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Abstract Incompleteness and undecidability have been used for many
years as arguments against automatising the practice of mathematics.
The advent of powerful computers and proof-assistants – programs that
assist the development of formal proofs by human-machine collaboration
– has revived the interest in formal proofs and diminished considerably
the value of these arguments.
In this paper we discuss some challenges proof-assistants face in han-
dling undecidable problems – the very results cited above – using for
illustrations the generic proof-assistant Isabelle.

1 Introduction

Gödel’s incompleteness theorem (1931) and Turing’s undecidability of the halt-
ing problem (1936) form the basis of a largely accepted thesis that mathematics
cannot be relegated to computers. However, the impetuous development of pow-
erful computers and versatile software led to the creation of proof-assistants –
programs that assist the development of formal proofs by human-machine col-
laboration. This trend has revived the interest in formal proofs and diminished
considerably the value of the above thesis for the working mathematician.

An impressive list of deep mathematical theorems have been formally proved
including Gödel’s incompleteness theorem (1986), the fundamental theorem of
calculus (1996), the fundamental theorem of algebra (2000), the four colour the-
orem (2004), Jordan’s curve theorem (2005) and the prime number theorem
(2008). In 2014 Hales’s Flyspeck project team formally validated in [7] Hales’s
proof [21] of the Kepler conjecture. Why did Hales’ proof by exhaustion of the
conjecture – involving the checking of many individual cases using complex com-
puter calculations – published in the prestigious Annals of Mathematics, need
“a validation”? Because the referees of the original paper had not been “100%
certain” that the paper was correct.

Hilbert’s standard of proof is becoming practicable due to proof-assistants.
Are proof-assistants able to handle undecidable problems, the very results

which have been used to argue the impossibility of doing mathematics with
computers? In what follows we discuss some challenges proof-assistants face in
handling two undecidable problems – termination and correctness – using for
illustrations the generic proof-assistant Isabelle.

www.cs.auckland.ac.nz/~cristian
www.stanford.edu/~declan
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2 Truth and provability

2.1 Incompleteness

In 1931 K. Gödel proved his celebrated incompleteness theorem which states that
no consistent system of axioms whose theorems can be e↵ectively listed (e.g., by
a computer program or algorithm) is capable of proving all true relations between
natural numbers (arithmetic). In such a system there are statements about the
natural numbers that are true, but unprovable within the system – they are
called undecidable statements in the system. For example, the consistency of
such a system can be coded as a true property of natural numbers which the
system cannot demonstrate, hence it is undecidable in the system. Furthermore,
extending the system does not cure the problem. Examples of systems satisfy-
ing the properties of Gödel’s incompleteness theorem are Peano arithmetic and
Zermelo-Fraenkel set theory. One can interpret Gödel’s theorem as saying that
no consistent system whose theorems can be e↵ectively listed is capable of proving
any mathematically true statement.

2.2 Undecidability

Five years later A. Turing proved a computationally similar result, the exis-
tence of (computationally) undecidable problems, i.e. problems which have no
algorithmic solution. To this goal Turing proposed a mathematical model of
computability, based on what today we call a Turing machine (program), which
is widely, but not unanimously, accepted as adequate (the Church-Turing the-
sis). The halting problem is the problem of determining in a finite time, from a
description of an arbitrary Turing program and an input, whether the program
will finish running or continue to run forever. Turing’s theorem shows that no
Turing program can solve (correctly) every instance of the halting problem. Our
ubiquitous computers cannot do everything, a shock for some.

