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Abstract

Much work has been done on extending the relational model of data to encom-
pass incomplete information. In particular, a plethora of research has examined
the semantics of integrity constraints in the presence of null markers. We propose
a new approach whose semantics relies exclusively on fragments of complete data
within an incomplete relation. For this purpose, we introduce the class of con-
textual keys. Users can specify the context of a key as a set of attributes that
selects the sub-relation of tuples with no null marker occurrences on the attributes
of the context. Then the key uniquely identifies the tuples within the sub-relation.
The standard notion of a key over complete relations is the special case of a con-
textual key whose context consists of all attributes. SQL unique constraints form
the special case of a contextual key whose context coincides with the set of key
attributes. We establish structural and computational characterizations of the as-
sociated implication problem, and of their Armstrong databases. The computation
of Armstrong databases has been implemented in a tool, and experiments provide
insight into the actual run-time behavior of the algorithms that complement our
detailed computational complexity analysis.

Keywords: Armstrong relation; Data and knowledge intelligence; Decision sup-
port; Incomplete data; Key; Reasoning; Requirements analysis
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1 Introduction

Keys are core enablers for data management. They are fundamental for understanding
the structure and semantics of data. Given a collection of entities, a key is a set of at-
tributes whose values uniquely identify an entity in the collection. For example, a key for
a relational table is a set of columns such that no two different rows have matching values
in each of the key columns. Keys are essential for many other data models, including
semantic models, object models, probabilistic models, XML, RDF, and graphs. They
help in many classical areas of data management, including data modeling, database de-
sign, indexing, and query optimization. Knowledge about keys enables us to i) uniquely
reference entities across data repositories, ii) minimize data redundancy at schema design
time to process updates efficiently at run time, iii) provide better selectivity estimates
in cost-based query optimization, iv) provide a query optimizer with new access paths
that can lead to substantial speedups in query processing, v) allow the database admin-
istrator to improve the efficiency of data access via physical design techniques such as
data partitioning or the creation of indexes and materialized views, and vi) provide new
insights into application data. Modern applications raise the importance of keys further.
They facilitate the data integration process, help with the detection of duplicates and
anomalies, provide guidance in repairing data, and return consistent answers to queries
over dirty data. The discovery of keys is one of the core activities in data profiling.

An important and rich area of research is to extend the relational model of data
to encompass incomplete information. This is due to the importance of incomplete
information for applications. A plethora of different extensions exist, but many are based
on the use of a special symbol as placeholder for incomplete information, also known as the
null marker. The semantics of the null marker can vary greatly, for example “unknown at
present” [8], “non-existence” [33], “inapplicable” [4, 8], “no information” [38] and “open”
[7]. Similarly, several extensions of the notion of a key from complete to incomplete
relations have been investigated in the research literature. Examples constitute SQL’s
primary and candidate keys as well as UNIQUE constraints [19], weak and strong keys [28],
Codd keys [11], possible and certain keys [19, 23, 24], and key sets [29, 35]. Candidate
keys are minimal sets of attributes that enable us to uniquely identify tuples in an
incomplete relation and where no null markers are permitted to occur in the columns of
the key. They are a result of Codd’s principle of entity integrity. The principle has been
challenged by several researchers, including Thalheim [35], Levene and Loizou [29], and
Köhler et al. [23]. For example, certain keys can uniquely identify rows in a table even
though null markers may occur in the key columns. Similarly, for all pairs of distinct
tuples there is some key in a key set on which the two tuples have no null occurrences
and are unique.

Table 1 shows an incomplete relation, where ⊥ denotes a null marker occurrence.
Interestingly, this relation does not satisfy any candidate key, any certain key, nor any
key set. It does not satisfy any candidate key as null markers occur in Department and
Manager, and there are different tuples with the same value on Employee. The relation
violates every certain key since the two null marker occurrences may be replaced by the
values Toys and Burns, respectively, resulting in two different tuples that have matching
values on all attributes. The relation violates every key set as the first and second tuple
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Table 1: A relation with no candidate key, no certain key, and no key set
Employee Department Manager

Homer Toys Burns
Homer ⊥ ⊥
Marge Toys Burns

are incomplete on Department and on Manager, and have matching values on Employee.
Common to all extended notions of keys is the target of uniquely identifying all tuples

in incomplete relations, even tuples with null marker occurrences. The example in Table 1
shows that this target cannot always be achieved. In fact, any semantics of a key that
depends on the interpretation of null markers can easily become problematic. This holds
especially when data is integrated from different sources, which may rely on different
interpretations of null markers. Interestingly, SQL’s UNIQUE constraint enforces unique-
ness only for those tuples of an incomplete relation that are complete on the attributes
of the UNIQUE constraint. For example, the incomplete relation in Table 1 satisfies the
unique constraints UNIQUE(Employee, Department) and UNIQUE(Employee, Manager),
but violates the unique constraints UNIQUE(Employee) and UNIQUE(Department, Man-
ager). This approach sparked our idea of giving up any false hope that tuples can be
uniquely identified in the presence of null marker occurrences. In SQL’s UNIQUE con-
straint this given set of attributes forms the unique constraint itself. That, however, is a
requirement that should be relaxed, as the incomplete relation in Table 1 illustrates. In
fact, UNIQUE(Employee, Department) can distinguish between the first and third tuple by
the values on Employee already, and does not require values on Department. Note that
uniqueness only holds for the tuples which are complete on Employee and Department,
and uniqueness does not hold for the tuples that are complete on Employee only.

