
CDMTCS
Research
Report
Series

Deciding Parity Games in
Quasipolynomial Time

C. S. Calude1 S. Jain2,
B. Khoussainov1, W. Li2

and F. Stephan2

1University of Auckland, New Zealand
2National University of Singapore,
Singapore

CDMTCS-500

October 2016/Revised August 2017/Revised October 2018

Centre for Discrete Mathematics and

Theoretical Computer Science

Deciding Parity Games in Quasipolynomial Time
?

Cristian S. Calude1, Sanjay Jain2, Bakhadyr Khoussainov1,
Wei Li3 and Frank Stephan2,3

1
Department of Computer Science, University of Auckland

Private Bag 92019, Auckland, New Zealand

{cristian,bmk}@cs.auckland.ac.nz
2
Department of Computer Science, National University of Singapore

13 Computing Drive, COM1, Singapore 117417, Republic of Singapore

{sanjay,fstephan}@comp.nus.edu.sg
3
Department of Mathematics, National University of Singapore

10 Lower Kent Ridge Road, S17, Singapore 119076, Republic of Singapore

liwei.sg@gmail.com

Abstract. It is shown that the parity game can be solved in quasipolynomial time.
The parameterised parity game – with n nodes and m distinct values (aka colours or
priorities) – is proven to be in the class of fixed parameter tractable (FPT) problems
when parameterised overm. Both results improve known bounds, from runtime nO(

p
n)

to O(nlog(m)+6) and from anXP-algorithm with runtime O(n⇥(m)) for fixed parameter
m to an FPT-algorithm with runtime O(n5 + 2m log(m)+6m). As an application it is
proven that coloured Muller games with n nodes andm colours can be decided in time
O((mm ·n)5); it is also shown that this bound cannot be improved to 2o(m·log(m)) ·nO(1)

in the case that the Exponential Time Hypothesis is true. Further investigations deal
with memoryless Muller games and multi-dimensional parity games.

1 Introduction

A parity game is given by a directed graph (V,E), a starting node s 2 V , a function val which
attaches to each v 2 V an integer value (also called colour) from a set {1, 2, 3, . . . ,m}; the main
parameter of the game is n, the number of nodes, and the second parameter is m. Two players
Anke and Boris move alternately in the graph with Anke moving first. A move from a node
v to another node w is valid if (v, w) is an edge in the graph; furthermore, it is required that
from every node one can make at least one valid move. The alternate moves by Anke and Boris
and Anke and Boris and . . . define an infinite sequence of nodes which is called a play. For the
evaluation, it is defined that each value is owned by one player; without loss of generality one
player owns the odd numbers and the other player owns the even numbers. Anke wins a play
through nodes a0, a1, a2, . . . i↵ the limit superior (that is, the largest value appearing infinitely
often) of the sequence val(a0), val(a1), val(a2), . . . is a number she owns, that is, a number of
her parity. An example is the following game.
?
S. Jain was supported in part by NUS grant C252-000-087-001; B. Khoussainov was supported in part by the Marsden

Fund grant of the Royal Society of New Zealand; furthermore, S. Jain, B. Khoussainov and F. Stephan have been

supported in part by the Singapore Ministry of Education Academic Research Fund Tier 2 grant MOE2016-T2-1-019

/ R146-000-234-112. A conference version of this work was presented at the Symposium on the Theory of Computing,

STOC 2017 [11].

1

1start 2 3 4 5

Here the nodes are labeled with their values, which are unique (but this is not obligatory);
furthermore, Anke has even and Boris has odd parity. Boris has now the following memoryless
(that is, moves are independent of the history) winning strategy for this game: 1 ! 1, 2 ! 3,
3 ! 3, 4 ! 5, 5 ! 5. Whenever the play leaves node 1 and Anke moves to node 2, then Boris
will move to node 3. In case Anke moves to node 4, Boris will move to node 5. Hence, whenever
the play is in a node with even value (this only happens after Anke moved it there), in the next
step the play will go into a node with a higher odd value. So the largest infinitely often visited
node value is odd and therefore the limit superior of these numbers is an odd number which
justifies Boris’ win. Hence Boris has a winning strategy for the parity game given above.

Please see the next section for a more formal definition of the games and complexity classes
discussed in this introduction.

It is known that for parity games, in general, the winner can always use a memoryless winning
strategy [6,29,30,32,61,62,80]; see Corollary 21 below. This fact will be one central point in the
results obtained in this paper: the parity game will be augmented with a special statistics – using
polylogarithmic space – which indicates the winner correctly after a finite time whenever the
winner employs a memoryless winning strategy. By the way, the existence of memoryless winning-
strategies are also a convenient tool to prove that solving parity games is in NP \ coNP —
fixing a memoryless strategy for one player transforms the parity game into a one-player game
with a parity objective and one can check in polynomial time whether this game can be won.

Parity games are a natural class of games which are not only interesting in their own right,
but which are also connected to fundamental notions like µ-calculus, modal logics, tree automata
and Muller games [4,7,8,18,30,32,48,71,75,76,78,79]. Faster algorithms for solving parity games
could be used to improve the algorithms deciding the theory of certain tree automatic structures
[35,36,58] and to employ them to understand better these structures.

For investigating the complexity side of the game, it is assumed that the game is given by a
description in size polynomial in the number n of nodes and that one can evaluate all relevant
parts of the description in logarithmic space. A possibility is to store the following three items
for each game (where Anke moves first and starts from node 1):

• two numbers m,n with 1 m n and one bit which says whether the values owned by
player Anke are the even or the odd numbers;

• the game graph given by a table, that is, for each pair of nodes, a bit which says whether
there is a directed edge between the two nodes (which can be same) or not;

• the values of the nodes given by another table which holds, for each node, a binary number
from {1, 2, 3, . . . ,m}.

An important open problem for parity games is the time complexity for finding the winner of a
parity game, when both players play optimally; the first algorithms took exponential time [61,80]

2

and subsequent studies searched for better algorithms [51,53,55,64,70,71,72]. Many researchers,
including Emerson and Jutla [32] in 1991, asked whether the winner of a parity game can be
determined in polynomial time.

Emerson, Jutla and Sistla [33] showed that the problem is in NP \ coNP and Jurdzinski [52]
improved this bound to UP \ coUP. This indicates that the problem is not likely to be hard for
NP and might be solvable faster than in exponential time. Indeed, Petersson and Vorobyov [64]
devised a subexponential randomised algorithm and Jurdzinski, Paterson and Zwick [55] a de-
terministic algorithm of similar complexity (more precisely, the subexponential complexity was
approximately nO(

p
n)).

Besides this main result, there are also various practical approaches to solve special cases
[4,26,41] or to test out and analyse heuristics [12,44,53]; however, when Friedmann and Lange
[39] compared the various parity solving algorithms from the practical side, they found that
Zielonka’s recursive algorithm [80] was still the most useful one in practice.

McNaughton [61] showed that the winner of a parity game can be determined in time nm+O(1)

and this was subsequently improved to nm/2+O(1) [9,73] and to nm/3+O(1) [70,72], where n is the
number of nodes and m is the maximum value of the nodes.

The consideration of the parameter m is quite important for analysing the algorithmic com-
plexity of solving parity games; it is furthermore also a very natural choice. Schewe [71,72] argues
that for many applications which are solved using parity games, the parameterm is much smaller
than n, often by an exponential gap.

For example, when translating coloured Muller games into parity games in the way done by
McNaughton [61] and Björklund, Sandberg and Vorobyov [5], the number of values is, for all
but finitely many games, bounded by the logarithm of the number of nodes, see the proof of
Theorem 23 below. A similar result holds for the translation of multi-dimensional parity games
into standard parity games.

A further important application of parity games is the area of reactive synthesis. Here one
translates LTL-formulas into a Büchi automaton which needs to be determinised by translating
it into a parity automaton. Building on work of Safra [68,69], Piterman [65] showed that one can
translate non-deterministic Büchi automata with n states into parity automata with 2 · nn · n!
states and 2n values. In other words, one can evaluate various conditions on these parity auto-
mata by determining the winner in the corresponding parity game. Also Di Stasio, Murano,
Perelli and Vardi [25] investigated in their experiments various scenarios where the number m
is logarithmic in n.

The present work takes therefore the parameter m into consideration and improves the time
bounds in two ways:

• The overall time complexity is O(ndlog(m)e+6) which provides a quasipolynomial bound on
the runtime, as one can always choose m n;

• Furthermore, if m < log(n), then the overall time complexity is O(n5), which shows that
the problem is fixed parameter tractable when parameterised by m; the parity games are
therefore in the lowest time complexity class usually considered in parameterised complexity.

Prior investigations have already established that various other parameterisations of parity games
are fixed-parameter tractable, but the parameterisation by m was left open until now. Chatterjee

3

[14] pointed out to the authors that one can also write the result in a product form with parity
games being solvable in time O(2m·n4) for allm,n; the proof uses just the methods of Theorem 16
but keeping m as a parameter and not using explicitly the bound of m log(n) which, when
invoked into above formula, would give the bound O(n5).

An application of the results presented here is that coloured Muller games with n nodes and
m colours can be decided in time O((mm ·n)5); Theorem 25 below shows that this bound cannot
be improved to 2o(m·log(m)) · nO(1) provided that the Exponential Time Hypothesis is true.

Subsequent research [34,42,54,74] has provided the additional runtime bound

O(dm/ log(n)e4 · n3.45+log(dm/ log(n)e+2))

where the bound cited here stems from Stephan’s teaching material [74, Theorem 20.22] while
the research papers [34,42,54] obtained slightly better bounds due to some assumptions they
make on the game and due to the usage of better bounds for binomials. However, the main
contribution of the subsequent research [34,54] is that the quasipolynomial time algorithm can
be modified such that, in addition to the time bound, the workspace the algorithm uses is only
quasilinear in the number of nodes n. This improves over the algorithm presented here which
uses quasipolynomial space. Furthermore, various authors provided their own version of the
verification of the algorithm presented in this paper [34,42,54]. Before the presentation of the
results, the next section summarises the basic definitions and properties of the games and also
provides the basic complexity classes needed. To make the paper self-contained, proofs of some
known results, namely Propositions 17 and 28 as well as Theorems 20, 22 and 23, have been
written in a uniform manner and included into this paper.

2 Basic Notions Used

This section summarises the basic properties of the two games (parity game and coloured Muller
game) and also explains related games (multi-dimensional parity game, Rabin game and Streett
game). It furthermore provides the basic complexity-theoretic notions used in this paper.

Definition 1. A game is given by a directed finite graph of n nodes, a starting node and a set
G of sets of nodes which are called the winning set of player Anke. The two players, Anke and
Boris, move alternately a marker through the graph, where Anke starts from the starting node
and the players each time move along an outgoing edge of the current node; here it is required
that every node has at least one outgoing edge (which can go to the node itself). A play is the
infinite sequence of nodes visited by the marker while Anke and Boris are playing. To decide the
winner of a play, one considers the set of infinitely often visited nodes U . Now Anke wins the
play i↵ U 2 G.

In a parity game, each node v carries a value, denoted val(v). In a Muller game, each node
v carries a set of colours.

In a parity game, the set G can be derived from values from 1 to m (where m n) which
are associated with the nodes. For this, one associates with each player Anke and Boris a parity
and a set U is in G i↵ the maximum value of U is of Anke’s parity. Alternatively one can require

4

that G respects the parity, that is, if U and U 0 satisfy that the the maximum values of nodes in
U and in U 0, respectively, have the same parity then either U,U 0 are both inside G or U,U 0 are
both outside G.

In a coloured Muller game, every node is associated with a set of colours. For a set U ,
colour(U) is the set of all colours which are associated with at least one node in U . The set
G has to respect the colours, that is, if colour(U) = colour(U 0) then either both U and U 0 are
inside G or both U and U 0 are outside G.

In a k-dimensional parity game, each node is associated with a k-dimensional vector of val-
ues. Now a set U of nodes is winning for player Anke i↵ the component wise maximum of the
value-vectors of the nodes in U is a vector of k even numbers.

Rabin games and Streett games have as additional information a list (V1,W1), (V2,W2),
(V3,W3), . . . , (Vm,Wm) of pairs such that in the Rabin case, a set of nodes is in U i↵ some
pair (Vh,Wh) satisfies Vh \ U 6= ; and Wh \ U = ;; in the Streett case, U 2 G i↵ all pairs
(Vh,Wh) satisfy Vh \ U 6= ;) Wh \ U 6= ;.

A strategy for a player, say for Anke, maps, for every situation where Anke has to move, the
current node and history of previous moves to a suggested move for Anke. A winning strategy
for Anke is a strategy for Anke which guarantees that Anke wins a play whenever she follows
the suggested moves. A strategy is called memoryless i↵ it only depends on the current node
and not on any other aspects of the history of the play.

The winner of a game is that player who has a winning strategy for this game.

Remark 2. All games considered in this paper (including parity games and coloured Muller
games) have always a winner; this winner wins every play in the case that the winner follows a
winning strategy.

The additional structures of parity games, coloured Muller games and other games enforce
that the winning set G is of a certain form; in particular in the case that the parameter m
(number of colours of a coloured Muller game or number of values of a parity game) is small
compared to n, the algorithms to solve these games have a better time bound than in the general
case.

As choosing for each node a unique colour not shared with any other node does not impose
any restriction on G, one can without loss of generality require that m n.

For parity games, if a value k > 1 does not occur in a game, but k + 1 does, then one can
for all nodes v with val(v) > k replace val(v) by val(v) � 2 without changing the winner of
the game. Furthermore, if the value 1 does not occur in the game, then one can replace val(v)
by val(v) � 1 throughout the game and invert the parity of the players. For that reason, the
maximum value m of a parity game can always be assumed to satisfy m n.

In coloured Muller games, representations of G as tables might have the size 2m and one
has several choices on how to handle this situation: (a) one only considers such coloured Muller
games where G can be decided by a Boolean circuit not larger than p(n) size for some polynomial
p; (b) the same as (a) with a polynomial time algorithm instead with program size p(n); (c) one
uses the space needed for representing G as a Boolean circuit as an additional parameter for the
game. The approach taken in the present paper is (a) or (b).

5

Remark 3. It should be pointed out that one can also consider games where it only depends
on the node which player moves and the players do not necessarily take turns. Both versions of
parity or Muller games can be translated into each other with a potential increase of the number
of nodes by a factor 2.

In the case that one goes from turn-based to position-based Muller games, one doubles up
each node: Instead of the node v one uses a node (Anke, v), when it is Anke’s turn to move, and
a node (Boris, v), when it is Boris’ turn to move; the nodes (Anke, v) and (Boris, v) in the new
game have the same values or colours as v in the old game. For every edge from v to w in the
old game, one puts the edges from (Anke, v) to (Boris, w) and from (Boris, v) to (Anke, w) into
the game.

For the other direction, each node w receives a prenode w0 with exactly one outgoing edge
from w0 to w. Now, for each edge (v, w) from the original game, if the same player moves at
v and at w in the original game, then one puts the edge (v, w0) into the new game, else one
puts the edge (v, w) into the new game. The rationale behind this is that the longer path v –
w0 – w has even length in the case that the players moving at v and w should be the same for
alternating moves. Furthermore, if Anke moves at the original starting node s, then s is also the
starting node of the new game, else s0 is the starting node of the new game. Again, the nodes w
and w0 in the new game have the same value or colour as the node w in the old game.

Parameterised Complexity studies the complexity to solve a problem not only in dependence
of the main parameter n (size of input), but also other related parameters m, k, . . . which are
expected to arise naturally from the problem description. In the following, let n denote the main
parameter and m a natural further parameter.

Definition 4. A problem is called fixed parameter tractable (FPT) i↵ there is a polynomial p
and a further function f such that all instances of the problem can be solved in time f(m)+p(n).

The class of all problems in FPT can also be characterised as those problems which can be
solved in g(m) · p(n) for some polynomial p and an arbitrary function g.

