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Abstract

Data profiling is an enabler for efficient data management and effective analyt-
ics. The discovery of data dependencies is at the core of data profiling. We con-
duct the first study on the discovery of embedded uniqueness constraints (eUCs), a
recently introduced class of data dependencies that represent unique column com-
binations embedded in complete fragments of incomplete data. We show that the
decision variant of finding a minimal eUC is NP-complete and W[2]-complete in
the input size. We also characterize the maximum possible solution size, and show
which families of eUCs attain that size. The size is much larger than for the special
case of minimal SQL uniques. Despite these challenges, our column-efficient, row-
efficient, and hybrid discovery algorithms perform effectively and fast on real-world
benchmark and synthetic data. We also propose the computation of small seman-
tic samples of given data sets as a new direction in data profiling. These samples
satisfy the same eUCs as the given data set and we showcase how discovery and
sampling together provide a pathway towards effective data cleansing and business
rule acquisition.
Keywords: Armstrong relation; Data cleaning; Data profiling; Discovery; Ex-
tremal combinatorics; Incomplete data; Sampling; Uniqueness; SQL
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id voter id name prefix first name middle name last name address city phone num register date
t0 702 ⊥ nell mrs marshall 719 carter st kernersville ⊥ 5/11/1940
t1 833 ⊥ nell ⊥ marshall 1731 tredegar rd kernersville 336 992 7811 5/11/1940
t2 131 ⊥ joseph t cox 9 casey rd new bern 252 000 0000 3/06/1935
t3 131 ⊥ joseph thomas cox 1108 highland ave #22 new bern 252 288 4763 3/06/1935
t4 320 ⊥ robert f boone 213 s cumberland st wallace ⊥ 1/01/1940
t5 720 ⊥ robert edward boone 124 rolling rd burlington 228 8872 5/11/1940
t6 962 ⊥ margaret plonk isley 1880 brookwood ave #102 burlington 336 226 3774 10/26/1940
t7 937 ⊥ margaret marie harper 7572 bullard rd clemmons ⊥ 10/26/1940
t8 247 ⊥ herbert ⊥ futrell 9802 us hwy 258 murfreesboro 252 398 3716 10/21/1938
t9 244 ⊥ sallie b futrell 9802 us hwy 258 murfreesboro 252 398 3716 10/21/1938

Table 1: Snippet of the NCVoter Data Set

1 Introduction

Keys provide efficient access to data in database systems. They are required to under-
stand the structure and semantics of data. For a given collection of entities, a key refers
to a set of column names whose values uniquely identify an entity in the collection. For
example, a key for a relational table is a set of columns such that no two different rows
have matching values in each of the key columns. Keys advance many classical areas
of data management such as data modeling, database design, and query optimization.
Knowledge about keys empowers us to 1) uniquely reference entities across data reposi-
tories, 2) reduce data redundancy at schema design time to process updates efficiently at
run time, 3) improve selectivity estimates in query processing, 4) feed new access paths
to query optimizers that can speed up the evaluation of queries, 5) access data more
efficiently via physical optimization such as data partitioning or the creation of indexes
and views, and 6) gain new insight into application data. Modern applications create
even more demand for keys. Here, keys facilitate the data integration process, help de-
tect duplicates and anomalies, guide the repair of data, and return consistent answers to
queries over dirty data. The discovery of keys is a fundamental task in data profiling.

Recent years have seen tremendous progress on the discovery of keys [2, 14, 30] de-
spite its computational difficulty. For example, on a data set with 50 columns, up to
126, 410, 606, 437, 752 minimal keys may exist. Indeed, deciding if some key with at most
n attributes holds on a given data set is not only NP-complete, but even W[2]-complete
in the size of the key. That is, the problem is likely to be intractable, even when the size
of the key is fixed [5]. It is remarkable that algorithms exist that can find all minimal
keys for reasonably large numbers of rows or columns [29].

Incompleteness and inconsistency impose persistently hard challenges to the discov-
ery of data dependencies. In practice, it is generally impossible to identify all entities
uniquely. Over incomplete data, the default of discovery algorithms is to treat occur-
rences of the null marker ⊥ just like ordinary domain values. That is, null is considered
to be equal to null [29, 30]. This leads to outputs with a questionable semantics, since
the only interpretation of ⊥ where this makes sense is when a value does not exist.
Worse, any fixed interpretation of ⊥ is questionable, in particular in data originating
from various sources. The case where null is considered to be different from null renders
the validity of a key constraint independent of null marker interpretations. While SQL
evaluates comparisons of ⊥ as unknown, assigning false is consistent with the unique
constraint (UC) of SQL. Indeed, a UC on a set U of columns evaluates to true on a given
relation if there are no two different records that have matching non-null values on all
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the columns in U . It is surprising that SQL’s UC has not received any dedicated focus
in previous studies of the discovery problem. However, even UCs are often not robust
enough to accommodate peculiarities of modern day data. As an illustration, consider
the data snippet of the NCVoter data set in Table 1.

Here, the primary key on voter id is violated. The reason may be due to an attempt
to manually clean the data by assigning the same voter id to both t2 and t3. The violation
could be prevented by assigning ⊥ to the voter id for either t2 or t3, say to t2 in which
information appears less reliable (see middle name and full phone number). Giving up
completeness, the modified relation would satisfy the UC on voter id. Nevertheless, the
UC on voter id, being just a surrogate unique, cannot prevent the problem that the
same voter may have been assigned different voter ids. For example, Nell Marshall may
refer to the same voter. Data profiling can help identify business keys that allow us
to identify voters based on stable, real-life properties. A reasonable UC, denoted by
UC1, may be specified on the combination of first name, last name, and register date.
Indeed, a phone number or address can change and information on the middle name
is unreliable. Nevertheless, UC1 is violated in Table 1. The only solution that known
discovery algorithms employ is to include additional columns in the constraint, such
as phone num and voter id, resulting in the UC UC2 that is satisfied. The additional
columns a) reduce the scope of the unique value combinations to records with no missing
values on the extended combination of columns, and b) provide more features for such
records to be distinguishable. For example, UC1 has scope {t0, . . . , t9} since all tuples
have no missing values on first name, last name, and register date, while UC2 has only
scope {t1, t3, t5, t6, t8, t9} since t0, t2, t4, t7 have missing values on phone num or voter id.
This solution has the disadvantage that actually consistent entities, which are already
distinguishable by the original set of columns, are unnecessarily subjected to additional
column checks. Furthermore, any algorithms that discover all minimal UCs must keep
on adding all possible column combinations until uniqueness is achieved for all records
that are complete on these column combinations. This will result in outputs with UCs
that are inflated in terms of their size whenever consistent data is already unique on
a smaller set of columns. Such inflation penalizes access to consistent data when the
discovered constraints are used. In an effort to overcome this problem, we study the
discovery problem for a recent generalization of the SQL unique constraint [31].

SQL unique uses the same combination of columns to stipulate completeness and
uniqueness requirements. Instead, given a set E of columns on which rows should be
complete, it is more natural to ask which minimal subsets of columns are sufficient to
identify each of these rows uniquely. For this reason, embedded uniqueness constraints
(eUCs) where introduced recently [31]. These consist of a pair (E,U) of column com-
binations with U ⊆ E. For an eUC (E,U), the combination E is called the extension,
and U is called the associated UC of the eUC. Given some relation r, the extension
of (E,U) defines the scope as the subset rE of records in r which are complete on all
the columns in E. The eUC (E,U) holds on a given relation r whenever the scope rE

satisfies the UC on U . As such, UCs are the special case of eUCs where E = U . For
example, after modifying the value 131 to ⊥ in row t2 of Table 1, the relation satisfies
the eUC eUC1 = (E,U) where U consists of first name, last name, and register date,
while E consists of the columns in U plus voter id, phone num. The scope of eUC1 is
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Figure 1: What makes Embedded Uniques better

{t1, t3, t5, t6, t8, t9} and coincides with the set of rows that are complete on the columns of
UC2. The point is that UC2 uses all five columns to identify each of the rows, while the
eUC is able to uniquely identify each of these rows based on the proper subset U alone.
As for SQL unique, the semantics of eUCs is independent of null marker interpretations,
which is a huge advantage especially for modern applications like data integration. The
concept of embedded uniqueness constraints is illustrated in Figure 1.

While eUCs subsume UCs as a special case, they empower users to separate com-
pleteness from uniqueness requirements while keeping their semantics independent of
null marker interpretations. This is helpful for applications with specific completeness
requirements. For example, voting campaigns may be conveniently targeted at voters
that are registered with a phone number. Here, the phone numbers are not required to
uniquely identify voters, but only used to contact them. Embedded uniques also help
with the integration of incomplete data. Since inclusion dependencies reference data
across tables, eUCs have been shown to provide the right notion of reference for in-
complete data [20]. For example, we may want link new data to voters with a phone
number. For such applications, it is useful to discover the many different combinations
of extensions E and associated UCs U . Even eUCs that only hold accidentally are useful
for query optimization, data access, and data linkage. It is therefore the task of data
profiling to automate the process of discovering eUCs. Our main contributions are: (1)
We distinguish the discovery of eUCs from previous work. (2) We show that the decision
variant of the discovery problem for eUCs is NP- and W [2]-complete in the input size.
(3) We characterize the largest possible number of minimal eUCs that an incomplete
relation over n columns can have, and show which families of eUCs attain this number.
The number is substantially larger than that of UCs. (4) We introduce a data structure
for storing and looking up eUCs efficiently. (5) We establish the first column-efficient,
row-efficient, and hybrid algorithms for the discovery of eUCs. Each of these is important
and requires fundamentally new ideas over previous work. (6) As a special case of eUCs,
we discover SQL UCs. (7) We conduct experiments on real-world benchmark data sets
to demonstrate which algorithms perform well on which data sets, and that eUCs are
effective in uniquely identifying most entities. (8) We propose the computation of Arm-
strong samples as a new direction in the profiling of incomplete data. Armstrong samples
satisfy the same eUCs as the original data set, but can be substantially smaller. Users
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may find this representation more helpful than an abstract set of constraints. (9) We
conduct experiments on the computation and relative size of Armstrong samples. In par-
ticular, we generate relations with the maximum possible number of discoverable eUCs,
and illustrate how quickly we can discover them. (10) We showcase how our discovery
and sampling algorithms lead to effective data cleansing and business rule acquisition.
Organization. We discuss related work in Section 2. Basic definitions are given in Sec-
tion 3. In Section 4, we investigate the computational complexity of discovering eUCs.
In Section 6 we introduce an important data structure for our discovery algorithms. In
Sections 7, 8, and 9, we present column-efficient, row-efficient and hybrid algorithms, re-
spectively. In Section 10 we report our experimental results. In Section 11 we investigate
Armstrong samples. Use cases are shown in Section 12. Conclusions and future work
make up Section 13. More details, data sets, a prototype, and user guide are available1.

2 Related Work

Embedded unique constraints were introduced recently [31]. Their implication problem
and the generation of synthetic Armstrong relations from a given set of eUCs was studied,
but neither the discovery problem nor the generation of Armstrong samples from a given
data set were considered. In particular, eUCs are more expressive than unique constraints
investigated in previous work. The current article is the first to investigate the discovery
problem for embedded uniques. For any class of data dependency, we propose for the first
time an approach to distinguish constraints that hold accidentally on a given data set from
those that are meaningful (aka business rules). Our main idea is to combine sampling
with discovery, which together unlock data cleansing and business rule acquisition. While
one can combine the generation of Armstrong relations from [31] with our discovery
algorithms, we also propose here the first algorithm that computes real-world Armstrong
samples directly from the data. All our algorithms employ fundamentally new ideas,
but they extend previous ideas for the discovery of unique constraints and functional
dependencies (FDs). We discuss those ideas now. For a recent general survey on data
profiling we refer to [1].

We strictly distinguish between unique column combinations (UCCs) and SQL unique
constraints. UCCs evaluate ⊥==⊥ to true, while SQL uniques evaluate it to false. SQL
uniques form the special case of eUCs (E,U) where E = U . We also report results on
this case because of its importance. By handling ⊥ like any domain value, we also report
on results for UCCs, but this is not our focus.