Motivated by these examples, we propose the new notion of contextual keys for in-
complete relations. Contextual keys target the unique identification of those tuples in an
incomplete relation that are complete on a user-specified set of attributes. Contextual
keys consist of a pair of attributes (C,K) such that K ⊆ C. The user-specified set of
attributes C is called the context, and selects the scope of the key, which is defined as the
subset of tuples in a given incomplete relation that are complete on all the attributes of
the context. The set K of a contextual key (C,K) is called the key and uniquely identi-
fies tuples in the scope of the key. For example, ({Employee, Department},{Employee})
and ({Employee, Manager},{Employee}) are both contextual keys that are satisfied by
the incomplete relation in Table 1. Here, both contexts {Employee, Department} and
{Employee, Manager} have the same scope in the incomplete relation, which consists of
the first and third tuple, and the key {Employee} uniquely identifies tuples in this scope.
The incomplete relation in Table 1 does not satisfy any of the following contextual keys:
({Employee},{Employee)}, ({Employee, Department},{Department}) and ({Employee,
Manager},{Manager}). In particular, SQL’s constraint UNIQUE(X) is satisfied by an
incomplete relation if and only if the relation satisfies the contextual key (X,X).

This paper introduces contextual keys, and provides first evidence that they exhibit
good computational properties. Due to its importance in automating data management,
we are interested in the axiomatic and algorithmic characterizations of the implication
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problem associated with contextual keys. We also want to provide computational support
for the acquisition of contextual keys that are meaningful for an application domain. We
will now detail our contributions.
Contributions. Our contributions are at least threefold. Firstly, we propose a novel
class of keys for incomplete databases, named contextual keys. Secondly, we characterize
the implication problem of contextual keys by a finite axiomatization and by a linear-time
algorithm. An immediate application of the algorithm is to compute a non-redundant
set of contextual keys, thereby minimizing the overhead of enforcing contextual keys on
relations. Thirdly, we investigate structural and computational properties of Armstrong
relations for contextual keys, providing a computational tool that aids with the acquisi-
tion of contextual keys. While the problem of finding an Armstrong relation is precisely
exponential, we show that our algorithm is conservative in its use of time and space,
as the output Armstrong relation is guaranteed to have a number of tuples that is at
most quadratic in the minimum number of tuples required. For transfer into practice, we
have implemented our algorithm in a prototype system. Experiments with the prototype
system complement our theoretical complexity analysis, and illustrate - on average - how
quickly Armstrong relations for contextual keys can be computed, how many tuples our
output contains, and how many null markers occur in the output. For example, for a
fixed schema with 15 attributes, and a set of contextual keys with 100 attributes, our al-
gorithm computes an Armstrong relation with 86 tuples and 200 null marker occurrences
in about 10 seconds.
Organization. We discuss related work in Section 2. Our central notion of contextual
keys is introduced in Section 3, where we also characterize the associated implication
problem axiomatically and algorithmically. In Section 4 we investigate structural and
computational properties of Armstrong relations. Finally, we conclude and sketch future
work in Section 5.

2 Related Work

While about 100 different classes of data dependencies are known [36], keys arguably
constitute the most import class among all of them. Keys have been studied in-depth
on complete data [30, 36], and have been extended to most other data models, including
nested [37], object-relational [17], XML [14, 13, 12], and models of uncertainty [2, 3, 5, 18].

The first section has already examined various proposals for notions of keys over
incomplete relations. These include candidate keys that respect Codd’s principle of
entity integrity [11], possible and certain keys [19], weak and strong keys [28], as well
as key sets [29, 35]. Contextual keys are different from all of these proposals in the
sense that they do not target the unique identification of all tuples in an incomplete
relation. The idea of contextual keys is to target the unique identification of only those
tuples that are complete on a user-specified set of attributes. This idea generalizes
SQL’s UNIQUE constraint where the user-defined set coincides with the set of attributes
on which the values are unique. We believe contextual keys are particularly useful in
modern applications, such as data integration, where different occurrences of missing
information may require different semantics. The semantics of contextual keys is clearly
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defined as it does not depend on the semantics of null marker occurrences. Furthermore,
contextual keys empower users to link their completeness requirements on the quality of
their data with their uniqueness requirements.

In our research we investigate the same computational problems that have been stud-
ied for previous notions of keys. More specifically, we tackle the associated implication
problem as well as the structural and computational properties of Armstrong relations.
The importance of these problems is well-established in the literature and practice. Effi-
cient solutions to the implication problem help address many data management problems,
as listed in the introduction. Furthermore, Armstrong relations are useful for the acqui-
sition of meaningful contextual keys, similar to the case of Armstrong relations for other
classes of data dependencies [1, 26, 27, 34].

3 Fundamentals of Contextual Keys

Let A = {A1, A2, · · · } be a countable and infinite set of distinct symbols, called attributes.
A relation schema is a finite, non-empty set of attributes, normally denoted as R. Each
attribute A ∈ A is associated with a domain dom(A). We assume that the domain of
every attribute contains a distinguished null marker, which we denote by ⊥. This is
for simplicity, and we emphasize that ⊥ is not a domain value but a marker. In what
follows we will use the relation schema Staff = {Employee, Department, Manager} from
Table 1 as a running example for illustrating our concepts and results. We refer to the
attributes Employee, Department, Manager as E, D, and M , respectively.