For the current work, the main parameter n is the number of nodes and the parameter m is
the number of values in the parity game or the number of colours in the coloured Muller game.
The so chosen second parameter m is a very natural parameter to the games considered and
occurs widely in prior work studying the complexity of the games [5,9,61,70,72,73]. However, in
the literature also other parameters and parameter combinations have been studied.

The number m of colours used in the game is an important parameter of coloured Muller
games; for complexity-theoretic considerations, the exact complexity class of solving coloured
Muller games with n nodes andm colours may also depend on how G is represented, in particular
in case when m is large. The size of this representation can thus be a further parameter for
determining the complexity class of solving coloured Muller games. However, this parameter is
not studied in the present work.

Definition 5. A problem is in the class XP if it can be solved in time O(nf(m)) for some
function f .

6

Between FPT at the bottom and XP at the top, there are the levels of the W-hierarchy W[1],
W[2], W[3], . . .; it is known that FPT is a proper subclass of XP and it is widely believed
that the levels of the W-hierarchy are all di↵erent. The books of Downey and Fellows [27,28]
and Flum and Grohe [37] give further information on parameterised complexity.

Definition 6. The Exponential Time Hypothesis says that for the usual satisfiability problems
like 3SAT, 4SAT and SAT itself, for n being the number of variables, any algorithm solving
them needs at least time cn worst case complexity for some rational number c > 1 and almost
all n.

The Exponential Time Hypothesis implies that W[1] di↵ers from FPT, but not vice versa. Note
that the NP-complete problems are spread out over all the levels of this hierarchy and that even
the bottom level FPT also contains sets outside NP. The level of a problem can depend on the
choice of the parameters to describe the problem, therefore one has to justify the choice of the
parameters.

Chandra, Kozen and Stockmeyer [13] investigated alternating Turing machines. Such ma-
chines can be defined in an asymmetric and a symmetric way; the latter is in particular needed
for lower complexity bounds in certain settings. Furthermore, Cook [23] and Levin [60] initiated
the systematic study of NP and formalised the question whether NP = P.

Definition 7. Alternating Turing machines can be viewed as a game: Besides the usual Turing
machine steps, there are also branching Turing machine steps. In the case of an existential
branching, one player, say Anke, decides which of the possible steps the Turing machine is
taking; in the case of a universal branching, the other player, here Boris, decides which of the
possible steps the Turing machine is taking. Anke wins i↵ Anke can always force the game in
an accepting state. Boris wins i↵ the game never goes into an accepting state. Now for every x
as input, one of the players has a winning strategy; the alternating Turing machine decides L
i↵ the following holds: For all x 2 L, Anke has a winning strategy, for all x /2 L, Boris has a
winning strategy.

A language L is in alternating time / space f(n) i↵ for every x 2 L, Anke can play such
that x is accepted and the play does not violate the resource bound f(n); for x /2 L, Boris can
play such that x is never accepted and, in the case of a space resource bound, the play does not
violate the resource bound.

A language L is in non-deterministic time / space f(n) i↵ it is in an alternating time / space
f(n) via a Turing machine where Boris has always only one choice. A language is in NP\coNP

i↵ there is a non-deterministic Turing machine and a polynomial p such that if L(x) = a then
Anke can play such that the input (x, a) is accepted within time |p(x)| and if L(x) 6= a then Anke
cannot achieve that (x, a) gets accepted. A language is in UP \ coUP i↵ it is in NP \ coNP

via a machine which has, for every pair (x, L(x)), exactly one computation path which Anke can
choose such that (x, L(x)) gets accepted.

A language L satisfies L 2 ⌃
P
2 i↵ there is an alternating Turing machine recognising L in

polynomial time such that on every computation path, all the points where Anke can branch
the computation come before those points where Boris can branch the computation.

7

In the case of alternating computation, for small complexity classes where one cannot check the
complexity within the mechanism given, one employs for alternating computations a symmetric
setting where the alternating Turing machine has explicit accepting and explicit rejecting states
and it halts in both. Now L is in the given time class i↵ the following holds: For all x 2 L, Anke
has a winning strategy which guarantees that while obeying the given resource bound the game
ends up in an accepting state; for all x /2 L, Boris has a winning strategy which guarantees that
while obeying the given resource bound the game ends up in an rejecting state.

If the space-bound or the time-bound are constructible within the given complexity class,
then the alternating computation for the standard model can also be equipped with a counter;
then the machine can go to the rejecting state when the run-time is exhausted; here one uses
that if an alternating machine using space f(n) does not accept within cf(n) steps for a suitable
constant c then one can safely reject the computation. The first approach to solving the parity
games in polylogarithmic space below also has this symmetric approach implicitly, even without
using explicit counters for the used up time.

3 The Complexity of the Parity Game

The main result in this section is an alternating polylogarithmic space algorithm to decide the
winner in parity games; later more concrete bounds will be shown. The idea is to collect, in
polylogarithmic space, for both players in the game, Anke and Boris, the statistics of their
performance in the play. In particular, these statistics store information about whether the play
has surely gone through a loop where the largest valued node has the parity of the corresponding
player. Though these statistics do not capture all such loops, in case that one player plays a
memoryless winning strategy, the player’s own statistics will eventually find evidence for such
a loop while the opponent statistics will not provide false evidence which would lead into the
opposite direction.

The following notation will be used throughout the paper. In order to avoid problems with
fractional numbers and log(0), let dlog(k)e = min{h 2 N : 2h � k}. Furthermore, a function (or
sequence) f is called increasing whenever for all i, j the implication i j) f(i) f(j) holds.

Theorem 8. There exists an alternating polylogarithmic space algorithm deciding which player
has a winning strategy in a given parity game. When the game has n nodes and the values of the
nodes are in the set {1, 2, 3, . . . ,m}, then the algorithm runs in O(log(n) · log(m)) alternating
space.

Proof. The idea of the proof is that, in each play of the parity game, one maintains winning
statistics for both players Anke and Boris. These statistics are updated after every move for
both players. In case a player plays according to a memoryless winning strategy for the parity
game, the winning statistics of this player will eventually indicate the win (in this case one says
that the “winning statistics of the player mature”) while the opponent’s winning statistics will
never mature. This will be explained in more detail below.

The winning statistics of Anke (Boris) has the following goal: to track whether the play goes
through a loop where the largest value of a node in the loop is of Anke’s (Boris’) parity. Note that

8

if Anke follows a memoryless winning strategy then the play will eventually go through a loop
and the node with the largest value occurring in any loop the play goes through is always a node
of Anke’s parity. Otherwise, Boris can repeat a loop with the largest value being of Boris’ parity
infinitely often and thus win, contradicting that Anke is using a memoryless winning strategy.

The näıve method to do the tracking is to archive the last 2n+ 1 nodes visited, to find two
identical moves out of the same node by the same player and to check whose parity has the
largest value between these two moves. This would determine the winner in case the winner uses
a memoryless winning strategy. This tracking needs O(n · log(n)) space – too much space for the
intended result. To save space one constructs a winning statistics which still leads to an Anke
win in case Anke plays a memoryless winning strategy, but memorises only partial information.

The winning statistics of the players are used to track whether certain sequences of nodes
have been visited in the play so far and the largest value of a node visited at the end or after the
sequence is recorded. The definitions are similar for both players. For simplicity the definition is
given here just for player Anke.

Definition 9. In Anke’s winning statistics, an i-sequence is a sequence of nodes a1, a2, , a3, , . . . ,
a2i which have been visited (not necessarily consecutively, but in order) during the play so far
such that, for each k 2 {1, 2, 3, . . . , 2i � 1},

max{val(a) : a = ak _ a = ak+1 _ a was visited between ak and ak+1},

is of Anke’s parity.

The aim of Anke is to find a sequence of length at least 2n+1, as such a sequence must contain a
loop. So she aims for a (dlog(n)e+2)-sequence to occur in her winning statistics. Such a sequence
is built by combining smaller sequences over time in the winning statistics.

Here a winning statistics (b0, b1, . . . , bdlog(n)e+2) of a player consists of dlog(n)e + 3 numbers
between 0 and m, both inclusive, where bi = 0 indicates that currently no i-sequence is being
tracked and bi > 0 indicates that

Property-bi: an i-sequence is being tracked and that the largest value of a node visited
at the end of or after this i-sequence is bi.

Note that for each i at most one i-sequence is tracked. The value bi is the only information of
an i-sequence which is kept in the winning statistics.

The following invariants are kept throughout the play and are formulated for Anke’s winning
statistics; those for Boris’ winning statistics are defined with the names of Anke and Boris
interchanged. In the description below, “i-sequence” always refers to the i-sequence being tracked
in the winning statistics.

(I1) Only bi with 0 i dlog(n)e+2 are considered and each such bi is either zero or a value
of a node which occurs in the play so far.

(I2) An entry bi refers to an i-sequence which occurred in the play so far i↵ bi > 0.
(I3) If bi, bj are both non-zero and i < j then bi bj.
(I4) If bi, bj are both non-zero and i < j, then in the play of the game so far, the i-sequence

starts only after a node with value bj was visited at or after the end of the j-sequence.

9

When a play starts, the winning statistics for both players are initialised with bi = 0 for all i.
During the play when a player moves to a node with value b, the winning statistics of Anke
is updated as follows – the same algorithm is used for Boris with the names of the players
interchanged everywhere.

1. If b is of Anke’s parity or b > bi > 0 for some i, then one selects the largest i such that

(a) either bi is not of Anke’s parity – that is, it is either 0 or of Boris’ parity – but all bj
with j < i and also b are of Anke’s parity

(b) or 0 < bi < b

and then one updates bi = b and bj = 0 for all j < i.
2. If this update produces a non-zero bi for any i with 2i > 2n then the play terminates with

Anke being declared winner.

Note that it is possible that both 1.(a) and 1.(b) apply to the same largest i. In that case, it
does not matter which case is chosen, as the updated winning statistics is the same for both
cases. However, the tracked i-sequences referred to may be di↵erent; this does not e↵ect the rest
of the proof.

Example 10. Here is an example of i-sequences for player Anke. This example is only for
illustrating how the i-sequences and bi’s work; in particular this example does not use memoryless
strategy for either of the players. Consider a game where there is an edge from every node to
every node (including itself) and the nodes are {1, 2, 3, . . . , 7} and have the same values as names;
Anke has odd parity. Consider the following initial part of a play:

1 6 7 5 1 4 5 3 2 1 3 2 3 1 3 3 1 2 1

The i-sequences and the bi’s change over the course of above play as given in the following table.
In the table, the nodes prefixed by “i :” are the nodes of the corresponding i-sequence.

Move b4, b3, b2, b1, b0 i-sequences in play so far rule

1 0,0,0,0,1 0:1 1.(a)

6 0,0,0,0,6 0:1 6 1.(b)

7 0,0,0,0,7 1 6 0:7 1.(a)

5 0,0,0,5,0 1 6 1:7 1:5 1.(a)

1 0,0,0,5,1 1 6 1:7 1:5 0:1 1.(a)

4 0,0,0,5,4 1 6 1:7 1:5 0:1 4 1.(b)

5 0,0,0,5,5 1 6 1:7 1:5 1 4 0:5 1.(a)

3 0,0,3,0,0 1 6 2:7 2:5 1 4 2:5 2:3 1.(a)

2 0,0,3,0,0 1 6 2:7 2:5 1 4 2:5 2:3 2

1 0,0,3,0,1 1 6 2:7 2:5 1 4 2:5 2:3 2 0:1 1.(a)

3 0,0,3,3,0 1 6 2:7 2:5 1 4 2:5 2:3 2 1:1 1:3 1.(a)

2 0,0,3,3,0 1 6 2:7 2:5 1 4 2:5 2:3 2 1:1 1:3 2

3 0,0,3,3,3 1 6 2:7 2:5 1 4 2:5 2:3 2 1:1 1:3 2 0:3 1.(a)

1 0,1,0,0,0 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 1.(a)

3 0,3,0,0,0 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3 1.(b)

3 0,3,0,0,3 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3 0:3 1.(a)

1 0,3,0,1,0 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3 1:3 1:1 1.(a)

2 0,3,0,2,0 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3 1:3 1:1 2 1.(b)

1 0,3,0,2,1 1 6 3:7 3:5 1 4 3:5 3:3 2 3:1 3:3 2 3:3 3:1 3 1:3 1:1 2 0:1 1.(a)

10

If at an update of an i-sequence both possible updates 1.(a) and 1.(b) apply to the same level
i then it does not matter for the statistics which is chosen. However, for the i-sequences, one
has to commit to one choice and for simplicity, (for the above table) one assumes that 1.(a) has
priority. So the formal algorithm for updating the sequences is the following one.

1. If b is of Anke’s parity or b > bi > 0 for some i, then one selects the largest i such that
(a) either bi is not of Anke’s parity – that is, it is either 0 or of Boris’ parity – but all bj

with j < i and also b are of Anke’s parity
(b) or 0 < bi < b

else there is no update and one goes to step 3.
2. For the selected i, one does the following update according to the first of the two above

cases which applies:
(a) Let bi = b.

Let the new i-sequence contain all the nodes of the old j-sequences, with j < i, plus
the new node with value b.
Let bj = 0 for all j < i as the corresponding j-sequences are merged into the new
i-sequence;

(b) Let bi = b and let the i-sequence be unchanged except for the update of the associated
value bi and all j-sequences with j < i are made void by setting bj = 0 for all j < i.

Furthermore, all j-sequences with j > i are maintained as they are.
3. If this update produces a non-zero bi for any i with 2i > 2n then the play terminates with

Anke being declared winner and no further tracking of i-sequences is needed.

The 3-sequence in the above table already has a loop, as there are three occurrences of “3 : 3”
and the second and third of these have that the same player moves. However, as the sequences
are not stored but only the bi, Anke’s winning statistics only surely indicates a win of player
Anke when there is an i � log(2n+ 1) with bi > 0; this i is 4 as 24 > 2 · 7 + 1.

Remark 11. The winning statistics of both players are maintained via a deterministic algorithm
which updates each statistics based on the prior value and the current node visited, more pre-
cisely, the value of the node visited. These statistics use only log(m) · log(n) bits of memory.
If a player, during a play, follows a memoryless winning strategy then the player’s winning
statistics will eventually indicate a win while the opponent’s winning statistics will never do.
However, if neither of the players follow a memoryless winning strategy then no guarantees on
the outcome of the evolution of the statistics are made. Furthermore, if one identifies “Anke’s
winning strategy indicates a win” with “accept” and “Boris’ winning strategy indicate a win”
with “reject” then one can view the game as a run of an alternating O(log(n) · log(m)) space
Turing machine which keeps in its memory only the statistics, the current node and the player
to move and which explicitly accepts a computation in the case that Anke can win the game
and explicitly rejects a computation in the case that Boris can win the game. For the case of
checking whether Anke can win, the existential branchings are the choice of the next move by
Anke and the universal branchings are the choice of the next move by Boris. The obtained
characterisation is heavily based on the fact that in every parity game one of the players has a
memoryless winning strategy, see Corollary 21 below. One can approximately halve the space

11

usage by maintaining only Anke’s winning statistics. If the winning player plays a memoryless
winning strategy, then the alternating Turing machine would explicitly accept if Anke can win
and will reject by “running forever” without ever visiting an accepting state in the case that
Boris can win.

An anonymous referee suggested that such an algorithm – which maintains the winning
statistics – might be called a “space-e�cient one-pass streaming algorithm inspecting the play”.

Verification of the algorithm. Note that, in the updating algorithm for Anke’s winning
statistics, if b is of Anke’s parity, then there is an i that satisfies 1.(a), as otherwise the algorithm
would have terminated earlier. Initially, the invariants clearly hold as all bi’s are 0. Now it is
shown that the invariants are preserved at updates of the bi’s according to cases 1.(a) or 1.(b).