Column-based algorithms for the discovery of minimal keys [14] examine an attribute
lattice bottom-up, top-down or in a hybrid manner. The bottom-up approach checks
key candidates when all sets on the previous level are not satisfied. The top-down ap-
proach considers key candidates when some superset is satisfied. The hybrid approach
combines bottom-up and top-down for faster pruning. The authors show upper bounds,
but experiments consider only synthetic data. Larger column numbers cause efficiency
problems.

1http://bit.ly/2gzDEYu
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GORDIAN discovers minimal keys [30] using prefix trees, which efficiently extract
non-keys known to violate a key on the given data. The algorithm performs well on
data with quite large numbers of rows and columns. Experiments for real world data are
limited, and missing values not discussed.

The Histogram-Count-based Apriori algorithm (HCA) discovers UCCs [2] by generat-
ing different cardinalities from small to large. Validations of UCCs are done by counting
the frequencies of distinct values. Missing values are not discussed and the real world
data only exhibits few UCCs.

Scalable UCC discovery [15] is achieved by employing additional search strategies on
the attribute lattice. A greedy strategy looks for new candidates if the given UCC is
not satisfied; and a random-walk looks for supersets (subsets) and randomly switches
to new candidates when the current UCC is satisfied (unsatisfied). Missing values do
not conform to SQL unique semantics. The algorithms scale poorly on larger attribute
numbers under SQL unique semantics.

Hybrid algorithms for UCC and FD discovery [29, 27] switch between column- and
row-based algorithms. The column-based algorithm validates UCCs in an attribute lat-
tice bottom-up and switches when too many invalid UCCs are found. The row-based al-
gorithm finds counter-examples heuristically and switches when too few counter-examples
are found. In contrast, our row-based algorithm prunes the search space of the column-
based algorithm, and the latter eliminates redundancies in the row-based algorithm.
These additional strategies are necessary to handle the larger search space that eUCs
exhibit over UCs and UCCs.

Stripped partitions and prefix blocks [16] improve the run-time efficiency of column-
based algorithms. A row-based algorithm refines FD sets by extracting counter-examples
from data [13]. FD-trees manage FDs efficiently. These early algorithms only deal with
complete data.

Discovering conditional FDs [12] has received attention, but completeness has not
been considered as a condition for conditional FDs. This suggests future work.

Possible and certain SQL keys [18, 21] rely on the no information interpretation of null
marker occurrences, and are different from eUCs. Among other problems, their discovery
via hypergraph transversals was studied [18, 21, 22]. Probabilistic and possibilistic keys
[6, 17] are targeted at data models where uncertainty is modeled using possible worlds,
each of which is complete. Those keys are for different data models.

Overall, our article is the first to investigate the discovery problem for eUCs, and
the first to propose the combination of discovery and sampling for data cleansing and
business rule acquisition. All our algorithms require fundamentally new ideas, and the
dedicated focus on the handling of nulls is the first of its kind.

3 Embedded Unique Constraints

We give the basic definitions and fix notation.
A relation schema is a finite, non-empty set of attributes (also called column (names)),

often denoted by R. With each attribute A we associate a domain dom(A) of possible
values that can occur in column A. A tuple t over R, sometimes called row or record,
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is a function that maps each A ∈ R to a value in dom(A). Two records are equal if
they have matching values on all the attributes of the underlying schema, and distinct
otherwise. A relation r over R is a finite set of distinct tuples over R. For a finite
set X = {A1, A2, · · · , Am} of attributes, we sometimes write X as A1A2 · · ·Am, and
XY instead of the union X ∪ Y of X and another attribute set Y . Attribute sets are
sometimes called column combinations. For X ⊆ R and a tuple t over R, we write t(X)
to denote the projection of t onto X, that is, the value dom(A1)× · · · × dom(Am).

Following previous research, we use the special symbol ⊥ to denote a null marker.
While ⊥ is a marker but not a value, we abuse notation for convenience and assume that
⊥ is a distinct element of each domain. That is, ⊥ is different from each domain value. We
say a tuple t over R is X-total whenever t(A) 6=⊥ for all A ∈ X. Furthermore, we use rX

to denote the set of all X-total tuples in a relation r, that is, rX = {t ∈ r | t is X-total},
and call rX the scope of r with respect to X. A relation is complete when it has no null
marker occurrence, that is, when the scope rR coincides with r. Following [31] we will
study the discovery and sampling of embedded uniqueness constraints, defined as follows.

An embedded uniqueness constraint (embedded unique or eUC ) over a relation schema
R is an expression of the form (E,U) where U ⊆ E ⊆ R. We call E the extension, and U
the unique constraint of (E,U). A relation r over R satisfies the eUC (E,U), or the eUC
is said to hold on r, denoted by r � (E,U), if and only if for all t, t′ ∈ rE, t(U) = t′(U)
implies t1 = t2. If r does not satisfy (E,U), then we also say that r violates (E,U). Note
that the case where E = U or E − U = ∅ captures the semantics of the SQL unique
constraint (UC). Since E = U , it is sometimes easier to write just U instead of writing
(U,U). Whenever we want to save space, we also write (E − U,U) instead of (E,U).
Identifying column names in our introductory example by their first letters, we write
({v, p}, {f, l, r}) instead of ({v, p, f, l, r}, {f, l, r}).

A unique column combination (UCC) over relation schema R is also a set U ⊆ R.
However, the UCC U is satisfied by a relation r over R whenever for every pair of distinct
tuples in r (not just those that are U -complete), there is some attribute in U on which
the two tuples have different values. In particular, the comparison ⊥==⊥ evaluates to
true for UCCs. In the special case of complete relations, the notions of UCs, UCCs, and
eUCs all coincide with the well-known notion of a key.

UCs U (and UCCs, respectively) that hold on a relation r are said to be minimal if
there is no UC U ′ (UCC U ′, respectively) that also holds on r and where U ′ is a proper
subset of U . We can restrict the discovery of uniqueness constraints to those that are
minimal, since any supersets are also uniqueness constraints. This is true for UCs as
well as UCCs. This begs the question, which eUCs are minimal. We say that (E ′, U ′) is
subsumed by (E,U), denoted by (E ′, U ′) v (E,U), if and only if both E ′ ⊆ E and U ′ ⊆ U
hold. Further, (E ′, U ′) is properly subsumed by (E,U), denoted by (E ′, U ′) @ (E,U), if
and only if E ′ is a proper subset of E or U ′ is a proper subset of U . Now we can say
that an eUC (E,U) that holds on relation r is minimal if and only if there is no eUC
(E ′, U ′) that holds on r and is properly subsumed by (E,U). If an eUC is not minimal,
we sometimes say it is implied or redundant. Given a set Σ′ of eUCs, the subset Σ of Σ′ is
a minimal cover of Σ′ if it consists of all those eUCs in Σ′ that do not properly subsume
any other eUCs in Σ. That is, Σ contains those elements of Σ′ that are minimal with
respect to subsumption.
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Consider our introductory example. After replacing 131 in row t2 by ⊥, some of the
eUCs the modified snippet of Table 1 would satisfy are ({m}, {m}), ({v, p}, {f, l, r}), and
({v, p}, {f}), of which only ({m}, {m}) and ({v, p}, {f}) are minimal: neither ({m}, ∅),
nor ({v}, {f}), nor ({p}, {f}), nor ({v, p}, ∅) are satisfied.

4 Computational Complexity

In this section, we establish the computational complexity for the decision variant of the
discovery problem for eUCs. Its decision variant, eUC, is defined as follows.

Problem: eUC
Input: relation r over schema R

positive integer k
Output: yes, if there is some U ⊆ E ⊆ R where |E| ≤ k and r satisfies (E,U)

no, otherwise

Note that U ⊆ E, so the cardinality |E| of the extension E is an appropriate defini-
tion for the size of an eUC (E,U). Our first observation is that eUC is at least as hard
as the decision variant Key of the key discovery problem in complete relations, defined
as follows.

Problem: Key
Input: complete relation r over schema R

positive integer k
Output: yes, if there is some K ⊆ R where |K| ≤ k and r satisfies K

no, otherwise

Indeed, complete relations satisfy the key K if and only if they satisfy the eUC (K,K).
It is known that Key is NP-complete [4], and by reducing Key to eUC we can establish
NP-completeness for eUC, too.

Theorem 1 The problem eUC is NP-complete.

In recent research [5], Key was shown to be W[2]-complete in the size of the key. As
we can show that Key and eUC are FPT-equivalent, it follows that the discovery of
eUCs is likely to be an intractable problem even when the size of the eUCs is fixed. For
the necessary definitions and proofs please see the appendix.

Theorem 2 The problem eUC is W[2]-complete.

Despite the likely intractability of the key discovery problem, even with a fixed input
size, it is remarkable that recent algorithms can quickly find all minimal keys that hold
on large real world data sets [30, 28]. The next section will show that the maximum
number of eUCs that can hold on incomplete relations is much larger than the maximum
possible number of minimal UCs. Despite the likely intractability, even with a fixed input
size, and despite the large potential output, we will develop various efficient algorithms
for the discovery of all minimal eUCs.
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Table 2: Relation with maximum solution space over A = id, B = name, C = phone,
together with its embedded lattice

id name phone
0 Adam 6756
0 ⊥ ⊥
⊥ Eve 7654
1 ⊥ 0023
⊥ ⊥ 6756
2 Dave ⊥
⊥ Adam ⊥

5 Maximum Solution Space

It is useful to know how large the solution space of the discovery problem can be. For
most classes of constraints exact numbers are unknown. For example, only upper bounds
are known for the maximum cardinality of a non-redundant family of FDs over a relation
schema with n [9]. However, the maximum number of minimal keys over n attributes is(

n
bn/2c

)
[8]. We will now establish a complete solution for the class of eUCs. While the

result is interesting in its own right from a combinatorial perspective, it tells us precisely
how large a solution space can be. The result shows that the solution space for eUCs
is much larger than that for UCs. The result will also prove useful for experiments on
synthetic data, as we can create data sets that attain the maximum number of minimal
eUCs.

5.1 Extremal Families of Embedded Uniques

A family F of eUCs is non-redundant if and only if there there are no two eUCs (C,K)
and (C ′, K ′) in F such that C ⊆ C ′ and K ⊆ K ′ hold. Our result will show that i)
the maximum size of a non-redundant family of eUCs over a schema with n attributes is
equal to the coefficient, denoted by W (n), of xn in the expansion of (1 +x+x2)n, and ii)
the family that attains the maximum cardinality consist of all those eUCs (E,U) where
|E|+ |U | = n.

Table 2 exemplifies the case for n = 3 attributes. Here, the maximum family of
minimal eUCs has seven elements, consisting of (ABC, ∅), (AB,A), (AB,B), (AC,A),
(AC,C), (BC,B), and (BC,C), as marked by red. In what follows, 2X denotes the
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power set of a set X.

Theorem 3 Let R be a finite set, and let F ⊆ 2R × 2R such that for all (E,U) ∈ F :
(i) U ⊆ E and (ii) there is no (E ′, U ′) ∈ F − {(E,U)} with (E ′, U ′) v (E,U). Then
|F| ≤ W (|R|), where for |R| ≥ 2 equality is attained if and only if

F =
{

(E,U) ∈ 2R × 2R : U ⊆ E and |E|+ |U | = |R|
}
.

5.2 Comparison to UCs

We just want to emphasize that the maximum number of minimal eUCs is much larger
than the maximum number of minimal UCs, which makes the solution space much larger.
The following table illustrates the difference in concrete numbers up to n = 12 where
these numbers are already separated by a factor higher than 79.

n 2 3 4 5 6 7 8 9 10 11 12
UCs 2 3 6 10 20 35 70 126 252 462 924
eUCs 3 7 19 51 141 393 1107 3139 8953 25653 73789

This is to illustrate the difficulty we face in developing efficient algorithms for the
discovery of eUCs.

6 eUC-Trees As Data Structures

Facing big search and solution spaces, it is of utmost importance to provide a data
structure that i) can represent a minimal cover of the set of eUCs found, and ii) can be
used to decide whether some eUC is redundant. For this purpose, we will introduce the
new data structure of eUC-trees, which we will employ in all our discovery algorithms.
Our data structure generalizes the concept of antecedent trees from [13], which we recall
here.

