different tests based on this
result which, in principle, could exhibit advantages due to the incomputability – as well as the algorithmic randomness
– of sequences from QRNGs over PRNGs.

To assess the practical utility of these tests, we applied them to long sequences generated by various RNGs: a
QRNG (described in Section V), and several different PRNGs. Two of the tests (the first and the third) failed to
find any significant differences between the QRNG and the PRNGs. A significant difference was, on the other hand,
observed, for the second test. However, we were able to show that the difference was due to a small bias present in the
strings produced by the QRNG rather than a result of any incomputability. Indeed, this highlighted a key challenge:
the need to decouple the incomputability from the bias within the test results, since the tests can in general be
affected by both these elements. To this end, we examined the performance of tests on the complement of the strings
as well as the strings themselves, but conclude that care should be taken to formulate tests that are not affected by
the bias of a sequence. This task is complicated, however, by the fact that the effect of using a biased distribution in
probabilistic primality testing is not well understood theoretically. For future studies, it would thus be desirable to
have sufficiently long strings to analyse from a certified QRNG for which the bias is sufficiently small so as to not be a
limiting factor for the tests. Conversely, one should also study further the effect of normalisation procedures [29, 60]
on such metrics, so that such tests can be properly analysed when applied to normalised, rather than raw, sequences
of bits.

Our fourth test, which was designed to follow more faithfully the Chaitin-Schwartz Theorem and to be potentially
more robust to bias (but, unfortunately, more demanding to apply in practice), produced ambiguous results. In
particular, significant differences were found only on the non-complemented strings, but it was not clear whether
these differences were entirely due to bias, as one would expect the complemented strings to show a similar difference
in the opposite direction, which was not observed. Due to the practical limitations of this test and small numbers
tested, further testing (and, probably, refinements of the test itself) on more data are needed to understand this effect
better.

While our tests failed to find any conclusive experimental evidence of incomputability of quantum randomness,
they provide an important study for the development of new types of tests aimed at probing algorithmic properties
of quantum randomness. Indeed, being based on the Chaitin-Schwartz Theorem, the tests in fact probe the stronger
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property of c-Kolmogorov randomness, and this fact potentially contributes to the difficulty in observing indirect
effects of incomputability. The development of further tests to this end, as well as additional experimental studies,
are therefore merited.

We finish by reiterating that tests of the output of QRNGs, such as we describe here, complement, rather than
replace, the certification by value indefiniteness of a QRNG. Indeed, just as with standard statistical tests of RNGs,
even if no difference between QRNGs and PRNGs is found on the tests, it is important that QRNGs are verified to
pass such tests. QRNGs certified by the Kochen-Specker Theorem, such as the one used to provide the data for this
paper [21], can also be used to perform device-independent randomness expansion [52–54], and it would be interesting
to combine algorithmic tests like we develop here with such an approach, although producing sufficient amounts of
data for this to be possible remain a challenge.

Lastly, we note that all the test data (i.e., random strings), programs and results are available online in [72].
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Appendix A: Chaitin-Schwartz-Solovay-Strassen test analysis tables

TABLE A1. Kolmogorov-Smirnov tests for the first Chaitin-Schwartz-Solovay-Strassen test with the metric that records the
minimum number of witnesses needed to verify the compositeness of all Carmichael numbers of at most 16 digits.

p-values ⇡ Python Random123 QRNG xoroshiro128+

PCG 0.8186 0.8186 1 1 1
⇡ 0.9976 0.9976 0.5596 1

Python 0.9976 0.5596 0.9976
Random123 0.9976 1

QRNG 0.9780

TABLE A2. Shapiro-Wilk tests of normality for the first Chaitin-Schwartz-Solovay-Strassen test with the metric that records
the minimum number of witnesses needed to verify the compositeness of all Carmichael numbers of at most 16 digits.

PCG ⇡ Python Random123 QRNG xoroshiro128+

p-value < 10�4 < 10�4 < 10�4 < 10�4 < 10�4 < 10�4

TABLE A3. Kolmogorov-Smirnov tests for the second Chaitin-Schwartz-Solovay-Strassen test with the “bit counting” metric
on the non-complemented (i.e., original) bits.

p-values ⇡ Python Random123 QRNG xoroshiro128+

PCG 0.6953 0.4383 0.922 0.0132 0.6953
⇡ 0.4383 0.8219 0.0045 0.9794

Python 0.0814 0.0537 0.5625
Random123 0.0014 0.5625

QRNG 0.0026

TABLE A4. Shapiro-Wilk tests of normality for the second Chaitin-Schwartz-Solovay-Strassen test with the “bit counting”
metric on the non-complemented (i.e., original) bits.

PCG ⇡ Python Random123 QRNG xoroshiro128+

p-value 0.4892 0.2003 0.04867 0.5951 0.1669 0.0808
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TABLE A5. Kolmogorov-Smirnov tests for the second Chaitin-Schwartz-Solovay-Strassen test with the “bit counting” metric
on the complemented bits.

p-values ⇡ Python Random123 QRNG xoroshiro128+

PCG 0.4383 0.3307 0.2424 0.05372 0.5625
⇡ 0.4383 0.1202 0.0045 0.5625

Python 0.5625 0.0026 0.8219
Random123 0.0014 0.2424

QRNG 0.0132

TABLE A6. Shapiro-Wilk tests of normality for the second Chaitin-Schwartz-Solovay-Strassen test with the “bit counting”
metric on the complemented bits.