It is easy to verify that the invariants are maintained if the update is due to 1.(b), and it
also ensures that Property-bi is maintained for the i-sequences being tracked. In case the update
is done due to 1.(a), then the Property-bi0 is maintained for all i0-sequences being tracked for
i0 > i (with bi0 � b in these cases). For i0 < i, bi0 is made 0 by the update algorithm. The next
paragraph argues about an appropriate i-sequence being formed. Thus, it is easy to verify that
(I1) to (I4) are maintained by the update algorithm. Note that (I1) implies that the space bound
needed is at most O(log n logm), (I2) is used implicitly to indicate which i-sequences are being
tracked, and (I3, I4) give the order of the i-sequences tracked: a (j+1)-sequence appears earlier
in the play than j-sequence. This is used implicitly when one combines the smaller j-sequences
into a larger one as mentioned below.

When updating Anke’s winning statistics by case 1.(a), one forms a new i-sequence of length
2i by putting the older j-sequences for j = i�1, i�2, . . . , 1, 0 together and appending the newly
visited one-node sequence with value b; when i = 0, one forms a new 0-sequence of length 20

consisting of just the newly visited node with value b. Note that in case i > 0 both b and b0 are
of Anke’s parity and therefore the highest valued node between the last member a of the older
0-sequence and the last node in the new i-sequence (both inclusive) has the value max{b0, b} (by
(I4) and Property-b0 for the older 0-sequence). Furthermore, for every j < i�1, for the last node
a of the older (j+1)-sequence and the first node a0 of the older j-sequence, in the new i-sequence
a highest valued node in the play between these two nodes a, a0 (both inclusive) has value bj+1

(by (I4) and Property-bj+1 of older (j + 1)-sequence) which, by choice, has Anke’s parity. Thus
the overall combined new sequence indeed satisfies the properties needed for an i-sequence, b is
the value of the last node of this sequence and thus, currently, also the largest value of a node
visited at or after the end of the sequence. All older j-sequences with j < i are discarded and
thus their entries are set back to bj = 0.

The same rules apply to the updates of Boris’ winning statistics with the roles of Anke and
Boris interchanged everywhere.

Claim 12. If a player is declared a winner by the algorithm, then the play contains a loop with
its maximum valued node being a node of the player.

To prove the claim, it is assumed without loss of generality that Anke is declared the winner
by the algorithm. The play is won by an i-sequence being observed in Anke’s winning statistics

12

with 2i > 2n; thus some node occurs at least three times in the i-sequence and there are
h, ` 2 {1, 2, 3, . . . , 2i} with h < ` such that the same player moves at ah and a` and furthermore
ah = a` with respect to the nodes a1, a2, a3, . . . , a2i of the observed i-sequence. The maximum
value b0 of a node between ah and a` in the play is occurring between some ak and ak+1 (both
inclusive) for a k with h k < `. Now, by the definition of an i-sequence, b0 has Anke’s parity.
Thus a loop has been observed for which the maximum value of a node in the loop has Anke’s
parity.

Claim 13. If a player follows a memoryless winning strategy, then the opponent is never declared
a winner.

To prove the claim, suppose that a player follows a memoryless winning strategy but the opponent
is declared a winner. Then the opponent, by Claim 12, goes into a loop with the maximum node
of the opponent’s parity. Hence, the opponent can cycle in that loop forever and win the play, a
contradiction.

Claim 14. If a player follows a memoryless winning strategy then the player is eventually de-
clared a winner.

To prove the claim, it is assumed that the player is Anke, as the case of Boris is symmetric.
The values bi analysed below refer to Anke’s winning statistics. Assume that the sequence of
values of the nodes in an infinite play of the game has the limit superior c which, by assumption,
is a value of Anke’s parity. To prove the claim one needs to argue that eventually bi becomes
non-zero for an i with 2i > 2n. For this purpose it will be argued that a counter to be defined,
associated with the values of bi’s, eventually keeps increasing (except for some initial part of the
play, where it may oscillate). This is argued by using count(c, t) below, which gives the value of
the counter after t steps of the play.

Consider a step as making a move and updating of the statistics. For each step t let bk(t)
refer to the value of bk at the end of step t (that is, after the updates in the statistics following
the t-th move in the play). Let Bc(t) be the set of all k such that bk(t) has Anke’s parity and
bk(t) � c. Let

count(c, t) =
P

k2Bc(t)
2k.

Now it is shown that whenever at steps t, t0 with t < t0, a move to a node with value c was
made and no move, strictly between steps t, t0, was made to any node with value c0 � c, then
count(c, t) < count(c, t0). To see this, let i be the largest index for which there is a step t00 with
t < t00 t0 such that bi is updated at step t00.

Note that this implies [bi(t) < c or bi(t) is of Boris’ parity], and [0 < bi(t00) c]. Now, in the
case that bi(t00) < c, it holds that t00 < t0 and at time t0, condition 1.(b) of the update algorithm
will ensure that an update (either 1.(a) or 1.(b)) is done to enforce bi(t0) = c. Thus

count(c, t0)� count(c, t) � 2i �
P

j2Bc(t):j<i
2j � 1.

Accordingly, once all moves involving nodes larger than c in value have been done in the play,
there will still be infinitely many moves to nodes of value c and for each two subsequent such

13

moves at t, t0 the inequality count(c, t) + 1 count(c, t0) will hold. Consequently, the number
count(c, t), for su�ciently large t where a move to a node with value c is made at step t, needs
to have, for some i, bi(t) � c and 2i > 2n; thus the termination condition of Anke will terminate
the play with a win.

The above arguments show that an alternating Turing machine can simulate both players and,
taking the winning statistics into account, will accept the computation whenever Anke has a
winning strategy for the game.

Recall that an alternating Turing machine can be viewed as a game between two players,
Anke (existential) and Boris (universal) which perform in turns part of the computations and
can branch in the part they do; when the game terminates, it says which player has won; if
Anke wins it means “accept” and if Boris wins it means “reject”; if it never terminates, it means
“undecided”.

An alternating Turing machine can decide a set i↵ for every input x, if x 2 L then Anke has
a winning strategy for the alternating Turing machine and can force an “accept” else Boris has a
winning strategy for the alternating Turing machine and can avoid that it comes to an “accept”;
in the case of the above game, Boris can even enforce an explicit “reject”. For the alternating
Turing machine, in order to simulate the game, one has to keep track of the following pieces of
information: the winning statistics of the players; the current node in the play and the player
who is to move next. Thus, the alternating Turing machine uses only O(log(n) · log(m)) space to
decide whether the parity game, from some given starting point, will be won by Anke (or Boris),
provided the winner plays a memoryless winning strategy (which always exists when the player
can win the parity game). ⇤

Chandra, Kozen and Stockmeyer [13] showed how to simulate an alternating Turing machine
working in polylogarithmic space by a deterministic Turing machine working in quasipolyno-
mial time. Their simulation bounds for the alternating Turing machine described in Theorem 8
give a deterministic Turing machine working in time O(nc log(m)) for some constant c. As men-
tioned above, one can always assume that in a parity game with n nodes, with values from
{1, 2, 3, . . . ,m}, one can choose m n, so using this result one gets the following parameterised
version of the main results that parity games can be solved in quasipolynomial time.

Theorem 15. There is an algorithm which finds the winner of a parity game with n nodes and
values from {1, 2, 3, . . . ,m} in time O(nc log(m)).

For some special choices of m with respect to n, one can obtain even a polynomial time bound.
McNaughton [61] showed that for every constant m, one can solve a parity game with n nodes
having values from {1, 2, 3, . . . ,m} in time polynomial in n; however, in all prior works the
degree of this polynomial depends on m [40]; subsequent improvements were made to bring the
dependence from approximately nm+O(1) first down to nm/2+O(1) [9,73] and then to approximately
nm/3+O(1) [53,72]. The following theorem shows that one can bound the computation time by a
fixed-degree polynomial in n, for all pairs (m,n) with m < log(n).

Theorem 16. If m log(n) then one can solve the parity game with n nodes having values
from {1, 2, 3, . . . ,m} in time O(n5).

14

Proof. Note that Theorem 8 actually shows that the following conditions are equivalent:

• Anke can win the parity game;
• Anke can play the parity game such that her winning statistics matures while Boris’ winning
statistics does not mature.

Thus one can simplify the second condition and show that it is equivalent to the following two
games [57,74]:

• One only maintains Anke’s winning statistics and a play terminates with a win for Anke i↵
she is eventually declared a winner and the play is a win for Boris i↵ it runs forever;

• One only maintains Boris’ winning statistics and a play is a win for Anke i↵ it never happens
that the winning statistics of Boris make him to be declared a winner.

The first game is called a reachability game [57] and the second game a survival game [74,
Chapter 9]. Both games are isomorphic, as they are obtained from each other only by switching
the player who is supposed to win. Such type of reductions, though not with good complexity
bounds, were also considered by Bernet, Janin and Walukiewicz [3]. The reachability game to
which one reduces the parity game, can now be described as follows.

• The set Q of nodes of the reachability game consists of nodes of the form (a, p, b̃) where a
is a node of the parity game, the player p 2 {Anke,Boris} moves next and b̃ represents the
winning statistics of Anke.

• The starting node is (s, p, 0̃), where 0̃ is the vector of all bi with value 0, s is the starting
node of the parity game and p is the player who moves first.

• Anke can move from (a,Anke, b̃) to (a0,Boris, b̃0) i↵ she can move from a to a0 in the parity
game and this move causes Anke’s winning statistics to be updated from b̃ to b̃0 and b̃ does
not yet indicate a win of Anke.

• Boris can move from (a,Boris, b̃) to (a0,Anke, b̃0) i↵ he can move from a to a0 in the parity
game and this move causes Anke’s winning statistics to be updated from b̃ to b̃0 and b̃ does
not yet indicate a win of Anke.

The number of elements of Q can be bounded by O(n4). First note that the number of increasing
functions from {0, 1, 2, . . . , dlog(n)e + 2} to {1, 2, 3, . . . , dlog(n)e} can be bounded by O(n2), as
any such sequence (b00, b

0
1, b

0
2 . . . , b

0
dlog(n)e+2) can be represented by the subset {b0

k
+ k : 0 k

dlog(n)e+2} of {1, 2, 3, . . . , 2dlog(n)e+2} and that there are at most O(n2) such sets. Further,
note that b0

k
 b0

k+1 implies b0
k
+ k < b0

k+1 + k + 1 and thus all b0
k
can be reconstructed from

the set. Given a winning statistics b̃ = (b0, b1, b2, . . . , bdlog(n)e+2), one defines b00 = max{1, b0} and
b0
k+1 = max{b0

k
, bk+1} and notes that only those bk with bk = 0 di↵er from b0

k
. Thus one needs

at most dlog(n)e+ 3 additional bits to indicate which bk is 0. The overall winning statistics can
then be represented by 3dlog(n)e+ 5 bits. Furthermore, one needs 1 bit to represent the player
and dlog(n)e bits to represent the current node in the play. Accordingly, each node in Q can
be represented with 4dlog(n)e + 6 bits resulting in O(n4) nodes in Q. The set Q itself can be
represented by using a set of such representations of nodes.

Note that one can compute the set Q of vertices and determine a list of nodes Q0 ✓ Q where

15

Anke’s winning statistics indicate a win in time O(|Q| · n); the set Q0 is the set of target nodes
in the reachability game.

The next proposition shows that the so constructed reachability game can be decided in
time O(|Q| ·n) by a well-known algorithm. For the general case of a reachability game, the time
complexity is linear in the number of vertices plus number of edges of the game graph; note that
the reachability game constructed has |Q| nodes and |Q| · n edges. This completes the proof. ⇤

The algorithm below is listed explicitly by Khaliq and Imran [56] and appeared much earlier in
the literature, though sometimes in other or only related contexts [1,22,43,45,50]. The algorithm
is now included for the reader’s convenience.

Proposition 17 (Beeri [1], Cook [22], Gurevich and Harrington [45], Immerman

[50]). In a reachability game with a set Q of nodes, a subset Q0 ✓ Q of target nodes Q0, out
degree up to n per node and start node s, one can decide in time O(|Q| ·n) which player can win
the game.

Proof. One computes for each node q 2 Q, a linked list of q’s successors (which are at most n
in number) and a linked list of q’s predecessors. Note that the collection of all the successor and
predecessor lists for di↵erent nodes in Q taken together has the length at most |Q| · n. These
lists can also be generated in time O(|Q| · n).

Note that a node q is a winning node for Anke if q 2 Q0 or either Anke moves from q and one
successor node of q is a winning node for Anke or Boris moves from q and all successor nodes of
q are winning node for Anke. This idea leads to the algorithm below.

Next, for each node q, a tracking number kq is introduced and maintained such that the
winning nodes for Anke will eventually all have kq = 0, where kq indicates how many further
times one has to visit the node until it can be declared a winning node for Anke. The numbers
kq are initialised by the following rule:

• On nodes q 2 Q0 the number kq is 1;
• On nodes q = (a,Anke, b̃) /2 Q0, the number kq is initialised as 1;
• On nodes q = (a,Boris, b̃) /2 Q0, the number kq is initialised as the number of nodes q0 such
that Boris can move from q to q0.

These numbers can be computed from the length of the list of successors of q, for each q 2 Q.
Now one calls the following recursive procedure, initially for all q 2 Q0 such that each call updates
the number kq. The recursive call does the following:

• If kq = 0 then return without any further action else update kq = kq � 1.
• If after this update it still holds kq > 0, then return without further action.
• Otherwise, that is when kq originally was 1 when entering the call, recursively call all pre-
decessors q0 of q with the same recursive call.

After the termination of all these recursive calls, one looks at kq for the start node q of the
reachability game. If kq = 0 then Anke wins else Boris wins.

In the above algorithm, the predecessors of each node q 2 Q are called at most once from a call
in q, namely when kq goes down from 1 to 0; furthermore, this is the time where it is determined

16

that the node is a winning node for Anke. Thus there are at most O(|Q| · n) recursive calls and
the overall complexity is O(|Q| · n).

For the verification, the main invariant is that, for nodes q 2 Q�Q0, kq indicates how many
more successors of q one still has to find which are winning nodes for Anke until q can be declared
a winning node for Anke. In case that Anke’s winning statistics has matured in the node q, the
value kq is taken to be 1 so that the node is processed once in all the recursive calls in the
algorithm. For nodes where it is Anke’s turn to move, only one outgoing move which produces a
win for Anke is needed. Consequently, one initialises kq to 1 and as soon as this outgoing node is
found, kq goes to 0, which means that the node is declared a winning node for Anke. In case the
node q is a node where Boris moves then one has to enforce that Boris has no choice but to go
to a winning node for Anke. Thus kq is initialised to the number of moves which Boris can make
in this node; each time when one of these successor nodes is declared a winning node for Anke,
kq goes down by one. Observe that once the algorithm is completed, the nodes with kq = 0 are
exactly the winning nodes for Anke in the reachability game. ⇤

The next result carries over the methods of Theorem 16 to the general case, that is, it uses
everything except those parts which make use of m log(n). So the size of the code representing
a winning statistics for Anke is given by dlog(n)e + 3 log(n) + 4 numbers of dlog(m + 1)e
log(m) + 1 bits. As log(m) log(n), the overall size of representation of a node in the set Q of
nodes of the reachability game can be bounded by log(n) · (log(m) + 5) + c. Hence, the size of
|Q| is O(nlog(m)+5) and the number of edges in the reachability game is O(nlog(m)+6).

For many decision problems in NP, in particular for the NP-complete ones, one can find
solutions witnessing the given answer (like the winning strategy for the winner of the parity
game) by solving several variants of the decision problem where more and more parameters of
the problem are fixed by constants [2]. This is now outlined for finding the memoryless winning
strategy of the winner of a parity game using an algorithm which decides who is the winner. For
the ease of notation, assume that Anke can win the game on a graph (V,E). Now one does the
following steps to retrieve the winning strategy:

1. Maintain, for each node a 2 V , a list of possible successors Va which is initialised as {b :
(a, b) 2 E} at the beginning.