A tuple t over R is a function which maps each A ∈ R to a value in dom(A), namely
t(A) ∈ dom(A). A relation r over R is a finite set of tuples over R. The size of the relation,
denoted as |r| is the number of tuples the relation contains. Let X = {A1, A2, · · · , Am}
be a set of attributes. For simplicity, we sometimes write X as A1A2 · · ·Am, and the
union of X and another attribute set Y as XY . Let X ⊆ R. For a tuple t over R, we
use the notation t(X) to denote the projection of t onto X. To stipulate completeness,
we say a tuple t over R is X-total if and only if t(A) 6=⊥ for all A ∈ X. Furthermore,
We use rX to denote {t ∈ r | t is X-total}.

A constraint of a class C is a statement which enforces semantic properties on a given
collection of data. For instance, keys are a class of integrity constraints which stipu-
late that the identity of tuples is determined by the values on a given set of attributes.
Let Σ be a set of constraints over class C. We use |Σ| to denote the number of con-
straints in Σ, and ||Σ|| to denote the total number of attributes in Σ. For a class C
of integrity constraints, we are interested in the implication problem associated with C.
The C-implication problem is to decide whether for an arbitrary given relation schema
R, and an arbitrarily given set Σ ∪ {ϕ} of integrity constraints from class C on R, Σ
implies ϕ (written as Σ |= ϕ), that is, whether every relation over R that satisfies all the
elements in Σ also satisfies ϕ. Solutions to the implication problem provide users with a
better understanding of the interaction of the integrity constraints, and algorithms can
be developed that compute better representations of a set of integrity constraints. For
example, a set Σ′ is said to be a cover of Σ if and only if Σ and Σ′ are satisfied by the
same relations. A cover Σ′ is said to be non-redundant if and only if for all σ ∈ Σ′ it is
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the case that Σ′ − {σ} does not imply σ. Being able to decide the implication problem,
we can easily compute a non-redundant cover for Σ by successively checking for all σ ∈ Σ
whether Σ−{σ} implies σ and removing σ from Σ whenever that is the case. In practice,
checking whether all the constraints in a non-redundant cover are satisfied by a relation
ensures that the overhead of constraint validation is minimized. Clearly, the more tuples
in a relation, the more time we save when validating constraints with a non-redundant
cover.

Next we formally introduce a new class of keys for incomplete relations which we call
contextual keys.

Definition 1 A contextual key (CK) over a relation schema R is a statement of the form
(C,K) where K ⊆ C ⊆ R. The attribute set C is called the context of the contextual
key. A relation r over R satisfies the CK (C,K), denoted as r |= (C,K), if and only if
for all t, t′ ∈ rC, t(K) = t′(K) implies t = t′. We call rC the scope of r with respect to
the context C.

Next we illustrate the notion of a contextual key on our running example.

Example 1 The incomplete relation r in Table 1 satisfies the contextual keys (ED,E)
and (EM,E), but it violates the contextual keys (E,E), (ED,D), and (EM,M). For
example, r satisfies (ED,E), since the scope of r with respect to the context ED consists
of the first and third tuple of r, and the values of these tuples on E are different. Similarly,
r does not satisfy (E,E), since the scope of r with respect to the context E is the relation
r itself, but the values of the first and second tuples on E are the same.

For what follows, we require the following concepts. Let R be a relation schema. We
define a partial order vR over R as {((C1, K1), (C2, K2)) | C1 ⊆ C2 ⊆ R,K1 ⊆ K2 ⊆
R}. For any ((C1, K1), (C2, K2)) ∈vR, we write (C1, K1) vR (C2, K2), or (C1, K1) @R

(C2, K2) if C1 ⊂ C2 or K1 ⊂ K2. We may omit the subscript R, if R is clear from the con-
text. Let Σ be a set of CKs over R. We define the set CL(Σ) = {(C,K) | Σ 6|= (C,K), K ⊆
C ⊆ R}. The set of contextual anti-keys of Σ is Σ−1 = {(C,K) ∈ CL(Σ) | ¬∃(C ′, K ′) ∈
CL(Σ) : (C,K) @ (C ′, K ′)}. Let r be a relation over R. We say t1 and t2 exactly agree on
(C,K) if and only if t1(K) = t2(K) and t1(A) =⊥ ∨ t2(A) =⊥ for all A ∈ R \ C. The
agree set of r is ag(r) = {(C,K) | t1, t2 exactly agree on (C,K) for all distinct t1, t2 ∈ r}.

A sensible first step in solving the implication problem is to discover a set of inference
rules that allows us to mechanically derive exactly those constraints from a given set
Σ that are implied. We apply inference rules of the form premises

conclusion
. Let R be a set of

inference rules over class C and ϕ a constraint of C. We say that ϕ is derivable from Σ with
respect to R, denoted by Σ `R ϕ, whenever there is some finite sequence σ1, σ2, . . . , σn
such that σn = ϕ and for every i < n, σi ∈ Σ or σi results from the conclusion of some
inference rule in R with σ1, . . . , σi−1 as premises.

To reason about CKs, we introduce the set B of inference rules as shown in Table 2.
Our goal is to show that B is a sound and complete set of inference rules for contextual
keys. This goal can be realized by using the following syntactic characterization of B.