2.3 Incompleteness vs. undecidability

Gödel’s undecidable statements depend on the fixed formal system; Turing’s un-
decidable problems depend on the adopted mathematical model of computation.
They are both relative. There is a deep relation between these results coming
from the impossibility of dealing algorithmically with some forms of infinity. In
what follows we present a form of Gödel’s incompleteness theorem by examining
the halting problem. By N(P, v) we mean that the Turing program P will never
halt on input v. For any particular program P and input v, N(P, v) is a perfectly
definite statement which is either true (in case P will never halt in the described
situation) or false (in case P will eventually halt). When N(P, v) is false, this
fact can always be demonstrated by running P on v. No amount of computation
will su�ce to demonstrate the fact that N(P, v) is true. We may still be able
to prove that a particular N(P, v) is true by a logical analysis of P ’s behaviour,
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but, because of the undecidability of the halting problem, no such automated
method works correctly in all cases.

Suppose that certain strings of symbols (possibly paragraphs of a natural
language (English, for example)) have been singled out – typically with the help
of axioms and rules of inference – as proofs of particular statements of the form
N(P, v). Operationally, we assume that we have an algorithmic syntactic test
that can determine whether an alleged proof ⇧ that “N(P, v) is true” is or is
not correct. There are two natural requirements for the rules of proof:

Soundness: If there is a proof ⇧ that N(P, v) is true, then P will never halt on
input v.

Completeness: If P will never halt on input v, then there is a proof ⇧ that
N(P, v) is true.

Can we find a set of rules which is both sound and complete? The answer is
negative. Suppose, by absurdity, we had found some “rules” of proof which are
both sound and complete. Suppose that the proofs according to these “rules” are
particular strings of symbols on some specific finite alphabet. Let ⇧1,⇧2,⇧3, . . .
be the quasi-lexicographic computable enumeration of all finite strings on this
alphabet. This sequence includes all possible proofs, as well as a lot of other
things (including a high percentage of total non-sense). But, hidden between the
non-sense, we have all possible proofs. Next we show how we can use our “rules”
to solve the halting problem – an impossibility. We are given a Turing program
P and an input v and have to test whether or not P will eventually halt on v.
To answer this question we run in parallel the following two computations:

(A) the computation of P on v,
(B) the computation consisting in generating the sequence ⇧1,⇧2,⇧3, . . . of

all possible proofs and using, as each ⇧i is generated, the syntactic test to
determine whether or not ⇧i is a proof of N(P, v).

The algorithm (A) and (B) stops when either (A) stops or in (B) a proof ⇧i

for N(P, v) is validated as correct: in the first case the answer is “P stops on v”
and in the second case the answer is “P does not stop on v”.

First we prove that the algorithm cannot stop simultaneously on both (A)
and (B). If the algorithm stops through (B) then a proof ⇧i for N(P, v) is
found, so by soundness the computation (A) cannot stop; if, on the contrary,
the computation (A) stops, then no valid proof for N(P, v) can exist because,
by soundness, then P will never halt on input v.

Second we prove that the algorithm stops either on (A) or on (B). Indeed,
if the algorithm does not stop on (A), then P will never halt on input v, so by
completeness the algorithm will stop on (B). If the algorithm does not stop on
(B), then there is no valid proof for N(P, v), so again by completeness, P will
stop on v, hence the algorithm will stop through (A).

Finally we prove the correctness of the algorithm. If P will eventually halt
on v, then the computation (A) will eventually stop and the algorithm will give
the correct answer: “P stops on v”. If P never halts on v, (A) will be of no



4 Cristian S. Calude and Declan Thompson

use: however, because of completeness, there will be a valid proof ⇧i of N(P, v)
which will be eventually discovered by the computation (B). Having obtained
this ⇧i we will be sure (because of soundness) that P will indeed never halt.

Thus, we have described an algorithm which would solve the halting problem,
a contradiction! The conclusion is that no rules of proof can be both sound and
complete: there is a true statementN(P, v) which has no proof⇧. This statement
is undecidable in the system: it cannot be proved nor disproved (being true, this
would contradict soundness).