2. If there is no node a 2 V with, currently, |Va| > 1, then one terminates with a winning
strategy for Anke in the parity game being to move from every node a to the unique node
in Va, else one selects a node a 2 V with |Va| > 1.

3. Now one splits Va into two nearly equal sized subsets V 0
a
and V 00

a
with |V 0

a
| |V 00

a
| |V 0

a
|+1.

4. One replaces Va by V 0
a
and permits, in the derived reachability game, moves from (ã,Anke, b̃)

to (ã0,Boris, b̃0) only when ã0 2 Vã for all nodes ã.
5. If Anke does not win this game, then one replaces Va = V 00

a
, else one keeps Va = V 0

a
.

6. Go to step 2.

The above algorithm works since whenever Anke has a winning strategy for the parity game, then
there is a memoryless one and therefore when splitting the options at node a, some memoryless
winning strategy either always takes a node from V 0

a
or always takes a node from V 00

a
. It is

straightforward to verify that the above loop runs n log(n) rounds and each round involves

17

O(|Q| · n) time plus one solving of the reachability game, which can also be solved in time
O(|Q| · n). Thus one can derive the following result.

Theorem 18. There is an algorithm which finds the winner of a parity game with n nodes
and values from {1, 2, 3, . . . ,m} in time O(nlog(m)+6). Furthermore, the algorithm can compute
a memoryless winning strategy for the winner in time O(nlog(m)+7 · log(n)).

Thus, as shown, when m log(n) the runtime is O(n5); if m > log(n) then 2m > n and one can
bound nlog(m)+6 from above by 2m·(log(m)+6). Thus one has the bound O(n5+2m·(log(m)+6)) for the
runtime of solving a parity game with n nodes and values from {1, 2, 3, . . . ,m}. In other words,
parity games are fixed-parameter tractable for their main parameter m.

Corollary 19. Parity games are in the class FPT and can be solved in time O(n5+2m(log(m)+6)).

Follow-up work obtained better bounds on the runtime by using that the translation into the
reachability game provides a game with the number of edges bounded by

✓
m+ 2 · (dlog(n)e+ 3)

dlog(n)e+ 3

◆
· n2.

The above formula led to the bound O(2m · n4) [14] which is based on the fact that
�
i

j

�
 2i for

all i, j. A further estimate can be obtained by slightly increasing the binomial upper bound to
✓
(dm/ log(n)e+ 2) · (dlog(n)e+ 3)

dlog(n)e+ 3

◆
· n2

and then using common estimates on binomials, where the upper number is a multiple of the
lower number. The calculations provide a runtime bound of

O(dm/ log(n)e4 · n3.45+log(dm/ log(n)e+2));

this and similar bounds of this type were obtained by several researchers [34,42,54,74]. Sub-
sequent improvements included replacing the term n2 in the above formulas by the number of
edges in the parity game [34,42,54].

The main improvement over the current algorithm by follow-up work is, however, the usage of
space. The current algorithm uses quasipolynomial time and quasipolynomial space. Subsequent
work has brought down this complexity from quasipolynomial to quasilinear [34,54]; more pre-
cisely Jurdziński and Lazić have the space bound O(n·log(n)·log(m)) and Fearnley, Jain, Schewe,
Stephan and Wojtczak [34] have the space bound O(n · log(n) · log(m)+ ` · log log(n)), where ` is
the number of edges in the parity game and thus ` n2; the time bounds of both algorithms are
approximately the same as those of the algorithm presented here, but due to the better space
bound, an additional overhead from managing large space can be avoided in an implementation.

Lehtinen [59] introduced the notion of the register index complexity of a parity game and
showed that every parity game has register index complexity of at most log(n)+1. She then gave
an algorithm to translate the given parity game of register index k into a usual parity game of

18

size O(mk ·n) with 2k+1 values on the edges. This game can then be solved in polynomial time
(with respect to mk ·n) as the number 2k+1 of values is bounded logarithmically in the number
of nodes; furthermore, results prior to the current work would also have already shown that the
translated game can be solved in quasipolynomial time and thus Lehtinen [59] has supplied a
quasipolynomial time algorithm for solving parity games which can be verified without making
reference to the present work.

4 Parity Games versus Muller Games

Muller games are a well-studied topic [7,8,61,76,80] and they had been investigated as a gen-
eral case already before researchers aimed for the more specific parity games. A Muller game
(V,E, s,G) consists of a directed graph (V,E), a starting node s and a set G ✓ {0, 1}V . For
every infinite play starting in s, one determines the set U of nodes visited infinitely often during
the play: if U 2 G then Anke wins the play else Boris wins the play. In a Muller game the
complement of G is closed under union i↵ for all U,U 0 /2 G, the set (U [U 0) is not in G.

For complexity assumptions, it is natural to consider the case where G is not given as an
explicit list, but as an algorithm, which is polynomial in size and which runs in polynomial time
and which computes the membership of a set U (given by its explicit list) in the set G or some
similar equivalent e↵ective representation. The reason for considering such a representation for
G is that Horn [47] showed that if G is given as an explicit list of all possible sets of nodes
infinitely visited when Anke wins, then the resulting game is solvable in polynomial time in the
sum of the number of nodes and the number of explicitly listed sets. Hence, only more flexible
ways of formulating winning conditions lead to interesting cases of Muller games.

For Muller games, Björklund, Sandberg and Vorobyov [5] considered a parameter which is
given by the number of colours. For this, they assign to every node a colour from {1, 2, 3, . . . ,m}
and take G to be some set of subsets of {1, 2, 3, . . . ,m}. Then U is not the set of infinitely often
visited nodes, but instead, the set of colours of the infinitely often visited nodes. Again, if U 2 G,
then Anke wins the play, else Boris wins the play. Coloured Muller games permit more compact
representations of the winning conditions. In the worst case there is a 2m-bit vector, where m
is the number of colours; however, one also considers the case where this compressed winning
condition is given in a more compact form, say by a polynomial sized algorithm or formula.

In the following, the interactions between Muller games, memoryless winning strategies and
parity games are presented. The first result is due to Emerson [30] and Zielonka [80, Corollary
11] and the second one is in Hunter’s Thesis [48].

Theorem 20 (Emerson [30] and Zielonka [80]). Consider a Muller game (V,E, s,G) in
which the complement of the set G of winning conditions is closed under union. If Anke has a
winning strategy then Anke has also a memoryless winning strategy.

Proof. The possible choices for Anke at any node will be progressively constrained. The proof is
by induction on the number of possible moves of Anke in the constrained game. The result holds
when, for each node, Anke has only one choice of move. For the induction step, suppose some
node v for Anke’s move has more than one choice. It is now shown that for some fixed Anke’s

19

move at node v, Anke has a winning strategy; thus one can constrain the move of Anke at node
v and by induction this case is done. Suppose, by way of contradiction, that for every Anke’s
move w at v, Boris has a winning strategy Sw. This allows Boris to have a winning strategy for
the whole game as follows.

Assume without loss of generality that the play starts with Anke’s move at v. Intuitively,
think of Boris playing several parallel plays against Anke (each play in which Anke moves w
at node v, for di↵erent values of w) which are interleaved. For ease of notation, consider the
individual play with Anke using move w at node v as play Hw, and the interleaved full play
as H.

Initially H and all the plays Hw, are at the starting point. At any time in the play H, if it
is Anke’s move at v and Anke makes the move w0, then Boris continues as if it is playing the
play Hw0 (and suspends the previous play Hw if w 6= w0). Thus the nodes visited in H can be
seen as the merger of the nodes visited in the plays Hw, for each choice w of Anke at node v.
This implies that the set of nodes visited infinitely often in H is equal to the union of the sets
of nodes visited infinitely often in the various Hw. As Boris wins each play Hw which is played
for infinitely many moves, by closure of the complement of G under union, Boris wins the play
H. ⇤

As a parity game is also a Muller game in which G is closed under union for both Anke and
Boris, the following corollary holds.

Corollary 21 (Emerson and Jutla [32], Mostowski [62]). The winners in parity games
have memoryless winning strategies.

Hunter [48, page 23] showed the following characterisation for Muller games. Note that McNaugh-
ton [61] also investigated Muller games with memoryless strategies and characterised them
through the concept of splitting [61], which is just another way of stating that both G and
its complement are union-closed. However, his paper does not connect these Muller games with
parity games explicitly.

Theorem 22 (Hunter [48]). Every Muller game (V,E, s,G) in which both G and its comple-
ment are closed under the union operation is a parity game and the translation can be done in
polynomial time whenever the winning set G can be decided in polynomial time.

Proof. In this proof a parity game isomorphic to the given Muller game will be constructed. In
this parity game player Anke owns the nodes with even value and Boris owns the nodes with
odd value. Given V , let

V1 = {a 2 V : {a} 2 G} and V2 = {b 2 V : {b} /2 G}.

Obviously V is the disjoint union of V1 and V2. By the closure under union, any subset V 0 ✓ V1

is in G and no subset V 0 ✓ V2 is in G.
To prove the theorem, values will be inductively assigned to the nodes one by one.
Suppose values have already been assigned to all nodes in V � V 0, where V 0 is initially V .

20

Then, assign the value to one node in V 0 as follows. Let V 0
1 = V 0 \ V1 and V 0

2 = V 0 \ V2.
Case 1: Suppose V 0 2 G. Now, there is a node a 2 V 0

1 such that {a} [V 0
2 2 G, as otherwise

V 0 /2 G since the complement of G is closed under the union operation. Now let V 00
1 ✓ V 0

1 and
V 00
2 ✓ V 0

2 . The set {a} [V 00
2 is in G, as otherwise ({a} [V 00

2) [V 0
2 is not in G, in contradiction

to the choice of a. Furthermore, as V 00
1 [{a} 2 G, (V 00

1 [{a}) [({a} [V 00
2) = {a} [V 00

1 [V 00
2

is in G. Thus whenever V 00 ✓ V 0 and a 2 V 00, V 00 2 G. Hence, the value 2|V 0| is assigned to a
accordingly.

Case 2: Suppose V 0 /2 G. Then, there exists a node b 2 V 0
2 such that {b}[V 0

1 /2 G, by reasons
similar to those given in Case 1. Note that this implies that whenever V 00 ✓ V 0 and b 2 V 00 then
V 00 /2 G. Hence, the value 2|V 0|+ 1 is assigned to b.

The above process of assigning values to nodes is clearly consistent, as for V 00 ✓ V 0 being the
set of infinitely visited nodes, in Case 1, if a is in V 00 then Anke wins and in Case 2, if b is in V 00

then Boris wins. It follows that this Muller game is a parity game. ⇤

Besides the standard coloured Muller game of Björklund, Sandberg and Vorobyov [5], one can also
consider the memoryless coloured Muller game. These are considered in order to see whether the
game is easier to solve if one permits Anke only to win when she follows a memoryless strategy,
otherwise she loses by the rules of the game. The main finding comparing memoryless coloured
Muller games with standard coloured Muller games is as follows: On one hand, memoryless
coloured Muller games are easier in terms of the best known complexity class to which they
belong, memoryless coloured Muller games are in ⌃

P

2 while the decision complexity of standard
coloured Muller games is in PSPACE; on the other hand, the time complexity of memoryless
coloured Muller games is worse, as one cannot exploit small number of colours to bring the
problem into P , already four colours makes itNP-hard to find the winner in memoryless coloured
Muller games, see Theorem 27.

Björklund, Sandberg and Vorobyov [5] proved that the coloured Muller game is fixed-para-
meter tractable i↵ the parity game is fixed-parameter tractable (with respect to the number of
values m of the parity game). It follows from Theorem 16 that also the coloured Muller game
is fixed-parameter tractable. More precisely, McNaughton [61] and Björklund, Sandberg and
Vorobyov [5] showed the following result.

Theorem 23 (Björklund, Sandberg and Vorobyov [5]; McNaughton [61]). One can
translate a coloured Muller game with m colours and n nodes in time polynomial in m! · n into
an equivalent parity game with 2m colours and m! · n nodes.

Proof. In this proof, one considers Muller games with nodes possibly having multiple colours.
The idea is based on the last appearance record of the colours.

Each node v from the original game will be replaced by all nodes of the form (v, r) in the
new game, where r denotes an ordered list of colours as to how recently they were observed in
the nodes visited before the current node.

One lets Anke have the odd and Boris the even numbers. The value of the node (v, r) is
computed in two steps. First one computes the set U of colours in r which are at least as recent
as one of the colours of v in the Muller game, that is, U is the set of colours whose position might
be a↵ected by an update of r when leaving the current node for the next node. For example, if

21

the game has four colours which were observed in the order (c1, c2, c3, c4) (c1 is the most recent
colour) and if the node v in the Muller game carries the colours c2 and c3 then U = {c1, c2, c3}
and when passing to the next node r will be updated to r0 = (c2, c3, c1, c4). Second, one lets the
value of the node (v, r) be 2 · |U |+ 1 in the case that U is a winning set for Anke in the Muller
game and 2 · |U |+ 2 in the case that U is a winning set for Boris in the Muller game.

If a player can move from v to w in the original Muller game, then the player can now move
from (v, r) to (w, r0) in the constructed parity game where r0 is obtained from r by moving all the
colours belonging to v to the front, as they are most recent when arriving in w, and by keeping
the other colours in their order behind the new recent colours; other moves than those derived
ones are not possible. Furthermore, when s is the starting node in the original coloured Muller
game, then the new starting node in the parity game is of the form (s, r) for some arbitrary but
fixed record r.

Given now a play (v0, r0), (v1, r1), (v2, r2), . . . in the parity game, it defines a play v0, v1, v2, . . .
in the original Muller game and a set U which consists of the colours of the infinitely often visited
nodes. For almost all n, these colours in U are in the front of the last appearance record rn.
As each of them is occurring infinitely often, there are infinitely many nodes (vn, rn) in the run
where one of the colours of vn is the last member of U in the current record rn. It follows that
U is the set of selected colours for (vn, rn) and the node (vn, rn) has Anke’s parity i↵ U is a
winning set for Anke. Furthermore, only the nodes where all colours of U are taken into account
have the maximal parity of the run. For that reason, Anke wins the run in the parity game i↵
she wins the corresponding run in the original Muller game.

Assume now that Anke has a winning strategy for the parity game. Then, when playing the
original Muller game, in her memory Anke can keep track of the appearance record rn for the
current node vn and then, in the case that it is her turn, move to that vn+1 such that in the
parity game she would have made a move to a node of the form (vn+1, rn+1). As it is a winning
strategy, the derived play in the parity game would be winning for Anke and thus also winning
in the original play in the Muller game. The situation when Boris has a winning strategy for the
parity game is similar, as he can then translate by the same method his winning strategy into
one for the coloured Muller game. Thus the winner of the original Muller game is the same as the
winner of the translated parity game, that is, the original game is equivalent to the translated
game.

The bound on the number of nodes is n ·m!, the number of values in the game is 2m+ 2 in
the case that one allows nodes without colours so that the set U of the colours of the infinitely
often visited nodes can be empty. It is 2m if every node needs to have at least one colour, as
then one can cut out the case of no colour and would assign to the set U computed for a node
(v, r) either the value 2|U |� 1 or 2|U |, depending on the parity of the player who wins when U
is the set of colours of the infinitely often visited nodes. ⇤

Now one uses this result in order to prove the bounds on the algorithm to solve the coloured
Muller games. Note that log(m! · n) � 2m for all m � 24 and n � m: log(m!) � log(8m�8) �
3 · (m � 8) = 3m � 24. For m � 24, 3m � 24 � 2m. Thus, the remaining cases can be reduced
to finite ones by observing that for all m and n � max{m, 248}, log(m! ·n) � 2m. So, for almost

22

all pairs of (m,n), log(m! · n) � 2m and therefore one can use the polynomial time algorithm of
Theorem 16 to get the following explicit bounds.