Theorem 1 Let Σ ∪ {(C,K)} be a set of CKs over a relation schema R. Σ `B (C,K)
if only if there is (C ′, K ′) v (C,K) where (C ′, K ′) ∈ Σ ∪ {(R,R)}.
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(C,K)
(R,R) (CC ′, KK ′)

(R-axiom) (Superkey)

Table 2: Axiomatization B

Proof Suppose there is (C ′, K ′) v (C,K) where (C ′, K ′) ∈ Σ∪{(R,R)}. For sufficiency,
we construct a sequence σ1 = (C ′, K ′), σ2 = (C ′X,K ′Y ) where X = C \C ′ and Y = K \
K ′. Therefore, Σ `B (C,K) because σ2 results from σ1 by applying the superkey axiom.
For necessity, suppose (C ′, K ′) 6v (C,K) for all (C ′, K ′) ∈ Σ ∪ {(R,R)}. Consequently,
there is no way to apply any axiom in B to Σ∪ {(R,R)}. Therefore, Σ 6`B (C,K).

We will now illustrate the usefulness of Theorem 1 on our running example.

Example 2 Given the set Σ = {(ED,E), (EM,E)} we can use Theorem 1 to conclude
that there is a derivation of the contextual keys (ED,ED) and (EM,EM) from Σ by
B since (ED,E) v (ED,ED) and (EM,E) v (EM,EM) hold. Similarly, we can use
Theorem 1 to conclude that there is no derivation of the contextual key (E,E) from Σ by
B since neither (ED,E) v (E,E) nor (EM,E) v (E,E) hold.

Lemma 1 Let r be a relation over relation schema R. If U ⊆ V ⊆ R, then rV ⊆ rU .

Proof Suppose U ⊆ V ⊆ R. Take any t ∈ rV . For any A ∈ V , t(A) 6=⊥. Since U ⊆ V ,
t(A) 6=⊥ for any A ∈ U . Therefore, t ∈ rU and rV ⊆ rU .

Using Theorem 1, we can establish the following axiomatic characterization.

Theorem 2 B forms a finite axiomatization for the implication of CKs.

Proof For soundness, suppose Σ `B (C,K). By Theorem 1, there is (C ′, K ′) v (C,K)
where (C ′, K ′) ∈ Σ ∪ {(R,R)}. Take any relation r over R where r |= Σ. We know
that any relation over R satisfies (R,R). Since (C ′, K ′) ∈ Σ ∪ {(R,R)} and r |= Σ, thus
r |= (C ′, K ′). Namely, for all t1, t2 ∈ rC

′
, t1(K ′) = t2(K ′) implies t1 = t2. Take any

t1, t2 ∈ rC . On one hand, since C ′ ⊆ C, by Lemma 1, rC ⊆ rC
′

and t1, t2 ∈ rC
′

. On the
other hand, since K ′ ⊆ K, t1(K) = t2(K) implies t1(K ′) = t2(K ′). Consequently, since
t1(K) = t2(K) implies t1(K ′) = t2(K ′) and t1(K ′) = t2(K ′) implies t1 = t2, by syllogism,
hence t1(K) = t2(K) implies t1 = t2. Therefore, Σ |= (C,K).

For completeness, we prove Σ |= (C,K) implies Σ `B (C,K). Assume Σ 6`B (C,K).
Next, we show a counterexample in Table 3.

Table 3: Counterexample relation r over R.
K C \K R \ C

t1 0 . . . 0 0 . . . 0 ⊥ . . . ⊥
t2 0 . . . 0 1 . . . 1 ⊥ . . . ⊥
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Since Σ 6`B (C,K), by Theorem 1, there is no (C ′, K ′) v (C,K) where (C ′, K ′) ∈
Σ ∪ {(R,R)}. If C ′ ⊆ C, then K ′ 6⊆ K and t1(K) 6= t2(K). If C ′ 6⊆ C, then rC

′
= ∅.

In summary of both cases, r |= Σ. However, r 6|= (C,K) and hence Σ 6|= (C,K), which
draws a contradiction. Therefore, Σ |= (C,K) implies Σ `B (C,K).

We apply Theorem 2 to our running example.

Example 3 Recall that we inferred in Example 2 that we can use B to derive the con-
textual keys (ED,ED) and (EM,EM) from Σ = {(ED,E), (EM,E)}, but we cannot
use B to derive the contextual key (E,E) from Σ. Based on the soundness of B we can
further conclude that the contextual keys (ED,ED) and (EM,EM) are implied by Σ.
Furthermore, based on the completeness of B we can conclude that the contextual key
(E,E) is not implied by Σ.

The axiomatization can be used to explicitly enumerate all contextual keys that are
implied by a given set Σ. In practice, however, one may not be interested in all contextual
keys that are implied, but only be interested whether a given contextual key ϕ is implied
by Σ. In such situation, an explicit enumeration of all implied constraints is inefficient and
does not make good use of the additional input ϕ. For this purpose, our final contribution
of this section is a linear-time algorithmic characterization of the implication problem
associated with contextual keys. In fact, we use Theorem 1 to obtain this algorithm.