Given relation schema R with a total order of attributes, an antecedent tree over R
is a tree such that: 1) Every node of the tree, except the root node, is an attribute of R,
and 2) The children of a node are larger attributes.

In an antecedent tree, attribute sets are represented as paths, and different paths
of the tree represent different attribute sets. An antecedent tree can effectively store a
minimal cover of a set of keys. Antecedent trees cannot represent eUCs, since the latter
involve both extensions and UCs. We therefore propose a new data structure, called
eUC-trees, which serve the same purpose for eUCs that antecedent trees serve for keys.
We say that an eUC-path represents an eUC (E,U) when E is the set of e-nodes of the
path, and U is the set of u-nodes of the path.

Definition 1 (eUC-tree) Let R be a relation schema with a total order on its attributes.
An eUC-tree is a tree with nodes that are either the root, or labeled as either e(xtension)-
nodes or u(nique)-nodes and satisfy the following properties:

1. Every node, except the root, is an attribute of R;
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Figure 2: Example of an eUC-tree

2. All children of the root are e-nodes;

3. E-nodes can have e-node or u-node children;

4. E-node children are larger than their e-node parent;

5. U-nodes only have u-node children;

6. U-node children are larger than their u-node parent;

7. For each path of the tree from the root to a leaf, the set of u-nodes is a subset of
the set of e-nodes of the path.

8. The set of eUCs, represented by the different paths from the root to the leaves of
the tree, is non-redundant.

Example 1 (eUC-tree) Figure 2 shows an example of an eUC-tree. The tree contains a
set of non-redundant eUCs including (ABC,A), (ABC,BC) and (AC,C) over the relation
schema {A,B,C}.

Algorithm 1 decides whether a given eUC (E,U) is redundant with respect to a given
eUC-tree. For this we need to search for some path in the eUC-tree that represents an
eUC (E ′, U ′) v (E,U). EUC-trees provide effective pruning mechanisms to support this
search. The algorithm recursively traverses a chain of e-nodes and then u-nodes, starting
at the root (line 23). A root node without children represents the eUC (∅, ∅), which is
subsumed by every other eUC (line 5). Whenever an e-node is visited, the next step is
to recursively traverse the u-node children, and then the e-node children. The algorithm
only starts traversing u-nodes if the value of a u-node is not null (line 6). The search for
a path can be limited to those with e-nodes (u-nodes, respectively) contained in E (in
U , respectively), see lines 19 and 15.

We will employ Algorithm 1 for the column-efficient, row-efficient, and also the hybrid
discovery algorithm of eUCs, in order to check for redundancies efficiently.
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Algorithm 1
1: INPUT: Root node root of an eUC-tree, an eUC (E,U) over R
2: OUTPUT: true if (E,U) is redundant, false otherwise
3: function isRedundant(eNode, uNode)
4: if eNode has no children then
5: return true

6: if uNode 6= null then
7: if uNode has no u-children then
8: return true

9: children← the set of all u-children of uNode
10: for child ∈ children ∩ U do
11: if isRedundant(eNode, child) then
12: return true

13: else
14: children← the set of all u-children of eNode
15: for child ∈ children ∩ U do
16: if isRedundant(eNode, child) then
17: return true

18: children← the set of all e-children of eNode
19: for child ∈ children ∩ E do
20: if isRedundant(child, uNode) then
21: return true

22: return false

23: return isRedundant(root, null) . Invoke recursion here

7 Column-efficient Discovery

We first present a column-efficient, sometimes called row-based, algorithm for the dis-
covery of eUCs.

The first step of the algorithm is to scan all pairs of distinct rows in the given relation.
For each pair, we record the set E of columns on which both rows are total as well as the
subset U ⊆ E of columns on which both tuples have matching values. More formally, let
r be a relation over R and U ⊆ E ⊆ R. The pair (E,U) is called an embedded non-unique
(NU) of r if there are distinct t1, t2 ∈ rE such that i) for all A ∈ R − E, t1(A) =⊥ or
t2(A) =⊥, and ii) for all A ∈ E, t1(A) = t2(A) if and only if A ∈ U . A NU (E,U) of r
is maximal if there is no NU (E ′, U ′) of r such that (E,U) @ (E ′, U ′) holds. The set of
maximal NUs (MNUs) of r is denoted by Σ−1. The importance of Σ−1 for the discovery
of eUCs is embodied in the following result. It says informally that an eUC holds in a
relation if and only if the eUC is not subsumed by any MNU.

Theorem 4 Let r be a relation over R. An eUC (E,U) is satisfied by r if and only if
there is no (E ′, U ′) ∈ Σ−1 such that (E,U) v (E ′, U ′).

Theorem 4 forms the basis for the following iterative algorithm. Here, the minimal
eUCs are represented by an eUC-tree from Section 6. If there is no maximal embedded
non-unique, then every eUC holds and Algorithm 2 will simply return the root node,

12



representing the minimal cover {(∅, ∅)}. Otherwise, we scan Σ−1 one by one element,
and refine the current set of minimal eUCs that hold on r accordingly. Indeed, whenever
a currently minimal eUC (E,U) is subsumed by the MNU (M,N) under inspection, then
the algorithm removes (E,U) in line 7 (recursively removing the leaf of the path until
the current node is a non-leaf of some other path), and adds the following eUCs: for all
A ∈ R −M , (EA,U) is added, and for all A ∈ M −N , (EA,UA) is added, unless they
contain some other minimal eUC.

Algorithm 2 Column-efficient algorithm

1: INPUT: The set Σ−1 of r
2: OUTPUT: The eUC-tree TΣ representing a minimal cover Σ of those eUCs that hold on
r

3: TΣ ← root . Start with just a root node
4: for each (M,N) ∈ Σ−1 do
5: Ω← {(E,U) v (M,N) | (E,U) is an eUC-path in TΣ}
6: for (E,U) ∈ Ω do
7: Remove eUC-path (E,U) from TΣ

8: for A ∈ R−M do
9: if (EA,U) non-redundant or TΣ = ∅ then

10: if TΣ = ∅ then
11: TΣ ← root

12: Insert (EA,U) as a new eUC-path into TΣ

13: for A ∈M −N do
14: if (EA,UA) non-redundant or TΣ = ∅ then
15: if TΣ = ∅ then
16: TΣ ← root

17: Insert (EA,UA) as a new eUC-path into TΣ

18: Return TΣ . If Σ−1 = ∅, then TΣ represents {(∅, ∅)}

Algorithm 2 works correctly, see the appendix.

Theorem 5 Given the set of maximal embedded non-uniques of a relation, Algorithm 2
computes a minimal cover of the set of eUCs that are satisfied by the relation.

8 Row-efficient Discovery

A row-efficient algorithm, sometimes called column-based, creates its search space from
a given relation schema and verifies eUCs by traversing from the most general ones until
all potentially valid eUCs in the search space have been examined. Attribute lattices
have been widely used for row-efficient approaches to the discovery of data dependencies
[16, 28]. As shown in Figure 3, level i of an attribute lattice contains all attribute sets
of cardinality i. In particular, attribute sets of lower levels have smaller cardinalities
and represent more general uniques. By traversing an attribute lattice from lower to
higher levels, an algorithm can discover minimal uniques and prune redundant uniques
in the search space. In the case of eUC discovery, the search space becomes significantly
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Figure 3: An Attribute Lattice and Its Levels

larger. For our row-efficient algorithm, we propose to use an attribute lattice, named
u(nique)-lattice, to model the search space of the uniques associated with an eUC. While
traversing a u-lattice, the algorithm employs another lattice, called e(xtension)-lattice for
the discovery of all minimal extensions that apply to a given unique. We call traversals
in the u-lattice u-traversals, and traversals in the e-lattice e-traversals.

Our algorithms for u- and e-traversals are based on characterizations that help us
validate whether a given eUC holds on the given relation. In [16], the authors proposed
to use the stripped partitions of a relation to validate FDs. We will now define the concept
of stripped partitions for the purpose of validating eUCs.

Let r be a relation over R and U ⊆ R. The U-equivalence class of tuple t ∈ r is
the set [t]U = {s ∈ rU | t[U ] = s[U ]}. The stripped partition of a relation r over U is
πU(r) = {[t]U | t ∈ rU , |[t]U | ≥ 2}. The main use of stripped partitions in u-traversals is
embodied in the following result. It provides an effective characterization to validate an
eUC.

Proposition 1 (eUC validation)
An eUC(E,U) over R is satisfied by a given relation r over R if and only if for all
S ∈ πU(r), |rE ∩ S| ≤ 1.

However, the following result also shows how stripped partitions can be used in e-
traversals. In effect, we can find an extension E for a given unique U such that the
eUC (E,U) holds on r if and only if each stripped partition for U contains at most one
total tuple. This helps us characterize effectively when we do not need to spend effort
on finding an extension for a unique.

Proposition 2 (Existence of extensions)
Let U ⊆ R, and r a relation over R. Then there is some E ⊆ R with U ⊆ E such that r
satisfies (E,U) if and only if for all S ∈ πK(r), |rR ∩ S| ≤ 1.
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Algorithm 3 Unique-traversal (row-efficient algorithm)
1: INPUT: A relation r over relation schema R
2: OUTPUT: The eUC-tree TΣ representing a minimal cover Σ of those eUCs that hold on
r

3: TΣ ← ∅
4: R′ ← {A ∈ R | ∃t ∈ r such that t(A) =⊥}
5: extns← eTraversal(R′, π∅(r), ∅) . π∅(r) = {r}
6: if |extns| > 0 then
7: TΣ ← root

8: for E ∈ extns do
9: insert (E, ∅) as a new eUC-path into TΣ

10: currentLevel← {A ∈ R | (A,A) non-redundant in TΣ}
11: while |currentLevel| > 0 do
12: uGenNextLevel← ∅
13: for U ∈ currentLevel do
14: if rU = ∅ then
15: insert (U,U) as a new eUC-path into TΣ

16: continue . Goto line 13
17: uGenNextLevel← uGenNextLevel ∪ {U}
18: if |rR ∩ S| ≤ 1 for all S ∈ πU (r) then
19: R′ ← {A | ∃S ∈ πU (r), t ∈ S(t(A) =⊥)}
20: extns← eTraversal(R′, πU (r), U)
21: for E ∈ extns do
22: if (E,U) non-redundant or TΣ = ∅ then
23: if TΣ = ∅ then
24: TΣ ← root

25: insert (E,U) as a new eUC-path into TΣ

26: nextLevel← ∅
27: for all X,Y ∈ uGenNextLevel where |XY | = |X|+ 1 do
28: if (XY,XY ) non-redundant or TΣ = ∅ then
29: nextLevel← nextLevel ∪ {XY }
30: currentLevel← nextLevel
31: return TΣ

Next, we describe the u-traversal (row-efficient algorithm) as Algorithm 3, and the
e-traversal as Algorithm 4. Algorithm 3 firstly computes the minimal extensions for an
associated UC that is empty. Subsequently, a level-wise traversal on the u-lattice starts
from the singleton attribute sets (those on Level 1). On each level, those UCs that
are certain to have extensions will invoke an e-traversal as given by Algorithm 4. UCs
for which no extensions exist, and UCs with larger extensions than themselves generate
UCs for the next level. In a u-traversal, all discovered eUCs are stored in an eUC tree
for fast redundancy checking. In e-traversal, instead of traversing an attribute lattice
over an entire relation schema, only those attributes are used on which some tuple in
some stripped partition holds a null marker. Finally, both Algorithm 3 and 4 (line 27
and 15, respectively), employ prefix blocks to generate candidates for the next level.
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Prefix blocks were introduced in [3] and have been widely used for the discovery of data
dependencies [24, 30, 2]. The blocks sort attribute sets in lexicographical order, and
only form the union of two sets that have the same prefix on the first k attributes. This
ensures that all attribute sets on the next level are generated exactly once. Otherwise,
candidate attribute sets on the next level need to be generated by adding one attribute
at a time to attributes sets of the current level, which will result in too many redundant
new candidates.