The above proof does not indicate any particular pair (P, v) for which the
“rules” cannot prove that N(P, v) is true! We only know that there will be a pair
(P, v) for which N(P, v) is true, but not provable from the “rules”. There always
are other sound rules which decide the “undecidable” statement: for example,
adding the “undecidable” (true) statement as an axiom we get a larger system
which trivially proves the original “undecidable” statement. No matter how we
try to avoid an “undecidable” statement the new and more powerful rules will
in turn have their own undecidable statements.

2.4 Hilbert’s programme and Hilbert’s axiom

In the late 19th century mathematics – shaken by the discoveries of paradoxes
(for example, Russell’s paradox) – entered into a foundational crisis (in German,
Grundlagenkrise der Mathematik) which prompted the search for proper foun-
dations in the early 20th century. Three schools of philosophy of mathematics
were opposing each other: formalism, intuitionism and logicism. D. Hilbert, the
main exponent of formalism, held that mathematics is only a language and a
series of games, but not an arbitrary game with arbitrary rules. Hilbert’s pro-
gramme proposed to ground all mathematics on a finite, complete set of axioms,
and provide a proof that these axioms were consistent. Hilbert’s programme
included a formalisation of mathematics using a precise formal language with
the following properties: completeness, a proof that all true mathematical state-
ments can be proved in the adopted formal system, and consistency, a proof –
preferably involving finite mathematical objects only – that no contradiction can
be obtained in the formal system. The consistency of more complicated systems,
such as complex analysis, could be proven in terms of simpler systems and, ul-
timately, the consistency of the whole of mathematics would be reduced to that
of arithmetic.

In his famous lecture entitled “Mathematical problems”, presented to the
International Congress of Mathematicians held in Paris in 1900, Hilbert ex-
pressed his deep conviction in the solvability of all mathematical problems (cited
from [18, p. 11]):

Is the axiom of solvability of every problem a peculiar characteristic
of mathematical thought alone, or is it possibly a general law inherent
in the nature of the mind, that all questions which it asks must be
answerable? . . . This conviction of the solvability of every mathematical
problem is a powerful incentive to the worker. We hear within us the
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perpetual call: There is the problem. Seek its solution. You can find it
by pure reason, for in mathematics there is no ignorabimus.

Thirty years later, on 8 September 1930, in response to Ignoramus et ignor-
abimus (“We do not know, we shall not know”), the Latin maxim used as motto
by the German physiologist Emil du Bois-Reymond [10] to emphasise the lim-
its of understanding of nature, Hilbert concluded his retirement address to the
Society of German Scientists and Physicians1 – the same meeting where Gödel
presented his completeness and incompleteness theorems – with his now famous
words:

We must not believe those, who today, with philosophical bearing
and deliberative tone, prophesy the fall of culture and accept the ignor-
abimus. For us there is no ignorabimus, and in my opinion none whatever
in natural science. In opposition to the foolish ignorabimus our slogan
shall be: “We must know. We will know.” (in German: Wir müssen wis-
sen. Wir werden wissen2).

2.5 Objective vs. subjective mathematics

According to Gödel [19], see also [18], objective mathematics consists of the body
of those mathematical propositions which hold in an absolute sense, without any
further hypothesis.

A mathematical statement constitutes an objective problem if it is a candidate
for objective mathematics, that is, if its truth or falsity is independent of any
hypotheses and does not depend on where or how it can be demonstrated. Prob-
lems in arithmetic are objective problems in contrast with problems in axiomatic
geometry, which depend on their provability in a specific axiomatic system.

Gödel’s subjective mathematics is the body of all humanly demonstrable or
knowable mathematically true statements, that is, the set of all propositions
which the human mind can in principle prove in some well-defined system of
axioms in which every axiom is recognised to belong to objective mathematics
and every rule preserves objective mathematics.

Does objective mathematics coincide with subjective mathematics? Gödel’s
answer (1951, see [19]) based on his incompleteness theorem was: Either . . . the
human mind . . . infinitely surpasses the powers of any finite machine, or else
there exist absolutely unsolvable . . . problems.