Algorithm 1 Implication of contextual keys

1: INPUT: A set Σ ∪ {(C,K)} of contextual keys over relation schema R
2: OUTPUT: TRUE, if Σ |= (C,K); FALSE, otherwise
3: CK← FALSE;
4: for each (C ′, K ′) ∈ Σ ∪ {(R,R)} do
5: if C ′ ⊆ C and K ′ ⊆ K then
6: CK← TRUE;
7: return CK

The correctness of Algorithm 1 follows from Theorem 1 and Theorem 2, and the
linear-time complexity is easy to observe from the algorithm.

Theorem 3 Algorithm 1 decides the implication problem of contextual keys Σ |= (C,K)
in time O(||Σ ∪ {(R,R)}||).

Proof Assume that checking if an attribute belongs to a set only takes constant time.
Time for checking step 5 is in O(|C ′| + |K ′|). Therefore, in total, Algorithm 1 runs in
O(||Σ ∪ {(R,R)}||).

We conclude this section by a final example.

Example 4 Using R = EDM , Σ = {(ED,E), (EM,E)} and ϕ = (E,E) as input,
Algorithm 1 returns FALSE, since there is no (C ′, K ′) ∈ Σ∪{(R,R)} such that C ′ ⊆ {E}
and K ′ ⊆ {E}.
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4 Armstrong Relations for Contextual Keys

Contextual keys can enforce important application semantics within a database system.
However, a fundamental problem is to acquire those contextual keys that are meaningful
in a given application domain. Database designers usually do not know the domain well
and domain experts do not know database constraints. We will now establish computa-
tional support for overcoming the communication barrier between designers and experts.
As illustrated in Figure 1, designers think in terms of an abstract set Σ of contextual keys

Figure 1: Acquisition Framework

they perceive meaningful. For them to communi-
cate their current perceived understanding to do-
main experts, we will establish an algorithm that
computes from a given set Σ a relation rΣ that per-
fectly represents Σ. That is, rΣ satisfies all contex-
tual keys in Σ and violates all contextual keys that
are not implied by Σ. Relations with this property
are known as Armstrong relations [6]. If designers
currently perceive an actually meaningful contex-
tual key as meaningless, then this contextual key
will be violated in rΣ. The point is that domain
experts will easily notice this violation because the
contextual key is meaningful. The experts can then
alert the designers to this inconsistency with the
application semantics, and the designer can include the meaningful contextual key in
their set Σ. Such process can be repeated until both designers and experts are happy.
The other direction, in which one provides computational support for identifying the set
Σ of contextual keys that hold in a given relation, is beyond the focus of this article.
However, research into this direction is useful as the domain expert may want to change
values in an Armstrong relation, or legacy data becomes available to the designers. For
the remainder of this section, we will investigate computational and structural properties
of Armstrong relations for contextual keys. We begin with the definition of Armstrong
relations for contextual keys.

Definition 2 Let Σ be a set of contextual keys over relation schema R. A relation r
over R is Armstrong for Σ if and only if the following property holds for all contextual
keys (C,K) over R: r |= (C,K) if and only if Σ |= (C,K).

Note the beauty of this definition: Given an Armstrong relation r for Σ, one can
reduce every instance Σ |= ϕ of the implication problem for contextual keys to checking
whether ϕ holds on r. In fact, if r satisfies ϕ, then Σ implies ϕ; and if r does not satisfy
ϕ, then r is not implied by Σ.

Example 5 The relation r in Table 1 is Armstrong for the set

Σ = {(ED,E), (EM,E)}

over the relation schema R = EDM . It is indeed easy to observe that r satisfies
(ED,ED) and (EM,EM), which are therefore implied by Σ. Similarly, r violates (E,E),
and (EDM,DM) which are therefore not implied by Σ.
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We say that a class of constraints C enjoys Armstrong relations if there is an Arm-
strong relation for every given set of constraints of C.

Theorem 4 Contextual keys enjoy Armstrong relations.

Proof Let Σ be a set of CKs over relation schema R. For all K ⊆ C ⊆ R, if Σ 6|= (C,K),
we construct a set T(C,K) = {t1, t2} where t1, t2 ∈ rC and t1(A1) = t2(A1), t1(A2) 6= t(A2),
t1(A3) = t2(A3) =⊥ for all A1 ∈ K,A2 ∈ C \ K,A3 ∈ R \ C. In addition, we use
distinct non-null values for the construction T of two distinct CKs. So, we claim r =⋃

Σ6|=(C,K) T(C,K) is an Armstrong relation. Take any distinct t1, t2 ∈ r. If t1, t2 ∈ T(C,K)

where K ⊆ C ⊆ R, then they form an example for Σ 6|= (C,K); Otherwise, they will not
show any violations to any CK (C,K) where Σ |= (C,K) because t1, t2 are constructed
from different non-null values.

Next we would like to characterize the structure of Armstrong relations for contextual
keys. The following result establishes a necessary and sufficient condition for a given
relation to be Armstrong for a given set of contextual keys.

Theorem 5 Let Σ be set of contextual keys over relation schema R. A relation r over
R is Armstrong for Σ if and only if Σ−1 ⊆ ag(r) ⊆ CL(Σ).

Proof ⇐: Suppose r is an Armstrong relation with respect to Σ. 1) Take any (C,K) ∈
Σ−1. Assume (C,K) 6∈ ag(r). Since r is an Armstrong relation of Σ and (C,K) ∈ Σ−1,
then r 6|= (C,K). Consequently, by (C,K) ∈ Σ−1 and (C,K) 6∈ ag(r), there should be
at least a pair of distinct t1, t2 ∈ r such that t1 and t2 exactly agree on (C ′, K ′) where
(C,K) @ (C ′, K ′). Namely, t1, t2 ∈ rC

′
, t1(K ′) = t2(K ′), and t1(C ′ \K ′) = t2(C ′ \K ′).