Algorithm 4 Extension-traversal

1: INPUT: Subset R′ ⊆ R, stripped partition πU(r), UC U
2: OUTPUT: The set E of all minimal extensions E such that (E,U) holds in r
3: E ← ∅
4: currentLevel← R′

5: while |currentLevel| > 0 do
6: invalidExtns← ∅
7: newValidExtns← ∅
8: for E ∈ currentLevel do
9: if |rE ∩ S| ≤ 1 for all S ∈ πU(r) then

10: E ← E ∪ {EU}
11: newValidExtns← newValidExtns ∪ {E}
12: continue . Goto line 8
13: invalidExtns← invalidExtens ∪ {E}
14: nextLevel← ∅
15: for all E,F ∈ invalidExtns where |EF | = |E|+ 1 do
16: if ¬∃E ′ ∈ newValidExtns where E ′ ⊆ EF then
17: nextLevel← nextLevel ∪ {EF}
18: currentLevel← nextLevel
19: return E

The computation of stripped partitions for uniques affects the scalability of Algo-
rithm 3 on relations with a large number of rows. This is because it is inefficient to
recompute stripped partitions for the entire relation from scratch for each unique. As
another novelty, we propose Algorithm 5, which computes stripped partitions iteratively.
The algorithm verifies whether tuples in the same current partition have matching total
values on the new attribute. In essence, each occurring total value on the new attribute
represents a new partition. Consequently, tuples of the input stripped partition are di-
rectly mapped into new partitions according to their values on the new attribute, see
line 5.

In Algorithm 3, extensions and their uniques are enumerated by cardinalities. If
a unique with itself as an extension cannot form a valid eUC, the eUCs formed by
supersets of the unique may be valid and non-redundant. Such eUCs are augmented by
one attribute, exhausting all possibilities. While examining a unique, all its extensions
are also enumerated by cardinalities so that only non-redundant ones are discovered.
Similarly, if an extension cannot form a valid eUC with a given unique, it is augmented
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by one attribute and validated on the next level. At the end, all minimal eUCs of a given
relation have been computed.

Algorithm 5

1: INPUT: Stripped partition π of r over U , A ∈ R− U
2: OUTPUT: The stripped partition π′ of r over UA
3: π′ ← ∅
4: for S ∈ π do . Create map M from r[A] to tuple sets
5: for t ∈ S do
6: if t(A) 6=⊥ then
7: M [t(A)]←M [t(A)] ∪ {t}
8: for each set S in M do
9: if |S| > 1 then

10: π′ ← π′ ∪ {S}
11: return π′

Theorem 6 Algorithm 3 computes a minimal cover of the set of eUCs that are satisfied
by the given relation.

9 Hybrid Discovery

So far, our algorithms were targeted at relations with a large number of either columns
or rows. Each algorithm suffers from defects that require new strategies to correct.
The column-efficient algorithm has to compare all distinct rows, resulting in a quadratic
growth of the running time in the number of rows. Moreover, redundant intermediate
results are produced frequently. The row-efficient algorithm operates on a huge search
space, which grows exponentially in the number of columns. Since stripped partitions
are created at each level of the attribute lattice, the algorithm also duplicates a lot of
information, which creates problems with the available memory. As a solution, we are now
proposing a hybrid algorithm that utilizes good aspects of the column-efficient algorithm
to compensate defects of the row-efficient algorithm, and vice versa. This amalgamation
of ideas allows us to efficiently mine data sets that have a large number of both columns
and rows.
Reducing search space. The column-efficient algorithm can help reduce the number
of attribute sets that both u- and e-traversals consider on each level. Recall that NUs can
be used to identify invalid eUCs and to derive new satisfiable eUCs. In a u- or e-traversal,
an invalid attribute set is expanded by each remaining attribute. For example, if E is
not an extension for U , then one checks if r satisfies (EA,U) for all A ∈ R−E. However,
if an extension and its associated UC are subsumed by some NU (M,N), then one only
needs to check if r satisfies (EA,U) for all A ∈ R−M . In fact, the row-efficient algorithm
views invalid eUC as an NU, and then derives new eUCs. The use of NUs can thus reduce
the search space in the row-efficient algorithm.
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Reducing intermediate eUCs. The row-efficient algorithm can help the column-
efficient algorithm reduce the number of eUCs generated at intermediate steps. By
Theorem 4, the column-efficient algorithm cannot decide if an eUC is valid until the
last MNU has been processed. When an eUC, such as (E,U), is subsumed by an NU,
an extension of the eUC, such as (EA,U), is either redundant or not regarding some
validated eUC. If it is redundant, then all eUCs that subsume (EA,U) are redundant,
too. Hence, timely validation of eUCs reduces the number of intermediate eUCs gener-
ated by the column-efficient algorithm. In fact, one can validate eUCs of an eUC-tree
in a level-wise manner, because levels of UCs and their extensions can be computed by
traversing the eUC-tree. For this type of pruning, we define M1 and M2 as mappings
that assign an attribute set to some eUCs. M1, called extension hints (EH), is defined by
A ∈ M1[E,U ] iff (EA,U) is subsumed by some valid eUC, and M2, called unique hints
(UH), is defined by A ∈M2[E,U ] iff (EA,UA) is subsumed by some valid eUC.
Hybridization. Our hybrid algorithm runs the row-efficient algorithm as its core, but
employs the column-efficient algorithm to update the search space whenever convenient.
This results in an hybrid e-traversal algorithm and a hybrid u-traversal algorithm.

The hybrid e-traversal validates the extensions of a given UC level by level. Before a
new level is used, hybrid e-traversal decides whether new NUs should update its search
space. The decision is controlled by the ratio of the number of invalid extensions over the
number of all extensions on a level. Similar to Algorithm 4, invalid extensions generate
candidate extensions on the next level. Hence, the more invalid extensions are found
on the current level, the more candidate extensions need to be validated on the next
level. If the ratio exceeds a certain threshold, meaning that too many candidates would
need to be validated, the search space is updated by a set of NUs sampled from stripped
partitions. Otherwise, the algorithm only uses NUs composed by invalid extensions to
update the search space. For example, if E is not an extension for U , (E,U) must be
an NU. Eventually, e-traversal returns updates of the eUC-tree, EHs and UHs to the
u-traversal algorithm.

Unlike the u-traversal algorithm in Algorithm 3, hybrid u-traversal does not only
discover the extensions of a UC level by level, but also employs NUs returned by hybrid
e-traversal to update the eUC-tree at the end of each iteration. Note that hybrid e-
traversal will update the entire eUC-tree, so it is no longer necessary for hybrid u-traversal
to explicitly compute UCs for the next level.

The pseudo-code and description of our hybrid algorithms can be found in Section B.

Theorem 7 Our hybrid discovery Algorithm 9 computes a minimal cover of the set of
eUCs that are satisfied by the given relation.

10 Experiments

We have conducted experiments on real world data sets to illustrate the performance
and practicality of our algorithms. Theses data sets have emerged as benchmark data
sets for testing the performance of discovery algorithms for classes such as functional
dependencies[26, 28]. We implemented the proposed algorithms in Visual C++, and

18



Data set #R #C #⊥ #IR #IC #eUC #UC Alg. 2 Alg. 3 Alg. 9
horse 300 28 1605 294 21 5040 31 1.046 ML 1.167

bridges 108 13 77 38 9 3 3 0.003 0.0039 0.002
hepatitis 155 20 167 75 15 446 102 0.082 17.991 0.154

breast-cancer 691 11 16 16 1 2 1 0.083 0.187 0.009
echocardiogram 132 13 132 71 12 45 27 0.006 0.018 0.006

plista 996 63 23317 996 32 2337 49 3.369 ML 4.177
flight 1000 109 51938 1000 69 26652 33672 49.367 ML 106.633

ncvoter 1000 19 2863 1000 5 147 69 0.346 1.376 0.067
uniprot 1000 223 179129 1000 212 3320220 664 4106.66 ML 2742.15

pm2.5china 262920 18 418580 157895 12 615 470 TL ML 77.365

Table 3: Run time (in seconds) of the three algorithms to discover eUCs from incomplete
data

Data set #R #C #UC Alg. 2 Alg. 3 Alg. 9
abalone 4177 9 29 2.8 0.18 0.09
adult 32537 15 2 205.99 ML 0.64
chess 28056 7 1 116.27 1.25 0.21
iris 147 5 1 0.004 0.001 0.001

letter 18668 17 1 78.99 ML 0.55
nursery 12960 9 1 34.65 2.19 0.15

balance-scale 625 5 1 0.06 0.005 0.004
fd-reduced 250000 30 3564 TL 110 313

Table 4: Discovery time (s) on complete data

carried out our experiments on an Intel i7-5820K, 3.3 GHz, 8 GB, Windows 10 PC.
Repeatability. A prototype system and our data sets have been made available2.

Next, we present our findings. For the experiments we set a time limit (TL) of 2 hours
and a memory limit (ML) of 6 GB. The benchmarks include complete and incomplete data
sets. For each data set, we report the number of rows (#R), columns (#C), missing values
(#⊥), incomplete rows (#IR), incomplete columns (#IC), unique constraints (#UC),
eUCs (#eUC), and the running time of each algorithm for the discovery of the eUCs.
Since UCs just represent the special case of eUCs where the extension and associated
UC coincide, we have simply indicated their total number. Over complete data sets, all
three notions of UCCs, UCs, and eUCs coincide. We point out that our algorithms are
designed for the discovery of eUCs from incomplete data, which covers a much larger
search space than the discovery problem of UCCs or UCs.

Tables 3 and 4 show our results on the incomplete and complete data sets, respectively.
Since most of the incomplete data sets only have a small number of rows, the column-
efficient algorithm (Alg. 2) performs better on some of them, but has rarely a huge
advantage over the hybrid algorithm (Alg. 9). Note that neither Alg. 2 nor Alg. 3
can process the data set pm2.5china [23] within the given time and memory limits. On
the complete data sets, the hybrid algorithm usually wins. However, the row-efficient
algorithm achieves typically a better running time on data sets with a large number of
rows. In conclusion, the hybrid algorithm performs well overall but the column- and
row-efficient algorithms usually perform better on data sets with an extreme number of
columns or rows. This confirms our expectations based on the design of the algorithms.

We can also discover UCCs by not choosing a symbol that is interpreted as ⊥. Their

2http://bit.ly/2gzDEYu
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Data set #UCC Alg. 2 Alg. 3 Alg. 9

horse 253 0.283 ML 0.128

bridges 5 0.003 0.047 0.003

hepatitis 348 0.06 19.318 0.161

breast-cancer 2 0.162 0.189 0.009

echocardiogram 72 0.008 0.026 0.011

plista 1 0.851 ML 0.308

flight 26652 7.8 ML 25.632

ncvoter 69 0.395 3.364 0.051

uniprot ? ML ML ML

pm2.5china 2 TM ML 12.997

Table 5: Discovery time (s) on incomplete data

Figure 4: Row scalability on uniprot [left] and column scalability on pm2.china [right]

total numbers (#UCC) and corresponding running times of our algorithms for their
discovery from the incomplete data sets are shown in Table 5.

To further analyze the row efficiency and column efficiency of our proposed algorithms,
we analyze the discovery on projections on the data set uniprot with an increasing number
of columns, and on subsets of the data set pm2.5china 14c with an increasing number
of rows. Figure 4 shows how the run time of our algorithms scales when the number of
rows or columns increase, respectively. Although the row- or column-efficient algorithm
perform slightly better when the number of columns or rows is small, the hybrid algorithm
eventually outperforms the other two algorithms when the number of columns or rows
grows larger. Again, this meets the design expectations of all algorithms: Row-/column-
efficient algorithms win when there are few enough columns/rows, respectively, while the
hybrid algorithm wins when column and row numbers are large enough.

The more rows in the scope of an eUC, the more rows can be identified uniquely. We
could use potentially different eUCs to distinguish different rows. Hence, we say that a
row in a data set r is covered if there is some discovered eUC (E,U) such that the row
belongs to the scope rE. The eUC coverage of a data set is the ratio of rows in the data
set that are covered.