Working with a constructive interpretation of truth values “true”, “false” and
modal “can be known” Martin-Löf stated the following theorem ([27]): There are
no propositions which can neither be known to be true nor be known to be false.

1 Included in the short radio presentation, see [24].
2 The words are engraved on Hilbert’s tombstone in Göttingen. This is a triple irony:
their use as an epitaph, the fact that the day before the talk, Hilbert’s optimism was
undermined by Gödel’s presentation of the incompleteness theorem, whose excep-
tional significance was, with the exception of John von Neumann, completely missed
by the audience.
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For the non-constructive mathematician this means that no propositions can
be e↵ectively produced (i.e. by an algorithm) of which it can be shown that they
can neither be proved constructively nor disproved constructively. There may
be absolutely unsolvable problems, but one cannot e↵ectively produce one for
which one can show that it is unsolvable.

2.6 Hilbert’s programme after incompleteness

In the standard interpretation, incompleteness shows that most of the goals of
Hilbert’s programme were impossible to achieve . . . However, much of it can be
and was salvaged by changing its goals slightly. With the following modifications
some parts of Hilbert’s programme have been successfully completed. Although
it is not possible to formalise all mathematics, it is feasible to formalise essentially
all the mathematics that “anyone uses”. Zermelo–Fraenkel set theory combined
with first-order logic gives a satisfactory and generally accepted formalism for
essentially all current mathematics. Although it is not possible to prove com-
pleteness for systems at least as powerful as Peano arithmetic (if they have a
computable set of axioms), it is feasible to prove completeness for many weaker
but interesting systems, for example, first-order logic (Gödel’s completeness the-
orem), Kleene algebras and the algebra of regular events and various logics used
in computer science. Undecidability is a consequence of incomputability: there is
no algorithm deciding the truth of statements in Peano arithmetic. Tarski’s al-
gorithm (see [32]) decides the truth of any statement in analytic geometry (more
precisely, the theory of real closed fields is decidable). With the Cantor-Dedekind
axiom, this algorithm can decide the truth of any statement in Euclidean geome-
try. Finally, Martin-Löf theorem cited in the previous section strongly limits the
impact of absolutely unsolvable problems, if any exist, as one cannot e↵ectively
produce one for which one could show that it is unsolvable.

3 Can Computers Do Mathematics?

Mathematical proofs are essentially based on axiomatic-deductive reasoning.
This view was repeatedly expressed by the most prominent mathematicians.
For Bourbaki [11], Depuis les Grecs, qui dit Mathématique, dit démonstration.

A formal proof, written in a formal language consisting of certain strings of
symbols from a fixed alphabet, satisfies Hilbert’s criterion of mechanical testing:

The rules should be so clear, that if somebody gives you what they claim
is a proof, there is a mechanical procedure that will check whether the
proof is correct or not, whether it obeys the rules or not.

By making sure that every step is correct, one can tell once and for all whether
a proof is correct or not, i.e. whether a theorem has been proved. Hilbert’s con-
cept of formal proof is an ideal of rigour for mathematics which has important
applications in mathematical logic (computability theory and proof theory), but
for many years seemed to be irrelevant for the practice of mathematics which uses
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informal (pen-on-paper) proofs. Such a proof is a rigorous argument expressed
in a mixture of natural language and formulae that is intended to convince a
knowledgeable mathematician of the truth of a statement, the theorem. Routine
logical inferences are omitted. “Folklore” results are used without proof. De-
pending on the area, arguments may rely on intuition. Informal proofs are the
standard of presentation of mathematics in textbooks, journals, classrooms, and
conferences. They are the product of a social process. In principle, an informal
proof can be converted into a formal proof; however, this is rarely, almost never,
done in practice. See more in [15].

In the last 30 years a new influence on the mathematical practice has started
to become stronger and stronger: the impact of software and technology. Soft-
ware tools – called interactive theorem provers or proof-assistants – aiding the
development of formal proofs by human-machine collaboration have appeared
and got better and better. They include an interactive proof editor with which a
human can guide the search for, the checking of and the storing of formal proofs,
using a computer.