Since (C,K) is a contextual anti-key, (C ′, K ′) should not be a contextual anti-key as
well because (C,K) @ (C ′, K ′). However, t1, t2 cause a violation of (C ′, K ′), which is a
contradiction to (C,K) ∈ Σ−1. Therefore, (C,K) ∈ ag(r). 2) Take any (C,K) ∈ ag(r).
There are distinct t1, t2 ∈ r such that t1, t2 ∈ rC , t1(K) = t2(K) and t1(C\K) 6= t2(C\K).
Since t1 6= t2, Σ 6|= (C,K). Therefore, (C,K) ∈ CL(Σ).
⇒: Let Σ−1 ⊆ ag(r) ⊆ CL(Σ). We show r |= (C,K) if and only if Σ |= (C,K) for

all K ⊆ C ⊆ R. 1) For sufficiency, assume Σ 6|= (C,K). Consequently, there exists a
contextual anti-key (C ′, K ′) ∈ Σ−1 where (C,K) v (C ′, K ′). Since Σ−1 ⊆ ag(r), thus
(C ′, K ′) ∈ ag(r). So, there are distinct t1, t2 ∈ r where t1, t2 ∈ rC

′
and t1(K ′) = t2(K ′).

Moreover, t1, t2 are C-total and t1(K) = t2(K) because (C,K) v (C ′, K ′). However,
since t1 6= t2, r 6|= (C,K), which is a contradiction. 2) For necessity, suppose r 6|=
(C,K). So, there exists distinct t1, t2 ∈ r such that t1, t2 exactly agree on (C ′, K ′) where
(C,K) v (C ′, K ′). So, (C ′, K ′) ∈ ag(r). Since ag(r) ⊆ CL(Σ), then (C ′, K ′) ∈ CL(Σ)
and Σ 6|= (C ′, K ′). Therefore ,Σ 6|= (C,K) otherwise Σ |= (C ′, K ′) by Theorem 1.

We apply Theorem 5 to our running example.

Example 6 The relation r in Table 1 is indeed Armstrong for

Σ = {(ED,E), (EM,E)}

10



because every contextual anti-key is an exact agree set of r, and every exact agree set is
a contextual key not implied by Σ. In fact, the contextual anti-keys of Σ are (E,E) and
(EDM,DM), which are the exact agree sets of the first and second tuple, and the first
and third tuple, respectively. Moreover, the exact agree set of the second and third tuple
is (EDM, ∅), which is not implied by Σ.

Given Theorem 5, it is not difficult to see that Algorithm 2 computes a relation that
is Armstrong for a given set Σ of contextual keys.

Algorithm 2 Computing Armstrong relations

1: INPUT: A set Σ of contextual keys over a relation schema R
2: OUTPUT: An Armstrong relation r for Σ
3: Let t0 be a tuple over R where t(A) = 0 for all A ∈ R;
4: rArmstrong ← {t0};
5: i← 1;
6: for each (C,K) ∈ Σ−1 do
7: Let ti be a tuple over R

8: ti(A)←


0 , if A ∈ K
i , if A ∈ C \K
⊥ , if A ∈ R \ C

9: i+ +;
10: rArmstrong ← rArmstrong ∪ {ti};
11: return rArmstrong;

Lemma 2 Algorithm 2 computes an Armstrong relation of size |Σ−1|+ 1 given a set of
CKs Σ over relation schema R.

Proof Suppose a relation r is computed by Algorithm 2 given Σ−1. For each (C,K) ∈
Σ−1, there is ti ∈ r where ti(A1) = 0, ti(A2) = i, ti(A3) =⊥ for all A1 ∈ K,A2 ∈
C \K,A3 ∈ R \ C. Hence, ti and t0 exactly agree on (C,K) and Σ−1 ⊆ ag(r). WLOG,
assume there are ti, tj where i > j > 0 such that ti, tj exactly agree on (C,K) and
Σ |= (C,K). According to our construction, the agreed value of two tuples is 0. So,
(C,K) v (C ′, K ′) where t0, ti exactly agree on (C ′, K ′). Since (C ′, K ′) is a contextual
anti-key and Σ 6|= (C ′, K ′), (C,K) would also be an anti-key. That is, Σ 6|= (C,K).
However, it contradicts the assumption Σ |= (C,K). Therefore, Σ−1 ⊆ ag(r) ⊆ CL(Σ).
By Theorem 5, r is of size |Σ−1|+ 1.

In fact, Algorithm 2 computes Armstrong relations with conservative use of space.

Theorem 6 For every set Σ of contextual keys, Algorithm 2 computes an Armstrong
relation for Σ with |Σ−1|+ 1 tuples. This number is at most the square of the minimum
number of tuples required by any Armstrong relation for Σ.
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Proof Let Σ be a set of CKs over R. By Lemma 2, r is an Armstrong relation of Σ
generated by Algorithm 2. By Algorithm 2, |r| = |Σ−1|+1. By Theorem 5, Σ−1 ⊆ ag(r).
The size of the agree set of r is at most

(|r|
2

)
, namely |ag(r)| ≤

(|r|
2

)
. So, |Σ−1| ≤

(|r|
2

)
.