Figure 5 shows the eUC coverage on each of the incomplete data sets. We distinguish
between UCs and truly embedded UCs (where the extension properly contains the as-
sociated UC). Since UCs have the minimum extension amongst all eUCs with the same
associated UC, their scope has maximum cardinality. However, the point is to discover
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Figure 5: Coverage of incomplete data sets

Figure 6: Relative scope of individual eUCs

which associated UCs are sufficient for the identification of which rows. Indeed, the high
number of eUCs with a high coverage of truly embedded UCs is remarkable: It shows
that there are many different ways by which a large proportion of rows can already be
distinguished by a proper subset of the extension in eUCs. Recall that this was precisely
our reason for studying them.

The results are even more encouraging when we look at the relative scope for each
individual eUC discovered for a given data set. This is defined as the cardinality of the
scope relative to the number of rows in the given data set. The relative scopes are shown
in Figure 6. Evidently, there are quite a few eUCs in each data set which can uniquely
identify most of the rows, except for the data set horse. Data sets have low coverage when
several rows are ignored by eUCs, since such rows would create violations of the eUCs
otherwise. In fact, rows outside the scope may represent less reliable data, because some
desired eUCs would be violated if the missing information in these rows was updated.
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We conclude that our experimental results confirm i) the practicality of eUCs as an
effective mechanism to uniquely identify entities in incomplete data sets, independent
of the interpretation of null markers, and ii) the effectiveness of our algorithm designs
in efficiently discovering eUCs. The following section will introduce a novel direction in
data profiling, which is to compute a user-friendly representation of the constraints that
have been discovered.

11 Data Profiles by Example

Current data profiling tools return the set of constraints in a given class that hold on
the given data set. Here we propose the use of data samples that perfectly represent
the set of discovered constraints. The data samples are subsets of the original data set
and are perfect because they satisfy the same set of constraints as the original data set.
Such perfect samples are attractive for a number of reasons: They are accessible to a
broader audience than abstract sets of constraints, and provide a good foundation for
understanding why some constraints are satisfied or violated. Hence, data analysts gain
insights into large data sets by looking at the right samples. While these perfect samples
are already known as informative Armstrong databases [7], they have not been proposed
as a useful tool in data profiling. Apart from [7], informative Armstrong databases have
not been studied, and not at all for incomplete data.

We recall the definition of an informative Armstrong sample [7]. Given a relation r
and a class C of data dependencies, an Armstrong sample for r with respect to C is a
subset r′ ⊆ r such that r′ and r satisfy the same dependencies in C. Armstrong samples
always exist since every relation is an Armstrong sample of itself. The idea is to find
Armstrong samples of small size if possible.

As mentioned under related work, we proposed an algorithm to compute an Armstrong
relation with synthetic data from a given set of eUCs [31]. For computing an informative
Armstrong sample of the given data set, we could use any of our discovery algorithms to
compute Σ from the data set, then compute the set Σ−1 of maximal non-uniques from
Σ, and then choose the right tuples from the data set to get the sample. Instead, we
propose here to compute Σ−1 directly from the data, and then construct an Armstrong
sample by picking for each MNU (E,U) in Σ−1 a pair of rows from the stripped partition
πU(rE), see Algorithm 6.

Algorithm 6 Armstrong sample

1: INPUT: A set Σ−1 of maximal non-uniques over R
2: OUTPUT: An Armstrong sample r′ of r
3: r′ ← ∅
4: for each (E,U) ∈ Σ−1 do
5: Select t1, t2 ∈ S where t1 6= t2 and S ∈ πU(rE)
6: r′ ← r′ ∪ {t1, t2}
7: return r′

Table 8 shows the sizes of the Armstrong samples for our benchmark data sets. Typi-
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Data set #R #⊥ #IR #IC #MNU %
horse 91 248 85 21 178 30.33

bridges 4 0 0 0 2 3.70
hepatitis 73 21 15 6 73 47.10

breast-cancer 12 1 1 1 6 1.74
echocardiogram 28 19 13 5 16 21.21

plista 109 2689 109 34 214 10.94
ncvoter 114 255 114 5 65 11.40
flight 589 30131 589 69 739 58.90

uniprot 907 162048 907 212 14403 90.70
pm2.5china 509 78 51 5 255 0.19

abalone 56 0 0 0 30 1.34
adult 20 0 0 0 10 0.06
chess 10 0 0 0 6 0.04
iris 8 0 0 0 4 5.44

letter 32 0 0 0 16 0.17
nursery 11 0 0 0 8 0.08

balance-scale 5 0 0 0 4 0.80
fd-reduced 461 0 0 0 231 0.18

Table 6: Traits of real-world Armstrong samples

cally, the samples are much smaller than the original data set. There are several samples
whose size exceeds 20%, but this is to be expected since the size of Σ−1 can be huge, in
fact similar to the number of minimal eUCs. For example, uniprot has only 1000 rows
but more than three million eUCs are valid. Armstrong samples can be presented to end
users in different ways. Instead of presenting them as one table, one could present one
pair of records for each maximal non-unique at a time.

We also computed Armstrong relations for the extreme eUC families from Section 5,
and applied our discovery algorithms subsequently. The Armstrong relations were pop-
ulated with synthetic data, and represent relations that exhibit the maximum possi-
ble search space for our discovery algorithms. Table 7 summarizes our results: For
n = 2, . . . , 12, it shows the maximum cardinality #Fn of eUCs on relations with n
columns, the number #arm of rows in the Armstrong samples, the time #time to com-
pute them in seconds, the number #⊥ of missing values in these relations, and the times
to discover the families from the samples based on the three algorithms. Note that every
column contains ⊥, and only one row in each relation does not contain ⊥. Since the max-
imum search space grows so quickly, so does the number of rows in an Armstrong relation
and the time to compute it. For 12 columns, the generation took over 9.6 hours, but the
row-efficient algorithm took less than 2 minutes to discover all 73,789 eUCs. While the
hybrid algorithm is beaten due to the small number of columns, one can still appreciate
its impact by the dramatic performance improvement over the column-efficient algorithm
(which is not designed to perform well on data sets with 12 columns).

Lastly, we illustrate the use of Armstrong samples on a real-world sample of the data
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n #Fn #arm #time #⊥ Alg. 9 Alg. 3 Alg. 2
2 3 3 >0 2 >0 >0 0.001
3 7 7 >0 9 >0 >0 0.001
4 19 17 0.002 28 >0 0.001 0.001
5 51 46 0.008 95 0.002 0.001 0.002
6 141 127 0.044 306 0.012 0.003 0.018
7 393 358 0.291 987 0.064 0.014 0.17
8 1107 1017 3.019 3144 0.415 0.07 3.326
9 3139 2908 22.25 9963 2.94 0.404 52.68

10 8953 8351 222.7 31390 23.3 2.64 797
11 25653 24069 2116 98483 187.1 17.1 18256
12 73789 69577 34779 307836 1576 112 -

Table 7: Traits of synthetic Armstrong relations

0 1 2 3 4 5 6 7 8 9 10 11 12
E19 A 29 1866 HIGHWAY 1000 2 N THROUGH WOOD MEDIUM S WOOD
E11 A 29 1851 HIGHWAY 1000 2 N THROUGH WOOD MEDIUM S WOOD
E48 A 38 1900 HIGHWAY 2000 2 G THROUGH STEEL MEDIUM F SIMPLE-T
E58 A 33 1900 HIGHWAY 1200 2 G THROUGH STEEL MEDIUM F SIMPLE-T

Table 8: Armstrong sample of bridges with eUCs: (∅, {0}), (∅, {2, 3}) and (∅, {3, 5}).
Attributes are: identifier (0), river (1), location (2), erected year (3), purpose (4), length
(5), lanes (6), clear-g (7), t-or-d (8), material (9), span (10), rel-l (11), and type (12).

set bridges, shown in Tables 6, 9 for eUCs and UCCs, respectively. For UCCs, the missing
values on column 5 are interpreted as equal, which means we need an additional column
to ensure the two rows can be distinguished, resulting in the UCCs {3,4,5}, {3,5,11}, and
{3,5,12}. Considering the two missing values on column 5 (length) as equal is difficult
to justify since both lengths exist and are likely different. One may say the UCCs are
inflated since the more reliable rows can already be distinguished by {3,5}. This inflation
is necessary because of the intent to distinguish less reliable tuples. Indeed, under SQL
unique semantics we discover that {3,5} is already unique, with no intention to distinguish
rows with missing values on the columns that are involved.

12 Semantic Data Profiling

We illustrate the use of our discovery and sampling algorithms for iterative data cleansing
and business rule acquisition on the showcase of ncvoter. We also briefly mention use
cases for eUCs that do not represent business rules (ie. only hold accidentally on the
given data set).
Uncovering Surrogate Keys. Surrogate keys can speed up data management by
accessing records via a single integer. By briefly inspecting the data set, one would
expect that voter id forms a surrogate key. However, the discovery of all eUCs (shown
Table 10) reveals that no eUC (∅, {voter id}) with 100% coverage exists. Data stewards
wonder why the key is violated. Targeted inspection of the generated Armstrong sample
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0 1 2 3 4 5 6 7 8 9 10 11 12
E19 A 29 1866 HIGHWAY 1000 2 N THROUGH WOOD MEDIUM S WOOD
E11 A 29 1851 HIGHWAY 1000 2 N THROUGH WOOD MEDIUM S WOOD
E48 A 38 1900 HIGHWAY 2000 2 G THROUGH STEEL MEDIUM F SIMPLE-T
E58 A 33 1900 HIGHWAY 1200 2 G THROUGH STEEL MEDIUM F SIMPLE-T
E96 Y 51 1945 RR ⊥ ⊥ G THROUGH STEEL MEDIUM F SIMPLE-T
E97 Y 52 1945 HIGHWAY ⊥ ⊥ G THROUGH STEEL MEDIUM S ARCH

Table 9: Armstrong sample of bridges data set considering UCCs: {0}, {2, 3} , {3, 4, 5},
{3, 5, 11} and {3, 5, 12}

extension unique coverage
name prefix voter id 2.7%

voter id, middle name 85.1%
name suffix voter id 4.5%

voter id, street address 100%
voter id, phone number 38.8%

voter id, download month 100%

Table 10: EUCs using voter id

reveals the two records shown in Table 11. They only differ on address, phone number,
and download month. So, these two records show us why voter id is not a surrogate key.
Indeed, the older record contains less reliable information, in particular it is unlikely to
have “252 000 0000” as a phone number. In an attempt to recover the validity of the
expected surrogate key, we replace the value 131 of the older record by the null marker.
This preserves all the information but also uncovers other meaningful eUCs. For example,
the eUCs (∅, {voter id}) and ({voter id}, {registration number}) become valid on the
modified data set. In particular, old and new record are still linked via the same value
on registration number.
Uncovering Futile Attributes. Many of the discovered eUCs contain name prefix or
name suffix in their extension E. However, the coverage of these eUCs is only 2.7%. As
shown in Fig. 7, most values of these attributes are missing. For existing values such as
“Jr”, “Sr”, or ”Mrs”, only limited information is available. Indeed, all voters with an
existing value on name suffix can already be distinguished by first name and last name.
In addition, no eUC contains name prefix or name suffix in their set U . One may strongly
consider the removal of these attributes from the data set.
Uncovering Implicitly Missing Data. Continuing on, the following eUC validates
after another round of discovery: ({middle name}, {first name,zip code,phone number})
means there are two different records with matching values on first name, zip code, and
phone number, and one of them should not have a middle name. This eUC represents the
unusual scenario that different people with the same phone number have the same first
name. In particular, situations like James Bond Sr and James Bond Jr do not occur.
After re-sampling the data, we found the two records shown in Table 12. These voters
have the same first name and live in the same area, but both have phone number “000
0000”. In fact, 51 out of 388 voters have the phone number “000 0000”. This suggests
to replace the occurrences of this value by the null marker. In fact, doing so will result
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voter id address phone number download month
131 1108 highland ave #22 252 288 4763 2011-12
131 9 Casey rd 252 000 0000 2011-10

Table 11: Snapshot of Armstrong sample for ncvoter

Figure 7: Values of name prefix (left) and name suffix (right)

in the validity of the business rule (∅, {first name,zip code,phone number}).
Discovery and sampling together answer the true calling of data profiling. Indeed,

the intrinsic links between data cleansing and business rule acquisition are unlocked.
Business rules provide an instrument for data cleansing, and data cleansing leads to the
discovery of business rules (and not just constraints that hold accidentally).