Theorem 24. One can decide in time O(m5m · n5) which player has a winning strategy in a
coloured Muller game with m colours and n nodes.

For the special case of m = log(n), the corresponding number of nodes in the translated parity
game is approximately nlog(log(n))+2 and the polynomial time algorithm of Theorem 16 becomes
an O(n5 log log(n)+10) algorithm. The algorithm is good for this special case, but the problem is in
general hard and the algorithm is slow.

One might ask whether this bound can be improved. Björklund, Sandberg and Vorobyov
[5] showed that under the Exponential Time Hypothesis it is impossible to improve the above
algorithm to O(2o(m) · Poly(n)). Here the Exponential Time Hypothesis says that the problem
3SAT with n variables is not solvable in time O(2o(n)). The following result enables to get a
slightly better lower bound.

Theorem 25. A Muller game with m colours and n nodes and 1 m n cannot be solved in
time 2o(m·log(m)) · Poly(n), provided that the Exponential Time Hypothesis is true.

Proof. Note that for this result, multiple colours per node are allowed. However, one can trans-
late a coloured Muller game with multiple colours per node into one with one colour per node
and m0 = m + 1 colours and n0 = n · m nodes. As it is required that m n, the expressions
2o(m·log(m)) · Poly(n) and 2o(m

0·log(m0)) · Poly(n0) contain the same runtimes of algorithms.
Theorem 30 provides as a special case a translation of k-dimensional parity games with

n nodes and 3 values per dimension into coloured Muller games with n nodes and m = 2k
colours without changing the winner; the underlying game is not changed, only the way the
plays are evaluated by the auxiliary structure of multi-dimensional parities is replaced by col-
ours for the nodes. Furthermore, Theorem 31 shows that if a k-dimensional parity game with
3 values per dimension can be solved in time 2o(k·log(k)) · Poly(n) then the Exponential Time
Hypothesis would fail. The proof of current theorem then follows from the fact that if m = 2k
then 2o(k·log(k)) = 2o(m·log(m)), which is based on the equations o(m · log(m)) = o(2k · log(2k)) =
o(k · log(2k)) = o(k · log(k) + k · 2) = o(k · log(k)). This completes the proof. ⇤
Memoryless games are games where Anke wins i↵ she (a) plays a memoryless strategy and (b)
wins the game according to the specification of the game. If she does not do (a), this is counted
as a loss for her. This was already defined by Björklund, Sandberg and Vorobyov [5, Section 5]
for Streett games and it can also be defined for Muller games.

The complexity of the memoryless games di↵ers from those of normal games. Björklund,
Sandberg and Vorobyov [5, Section 5] considered memoryless Streett games (called Quasi-Streett
games in their paper) and showed that these are W[1]-hard. This result implies that memoryless
coloured Muller games are W[1]-hard.

The next theorem establishes the complexity of finding memoryless strategies for player Anke
for Muller games. For this one needs some e↵ective way of representing the winning conditions
on the colours and here it is assumed that they are given by a Boolean formula or circuit of size
polynomial in the game (one has to fix such a polynomial and any polynomial which is at least

23

cubic in the number of colours would be su�cient for the hardness). The hardness part in (b)
slightly extends what is known in the literature.

Dawar, Horn and Hunter [24] extended a conference publication of Horn [46] in which it is
shown that Muller games, where the winning condition is given as an explicit list of all sets
of infinitely often visited nodes which are winning, is decidable in polynomial time; here the
polynomial time algorithm, for input size, also takes into account the length of the explicit list.
Dziembowski, Jurdziński and Walukiewicz [29] investigated mainly the space complexity needed
to implement strategies and provided some applications towards the complexity of solving the
problem. Zielonka [80] used similar methods to show NP-hardness of the Muller games, even in
the special case of games where player Anke, in case she wins, also has a memoryless winning
strategy.

Theorem 26 (See also Dawar, Horn and Hunter [24], Dziembowski, Jurdziński and

Walukiewicz [29], Horn [46], Zielonka [80]).

(a) The problem whether Anke can win a memoryless coloured Muller game is ⌃
P
2 -complete.

(b) Suppose A is a polynomial time computable set of instances of satisfiability formulas F (x1, . . . ,
xi, y1, . . . , yj) with two types of variables which satisfy that for each choice of (x1, . . . , xi) there
is at most one choice of (y1, . . . , yj) which makes F (x1, . . . , xi, y1, . . . , yj) true. Let B be the
set of all satisfiability formulas F for which the statement (⇤) given as

9x1 . . . 9xi 8y1 . . . 8yj [F (x1, . . . , xi, y1, . . . , yj) is not satisfied]

is true. Then there is a polynomial time many-one reduction from A \ B to the set of all
coloured Muller games in which the winning conditions of Boris are closed under union such
that F 2 A \ B i↵ Anke is the winner of the game constructed for F . Furthermore, the
problem whether Anke can win such a game is in ⌃

P
2 .

Proof. First to see the membership in ⌃
P
2 , consider the following well-known method: One

guesses the memoryless winning strategy of Anke and then fixes Anke’s moves to be always
based on this strategy. This basically results in a one player game where Boris always moves
and successors of a node are not the original ones, but those which can be reached if in the
original graph, one first follows one step of Anke’s strategy to a neighbour and then considers all
moves of Boris from that neighbour. In this new graph, only Boris is moving, so it is e↵ectively
a one-player-game. Now Boris can only win this new game i↵ there is the corresponding periodic
path which leads to Boris’s win. That is, one guesses a path of up to length n from the starting
node to this period as well as the periodic part of the path and verifies that the periodic part
produces a set of colours on which Boris wins. Here, a period is not longer than the number n of
nodes times the number of colours. Thus, if such a path does not exist, then Anke has a winning
strategy and this verification is in coNP; hence the overall complexity is in ⌃

P
2 .

The set of formulas F which satisfy (⇤) is in general ⌃P
2 -complete. However, in the case of

(b) one will enforce a promise, that is, take only those formulas which are members of a certain
polynomial time computable set A satisfying the promise from the statement of the theorem;
this makes the set A \ B incomplete for ⌃P

2 .
To show hardness, one reduces in both cases (a) and (b), satisfiability formulas of the form

24

F (x1, . . . , xi, y1, . . . , yj) to Muller games. First one adds additional variables x̃1, . . . , x̃i and mod-
ifies the formula (⇤) to the following formula (@):

9x1 . . . 9xi 8x̃1 . . . 8x̃i 8y1 . . . 8yj [x1 6= x̃1 _ . . . _ xi 6= x̃i _ F (x̃1, . . . , x̃i, y1, . . . , yj) is
not satisfied].

The intuition behind the reduction is that Anke chooses the truth-values x1, . . . , xi and copies
them to x̃1, . . . , x̃i. Boris is then responsible for finding a satisfying assignment and this assign-
ment is valid i↵ it does not produce any inconsistencies in the variables x̃1, . . . , x̃i, y1, . . . , yj.
This will make it easier to detect which player is responsible for an inconsistent situation in the
game and the evaluation of a winner of a play takes this into account.

Formally, for the reduction from a formula F (x1, . . . , xi, y1, . . . , yj), having m clauses, where
the r-th clause has nr literals, the Muller game constructed is the following. The colours used
by the game are of the form pos(xh), pos(x̃h), neg(xh), neg(x̃h), pos(yh), neg(yh).

(a) Vertices: {Eh, Ph, Nh : 1 h i}.
Colours on Ph are pos(xh) and pos(x̃h). Colours on Nh are neg(xh) and neg(x̃h).
No colour on Eh.
E1 is the starting node, where Anke starts the play.

(b) Vertices: {Ch, Xr

h
: 1 h m, 1 r nh}, where m is the number of clauses in F and nh

is the number of literals in the h-th clause of F .
No colour on Ch.
If the r-th literal in h-th clause of F is xk (respectively ¬xk), then colour on Xr

h
is pos(x̃k)

(respectively neg(x̃k)).
If the r-th literal in h-th clause is yk (respectively ¬yk) then, colour on Xr

h
is pos(yk) (re-

spectively neg(yk))
(c) two dummy nodes Z1, Z2 with no colours.
(d) There is an edge from Eh to Ph and Nh if 1 h i.

There is an edge from Ph, Nh to Eh+1 if 1 h < i.
There is an edge from Ei to Z1.
There is an edge from Z1 to C1.
There is an edge from Ch to Xr

h
if 1 h m and 1 r nh.

There is an edge from Xr

h
to Ch+1 if 1 h < m and 1 r nh.

There is an edge from Xr

m
to Z2 if 1 r nm.

There is an edge from Z2 to E1.
(e) Winning condition for Boris: For a set U of colours of the infinitely often visited nodes of

a play, Boris wins if either there is an z 2 {x1, . . . , xi} where both pos(z), neg(z) are in
U or there is no z 2 {x̃1, . . . , x̃i, y1, . . . , yj} where both pos(z), neg(z) are in U . In other
words, Anke wins i↵ {z : pos(z) 2 U ^ neg(z) 2 U} is a nonempty subset of {x̃1, . . . , x̃i,
y1, . . . , yj}.

Intuitively, the Muller game graph consists of a list of subunits (Eh, Ph, Nh), where each subunit
consists of Anke choosing an option to assign the truth value to xh and x̃h (pos(xh) denotes that
xh, and thus x̃h, is true; neg(xh) denotes that xh, and thus x̃h, is false). After each subunit, the

25

corresponding nodes Ph, Nh, lead to the entry node Eh+1 of the next subunit, except for the last
subunit Pi, Ni, where (through a dummy node Z1) it leads to the clauses. There are subunits
(Ch, Xr

h
) for each clause in F , and Boris has to choose between nodes representing the literals

with the corresponding colours. So if the clause is x̃3 _ y1 _¬(y5), then Boris can move from Ch

into one of three nodes with colours {pos(x̃3)}, {pos(y1)} and {neg(y5)} based on which literal
Boris takes to be true. Each clause leads to the sub-unit of next clause, except for the last m-th
clause which, via a dummy node Z2, leads back to the start node E1. Note that everytime in Eh

it is Anke’s turn to move, and in Ch it is Boris’s turn to move.

Now given a set U of colours of the infinitely often visited nodes of a play, the winning
condition for Boris is that either there is an z 2 {x1, . . . , xi} where both pos(z), neg(z) are
in U or there is no z 2 {x̃1, . . . , x̃i, y1, . . . , yj} where both pos(z), neg(z) are in U . In other
words, Anke wins i↵ {z : pos(z) 2 U ^ neg(z) 2 U} is a nonempty subset of {x̃1, . . . , x̃i,
y1, . . . , yj}.

For the set of colours U on the infinitely often visited nodes in a play, if the condition on U is
winning for Boris, then either Anke has played inconsistently (that is, it has made two di↵erent
choices of x1, x2, . . . , xi), as witnessed by the colours {pos(z), neg(z)} for some z 2 {x1, . . . , xi},
or Boris has played in a way that all variables are always instantiated the same way in the
literals selected by Boris to witness the trueness of the clauses; furthermore, those z which are in
{x̃1, . . . , x̃i} coincide with Anke’s choice. Thus U witnesses that the formula F can be satisfied
with Anke’s choice of the x1, . . . , xi. Therefore, if Boris has a winning strategy then all choices
of (x1, . . . , xi) can be extended to a satisfying assignment for F .

Note that Anke can win playing consistently whenever the (x1, . . . , xi) witnessing that F 2 B
exists, indeed she can only win when she plays memorylessly. On the other hand, if each choice
of (x1, . . . , xi) can be extended to a satisfying assignment for F then whatever Anke does, Boris
can win the game: If Anke plays inconsistently, she loses; if Anke commits to some choice for
(x1, . . . , xi) and always moves accordingly, then Boris can also always choose the literal witnessing
the truth of clauses and the resulting colours do not give an inconsistent choice for any variable;
those variables with neither pos(z) nor neg(z) appearing in the colours of Xr

h
are not relevant

for making the formula F true and can be ignored.

The argument above directly proves the result (a) and therefore the problem whether Anke
can win a memoryless coloured Muller game is ⌃P

2 -complete.

For (b), assume that A and B are as in the theorem. As the non-members of A can be
detected in polynomial time, without loss of generality, for the following analysis it is always
assumed that the formulas F are from A. Furthermore, as above, Anke wins the constructed
parity game i↵ the modified F satisfies (@) i↵ F satisfies (⇤). Thus one only has to prove that
the winning condition for Boris is closed under union when the promise is satisfied.

Thus consider two sets of colours V,W where Boris wins and let U = V [W . If there is a
z 2 {x1, . . . , xi} such that both pos(z), neg(z) 2 U then Boris wins. If such a z does not exist
then U and thus V,W encode a fixed choice of the truth-values of {x1, . . . , xi}. By the winning
condition on the game, the variables {x̃1, . . . , x̃i, y1, . . . , yj} all have at most one truth-assignment
in the colours, for both V and W , as otherwise Boris would lose. Due to the promise of F , this
truth-assignment depends uniquely on the choice of the truth-values of {x1, . . . , xi} and is thus

26

same for both V and W and, furthermore, both V and W have, for every z 2 {y1, . . . , yj},
at least one of the colours pos(z), neg(z), as otherwise there would be at least two satisfying
assignments (as no value of z is enforced). Thus the union U equals to both V and W ; it follows
that U is a set of colours which is winning for Boris. So the winning conditions of Boris are
closed under union. ⇤

Note that one can reduce sets in NP [coUP to sets A (with corresponding B) satisfying
the promise condition in part (b). To see this, consider sets in NP of the form X = {z :
(9x1, x2, . . . , xi)[G(z, x1, x2, . . . , xi)]}, where G(z, x1, . . . , xi) can be solved in deterministic poly-
nomial time. Then, for each z, one can construct CNF formulas Fz(x1, x2, . . . , xi, y1, . . . , yj)
such that Fz(x1, x2, . . . , xi, y1, . . . , yj) is true i↵ y1, . . . , yj codes the deterministic computation
of G(z, x1, . . . , xi) and G(z, x1, . . . , xi) is false. Here A would be the set of all formulas Fz. As
there is only one deterministic computation of G(z, x1, . . . , xi), for each x1, . . . , xi, there is at
most one satisfying assignment for Fz(x1, x2, . . . , xi). Furthermore, if z 2 X, then for some ap-
propriate choice of x1, x2, . . . , xi, G(z, x1, x2, . . . , xi) is true, and thus Fz(x1, x2, . . . , xi, y1, . . . , yj)
is not satisfied for at least one possible value of y1, . . . , yj (the one which codes the determin-
istic computation of G(z, x1, x2, . . . , xi)). In case z /2 X, for all x1, x2, . . . , xi, G(z, x1, x2, . . . , xi)
is false, and thus, for all x1, x2, . . . , xi, for y1, . . . , yj coding the deterministic computation of
G(z, x1, . . . , xi), Fz(x1, x2, . . . , xi, y1, . . . , yj) is satisfiable. Thus, the requirements as in part (b)
are satisfied.

Similar reductions can be done for problems X in coUP, by using i = 0 (and thus no xi’s
are used) and using y1, . . . , yj to code the computations of the UP machine. This would give
that Fz satisfies (⇤) i↵ z 2 X.

The result that memoryless coloured Muller games can be solved in ⌃
P
2 stands in contrast

to the fact that Dawar, Horn and Hunter [24] showed that deciding the winner of a Muller game
is a PSPACE-complete problem.

The next result shows that unless NP can be solved in quasipolynomial time there is no
analogue of the translation of Björklund, Sandberg and Vorobyov [5] from memoryless coloured
Muller games into parity games. In contrast, solving memoryless coloured Muller games with
four colours is already NP-complete and thus solving memoryless coloured Muller games is not
in XP, unless P = NP.

Theorem 27. Solving memoryless coloured Muller games with four colours is NP-complete.