Consequently, |Σ−1| ≤ |r|·(|r|−1)
2

and |r| ≥ (1 +
√

1 + 8 · |Σ−1|)/2. So, the size |rmin| of

a minimum-sized Armstrong relation of Σ is at least (1 +
√

1 + 8 · |Σ−1|)/2. Therefore,

|rmin|2 = (1 +
√

1 + 8 · |Σ−1|+ 4 · |Σ−1|) ≥ |r| = |Σ−1|+ 1.

In practice, it may be important to focus the attention of the designers and domain
experts to certain fragments of an Armstrong relation. For rows, it makes sense to loop
through the anti-keys and look at each row pair whose agree set is the anti-key. For
columns, one may give the users of the algorithm full control over which columns should
be highlighted. A sensible choice is to inspect the columns in the context of an anti-key.

The next example demonstrates the worst case in which the minimum number of
tuples required by an Armstrong relation for Σ is exponential in the input size.

Example 7 Let R = {A1, A2, . . . , A2n} where n is a positive integer. Let

Σ = {(A2i−1A2i, A2i−1A2i) | i = 1, . . . , n}

be a set of CKs over R. If n = 2, then

Σ−1 = {(A1A3, A1A3), (A1A4, A1A4), (A2A3, A2A3), (A2A4, A2A4)}

In general, |Σ−1| = 2n where Σ has size 4n .

As evidenced by Example 7, there is no algorithm that computes Armstrong relations
in polynomial time in the input. Extending the currently best known strategy of com-
puting the set Σ−1 of anti-keys from traditional to contextual keys [34], we establish a
characterization of anti-keys that will lead us to an iterative algorithm to compute them.

Lemma 3 Let Γ = Σ ∪ {(C,K)} be a set of contextual keys over a relation schema R.
If (U,X) ∈ Γ−1, then the following must hold:

1. (U,X) ∈ Σ−1, or

2. there exists A ∈ K such that (U,XA) ∈ Σ−1, or

3. there exists A ∈ C \K such that (UA,X) ∈ Σ−1.

Proof Let Σ ∪ {(C,K)} be a set of contextual keys over a relation schema R. Γ =
Σ ∪ {(C,K)}. Suppose (U,X) ∈ Γ−1. Namely, there exists no (C ′, K ′) v (U,K) where
(C ′, K ′) ∈ Γ. Since Σ ⊂ Γ, there also exists no (C ′, K ′) v (U,X) where (C ′, K ′) ∈ Σ.
That is Σ 6|= (U,X). Thus (U,X) is possible to be in Σ−1. If (U,X) ∈ Σ−1, conclusion 1
trivially holds. Next, suppose (U,X) 6∈ Σ−1. Given Σ 6|= (U,X), if (U,X) 6∈ Σ−1, then
there is (U ′, X ′) ∈ Σ−1 where (U,X) v (U ′, X ′). Since (U ′, X ′) ∈ Σ−1 and (U,X) ∈ Γ,
then (C,K) ⊆ (U ′, X ′)

Case U ⊇ C. Firstly, U ′ = U otherwise (U ′, X) must be in Γ−1 instead of (U,X).
Thus, X ⊂ X ′. Secondly, since (C,K) 6v (U,X) and U ⊇ C, so K 6⊆ X and there is
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A ∈ K such that XA = X ′. Thirdly, (U,X ′ \ {Y }) 6∈ Γ−1 for all Y ⊆ X where |Y | ≥ 2
because (U,X ′ \ {Y }) v (U,X). Therefore, conclusion 2 is proved.

Case U 6⊇ C. Firstly, since U 6⊇ C, there is A ∈ C such that UA = U ′. Note that for
any Y ⊆ C and |Y | ≥ 2, (U ′ \ Y,X) 6∈ Γ−1 because (U ′ \ Y,X) v (U,X). Secondly, since
U 6⊇ C, X = X ′ otherwise if there exists A ∈ K, (U ′ \ {A}, X ′ \ {A}) @ (U ′, X ′ \ {A})
and it has been covered by the previous case. Therefore, conclusion 3 is proved.

Lemma 3 will give us an iterative algorithm for computing the anti-keys for a given set
of contextual keys. However, in each iteration we still need to validate for each candidate
anti-key that it is indeed an anti-key. This can be done efficiently as shown now.

Lemma 4 Validating whether a given contextual key is an anti-key for a given set Σ of
contextual keys over relation schema R can be done in time O(|R| · ||Σ||).

Proof Suppose Σ 6|= (C,K) where K ⊆ C ⊆ R. To check if (C,K) ∈ Σ−1, we have to
check if (C,K) always becomes a CK by adding any A ∈ R. That is, (C,K) is an anti-key
if and only if ∀A ∈ R \C,Σ |= (CA,K) and ∀A ∈ C \K,Σ |= (C,KA) is true. For each
A ∈ R, testing takes constant time. Afterwards, checking if a test case can be derived
from a CK (C,K) is in O(|C|+ |K|). In total, examining all the CKs in Σ is in O(||Σ||).
Therefore, the time for testing if (C,K) is a contextual anti-key is in O(|R| · ||Σ||).

Algorithm 3 iteratively examines the input keys in Σ. For each input key (C,K) it
checks if any anti-key in Σ−1 contains (C,K). The algorithm constructs Γ−1 = (Σ ∪
{(C,K)})−1 from Σ−1 by eliminating attributes in K or C \K.