Even eUCs that hold accidentally can be used to speed up query processing (eg detect
unnecessary duplicate removal from query results that are already unique due to some
eUCs), data access (eg via creating indexes), and data linkage (referencing unique records
in the given data set).

13 Conclusion and Future Work

We presented the first discovery algorithms for embedded uniqueness constraints (eUCs).
These constraints are expressions of the form (E,U), and separate completeness from
uniqueness requirements. Applications can uniquely identify E-complete records by a
minimal subset U ⊆ E of columns. The validity of eUCs is independent of how nulls
are interpreted. Known uniqueness constraints, such as SQL unique or unique column
combinations, occur as simple special cases of eUCs. We showed that the problem of
discovering an eUC with a given maximum size is both NP-complete and W[2]-complete
in the input size. We further characterized the maximum possible solution size for the
discovery problem over any given number of columns, and determined which families of
eUCs attain this size. Despite these challenges, we established the first column-efficient,
row-efficient, and hybrid algorithms for the discovery of all eUCs that hold on a given
relation. Our hybrid algorithm performs well overall and is especially suited for data
sets with a large number of columns and rows. For data sets with a large number of
either columns or rows, the hybrid algorithm is outperformed by the other algorithms.
Our experiments confirmed that the many eUCs discovered, in particular those with a
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voter id first name middle name zip code phone number
687 Margaret Caudle 27215 000 0000
952 Margaret ⊥ 27215 000 0000

Table 12: Records with suspicious phone numbers

high relative scope, offer opportunities for targeted and fast access to data by applica-
tions with completeness and uniqueness requirements. There were many eUCs that can
uniquely identify every row in most of the data sets we analyzed. Finally, we proposed
Armstrong sampling as a new direction in data profiling. We exemplified how end users
can gain insight from looking at the samples, and how the combination of our profiling
and sampling tools provides a pathway to effective data cleansing and business rule ac-
quisition. In future work, we will investigate different hybrid and scalable approaches to
the discovery of eUCs. Other classes of embedded data dependencies are appealing, fore-
most embedded functional dependencies as they can provide a foundation for developing
a database design theory similar to that of relational databases [19].
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Algorithm 7

1: INPUT: eUC-tree TΣ over R, NU (M,N), EH M1, UH M2, number l of validated
levels

2: OUTPUT: An updated eUC-tree TΣ

3: paths← {eUC-paths in TΣ subsumed by (M,N)}
4: for each (E,U) ∈ paths do
5: P ← ∅
6: Remove eUC-path (E,U) from TΣ

7: E ←M1[(E,U)], U ←M2[(E,U)]
8: Remove (E,U) from M1,M2

9: for A ∈ R− (E ∪ E) do . E-attributes no longer required
10: if (EA,U) w (E ′, U ′) in TΣ with |U ′| ≤ l then
11: E ← E ∪ {A}, U ← U ∪ {A}
12: continue . Goto line 9
13: if TΣ = ∅ then
14: TΣ ← a root node of an eUC-tree

15: Insert (EA,U) as a new eUC-path into TΣ

16: P ← P ∪ {(EA,U)}
17: for A ∈ E − (U ∪ U) do . U -attributes no longer required
18: if (EA,UA) w (E ′, U ′) in TΣ with |U ′| ≤ l then
19: U ← U ∪ {A}
20: continue . Goto line 17
21: if TΣ = ∅ then
22: TΣ ← a root node of an eUC-tree

23: Insert (EA,UA) as a new eUC-path into TΣ

24: P ← P ∪ {(EA,UA)}
25: for each (E ′, U ′) ∈ P do
26: M1[(E ′, U ′)]← E , M2[(E ′, U ′)]← U

A Examples

A.1 Column-efficient Algorithm

Example 2 We illustrate how Algorithm 2 discovers the eUCs that hold in Table 13 over
R = {E,D,M}. Comparing distinct pairs of tuples, we compute

Σ−1 = {(E,E), (EDM,DM), (E, ∅)}.

In the first iteration (starting from line 4), Ω = {(∅, ∅)} since only an initial eUC (∅, ∅)
is in TΣ. For each eUC in Ω new eUCs are generated by adding extra attributes to
its extension or UC, that is eUCs (∅ ∪ {D}, ∅) and (∅ ∪ {M}, ∅) are generated since
M,D ∈ R − {E}. In the second iteration, Ω = {(D, ∅), (M, ∅)}. To compute new eUCs
from (D, ∅), a new eUC (ED,E) is generated and added to TΣ. From (M, ∅), a new eUC
(EM,E) is generated and added to TΣ. For the last iteration, Ω = {}, and the algorithm
terminates. The discovered eUCs from Table 13 are (ED,E) and (EM,E).
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Table 13: An example relation
E(mployee) D(epartment) M(anager)

Homer Toys Burns
Homer ⊥ ⊥
Marge Toys Burns

Heuristics to improve performance of the column-efficient algorithm. In
addition to using an eUC-tree to minimize redundancy among the set of discovered eUCs,
we further propose a heuristic which drastically improves the running time of Algorithm 2.

The order in which MNUs are processed affects the running time of Algorithm 2.
Some MNUs generate more eUCs that are not in the final result than other MNUs. For
example, consider the set

Σ−1 = {(A,A), (BC,B), (ABC,C)}

over R = {A,B,C}. If Algorithm 2 processes Σ−1 in the order of (A,A), (BC,B),
(ABC,C), the generated eUCs are (B, ∅), (C, ∅), (BC,C), (AB, ∅), (C,C), (AC, ∅),
(AB,A), (AB,B), (AC,A), (ABC,B), (AC,AC), (BC,BC). If the processing or-
der is (ABC,C), (BC,B), (A,A) instead, the generated eUCs become (A,A), (B,B),
(BC,BC), (AB,B), (AC,A), (AB,A). So, the first order generates 12 eUCs but the
second only 6 eUCs. In this paper, we will prioritize the MNUs with larger extensions.
The intuition behind this heuristic comes from two observations. Firstly, the cardinalities
of extensions and uniques keep increasing as more MNUs are processed. This way, MNUs
with lower priority generate less eUCs. Secondly, line 17 adds a new attribute to both
extension and associated UC, but line 12 only adds a new attribute to the extension. So,
an MNU with larger extension could identify more new attributes which can be added
to an extension and associated UC at the same time. Such MNUs are more likely to
generate final eUCs faster. The proposed solution has considerably improved the running
time of Algorithm 2. More research on the order of processing MNUs is outside the scope
for this paper.

A.2 Row-efficient Algorithm

We now show how the row-efficient algorithm discovers eUCs from the relation r in
Table 13. Note that we denote the first, second, and third tuple in Table 13 as t1, t2, t3
respectively. First of all, there is no eUC in r whose UC is an empty set since π∅(r) = {r}
and |rR ∩ r| = 2 (Proposition 2). In other words, there is no extension for ∅ to form an
eUC satisfied by r. So, the initial set of UC candidates are {E,D,M}. Before starting
a discovery, we pre-compute the stripped partitions for a given set of UC candidates,
i.e., πE(r) = {{t1, t2}}, πD(r) = {{t1, t3}}, and πM(r) = {{t1, t3}}. On level 1, all UC
candidates need to have larger extensions so that they may become valid eUCs (tested
by line 14). Moreover, only attribute E can have an extension with a valid eUC (tested
by line 18). At this point, Algorithm 4 will start with E and πE(r) (line 20). Here,
the algorithm only takes extra attributes which are possible to form extensions for E
as extension candidates, i.e., currentLevel = {M,D}. This way, the attribute lattice of
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extensions for E becomes smaller. Algorithm 4 stops at the first iteration because M
and D form minimal extensions for E, respectively. Returning to Algorithm 3, newly
discovered eUCs (EM,E) and (ED,E) are stored in TΣ (line 25). At the end of examining
level 1, attributes D and M will be used to generate UC candidates on level 2 (line 27),
i.e., DM . In addition, Algorithm 5 can be used to compute πDM(r) given πD(r) and
M , i.e., πDM(r) = {{t1, t3}}. On level 2, the only UC candidate DM cannot form any
valid eUC and the row-efficient algorithm terminates. Therefore, the discovered eUCs
are (ED,E) and (EM,E).

B Hybrid Algorithms

B.1 Pruning the Candidate Generation

Our first hybrid, Algorithm 7, updates the current eUC-tree TΣ based on some NU (M,N),
EH M1, UH M2, and the number l of levels for which eUCs with associated UC |U | ≤ l
have been validated. The main speed ups are achieved by line 9 and line 17, where
attributes in EH and UH do no longer need to be considered when new candidate eUCs
are generated for the next level. Moreover, Algorithm 7 also updates the given EH and
UH for each eUC in the eUC-tree whenever a new candidate eUC is found to be implied
by some valid eUC (line 11). Note that l indicates that any eUC (E,U) in the given
eUC-tree where |U | ≤ l is already known to hold on the given relation.

B.2 Hybrid e-traversal

Algorithm 8 summarizes the techniques for our hybrid e-traversal. Based on an input
UC U for which it has been validated that some extension E exists for which (E,U) is
valid on the given input relation, and based on an antecedent tree AE that represents all
candidate extensions, Algorithm 8 validates all extensions in AE level by level. However,
the antecedent tree needs to be updated iteratively because it does not contain all the
extensions after all. Instead of using prefix blocks like Algorithm 4, the hybrid e-traversal
algorithm uses invalid extensions to construct NUs, such that Algorithm 8 can update the
antecedent tree with a procedure that is similar to that in Algorithm 7. Meanwhile, the
input eUC-tree TΣ, EH and UH are also updated when an NU is processed. Note that EH
and UH can be updated if and only if an invalid extension is implied by extensions on the
previous levels, namely by the valid eUCs (line 20 and 29). If the ratio between the number
of invalid extensions and number of possible extensions on the current level exceeds some
threshold (0.01 found to be most suitable in our experiments), see line 11, then the
invalid extensions would generate too many candidate extensions for the next level. In
that case, the sampling of tuple pairs from our input stripped partition can generate fewer
candidate extensions (resulting in larger embedded non-uniques that subsume multiple
embedded non-uniques generated by the invalid extensions). We discuss details about
our sampling method at the end of this section.
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Algorithm 8 Hybrid e-traversal
1: INPUT: Associated UC U , eUC-tree TΣ, antecedent tree AE , stripped partition πU (r) of

relation r, EH M1, UH M2

2: OUTPUT: Antecedent tree AE with all extensions of U
3: l← 1
4: currentLevel← {paths of length l in AE}
5: while the length of maximal path in TΣ is at least l do
6: nus← ∅
7: for each E ∈ currentLevel do
8: if |rE ∩ S| ≤ 1 for all S ∈ πU (r) or rE = ∅ then
9: continue . Goto line 7

10: nus← nus ∪ {E} . Invalid extensions

11: if |nus|/|currentLevel| > 0.01 then . Reduce non-uniques
12: Sample pairs in S for all S ∈ πU (r)
13: nus← max(nus ∪ {NUs from sampling})
14: for each (M,N) ∈ nus do
15: paths← {paths in AE subsumed by M}
16: for each E ∈ paths do
17: Remove E from AE
18: P ← ∅, E ←M1[(E,U)], U ←M2[(E,U)]
19: Remove (E,U) from M1,M2

20: for each A ∈ R− (E ∪ E) do
21: if EA subsumes any E′ in AE where |E′| < l or
22: (EA,U) subsumes any (E′, U ′) in TΣ where |E′| < |E| then
23: E ← E ∪ {A}, U ← U ∪ {A}
24: continue . Goto line 20
25: if AE = ∅ then
26: AE ← a root node of an antecedent tree

27: Insert EA as a new path into AE
28: P ← P ∪ {(EA,U)}
29: for each A ∈ E − (U ∪ U) do
30: if EA subsumes any E′ in AE where |E′| < l or
31: (EA,UA) subsumes any (E′, U ′) in TΣ where |U ′| < |U | then
32: U ← U ∪ {A}
33: continue . Goto line 29
34: if TΣ = ∅ then
35: TΣ ← a root node of an eUC-tree

36: Insert (EA,UA) as a new eUC-path into TΣ

37: for each (E′, U ′) ∈ P do
38: M1[(E′, U ′)]← E , M2[(E′, U ′)]← U
39: l := l + 1
40: currentLevel← {paths of length l in AE}
41: return AE
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B.3 Hybrid u-traversal

We now combine Algorithm 7 and Algorithm 8 to obtain Algorithm 9, which is our
hybrid u-traversal algorithm. Here, we examine associated UCs level by level, traversing
our eUC-tree while counting the number of visited u-nodes. If all eUCs with a fixed
associated UC have been validated, they must be non-redundant because both line 18
and 21 perform redundancy checks before inserting a new eUC. Otherwise, Algorithm 8
is used to discover all minimal extensions of the associated UC (line 15). Meanwhile, a
set of NUs, an EH and a UH are updated during hybrid e-traversal. Since NUs acquired
from hybrid e-traversals are used to update antecedent trees (Alg. 8, line 27) or the next
level of the eUC-tree (Alg. 8, line 36), they also update the part of the eUC-tree which
has not been validated so far.