PCG ⇡ Python Random123 QRNG xoroshiro128+

p-value 0.199 0.2433 0.0754 0.4401 0.0518 0.9673

TABLE A7. Welch t-tests for the second Chaitin-Schwartz-Solovay-Strassen test with the “bit counting” metric on the comple-
mented bits.

p-values ⇡ Python Random123 QRNG xoroshiro128+

PCG 0.6422 0.3796 0.1265 0.0034 0.9454
⇡ 0.6343 0.2287 0.0004 0.6795

Python 0.4683 0.0001 0.3964
Random123 < 10�4 0.1271

QRNG 0.0020

TABLE A8. Kolmogorov-Smirnov tests for the third Chaitin-Schwartz-Solovay-Strassen test with the “bit-counting” metric for
the non-complemented (i.e., original) bits for all Carmichael numbers of at most 16 digits.

p-values ⇡ Python Random123 QRNG xoroshiro128+

PCG 0.2694 0.4821 0.2988 0.4013 0.1054
⇡ 0.6953 0.4383 0.3307 0.4383

Python 0.8186 0.5625 0.5625
Random123 0.9794 0.8219

QRNG 0.8219

TABLE A9. Shapiro-Wilk tests of normality for the third Chaitin-Schwartz-Solovay-Strassen test with the “bit-counting” metric
for the non-complemented (i.e., original) bits for all Carmichael numbers of at most 16 digits.

PCG ⇡ Python Random123 QRNG xoroshiro128+

p-value 0.2076 0.4921 0.3337 0.1956 0.7608 0.1347
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TABLE A10. Welch t-tests for the third Chaitin-Schwartz-Solovay-Strassen test with the “bit-counting” metric for the non-
complemented (i.e., original) bits for all Carmichael numbers of at most 16 digits.

p-values ⇡ Python Random123 QRNG xoroshiro128+
PCG 0.2838 0.81 0.5227 0.4335 0.2437
⇡ 0.4186 0.6833 0.8401 0.911

Python 0.6956 0.584 0.3653
Random123 0.8585 0.6096

QRNG 0.7629

TABLE A11. Kolmogorov-Smirnov tests for the third Chaitin-Schwartz-Solovay-Strassen test with the “bit-counting” metric
for the complemented bits for all Carmichael numbers of at most 16 digits.

p-values ⇡ Python Random123 QRNG xoroshiro128+
PCG 0.5596 0.9794 0.173 0.9794 0.3307
⇡ 0.922 0.8219 0.8219 0.6953

Python 0.5625 0.9194 0.6953
Random123 0.4383 0.1201

QRNG 0.8219

TABLE A12. Shapiro-Wilk tests of normality for the third Chaitin-Schwartz-Solovay-Strassen test with the “bit-counting”
metric for the complemented bits for all Carmichael numbers of at most 16 digits.

PCG ⇡ Python Random123 QRNG xoroshiro128+
p-value 0.4616 0.6708 0.6067 0.94 0.9355 0.0239

TABLE A13. Kolmogorov-Smirnov tests for the fourth Chaitin-Schwartz-Solovay-Strassen test with the “violation-count” metric
for non-complemented (i.e., original) bits for all odd composite numbers that are less than 50.

p-values ⇡ Python Random123 QRNG xoroshiro128+
PCG 0.318 0.2414 0.692 0.0027 0.9976
⇡ 0.692 0.8186 0.05397 0.9976

Python 0.9194 0.0004 0.8186
Random123 0.0047 0.8186

QRNG 0.0348

TABLE A14. Shapiro-Wilk tests of normality for the fourth Chaitin-Schwartz-Solovay-Strassen test with the “violation-count”
metric for non-complemented (i.e., original) bits for all odd composite numbers that are less than 50.

PCG ⇡ Python Random123 QRNG xoroshiro128+
p-value < 10�4 0.0040 0.0002 0.0056 0.0115 0.0148
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TABLE A15. Kolmogorov-Smirnov tests for the fourth Chaitin-Schwartz-Solovay-Strassen test with the “violation-count” metric
for the complemented bits for all odd composite numbers that are less than 50.

p-values ⇡ Python Random123 QRNG xoroshiro128+
PCG 0.692 0.9194 0.9194 0.1725 0.5596
⇡ 0.5596 0.9976 0.692 0.2414

Python 0.692 0.1725 0.8186
Random123 0.5596 0.5596

QRNG 0.0135

TABLE A16. Shapiro-Wilk tests of normality for the fourth Chaitin-Schwartz-Solovay-Strassen test with the “violation-count”
metric for the complemented bits for all odd composite numbers that are less than 50.

PCG ⇡ Python Random123 QRNG xoroshiro128+
p-value 0.06601 0.02957 < 10�4 0.0080 < 10�4 0.0017