Algorithm 3 Computing contextual anti-keys

1: INPUT: A set Σ of contextual keys over a relation schema R
2: OUTPUT: Σ−1

3: Σ← Σ ∪ {(R,R)}, Σ′ = ∅;
4: Σ−1 ← {(R,R)};
5: for each (C,K) ∈ Σ do
6: Σ′ ← Σ′ ∪ {(C,K)}
7: for each (U,X) ∈ Σ−1 do
8: if (C,K) v (U,X) then
9: Σ−1 ← Σ−1 \ {(U,X)}

10: for each A ∈ C \K do
11: Σ−1 ← Σ−1 ∪ {(U \ {A}, X \ {A})}
12: for each A ∈ K do
13: Σ−1 ← Σ−1 ∪ {(U,X \ {A})}
14: for each (U,X) ∈ Σ−1 do
15: if ∃A ∈ U \X ∀(C ′, K ′) ∈ Σ′ : (C ′, K ′) 6v (U,XA) or

∃A ∈ R \ U ∀(C ′, K ′) ∈ Σ′ : (C ′, K ′) 6v (UA,X) then
16: Σ−1 ← Σ−1 \ {(U,X)};
17: return Σ−1;

Theorem 7 Algorithm 3 computes Σ−1 given a set of CKs Σ over relation schema R.
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Proof We use induction on number of inputs in Σ to show the loop at step 5 eventually
generates Σ−1. By the construction of Algorithm 3, an input set of CKs Σ is not empty.
Let Σ0 = ∅ and Σ−1

0 = {(R,R)}. On the first input (C1, K1) ∈ Σ, obviously (C1, K1) v
(R,R). So, (R,R) cannot be a contextual anti-key of Σ1 = Σ0∪{(C1, K1)}. By Lemma 3,
if there is (C,K) ∈ Σ−1

1 , then one can find some corresponding (C ′, K ′) ∈ Σ−1
0 . Since

(R,R) is the only one in Σ−1
0 , it could be used to compute contextual anti-keys in Σ1

and (R,R) 6∈ Σ−1
1 because (C1, K1) v (R,R). Let Γ−1

1 = {(R \ {A}, R \ {A}) | A ∈
C1 \ K1} ∪ {(R,R \ {A}) | A ∈ K1}. By such construction, (C,K) ∈ Γ−1

1 for all
(C,K) ∈ Σ−1

1 because (C,K) 6v (R,R). In addition step 14 removes redundancy in
Γ−1

1 . Therefore, the non-redundant cover of Γ−1
1 is equal to Σ−1

1 . By the statements
similar to above, we can show that the non-redundant cover of Σ−1

i is equal to Σ−1
i for

all 1 ≤ i ≤ |Σ|. Therefore, Algorithm 7 is correct.

To evaluate the efficiency of our approach, we conducted experiments with

Figure 2: Average Computing Time

Algorithm 2 and Algorithm 3. We
randomly generated sets of CKs over
a relation schema R. For each set
Σ of randomly generated CKs, we
set a series of parameters: n ∈
{10, 20, . . . , 100}, k ∈ {5, 6, . . . , 15}
where n = ||Σ|| and k = |R|. In the
experiments, we run each possible set-
ting of the parameters 500 times and
measure the average running time of
the algorithm in milliseconds, the av-
erage number of tuples and null mark-
ers in the output Armstrong relation.
Figure 2 illustrates that the average
running time shows a linear growth with respect to the input size and a fixed schema.
Similarly, Figure 3 illustrates that the size of Armstrong relations and the number of null
marker occurrences grow slowly with increasing input size. Indeed, with smaller sizes and
fewer occurrences of null markers, Armstrong relations become more comprehensible to
domain experts. With faster run times, communication between designers and domain
experts improves in terms of frequency and efficiency.

5 Conclusion and Future Work

We have investigated a new class of keys over incomplete relations, named contextual
keys. Contextual keys target the unique identification of those tuples in a relation that
are complete on a user-specified set of attributes. This approach ensures that the unique
identification is independent of any interpretation of null marker occurrences. In order
to unlock the vast usefulness of contextual keys for processing data, we have studied two
fundamental problems associated with contextual keys. We have established axiomatic
and algorithmic characterizations of the implication problem, enabling us to reason effi-
ciently about contextual keys and to minimize the overhead of enforcing them within a
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Figure 3: Average sizes and average number of null markers in Armstrong relations

database system. We have further established structural and computational properties
of Armstrong relations for contextual keys, enabling us to represent any set of contex-
tual keys in the form of a user-friendly data sample. Our theoretical and experimental
analysis shows that Armstrong relations can be computed efficiently and that their size
is reasonably small in order to be effective for the acquisition of contextual keys that are
meaningful in a given application domain.

In the future, it will be interesting to investigate the discovery problem for contextual
keys. The problem is to compute a cover of the set of contextual keys that hold in a given
relation. Solutions to this problem will complete our acquisition framework, in which the
cover of a set of constraints can be translated back and forth between an abstract set
of constraints and an Armstrong relation for this set. Another important avenue of
future research will lead to the investigation of other classes of contextual constraints,
such as functional dependencies [10, 15], join dependencies [9, 16, 25, 31], or inclusion
dependencies [22, 20]. This may have important applications in schema design [21, 32].
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