Algorithm 9 Hybrid u-traversal

1: INPUT: A relation r over relation schema R
2: OUTPUT: The eUC-tree TΣ representing a minimal cover Σ of those eUCs that

hold on r
3: TΣ ← eUC-tree with e-node A for all A ∈ R
4: M1[(A, ∅)] = ∅ for all A ∈ R . Initial EH
5: M2[(A, ∅)] = ∅ for all A ∈ R . Initial UH
6: l← 0
7: currentLevel← {(E,U) | (E,U) is eUC-path with |U | = l}
8: while there is eUC-path (E,U) in TΣ where |U | >= l do
9: nus← ∅

10: for each U such that (E,U) ∈ currentLevel do
11: E ← {E | (E,U) ∈ currentLevel}
12: if ∃E ∈ E where |rE ∩ S| ≤ 1 for all S ∈ πU(r) then
13: AE ← Antecedent tree with paths in E
14: Remove eUC-path (E,U) from TΣ for all E ∈ E
15: E ′ ← hyE− Traversal(U, TΣ, AE , πU(r),M1,M2)
16: Add NUs used in the hybrid e-traversal to nus
17: for each E ∈ E ′ do
18: if (E,U) non-redundant in TΣ then
19: Insert (E,U) as a new eUC-path to TΣ

20: for each (M,N) ∈ nus do
21: updateEUCTree(TΣ, (M,N),M1,M2, l) . Algorithm 7

22: l← l + 1
23: currentLevel← {(E,U) | (E,U)eUC-path with |U | = l}
24: return TΣ

B.4 Correctness sketch

The main argument is similar to that of Theorem 5, because our hybrid algorithms
only use NUs to update the eUC-tree. NUs are generated by either invalidating an eUC
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or by extracting samples from a stripped partition. Nevertheless, the algorithm still
follows the characterization of valid eUCs by MNUs, see Theorem 4. Our algorithms
further use Proposition 1 to validate eUCs level by level. That way, EHs and UHs can be
computed and employed by Algorithm 7, which is just a more efficient implementation
of Algorithm 2. In Algorithm 7, whenever an eUC (E,U) is subsumed by an NU (M,N),
new eUCs will be generated regarding the NU. Among the new eUCs, some of them may
be implied by eUCs that have already been validated. So, for those new eUCs which are
not implied but generated by the same eUC, they cannot be extended by the attributes
which have been used to generate the invalid eUCs. For instance, if (EA,U) is implied,
but (EB,U) is not implied by a set of valid eUCs, such that A,B ∈ R −M , then an
EH will map (EB,U) to an attribute set containing A, indicating that (EAB,U) will
result in an implied eUC since (EA,U) v (EAB,U). Lastly, since extensions and their
associated UCs are enumerated by cardinalities, all minimal eUCs that hold on a given
relation will be generated.

B.5 Sampling

We conclude our discussion of hybrid algorithms by giving details about the sampling of
NUs from a stripped partition. In efficiently exploring the antecedent tree in Algorithm 8,
we need to use NUs appropriately to identify invalid extensions of a given UC, so that
fewer new extensions are generated at each level. Let πU(r) be a stripped partition where
r is the input relation over R. Take any distinct t1, t2 ∈ S where S ∈ πU(r). An NU
(M,N) can be computed by comparing t1 and t2, i.e., M = {A ∈ R | t1(A) 6=⊥6= t2(A)}
and N = {A ∈ R | t1(A) = t2(A) 6=⊥}. If there is some E ⊆ R such that (E,U) v
(M,N), t1 and t2 form a witness pair showing that (E,U) is invalid. Meanwhile, (EA,U)
may be valid for all A ∈ R−M , because t1 or t2 may not belong to rEA. Therefore, the
antecedent tree of extensions can be updated by NUs; and NUs with larger extensions
generate fewer new extensions in the tree. Note that it is unnecessary to compare tuples
from different partitions since they do not have matching values on U . Eventually, we
want to sample pairs of tuples by a small number of comparisons such that NUs with larger
extensions can be found. Algorithm 10 summarizes our progressive sampling method.

Firstly, the algorithm ranks tuples in each partition by the decreasing number of
complete values they hold. Secondly, each tuple is compared to all tuples of lower rank.
Since only the maximal elements of the discovered NUs matter, we measure how frequent
new NUs are discovered. If the frequency is below some certain threshold, the algorithm
stops sampling and returns the sampled NUs. Thirdly, several variables are maintained
by the algorithm, including the current sampling progress, the total number of discovered
NUs, the number of comparisons, and a threshold which stops the sampling process. The
frequency in line 3 denotes the ratio of the total number of discovered NUs over the
number of comparisons. It indicates the likelihood that some new, not already subsumed
NU can be found by additional comparisons. Such measurement cannot guarantee that
there are no more new NUs, so we divide the current threshold by 2 in line 19, just
before sampling is aborted. This is to ensure that sampling can carry on when the
algorithm is invoked again. Every time sampling is aborted, it is assumed that there are
no additional NUs. However, the sampling algorithm may be invoked again when there
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are too many invalid extensions, which means the previous assumption was inaccurate
and the threshold should be decreased such that additional NUs can be found. Lastly, we
can further improve the efficiency of the sampling algorithm by one simple optimization.
Let S = {t1, t2, t3, . . . , tn} ∈ πU(r). Since the algorithm is only invoked after it has been
verified that there is some valid extension for U , at most one tuple in S can be complete,
and this tuple will be t1 because S is sorted accordingly. Suppose (M1, N1) and (M2, N2)
were generated from t1, t2 and t2, t3, respectively. Let Vi = {A ∈ R | ti(A) 6=⊥}. So,
M2 ⊆ V2, V3 since N2 consists of common attributes on which t2 and t3 are complete.
Furthermore, N2 ⊆ N1 because V1 = R and V1 ∩ V2 = M1. Therefore, if there is a
complete tuple in a partition, our sampling algorithm only needs to retrieve the NUs
which are generated using the complete tuple, since others will be subsumed by these
NUs.

Algorithm 10 NUs sampling

1: INPUT: Stripped partition πU(r), a set nus of NUs, the sampling progress p ∈ N,
the total number n of discovered NUs, the number c of comparisons, a threshold t

2: OUTPUT: A set of NUs
3: frequency← n/c
4: while frequency >= t do
5: for each S ∈ πU(r) do
6: if p >= |S| − 1 then
7: continue
8: if p > 0 and S[0] ∈ rR then
9: continue

10: i← p+ 1
11: while i < |S| do
12: c← c+ 1
13: M = {A | S[p](A) 6=⊥6= S[i](A)}
14: N = {A | S[p](A) = S[i](A) 6=⊥}
15: if ¬∃(M ′, N ′) ∈ nus((M ′, N ′) v (M,N)) then
16: n← n+ 1
17: nus← max(nus ∪ {(M,N)})
18: p← p+ 1

19: t← t/2
20: return cnks

C Armstrong Samples

Computing Maximal Non-Uniques. Computing maximal non-uniques can take two
approaches. One approach is to compute a maximal set of non-uniques by comparing all
pairs of tuples in a given relation. Considering data sets with a large number of rows,
the other approach computes maximal non-uniques given the set of minimal eUCs of a
given relation.
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Algorithm 11 Computing maximal non-uniques

1: INPUT: A set Σ of eUCs over a relation schema R
2: OUTPUT: Σ−1

3: Σ← Σ ∪ {(R,R)}, Σ′ = ∅;
4: Σ−1 ← {(R,R)};
5: for each (E,U) ∈ Σ do
6: Σ′ ← Σ′ ∪ {(E,U)}
7: for each (M,N) ∈ Σ−1 do
8: if (E,U) v (M,N) then
9: Σ−1 ← Σ−1 − {(M,N)}

10: for each A ∈ E − U do
11: Σ−1 ← Σ−1 ∪ {(M − {A}, N − {A})}
12: for each A ∈ U do
13: Σ−1 ← Σ−1 ∪ {(M,N − {A})}
14: for each (M,N) ∈ Σ−1 do
15: if ∃A ∈M −N ∀(E ′, U ′) ∈ Σ : (E ′, U ′) 6v (M,NA) or
16: ∃A ∈ R−M ∀(E ′, U ′) ∈ Σ : (E ′, U ′) 6v (MA,N) then
17: Σ−1 ← Σ−1 − {(M,N)};
18: return Σ−1;

Algorithm 11 demonstrates the second approach, which iteratively refines a set of
non-uniques, given the set of minimal eUCs on a given relation. If any of the non-uniques
are redundant, attributes in the intersection with the eUCs can be removed so that a
non-unique will become non-redundant. At the end of an iteration, the algorithm checks
the maximality of the non-uniques with respect to the examined eUCs.
Another Example. The Armstrong samples for breast-cancer-wisconsin in Table 14
further illustrate our original motivation for eUCs. The two rows with value 733,639 on
column 0 are identical, except for column 6, where one row has value 1 and the other an
occurrence of ⊥. Since UCCs interpret ⊥ to be different from other domain values, the
UCC {0,1,4,6,7} is valid on the data set. It is doubtful that ⊥ represents a value different
from 1, but more likely that both rows are duplicates. Indeed, all other rows are already
uniquely identifiable by {0,1,4,7}. This illustrates again the robustness of eUCs: Instead
of inflating our UC by column 6, we add column 6 to the extension of the corresponding
eUC giving ({0, 1, 4, 6, 7}, {0, 1, 4, 7}).

D Proofs

D.1 Computational Complexity

Let I be an instance of decision problems of class D and a natural number parameter
k. (I, k) denotes the corresponding instance of fixed-parameter problem of D. The fixed-
parameter problem of class D is fixed-parameter tractable if a given instance (I, k) can be
solved in time O(f(k)·p(|I|)) where p is a polynomial function. We use FPT to denote the
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0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
1067444 2 1 1 1 2 1 2 1 1 2 1067444 2 1 1 1 2 1 2 1 1 2
1036172 2 1 1 1 2 1 2 1 1 2 1036172 2 1 1 1 2 1 2 1 1 2
1212422 4 1 1 1 2 1 3 1 1 2 1212422 4 1 1 1 2 1 3 1 1 2
1212422 3 1 1 1 2 1 3 1 1 2 1212422 3 1 1 1 2 1 3 1 1 2
1182404 3 1 1 1 2 1 2 1 1 2 733639 3 1 1 1 2 1 3 1 1 2
1182404 3 1 1 1 2 1 1 1 1 2 733639 3 1 1 1 2 ⊥ 3 1 1 2
733639 3 1 1 1 2 1 3 1 1 2 1182404 3 1 1 1 2 1 2 1 1 2
733639 3 1 1 1 2 ⊥ 3 1 1 2 1182404 3 1 1 1 2 1 1 1 1 2
734111 1 1 1 1 2 2 1 1 1 2 654546 1 1 1 3 2 1 1 1 1 2
734111 1 1 1 3 2 3 1 1 1 2 654546 1 1 1 1 2 1 1 1 8 2
654546 1 1 1 3 2 1 1 1 1 2
654546 1 1 1 1 2 1 1 1 8 2

Table 14: Armstrong sample of bcw with eUCs (left): ({6}, {0, 1, 4, 7}), (∅, {0, 1, 6, 7, 9},
and UCCs (right): {0, 1, 4, 6, 7}, {0, 1, 6, 7, 9}

class of fixed-parameter tractable problems. Let D and D′ be two classes of parameterized
problem. A parameterized reduction fromD toD′ is a fixed-parameter tractable algorithm
that computes a corresponding instance of D′ for any given instance of class D and the
parameters of matching instances are only dependent on each other. We use D ≤FPT D′
to denote if there is a fixed-parameter reduction from D to D′. Moreover, we say D
and D′ are FPT-equivalent if D ≤FPT D′ and D′ ≤FPT D. Parameterized problems
are divided into a hierarchy of complete complexity classes by the problem weighted
t-normalized satisfiability [10] i.e. FPT ⊆ W [1] ⊆ W [2] . . ..