Proof. For seeing that the game is in NP, one guesses the strategy and translates the original
game into a coloured Muller game with 2n nodes: (i) each original node v is represented by two
nodes (Anke, v) and (Boris, v) in the new game, (ii) the unique edge from (Anke, v) to (Boris, w)
is picked as given by the memoryless winning strategy, and (iii) the move from (Boris, v) to
(Anke, w) is there i↵ there is an edge from v to w in the original Muller game. By Theorem 23
mentioned above, one can first translate this intermediate coloured Muller game into a parity
game with 8 values and 24 · n nodes [5,61] and then solve the parity game in polynomial time
O(n5), as log(24 · n) � 8 whenever n � 3.

For the NP-hardness, satisfiability is reduced to memoryless coloured Muller game as fol-
lows. For ease of writing the proof, Muller games where nodes determine the player moving

27

are considered. This could be easily converted to a game where the moves of Anke and Boris
alternate by inserting intermediate nodes if needed.

Suppose x1, x2, x3, . . . , xk are the variables and y1, y2, y3, . . . , yh are the clauses in a satisfiab-
ility instance. Without loss of generality assume that no variable appears both as positive and
negative literal in the same clause. Then, the above instance of satisfiability is reduced to the
following Muller game (where the graph is undirected graph):

1. V = {s} [{u1, u2, u3, . . . , uk} [{v1, v2, v3, . . . , vh} [{wi,j : [1 i h] and [1 j k] and
[xj or ¬xj appears in the clause yi]}.
Boris moves at nodes s and uj with 1 j k. Anke moves at all other nodes.

2. E = {(vi, wi,j), (wi,j, uj), (wi,j, vi), (uj, wi,j) : xj or ¬xj appears in yi} [{(s, uj), (uj, s) : 1
j k}.

3. The colours are {x, y,+,�}; s has the colour y, all nodes uj have the colour x; all nodes vi
have the colour y; for every node wi,j in the graph, if xj appears in the clause yi positively
then the colour is + else ¬xj appears in yi and the colour is �.

4. The winning sets for Boris are {x,+,�} and all subsets of {y,+,�}; the winning sets for
Anke are {x,+}, {x,�}, {x} and all supersets of {x, y}.

Now it is shown that the instance of satisfiability problem is satisfiable i↵ Muller game is a win
for Anke playing in a memoryless way.

Suppose the instance is satisfiable. Then fix a satisfying assignment f(xj) for the variables,
and let g(yi) = j such that xj (or ¬xj) makes the clause yi true. Now Anke has the following
winning strategy: At node vi, move to wi,g(yi). At node wi,j, if g(yi) = j then move to uj else move
to vi. Intuitively, at nodes vi, Anke directs the play to the node ug(yi) (via wi,g(yi)). Similarly, for
the nodes wi,j, Anke directs the play to ug(yi) either directly or via nodes vi and wi,g(yi).

Thus, clearly, if an infinite play goes through colour y infinitely often, then it also goes
through colour x infinitely often; thus Anke wins. On the other hand, if an infinite play does not
go through colour y infinitely often, then the set of nodes the play goes through infinitely often
is, for some fixed j, uj and some of the nodes of the form wi,j. But then, by the definition of
Anke’s strategy, the play can only go through nodes of colour � finitely often (if f(xj) is true)
and through nodes of colour + finitely often (if f(xj) is false). Thus, Anke wins the play.

Now suppose Anke has a winning strategy. If there is an i such that Anke moves from wi,j

to uj then do the following: If xj appears positively in the clause then let f(xj) be true else let
f(xj) be false. If there is no i such that Anke moves from wi,j to uj then truth value of f(xj)
does not matter (and can be assigned either true of false).

To see that above defines a satisfying assignment, first note that for each clause yi, there
exists a wi,j such that Anke moves from wi,j to uj. Otherwise, Boris can first move from the
start node to uj and then to wi,j such that xj appears in clause yi; afterwards the play will go
infinitely often only through a subset of the nodes of the form vi, wi,j and thus the colours which
appear infinitely often in the above play is a subset of {y,+,�}.

Furthermore, for no j and two nodes wi,j and wi0,j such that xj appears in yi and ¬xj appears
in yi0 , does Anke move from wi,j and wi0,j to node uj. Otherwise, Boris could win by first moving
from s to uj and then alternately going to nodes wi,j and wi0,j. It follows that f gives a satisfying
assignment for the instance of satisfiability. ⇤

28

5 Multi-Dimensional Parity Games

Point [67] considered a generalisation of parity games where each node has a vector of k values
and each value is a number from 1 to m. To evaluate a play, one determines for each coordinate
of the vector the largest infinitely often occurring value in the play and calls the so obtained
vector of k values the limit superior of the sequence of the play. The same idea has recently also
been applied to mean payo↵ games, Rabin and Streett games as well as combinations of these
games with parity games [10,16,17,19,20,77]. The winner of a play is determined as follows: If
all values of the limit superior vector are odd then Anke wins the play else Boris wins the play.
The approach in which the first player Anke has a conjunction and the second player Boris a
disjunction of the player’s winning conditions in each dimension is quite common in the field
[16,19,20,77]. In this section, it is assumed that n � 2, m � 2 and k � 2.

Rabin games and Streett games are games where the winner of a play is determined by a
list of pairs of sets of nodes (V1,W1), (V2,W2), (V3,W3), . . . , (Vm,Wm). Now, in the Rabin case,
Anke wins a play i↵ there is an i such that the set of infinitely often visited nodes U intersects
Vi and is disjoint to Wi; in the Streett case, Anke wins a play i↵ all i satisfy that U intersects
Wi or U is disjoint to Vi.

Proposition 28 (Chatterjee, Henzinger and Piterman [17]). One can translate k-dimen-
sional parity games with values from {1, 2, 3, . . . ,m} in each dimension into Streett games with
k · d(m� 1)/2e pairs and Streett games with k pairs into k-dimensional parity games with values
from {1, 2, 3}.
Proof. Both directions do not change the graph of the game, they only replace the value vectors
by conditions in the Streett pair and vice versa. Recall that each Streett pair is a pair (V,W) of
two subsets of the set of nodes and a winning play for Anke satisfies the pair if whenever a node
in V is infinitely often visited then also some node in W is infinitely often visited.

For the direction from k-dimensional parity games to Streett games, one generates for every
even value i 2 {1, 2, 3, . . . ,m} and every dimension j 2 {1, 2, 3, . . . , k} a pair (V,W) where V
consists of all nodes where the j-th component of the value vector is i and W consists of all nodes
where the j-th component of the value vector is strictly larger than i. Now the limit superior of
the values in each dimension of the given play is odd i↵ the play of the game satisfies all these
Streett pairs.

For the direction from a game with k Streett pairs to the k-dimensional parity game, one
assigns to the h-th Streett pair (V,W) the h-th dimension where every node outside V [W has
the h-th value 1, every node in V �W has the h-th value 2 and every node in W has the h-th
value 3. ⇤
The following corollary is due to previously known results on Streett games like the coNP-
completeness by Emerson and Jutla [31]; note that Chatterjee, Henzinger and Piterman [17]
showed that coNP-hardness part can even be achieved when only considering two-dimensional
parity games.

Corollary 29. If Boris has a winning strategy for a multi-dimensional parity game then he
has a memoryless winning strategy. Furthermore, the problem whether Anke can win a multi-
dimensional parity game is coNP-complete.

29

The following result provides an algorithm with runtime O((2k·log(k)·m · n)5.45) for multi-dimen-
sional parity games which translates into a bound of O((2k·log(k) · n)5) for solving Streett games
and Rabin games with n nodes and k conditions, where k � 4. For a comparison, a direct solution
without translating into other games by Piterman and Pnueli [66] has the runtime O(nk+1 · k!).

Theorem 30. The winner of a multi-dimensional parity game with k values from {1, 2, 3, . . . ,m}
per node and n nodes can be determined in time O((2k·log(k)·m · n)5.45). If k � 4 then the formula
can be improved to O((2k·log(k)·m · n)5).

Proof. The algorithm is based on ideas of Point [67] and also later by Chatterjee, Henzinger
and Piterman [17] who observed that the algorithm of Björklund, Sandberg and Vorobyov [5]
for translating Muller games into parity games can be adjusted to translate multi-dimensional
parity games into normal parity games. The idea is to use colours cm0,k0 withm0 2 {2, 3, 4, . . . ,m}
and k0 2 {1, 2, 3, . . . , k}. Now, a node has a colour cm0,k0 i↵ its value vector (m̃1, m̃2, m̃3, . . . , m̃k)
satisfies that m0 m̃k0 (note that a node may have multiple colours). Note that it is not needed
to use c1,k0 as always 1 m̃k0 and therefore the colour c1,k0 would not carry any information.
Now one tweaks the translation of the last appearance records in Theorem 23. Recall from the
proof of Theorem 23 that the translation was realised by mapping each node v to a collection of
nodes (v, r) where r is the record of colours in the order of their last appearance in prior visited
nodes; those never visited can be in any order at the end of r. As every node which contains a
colour cm0,k0 also contains all colours cm00,k0 with m00 < m0, one can assume the tie-breaker rule
that whenever m00 < m0 then the colour cm00,k0 comes in the record r before the colour cm0,k0 . This
permits to consider and update only vectors where, for each fixed coordinate k0, the colours are
in their natural order. Thus one can describe the last appearance records by giving a k ·m-vector
which gives, for each entry of a colour cm0,k0 , only the value k0, as m0 is just equal to the number
of k0 in this record up to the position of the current entry. As a result, the overall number of
last appearance records per node can be bounded by kk·(m�1) and thus a k-dimensional parity
game with each coordinate having a range from 1 to m and with n nodes can be translated into
a parity game with 2log(k)·k·(m�1) · n nodes and 2 · k · (m� 1) values.

One computes as before from v and r the set U of current colours and then assigns to the
node (v, r) in the parity game the value as follows: If U is winning for Anke then the value is
2|U |+1 else it is 2|U |+2, where one defines that Anke has the odd and Boris the even numbers.
Note that |U | 2 ·k · (m�1) and the number of values is bounded by 2 ·k · (m�1)+2 2 ·k ·m.
In the resulting parity game the number of values divided by the logarithm of the number of
nodes is at most 2.

Thus the parity game can be solved in O((2log(k)·k·m ·n)5.45) time and the time for computing
the translation is also bounded by this term; see the formulas after Corollary 19. So the same
bound applies for the overall running time, as summarised in the theorem, which makes use of
the observation of Point [67]. Furthermore, if k � 4 then

log(2log(k)·k·m · n) � 2 · k ·m,

as log(k) � 2 and one can therefore apply the better bound O((2log(k)·k·m ·n)5) on the runtime. ⇤

30

Now it is shown that the result is optimal in the following sense: If one can decide multi-
dimensional parity games in time 2o(k·log(k)·m) · Poly(n) then the Exponential Time Hypothesis
fails. An even stronger result will be shown: Consider the runtime of a solver for multi-dimensional
parity games in case that one fixes either m � 3 or k � 2 (but not both). If the resulting runtime
is either 2o(k·log(k)) ·Poly(n) (when m is constant and at least 3) or 2o(m) ·nO(1) (when k is constant
and at least 2), then the Exponential Time Hypothesis fails. Both results are based on reducing
the dominating set problem into the two decision problems. Here a dominating set of a graph is
a set of nodes such that from every node in the graph there is an edge to one of the nodes in the
dominating set; for this property one deviates from the usual convention of the non-existence of
self-edges and assumes that every node has an edge to itself.

Theorem 31. Assume that one can solve k-dimensional parity games with values from {1, 2, 3}
and n0 nodes in time 2o(k·log(k)) ·Poly(n0). Then there is an algorithm which solves the dominating
set problem for graphs with n nodes and a target size of m for the dominating set in time no(m)

and thus the Exponential Time Hypothesis fails.

Proof. Assume that one can solve the k-dimensional parity game problem as in the hypothesis.
Suppose a graph H with n nodes {1, 2, 3, . . . , n} and a target size m of the dominating set are
given. Now one chooses k to be the least even integer satisfying k � 2 and

m · dlog(n)e k/2 · blog(k/2)c.

Note that the dominating set can be described by listing the m nodes using dlog(n)e bits each.
Now one reinterprets these bits as k/2 numbers of log(k/2) bits each for the above chosen k.
The idea is to represent the m ·dlog(n)e bits to describe the dominating set by a sequence of k/2
numbers a1, a2, a3, . . . , ak/2 from {1, 2, 3, . . . , k} with the additional requirement that ai is among
the first k/2 members of {1, 2, 3, . . . , k}� {aj : j < i} for all i. This requirement is assumed on
ai’s throughout the proof, without explicitly stating so.

Boris has in mind a dominating set and Anke tries to check out on Boris’ answers in order
to make sure that the set in mind is correct. For this, one needs to check if the m · dlog(n)e bits
representing the dominating set are consistent with k/2blog(k/2)c bits of ai’s. To check this,
the statement “choice (j, r) is consistent with (w, m̃)” means the following condition: the binary
representations d1d2d3 . . . dblog(k/2)c of (r� 1) and w1w2w3 . . . wdlog(n)e of w satisfy that for all i, h
with 1 i log(k/2) and 1 h dlog(n)e, if (j � 1) · blog(k/2)c + i = (m̃� 1) · dlog(n)e + h
then di = wh.

The game graph will be given below. The game goes infinitely often through the following
rounds where in each round the game goes through steps 1., 2. and then a finite number of
repetitions of steps 3., 4. where the number of repetitions is bounded by k/2, followed by step
5. which takes the game back to step 1.

The following descriptions of a round also give the nodes which are in the game, along with
edges, values of the nodes and the players to move. All the nodes, except the nodes of the
form (0, b, B) described in step 5, have value vector (1, 1, 1, . . . , 1). Below B is always a subset
of {1, 2, 3, . . . , k}, a1, a2, a3, . . . , ak/2 2 {1, 2, 3, . . . , k} and v, w are vertices of H. Intuitively, B
gives the choices a1, a2, . . ., used by Boris, to describe the dominating set as mentioned above —
here the ordering of members of B is based on the order they entered the set B in the play.

31

1. In each round, the game starts in a node called (0). There are edges from node (0) to nodes
(v), for each vertex v in H.
Thus, at node (0) Anke chooses a node v of the graph, for which it is asking Boris to give a
neighbour from the dominating set, and moves to node (v).

2. The nodes (v), for vertices v in H, have edges to nodes of the form (m̃, w, ai, B), where i = 1,
B = ;, w is a neighbour of v in H, 1 m̃ m and the choice (1, a1) is consistent with
(w, m̃) (note that a1 is a1-th member of {1, 2, 3, . . . , k}). Boris moves in the nodes (v), for v
being a vertex in H.
Intuitively, the intention of Boris moving from (v) to (m̃, w, ai, B) with i = 1, B = ; and w
being a neighbour of v, is that w is the m̃-th vertex in the dominating set chosen by Boris.

3. For m̃ 2 {1, 2, 3, . . . ,m}, w a vertex of H, ai 2 {1, 2, 3, . . . , k}� B and the cardinality of B
being less than k/2, there exists a node (m̃, w, ai, B). The node (m̃, w, ai, B) with ai /2 B, has
edges to (m̃, w, ai, B [{ai}) and to (0, b, B [{ai}), where b 2 {1, 2, 3, . . . , k}� (B [{ai}).
Anke moves in nodes of the form (m̃, w, ai, B), with ai /2 B.
Intuitively, Anke can from (m̃, w, ai, B), where ai /2 B, either move to (m̃, w, ai, B[{ai}) and
indicate that Boris should reveal more information (only possible when |B [{ai}| < k/2) or
move to a node (0, b, B [{ai}) where b 2 {1, 2, 3, . . . , k}� {ai}�B, which indicates visiting
a node with certain value, see item 5 below.