Theorem 8 (Theorem 1 restated)
The problem eUC is NP-complete.

Proof eUC is in NP, because we can guess (E,U) with |E| ≤ k and verify in polynomial
time in the input that r satisfies (E,U). For the NP-hardness, we reduce Key to eUC.
Take an instance (r, k) of Key where r is a complete relation over relation schema R,
and k is a positive integer. Let (r′, k′) be the instance of eUC where r′ = r, and k′ = k.
Now it follows that a key K ⊆ R with |K| ≤ k is satisfied by r if and only if the key K
is satisfied by r = rK if and only if the eUC (K,K) is satisfied by r′ = r.

Theorem 9 (Theorem 2 restated)
The problem eUC is W[2]-complete.

Proof We show that Key and eUC are equivalent under FPT-reductions. The result
then follows from the W[2]-completeness of Key shown in [5].

For Key ≤FPT eUC we observe that the PTIME reduction in the proof of Theorem 1
is actually an FPT-reduction, since the parameter k′ only depends on k.

It remains to show that eUC ≤FPT Key holds as well. Let (r, k) be an instance of
eUC. We transform (r, k) into an instance (r′, k′) by defining r′ as the result of replacing
null marker occurrences in r with unique column values in r′, and defining k′ to be k.
Clearly, this transformation is FPT. If there is some eUC (E,U) over R with |E| ≤ k that
is satisfied by r, then for any two tuples t, t′ ∈ r′ with t 6= t′ and t[U ] = t′[U ] it would
follow that t, t′ ∈ rE - a contradiction to (E,U) being satisfied by r. Consequently, for
any two tuples t, t′ ∈ r′ with t 6= t′ we have t[U ] 6= t′[U ], which means that r′ satisfies the
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key U with U ⊆ E and thus |U | ≤ |E| ≤ k = k′. Vice versa, if U is a key with |U | ≤ k′

that is satisfied by r′, then r satisfies the eUC (U,U) with |U | ≤ k′ = k. Indeed, if there
were t, t′ ∈ rU with t 6= t′ and t[U ] = t′[U ], then U would not be satisfied by r′. This
concludes the proof.

D.2 Maximum Solution Space

Definitions of anti-chain, symmetric chain order, etc. can all be found in Engel’s book
[11].

Theorem 10 (Theorem 3 restated) Let R be a finite set, and let F ⊆ 2R × 2R such
that for all (E,U) ∈ F :

(i) U ⊆ E and

(ii) there is no (E ′, U ′) ∈ F − {(E,U)} with (E ′, U ′) v (E,U).

Then |F| ≤ W (|R|), where for |R| ≥ 2 equality is attained if and only if

F =
{

(E,U) ∈ 2R × 2R : U ⊆ E and |E|+ |U | = |R|
}
.

Proof Let P be the set of all (E,U) ∈ 2R × 2R that satisfy condition (i), and consider
the partial order on P defined by:

(E ′, U ′) ≤ (E,U) :⇐⇒ E ′ ⊆ E ∧ U ′ ⊆ U.

Clearly, P is ranked, where the rank of an element (E,U) equals |E|+ |U |. Let n = |R|.
We have to show that any anti-chain A in P has size at most W (n) and that equality is
attained if and only if A is the n-th level of P .

Note that P is isomorphic to the n-th Cartesian power of the chain 0 < 1 < 2. The
corresponding isomorphismϕ : P 7→ {0, 1, 2}n is given by

ϕ(C,K) = (a1, a2, . . . , an) with ai =


0 if i /∈ E,
1 if i ∈ E − U,
2 if i ∈ U.

.

It is well-known that chain products are symmetric chain orders which was first shown
in [25]. It follows immediately that the unique largest anti-chain in P is its middle level
(see also Theorem 5.1.4 in [11]), i.e. the n-level whose cardinality is equal to W (n).

D.3 Column-efficient Discovery

Theorem 11 (Theorem 4 restated) Let r be a relation over R. An eUC (E,U) is
satisfied by r if and only if there is no (E ′, U ′) ∈ Σ−1 such that (E,U) v (E ′, U ′).

Proof Suppose there is some (E ′, U ′) ∈ Σ−1 such that (E,U) v (E ′, U ′). Then there
are distinct t1, t2 ∈ rE

′
such that t1(U ′) = t2(U ′) holds. Since E ⊆ E ′ holds, rE

′ ⊆ rE.
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Since also U ⊆ U ′ holds, there are distinct t1, t2 ∈ rE such that t1(U) = t2(U) holds.
Consequently, r does not satisfy (E,U).

Suppose r does not satisfy (E,U). Then there are distinct t1, t2 ∈ rE such that
t1(U) = t2(U) holds. Let

E ′′ := {A ∈ R | t1(A) and t2(A) are total},

and
U ′′ := {A ∈ E ′′ | t1(A) = t2(A)}.

It follows that E ⊆ E ′′ and U ⊆ U ′′. Hence, (E ′′, U ′′) is an embedded non-unique of
r. Consequently, there must be some (E ′, U ′) ∈ Σ−1 such that E ⊆ E ′′ ⊆ E ′ and
U ⊆ U ′′ ⊆ U ′. Hence, there is some (E ′, U ′) ∈ Σ−1 such that (E,U) v (E ′, U ′) holds.

Theorem 12 (Theorem 5 restated)
Given the set of maximal embedded non-uniques of a relation, Algorithm 2 computes a
minimal cover of the set of eUCs that are satisfied by the relation.

Proof Let r be the given relation over the given relation schema R, and let Σ−1 denote
the set of maximal embedded non-uniques of r. Let Σ denote the minimal cover of the
set of eUCs that are represented by the eUC-tree TΣ that Algorithm 2 returns. We prove
the correctness by induction over the cardinality of Σ−1.

Base case: Here, |Σ−1| = 0. So, Algorithm 2 simply returns only a root node that
represents the set Σ = {(∅, ∅)}. Indeed, if there are no maximal embedded non-uniques,
then there are no embedded non-uniques at all, which means that every eUC is satisfied
by r. The unique minimal cover in this case is indeed the set Σ since (∅, ∅) is subsumed
by every possible eUC. This concludes the base case.

Inductive steps: Here, Σ−1 = Γ−1 ∪ {(M,N)}, where Γ−1 denotes the set of maximal
embedded non-uniques for some relation r′ ⊆ r. We denote by Γ a minimal cover of
the set of eUCs that hold on r′. By induction hypothesis we know that, on input Γ−1,
Algorithm 2 returns a eUC-tree TΓ that represents Γ. That is, a’) r′ satisfies all eUCs
(E,U) represented by TΓ, and b’) if r′ satisfies some eUC (E,U), then there is some eUC
(E ′, U ′) ∈ Γ such that (E ′, U ′) v (E,U) holds.

We will show now that a) r satisfies all eUCs (E,U) represented by TΣ, and b) if r
satisfies some eUC (E,U), then there is some eUC (E ′, U ′) in Σ such that (E ′, U ′) v
(E,U) holds.

For a), we first look at the case where (E,U) ∈ Γ. Then (E,U) 6v (M,N) since
the eUC-path (E,U) would not be represented by TΣ because of line 7. Because of
a’) we also know that there is no (E ′, U ′) ∈ Γ−1 such that (E,U) v (E ′, U ′) holds.
Consequently, there is no (E ′, U ′) ∈ Σ−1 = Γ−1 ∪ {(M,N)} represented by TΣ such that
(E,U) v (E ′, U ′) holds. By Theorem 4, r satisfies (E,U). We will now look at the
case where (E,U) /∈ Γ. Consequently, (E,U) must be one of the eUCs that were added
by line 12 or by line 17, so (E,U) results by the augmentation of some (E ′, U ′) ∈ Ω
according to line 5, that is, (E ′, U ′) v (M,N). However, (E,U) can therefore not be
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subsumed by (M,N), and cannot be subsumed by any maximal embedded non-unique
in Γ−1. Indeed, if (E,U) was subsumed by some maximal embedded non-unique in Γ−1,
then so would be (E ′, U ′), which would be a contradiction to r′ satisfying (E ′, U ′) is in
Γ. Consequently, (E,U) is not subsumed by any maximal embedded non-unique in Σ−1.
By Theorem 4, r satisfies (E,U). This shows a).

For b), we first observe that whenever r satisfies (E,U), then (E,U) 6v (M,N) by
Theorem 4, since (M,N) ∈ Σ−1. Consequently, there is some attribute A ∈ E −M or
some attribute A ∈ (U∩E)−N , which we denote as property (P) for easier reference later.
Furthermore, whenever r satisfies (E,U), then r′ satisfies (E,U) as well since r′ ⊆ r. By
b’), there is some (E ′, U ′) ∈ Γ such that (E ′, U ′) v (E,U) holds. If (E ′, U ′) ∈ Σ, then
the proof is completed. Otherwise, (E ′, U ′) ∈ Ω by line 5 and, in particular, (E ′, U ′) v
(M,N). Now, Algorithm 2 adds new eUCs to Σ following line 12 to obtain (E ′A,U ′) for
A ∈ R −M and line 17 to obtain (E ′A,U ′A) for A ∈ M − N . However, property (P)
ensures that some attribute A can be picked from A ∈ E −M or A ∈ (U ∩ E) − N ,
thereby ensuring that the resulting new eUC is subsumed by (E,U). Consequently, there
is some (E ′, U ′) ∈ Σ such that (E ′, U ′) v (E,U) holds. This proves b) and completes
the proof.

D.4 Row-efficient discovery

Proposition 3 (Proposition 1 restated)
An eUC(E,U) over R is satisfied by a given relation r over R if and only if for all
S ∈ πU(r), |rE ∩ S| ≤ 1.

Proof If there is some S ∈ πU(r) such that |rE∩S| ≥ 2, then there are distinct t, t′ ∈ rE
such that t[U ] = t′[U ]. This means, r does not satisfy (E,U).

Vice versa, if there are distinct t, t′ ∈ rE such that t[U ] = t′[U ], then there is some
S ∈ πU(r) such that |rE ∩ S| ≥ 2.

However, the following result also shows how stripped partitions can be used in e-
traversals. In effect, we can find an extension E for a given unique U such that the eUC
(E,U) holds on r if and only if each stripped partition for U contains at most one total
tuple.

Proposition 4 (Proposition 2 restated)
Let U ⊆ R, and r a relation over R. Then there is some E ⊆ R with U ⊆ E such that r
satisfies (E,U) if and only if for all S ∈ πU(r), |rR ∩ S| ≤ 1.

Proof Suppose |rR ∩ S| ≤ 1 for all S ∈ πU(r). Let

E ′ := {A ∈ R− U | ∃S ∈ πU(r)∃t ∈ S(t(A) =⊥)},

and let E := E ′ ∪ U . Consequently, for all S ∈ πU(r), |rE ∩ S| ≤ 1. We conclude by
Proposition 1 that r satisfies (E,U).

Vice versa, assume that there is some S ∈ πU(r) such that |rR ∩ S| ≥ 2. Then for all
E ⊆ R with U ⊆ E, |rE ∩ S| ≥ 2 and r does not satisfy (E,U) by Proposition 1.
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