4. For m̃ 2 {1, 2, 3, . . . ,m}, w a vertex of H, ai�1 2 B and the cardinality of B being less than
k/2, there is a node (m̃, w, ai�1, B) and this has edges to nodes of the form (m̃, w, ai, B),
where ai /2 B and the choice (i, r) is consistent with (w, m̃), where ai is the r-th member of
{1, 2, 3, . . . , k}� B. Boris moves in nodes of the form (m̃, w, ai�1, B) with ai�1 2 B.
Intuitively, Boris has to select ai and move to (m̃, w, ai, B) where ai /2 B; at that node it is
then Anke’s turn to move as described in Step 3.

5. There are nodes of the form (0, b, B) with B ⇢ {1, 2, 3, . . . , k} and b 2 {1, 2, 3, . . . , k} � B.
There is exactly one edge from such a node and it goes to (0). Boris moves in the nodes of
the form (0, b, B).
The nodes (0, b, B) are the only nodes with a value-vector di↵erent from (1, 1, 1, . . . , 1). Here
the value vector (m1,m2,m3, . . . ,mk) of a node (0, b, B) is defined by the equation

mh =

(
1 if h /2 B [{b},
2 if h = b,
3 if h 2 B.

Intuitively, Boris moves from this node to (0) and the next round of the game starts in Step
1.

In the case that there is a dominating set of size m, Boris can choose in the game always nodes
(. . . , B) such that the sets B of the form {aj : j < i} occurring there are ordered under inclusion
and these sets can be computed from a fixed sequence a1, a2, a3, . . . , ak/2 derived from a binary
representation describing the dominating set. In a play, whenever it is turn for Boris to move, the
sets B in the last component of the names of the nodes would be derived using a1, a2, . . . , ak/2 as
above. Thus, in any particular play there is a largest set B such that nodes of the form (·, ·, ·, B)
are visited infinitely often in the play, and all other sets B0, with node (·, ·, ·, B0) occurring in

32

the play, satisfy B0 ✓ B. Thus for this largest set B, player Anke has to choose b, when going
to node (0, b, B), to be non-member of B and so the vectors (m1,m2,m3, . . . ,mk) when moving
to (0, b, B) will have that mb = 2 and mh = 3 for all h 2 B; furthermore, mb will never be 3. It
follows that Anke cannot satisfy the condition that the limit superior of each mh over the play
is odd and thus Boris is winning the game.

In the case that there is no dominating set of size m, Boris cannot achieve that all the sets B
occurring in nodes of the form (. . . , B) are comparable. To see this, one can assume without loss of
generality that the strategy of Boris is fixed, that Anke knows the strategy and Anke exploits its
weakness. Now, as there is no dominating set of sizem, Boris has selected two di↵erent nodes w, w̃
at the same position m̃, when Anke asks for the node in the dominating set that are neighbours
of suitable nodes v and ṽ. As w, w̃ get coded into di↵erent witnesses (a1, a2, a3, . . . , ak/2) and
(ã1, ã2, ã3, . . . , ãk/2), there is a first i where ai 6= ãi. Thus Anke can go alternately from (0) to (v)
and (ṽ) and then run through the cycles of building up the witnesses until she reaches the node
(m̃, w, ai, B) and (m̃, w̃, ãi, B), respectively, where B = {aj : j < i} = {ãj : j < i}. From these
nodes, Anke goes to (0, ãi, B[{ai}) and (0, ai, B[{ãi}), respectively and the game returns from
them to (0). Thus the limit superior (m1,m2,m3, . . . ,mk) of the value vectors of the play will
satisfy that mh = 3 for all h 2 B [{ai, ãi} and mh = 1 for all h /2 B [{ai, ãi}. So the mh are
odd for all h 2 {1, 2, 3, . . . , k} and Anke wins the game.

In summary, Boris can win the so constructed multi-dimensional parity game i↵ the given
graph has a dominating set of size m.

One can bound the number n0 of nodes in this game by the formula 1 + n +m · n · k · 2k +
k · 2k 4n2k2k, as m n. Thus, 2o(k log(k))poly(n0) is in 2o(k log(k))poly(n), which in turn is in
2o(m log(n))poly(n) and thus in no(m). Thus, if there is an algorithm which solves k-dimensional
parity games with n0 nodes in time 2o(k·log(k)) · Poly(n0), then one can solve the dominating set
problem in time no(m).

Now one can use the following result of Chen, Huang, Kanj and Xia [21, Theorem 5.8]: If one
can solve the problem whether a graph of n nodes has a dominating set of size m in time no(m)

then the Exponential Time Hypothesis fails. This connection then translates into the following
bound: If the k-dimensional parity games with n0 nodes and values from {1, 2, 3} can, uniformly
in n0, k, be decided in time 2o(k·log(k)) · Poly(n0) then the Exponential Time Hypothesis fails. ⇤

The next result is again a translation of the dominating set problem. One needs dimension
two and the main technique is to compare the bits in the witnesses for a dominating set. Note
that dimension one is equivalent to the normal parity games, thus requiring dimension two is
unavoidable.

Theorem 32. Given a graph H with n nodes and a number m with the constraint that 2 m
n, one can compute in time polynomial in n a two-dimensional parity game with n0 nodes and
m0 colours such that the following conditions hold:

• m0 = 2m · dlog(n)e,
• n0 = 1 + (m+ 1) · n+ 2m · dlog(n)e and
• the given graph H has a dominating set of size up to m i↵ player Boris has a winning strategy
in the resulting two-dimensional parity game.

33

Furthermore, the so obtained two-dimensional parity games cannot be solved in time 2o(m
0) ·

Poly(n0), provided that the Exponential Time Hypothesis holds.

Proof. Consider the nodes of the graph H and let them have as names the first n strings
from {0, 1}dlogne. Without loss of generality assume n � 4. The proof is similar to the proof of
Theorem 31 except that the graph construction and the checking of consistency of dominating
set is modified to have a constant bound on the dimension rather than on the number of values.
The basic idea of the game is to go through following rounds:

1. Anke selects a vertex v in the graph H.
2. Boris selects a neighbouring vertex w of v in the graph H and a number m̃, to indicate that

w is the m̃-th member of the dominating set.
3. Anke selects a bit-position o 2 {1, 2, 3, . . . , dlog ne}; if the o-th bit of the name of w is 1 then

Anke moves in the game to a node with value (2(m̃�1)·dlog(n)e+2o�1, 2(m̃�1)·dlog(n)e+
2o) else Anke moves to a node with value (2(m̃�1)·dlog(n)e+2o, 2(m̃�1)·dlog(n)e+2o�1).

4. Boris moves back to the start of the game, where Anke selects a node in the graph H.

The values of all nodes except as at Step 3. above in the game will be “small”. In case that
there is a dominating set of size m, Boris can play a memoryless winning strategy for the game
by always selecting the right node in the second step — this will ensure that the limit superior
of the values in the two dimensions are of di↵erent parity. In case there is no dominating set,
when playing memoryless, Boris has to be inconsistent and choose for two di↵erent vertices
v, v0 chosen by Anke in Step 1. above, two di↵erent vertices w,w0 at the same position m̃
of the candidate for the dominating set. These w,w0 will di↵er in some bit position o; thus
Anke can then force the game to go through the nodes with value (2(m̃ � 1) · dlog(n)e + 2o,
2(m̃� 1) · dlog(n)e+2o� 1) and (2(m̃� 1) · dlog(n)e+2o� 1, 2(m̃� 1) · dlog(n)e+2o) infinitely
often to win the game.

Based on the above motivation, the nodes and edges of the game are described as follows.
Note that 0 is not a name of any vertex in H.

1. The node (0, 0) has the value (1, 1). The node (0, 0) is the starting node and Anke moves in
this node. There is an edge from (0, 0) to (v, 0), for all vertices v in H.

2. Nodes (v, 0), for v being a vertex in H. Value of these nodes are (1, 1). Boris moves in these
nodes. For any w such that (v, w) is an edge in H, there is an edge from (v, 0) to (w, m̃) for
m̃ with 1 m̃ m.
Intuitively, a move from (v, 0) to (w, m̃) denotes that Boris is specifying the neighbour w of
v as being the m̃-th element of the dominating set chosen by it.

3. There are nodes (w, m̃) for w, m̃ with w being a vertex in H and 1 m̃ m; the values of
these nodes are (1, 1) and Anke moves in these nodes.
For each o 2 {1, 2, 3, . . . , dlog ne}, there is an edge from (w, m̃) to node (0, 2(m̃ � 1) ·
dlog(n)e+ 2o� b), where b is the o-th bit of w, that is b = bo where w = b1b2b3 . . . bdlogne.
Intuitively, Anke chooses o to ask Boris to prove that the o-th bit of m̃-th vertex in the
dominating set is always consistent.

4. There are nodes (0, h) for all h 2 {1, 2, 3, . . . 2mdlog ne}. The value of the node (0, h) is
(h, h � 1) when h is even and its value is (h, h + 1) when h is odd. Boris moves in these
nodes. There is an edge from (0, h) to (0, 0).

34

In case there is a dominating set {w1, w2, w3, . . . , wm}, Boris moves in Step 2. above always from
a node (v, 0) to a node (wm̃, m̃) such that there is an edge in H from v to wm̃. This is a winning
strategy, as then for all positions o in a wm̃, as chosen by Anke in Step 3. above, the bit b is
always the same, and thus the limit superior of the values attained in a play is of the form
(2(m̃ � 1) · dlog(n)e + 2o � b, 2(m̃ � 1) · dlog(n)e + 2o + b � 1), for some m̃ and o with b being
the o-th bit of wm̃.

If there is no dominating set of size m and Boris plays a memoryless winning strategy, then he
will on two nodes (0, v) and (0, v0) move to two di↵erent nodes (w, m̃) and (w0, m̃), as otherwise
Boris would have a consistent dominating set contradicting the assumption. Now there is a
position o such that the bits b and b0 of w and w0 at this position di↵er. Therefore Anke can
move to nodes with value (2(m̃ � 1) · dlog(n)e + 2o � b, 2(m̃ � 1) · dlog(n)e + 2o + b � 1) and
(2(m̃�1) · dlog(n)e+2o� b0, 2(m̃�1) · dlog(n)e+2o+ b0�1) which are of the form (h�1, h) and
(h, h � 1) for some even h. That is, by alternating moving to the nodes (0, v) and (0, v0) when
in node (0, 0), and by moving to the node (0, 2(m̃� 1) · dlog ne + 2o� b) when in node (w, m̃),
where b is the o-th bit of w, Anke will achieve that the limit superior of a play is (h, h) for some
even h and therefore the game is won by Anke. It follows that Boris’ memoryless strategy is not
a winning strategy and therefore he does not have a winning strategy at all. In summary, Boris
wins the two-dimensional parity game i↵ there is a dominating set of size m in H.

The number n0 of nodes is the sum of 1 (for node (0, 0)) and n (for nodes (v, 0) with v being
a vertex in H) and n ·m (for nodes (w, m̃) with w being a vertex in H and m̃ 2 {1, 2, 3, . . . ,m})
and 2m · dlog(n)e (for nodes (0, h)). The number m0 is just 2m · dlog(n)e, as h is bounded by
2mdlog ne.

Now assume that there would be an algorithm for this problem which runs in time 2o(m
0) ·

Poly(n0). Let f(m0) be a function in o(m0) such that the runtime is in 2f(m
0) · Poly(n0). Now,

one can replace f(m0) by g(m0) · m0 where g(m0) = sup{f(m00)/m00 : m00 � m0}, note that g is
monotonically decreasing and o(1). As g is o(1), one can also obtain that

2f(m·dlog(n)e) 2g(m)·m·dlog(n)e = no(m).

As n0 n2 · dlog(n)e, one can conclude that the runtime for finding a solution to the existence
of a dominating set is no(m) · Poly(n) which is no(m). However, Chen, Huang, Kanj and Xia [21,
Theorem 5.8] showed that under these hypotheses, the Exponential Time Hypothesis fails. This
completes the proof. ⇤

Recall that the question whether a problem is in FPT depends on which parameters are con-
sidered as constants and which are running parameters. The dependence of the algorithm run
time on the constant parameters can be arbitrary but that on the running parameters has to be a
polynomial of fixed degree which is independent on the constant parameters. Theorem 30 shows
that if one fixes both parameters m and k as constants then multi-dimensional parity games
are in FPT. Theorems 31 and 32 show that, unless the Exponential Time Hypothesis is wrong,
multi-dimensional parity games are not fixed parameter tractable in the case that only one of
the parameters m and k is fixed as a constant. Bruyére, Hautem and Raskin [10] investigate
the fixed-parameter tractability of generalisations of multi-dimensional parity games and related

35

games in detail.
There is some connection between parity games and mean payo↵ games; for the latter, Velner,

Chatterjee, Doyen, Henzinger, Rabinovich and Raskin [77] studied the computational complex-
ity of the multi-dimensional analogue of mean payo↵ games and discovered that one has to
distinguish the cases of evaluation by limit superior and evaluation by limit inferior in the multi-
dimensional game. For the case of evaluation by limit superior, they are in NP \ coNP; for the
case of evaluation by limit inferior, they are coNP-complete. In the light of the above result,
multi-dimensional parity games are more related to the evaluation of limit inferior.

6 Conclusion

The progress reported in this paper shows that solving parity games is not as di�cult as it
was widely believed. Indeed, parity games can be solved in quasipolynomial time – the previous
bounds were roughly nO(

p
n) – and they are fixed parameter tractable with respect to the number

m of values (aka colours or priorities) – the previously known algorithms were roughly O(nm/3).
These results are in agreement with earlier results stating that parity games can be solved in
UP \ coUP [52] and that there are subexponential algorithms to solve the problem [55].

In spite of the current progress, the original question, as asked by Emerson and Jutla [32]
in 1991 and others, whether parity games can be decided in polynomial time still remains an
important open question.

The above results on parity games are then used to give an algorithm of runtime O((mm ·n)5)
for coloured Muller games with n nodes and m colours; this upper bound is almost optimal, since
an algorithm with runtime O((2m · n)c), for some constant c, only exists in the case that the
Exponential Time Hypothesis fails.

One might ask whether the results obtained for parity games permit further transfers to
Muller games, for example, in the special cases where (a) player Anke can employ a memoryless
winning strategy due to the special type of the game or (b) one does not permit player Anke to
use other strategies than memoryless ones. Note that case (b) di↵ers from case (a), as in case (b)
the condition on using memoryless strategies can be restrictive while case (a) applies to Muller
games where one knows that “if Anke has a winning strategy then she has a memoryless winning
strategy”. Case (a) was analysed by Emerson [30], McNaughton [61] and Zielonka [80]; it applies
to Muller games where the winning condition of player Boris is closed under union [30,80].

The above mentioned lower bound directly also applies to case (a). For case (b), the complex-
ity class of the general problem is also in the polynomial hierarchy but not PSPACE-complete
(unless PSPACE = ⌃

P

2) as the decision problem for coloured Muller games; however, the al-
gorithmic bounds are much worse, as one can code NP-hard problems into instances with four
colours.

Another variant of parity games is to consider vectors of values where in the default case
player Anke wins if the limit superior of all of each of these values is odd and player Boris wins if
the limit superior of at least one of the values is even. For this type of game, the k-dimensional
parity game with values from 1 to m and n nodes can be decided in time O((2k·log(k)·m ·n)5.45) and
slight improvements of the exponent 5.45 might be possible. However, really better algorithms,
even for the special case where either k or m is constant, would imply that the Exponential Time

36

Hypothesis fails, which seems unlikely. More precisely, under the assumption that the Exponen-
tial Time Hypothesis is true, there are no algorithms which solve k-dimensional parity games
with m values and n nodes in time 2o(k·log(k)·m) · nO(1) and this even holds when either m is fixed
to be a constant at least 3 or k is fixed to be a constant which is at least 2, but not both are
fixed. This shows that the multi-dimensional parity games are very similar to coloured Muller
games with respect to the runtime behaviour of algorithms to solve them.

Acknowledgements. The authors would like to thank Krishnendu Chatterjee, Sasha Rubin,
Sven Schewe and Moshe Vardi for correspondence and comments. Further thanks go to the
referees of the STOC 2017 paper and of this journal for numerous suggestions. A referee of this
journal as well as Rod Downey pointed out that the lower bound for Muller games is more
suitably done with reference to the Exponential Time Hypothesis. There was an error caused by
a miscitation in the corresponding lower bound result of the conference version of this paper.

References

1. Catriel Beeri. On the membership problem for functional and multivalued dependencies in
relational databases. ACM Transactions on Database Systems, 5:241–259, 1980.

2. Mihir Bellare and Shafi Goldwasser. The complexity of decision versus search. SIAM Journal
on Computing, 23(1):97–119, 1994.

3. Julien Bernet, David Janin and Igor Walukiewicz. Permissive strategies: from parity games
to safety games. RAIRO - Theoretical Informatics and Applications, EDP Sciences, 36:251–
275, 2002.

4. Dietmar Berwanger and Erich Grädel. Fixed-point logics and solitaire games. Theory of
Computing Systems, 37(6):675–694, 2004.

5. Henrik Björklund, Sven Sandberg and Sergei Vorobyov. On fixed-parameter complexity of
infinite games. Technical report 2003-038, Department of Information Technology, Uppsala
University, Box 337, SE-751 05 Uppsala, Sweden.

6. Henrik Björklund, Sven Sandberg and Sergei Vorobyov. Memoryless determinacy of parity
and mean payo↵ games: a simple proof. Theoretical Computer Science, 310(1–3):365–378,
2004.

7. Hans L. Bodlaender, Michael J. Dinneen and Bakhadyr Khoussainov. On game-theoretic
models of networks. Algorithms and Computation, Twelfth International Symposium, ISAAC
2001, Christchurch, New Zealand, December 2001, Proceedings. Springer LNCS, 2223:550–
561, 2001.

8. Hans L. Bodlaender, Michael J. Dinneen and Bakhadyr Khoussainov. Relaxed Update and
Partition Network Games. Fundamenta Informaticae, 49(4):301–312, 2002.

9. Anca Browne, Edmund M. Clarke, Somesh Jha, David E. Long and Wilfredo R. Marrero.
An improved algorithm for the evaluation of fixpoint expressions. Theoretical Computer
Science, 178(1–2):237–255, 1997.

10. Véronique Bruyère, Quentin Hautem and Jean-François Raskin. Games with lexicographic-
ally ordered !-regular objectives. Technical report on http://arxiv.org/abs/1707.05968,
2017.

37

11. Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li and Frank Stephan. Deciding
parity games in quasipolynomial time. STOC 2017 Theory Fest: Forty Ninth Annual ACM
Symposium on the Theory of Computing, 19–23 June 2017, Proceedings, ACM, Montreal,
Canada, 12 pages, 2017.

12. Felix Canavoi, Erich Grädel and Roman Rabinovich. The discrete strategy improvement
algorithm for parity games and complexity measures for directed graphs. Theoretical Com-
puter Science, 560:235–250, 2014.

13. Ashok K. Chandra, Dexter C. Kozen and Larry J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, 1981.

14. Krishnendu Chatterjee. Comments on the Quasipolynomial Time Algorithm. Private com-
munication, 2017.

15. Krishnendu Chatterjee and Thomas A. Henzinger. Strategy Improvement and Randomized
Subexponential Algorithms for Stochastic Parity Games. Twenty Third Annual Symposium
on Theoretical Aspects of Computer Science, STACS 2006, Marseille, France, 23–25 February
2006, Proceedings. Springer LNCS, 3885:512–523, 2006.

16. Krishnendu Chatterjee, Thomas A. Henzinger and Marcin Jurdziński. Mean-payo↵ parity
games. Twentieth Annual IEEE Symposium on Logic in Computer Science, LICS 2005,
Proceedings, 178–187, 2005.

17. Krishnendu Chatterjee, Thomas A. Henzinger and Nir Piterman. Generalized parity games.
Foundations of Software Science and Computational Structures, Tenth International Con-
ference, FOSSACS 2007, Springer LNCS, 4423:153–167, 2007.

18. Krishnendu Chatterjee, Marcin Jurdzinski and Thomas A. Henzinger. Quantitative
stochastic parity games. SODA 2004, Fifteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 121–130, 2004.

19. Krishnendu Chatterjee, Mickael Randour and Jean-François Raskin. Strategy synthesis for
multi-dimensional quantitative objectives. Acta Informatica, 51:129–163, 2014.

20. Krishnendu Chatterjee and Yaron Velner. Hyperplane separation technique for multidimen-
sional mean-payo↵ games. Concurrency Theory – Twenty-Fourth International Conference,
CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013. Proceedings. Springer LNCS,
8052:500–515, 2013.

21. Jianer Chen, Xiuzhen Huang, Iyad A. Kanj and Ge Xia. Strong computational lower bounds
via parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–1367,
2006.

22. Stephen A. Cook. Path systems and language recognition. Proceedings of the Second An-
nual ACM Symposium on Theory of Computing, STOC 1970, 4–6 May 1970, Northampton,
Massachusetts, USA, pages 70–72, 1970.

23. Sephen A. Cook. The complexity of theorem proving procedures. Proceedings of the Third
Annual ACM Symposium on the Theory of Computing, STOC 1971, 3–5 May 1971, Shaker
Heights, Ohio, USA, pages 151–158, 1971.

24. Anuj Dawar, Florian Horn and Paul Hunter. Complexity Bounds for Muller Games. Manu-
script, 2011.

25. Antonio Di Stasio, Aniello Murano, Giuseppe Perelli and Moshe Y. Vardi. Solving parity
games using an automata-based algorithm. Twenty first International Conference on Imple-

38

mentation and Application of Automata, CIAA 2016, 19–22 July 2016, Seoul, South Korea,
Springer LNCS, 9705:64–76, 2016.

26. Christoph Dittmann, Stephan Kreutzer and Alexandru I. Tomescu. Graph operations on
parity games and polynomial-time algorithms. Theoretical Computer Science, 614: 97–108,
2016.

27. Rodney G. Downey and Michael R. Fellows. Parameterised Complexity. Springer, Heidel-
berg, 1999.

28. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity
Theory. Springer, Heidelberg, 2013.

29. Stefan Dziembowski, Marcin Jurdziński and Igor Walukiewicz. How much memory is needed
to win infinite games? Twelfth Annual IEEE Symposium on Logic in Computer Science, LICS
1997, Proceedings, IEEE, pages 99–110, 1997.

30. E. Allen Emerson. Automata, tableaux, and temporal logics. Proceedings of the Workshop
on Logic of Programs, Springer LNCS, 193:79–88, 1985.

31. E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and logics of
programs. Annals of IEEE Symposium on Foundations of Computer Science, pages 328–337,
1988.

32. E. Allen Emerson and Charanjit S. Jutla. Tree automata, µ-calculus and determinacy.
Annals of IEEE Symposium on Foundations of Computer Science, pages 368–377, 1991.

33. E. Allen Emerson, Charanjit S. Jutla, A. Prasad Sistla. On model checking for the µ-calculus
and its fragments. Theoretical Computer Science, 258(1-2):491–522, 2001.

34. John Fearnley, Sanjay Jain, Sven Schewe, Frank Stephan and Dominik Wojtczak. An ordered
approach to solving parity games in quasi polynomial time and quasi linear space. Twenty-
fourth International SPIN Symposium on Model Checking of Software, SPIN 2017. See also
the technical report on http://arxiv.org/abs/1703.01296, 2017.

35. Olivier Finkel and Stevo Todorčević. The isomorphism relation between tree-automatic
structures. Central European Journal of Mathematics, 8(2):299–313, 2010.

36. Olivier Finkel and Stevo Todorčević. A hierarchy of tree-automatic structures. The Journal
of Symbolic Logic, 77(1):350–368, 2012.

37. Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
38. Oliver Friedmann. An exponential lower bound for the parity game strategy improvement

algorithm as we know it. Logic in Computer Science, LICS 2009, pages 145–156, 2009.
39. Oliver Friedmann and Martin Lange. Solving parity games in practice. Automated Techno-

logy for Verification and Analysis, Seventh International Symposium, ATVA 2009, Macao,
China, 14–16 October 2009, Springer LNCS, 5799:182–196, 2009.

40. Jakub Gajarský, Michael Lampis, Kazuhisa Makino, Valia Mitsou and Sebastian Ordyniak.
Parameterized algorithms for parity games. Mathematical Foundations of Computer Science,
MFCS 2015. Springer LNCS, 9235:336–347, 2015.

41. Aniruddh Gandhi, Bakhadyr Khoussainov and Jiamou Liu. E�cient algorithms for games
played on trees with back-edges. Fundamenta Informaticae, 111(4):391–412, 2011.

42. Hugo Gimbert and Rasmus Ibsen-Jensen. A short proof of correctness of
the quasi-polynomial time algorithm for parity games. Technical report on
http://arxiv.org/abs/1702.01953, 2017.

39

43. Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y.
Vardi, Yde Venema and Scott Weinstein. Finite Model Theory and Its Applications. Springer,
2007.

44. Andrey Grinshpun, Pakawat Phalitnonkiat, Sasha Rubin and Andrei Tarfulea. Alternating
traps in Muller and parity games. Theoretical Computer Science, 521:73–91, 2014.

45. Yuri Gurevich and Leo Harrington. Trees, automata and games. Proceedings of the Four-
teenth Annual ACM Symposium on Theory of Computing, STOC 1982, May 5–7, 1982, San
Francisco, California, USA, pages 60-65, 1982.

46. Florian Horn. Dicing on the Streett. Information Processing Letters, 104(1):1–9, 2007.
47. Florian Horn. Explicit Muller games are PTIME. IARCS Annual Conference on Founda-

tions of Software Technology and Theoretical Computer Science, FSTTCS 2008, pages 235–
245, Dagstuhl Technical Reports, 1756, 2008.

48. Paul William Hunter. Complexity and Infinite Games on Finite Graphs. PhD Thesis,
University of Cambridge, Computer Laboratory Hughes Hall, 2007.

49. Paul Wiliam Hunter and Anuj Dawar. Complexity bounds for regular games. Proceedings of
the Thirtieth International Symposium on Mathematical Foundations of Computer Science,
MFCS 2005, Springer LNCS, 3618:495–506, 2005.

50. Neil Immerman. Number of quantifiers is better than number of tape cells. Journal of
Computer and System Sciences, 22(3):384–406, 1981.

51. Hajime Ishihara, Bakhadyr Khoussainov. Complexity of some infinite games played on finite
graphs. Graph-Theoretic Concepts in Computer Science, Twenty-Eighth International Work-
shop, WG 2002, Cesky Krumlov, Czech Republic, 13–15 June 2002, Proceedings. Springer
LNCS, 2573:270–281, 2002.

52. Marcin Jurdzinski. Deciding the winner in parity games is in UP \ coUP. Information
Processing Letters, 68(3):119–124, 1998.

53. Marcin Jurdziński. Small progress measures for solving parity games. STACS 2000, Proceed-
ings of the 17th Annual Symposium on Theoretical Aspects of Computer Science, Springer
LNCS, 1770:290–301, 2000.

54. Marcin Jurdziński and Ranko Lazić. Succinct progress measures for solving
parity games. Logic in Computer Science, LICS 2017. Technical report on
http://arxiv.org/abs/1702.05051, 2017.

55. Marcin Jurdziński, Mike Paterson and Uri Zwick. A deterministic subexponential algorithm
for solving parity games. SIAM Journal on Computing, 38(4):1519–1532, 2008.

56. Imran Khaliq and Gulshad Imran. Reachability games revisited. Second International Con-
ference on Advances and Trends in Software Engineering, SOFTENG 2016, 21–25 February
2016, Lisbon, Portugal, Proceedings, International Academy, Research and Industry Asso-
ciation (IARIA), Wellington, DE 19810, USA, pages 129–133, 2016.

57. Bakhadyr Khoussainov and Anil Nerode. Automata Theory and its Applications. Birkhäuser,
2001.

58. Dietrich Kuske, Jiamou Liu and Markus Lohrey. The isomorphism problem for omega-
automatic trees. Proceedings of Computer Science Logic, CSL 2010, Springer LNCS,
6247:396–410, 2010.

40

59. Karoliina Lehtinen. A modal µ perspective on solving parity games in quasi-polynomial
time. Thirtythird Conference on Logic in Computer Science, LICS 2018, Oxford, UK, 9–12
July 2018, pages 639–648, 2018.

60. Leonid A. Levin. Universal sequential search problems. Problemy Peredachi Informatsii,
3(9):115–116, 1973.

61. Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied
Logic, 65(2):149–184, 1993.

62. Andrzej Wlodzimierz Mostowski. Games with forbidden positions. Technical Report 78,
Uniwersytet Gdanski, Instytut Matematyki, 1991.

63. Jan Obdrzalek. Algorithmic analysis of parity games. PhD thesis, University of Edinburgh,
2006.

64. Viktor Petersson and Sergei G. Vorobyov. A randomized subexponential algorithm for parity
games. Nordic Journal of Computing, 8:324–345, 2001.

65. Nir Piterman. From nondeterministic Büchi and Streett automata to deterministic parity
automata. Logical Methods in Computer Science, 3(3:5):1–21, 2007.

66. Nir Piterman and Amir Pnueli. Faster solutions of Rabin and Streett games. Twenty First
IEEE Symposium on Logic in Computer Science, LICS 2006, 12–15 August 2006, Seattle,
WA, USA, Proceedings. IEEE Computer Society, pages 528–539, 2006.

67. Gérald Point. The Synthesis Toolbox – From modal automata to controller synthesis. Re-
search Report 1342–05, LaBRI – UMR CNRS 5800, 2005.

68. Shmuel Safra. On the complexity of !-automata. Proceedings twenty-ninth IEEE Sym-
posium on Foundations of Computer Science, pages 319-327, 1988.

69. Shmuel Safra. Exponential determinization for omega-Automata with a strong fairness
acceptance condition. SIAM Journal on Computing, 36(3):803–814, 2006.

70. Sven Schewe. Solving parity games in big steps. FCTTCS 2007: Foundations of Software
Technology and Theoretical Computer Science, Springer LNCS, 4855:449–460, 2007; Journal
of Computer and System Sciences, available online, 2016.

71. Sven Schewe. From parity and payo↵ games to linear programming. Mathematical Found-
ations of Computer Science 2009, Thirty-Fourth International Symposium, MFCS 2009,
Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009. Proceedings. Springer LNCS,
5734:675–686, 2009.

72. Sven Schewe. Solving parity games in big steps. Journal of Computer and System Sciences,
84:243—262, 2017.

73. Helmut Seidl. Fast and simple nested fixpoints. Information Processing Letters, 59:303–308,
1996.

74. Frank Stephan. Methods and Theory of Automata and Languages. Lecture Notes, School of
Computing, National University of Singapore, 2016.
http://www.comp.nus.edu.sg/~fstephan/fullautomatatheory-nov2016.ps.

75. Colin Stirling. Bisimulation, modal logic and model checking games. Logic Journal of IGPL,
7(1):103–124, 1999.

76. Wolfgang Thomas. On the Synthesis of Strategies in Infinite Games. Twelfth International
Symposium on Theoretical Aspects of Computer Science, STACS 1995, Springer LNCS,
900:1–13, 1995.

41

77. Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, Alexander
Rabinovich and Jean-François Raskin. The complexity of multi-mean-payo↵ and multi-
energy games. Information and Computation, 241:177–196, 2015.

78. Igor Walukiewicz. Pushdown processes: games and model-checking. Information and Com-
putation, 36(3):261–275, 2001.

79. Thomas Wilkie. Alternating tree automata, parity games and modal µ-calculus. Bulletin of
the Belgian Mathematical Society, 8(2):359–391, 2001.

80. Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200:135–183, 1998.

42