As discussed in Section 1, an impressive list of deep mathematical theorems
have been formally proved. The December 2008 issue of the Notices of AMS
includes four important papers on formal proof. A formal proof in Isabelle for a
sharper form of the Kraft-Chaitin theorem was given in [14]. In 2014 an auto-
mated proof of Gödel’s ontological proof of God’s existence was given in [9] and
an automatic 13-gigabyte proof solved a special case of the Erdös discrepancy
problem [26]; only a year later, Tao [31] gave a pen-and-paper general solu-
tion. The current longest automatic proof has almost 200-terabytes3: it solves
the Boolean Pythagorean triples problem [23], a long-standing open problem in
Ramsey theory. A compressed 68-gigabyte certificate allows anyone to recon-
struct the proof for checking.

Hilbert’s standard of proof is practicable, it’s becoming reality. However, as
noted in [17],

[T]he majority of mathematicians remain hesitant to use software to
help develop, organize, and verify their proofs. Yet concerns linger over
usability and the reliability of computerized proofs, although some see
technological assistance as being vital to avoid problems caused by hu-
man error.

There are three main obstacles to a wider use of automated proofs [17]: a)
the lack of trust in the “machine”, b) the necessity of repeatedly developing
foundational material, c) the apparent loss of understanding in favour of the
syntactical correctness (see also [13]). Current solutions involve a) using a small
“trusted” kernel on top of which employ a complicated software that parses the
code, but ultimately calls the kernel to check the proof, or use an independent
checker, b) growing archives of formal proofs (see for example [2]) and developing
more powerful automatic proof procedures, c) developing environments in which

3 The approximate equivalent of all the digitised texts held by the US Library of
Congress.
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users can write and check formal proofs as well as query them with reference
to the symptoms of understanding [15,33] and write papers explaining formal
proofs.

4 Formalised Computability Theory

Computability theory is an inherently interesting field for automated theorem
proving. Since the limitations of computation being studied are true of the the-
orem provers themselves, formalised computability theory is like modifying the
engine of a plane mid-flight.

Early work in formalised computability theory was completed by [30], who
formalised the primitive recursive functions in the ALF (Another Logical Frame-
work) proof-assistant [1], a predecessor of the contemporary Coq [3]. The purpose
of this formalisation was to provide a computer-checked proof that the Acker-
mann function is not primitive recursive. As such, study into the relationship
of the recursive functions to other forms of computation was not undertaken.
A formalisation of Unlimited Register Machines (URM) was given in [36] (see
also [35]), and it was shown that URMs can simulate partial recursive func-
tions.4 The converse was not shown however. The paper [36] also formalised
partial recursive functions in Coq.

More recent work by Michael Norrish [28] has established a greater body
of formal computability theory. Norrish formalises an implementation of the �-
calculus model of computation in the HOL4 system [4] and further defines the
partial recursive functions and establishes the computational equivalence of these
two models. A number of standard results are proven, including the existence
of a universal machine (which is constructed), the identification of recursively
enumerable sets with the ranges or domains of partially computable functions,
the undecidability of the halting problem and Rice’s theorem. For use in these
results, Norrish implements the “dove-tailing” method, whereby a function is
run on input 0, . . . , n for n steps, and then 0, . . . , n, n+1 for n+1 steps, and so
forth.

A formalisation of Turing machines is given in [8] in the Matita interactive
theorem prover [6]. While the focus is on the use of Turing machines in com-
plexity theory, a universal Turing machine is constructed, and its correctness
proved.

An impressive formalisation of three models of computable functions can
be found in [34]. Here, the authors define Turing machines, abacus machines
and partial recursive functions in the Isabelle, and give a formal proof of the
undecidability of the halting problem for Turing machines. Turing machines are
shown to be able to model abacus machines, and abacus machines to model
recursive functions. The bulk of [34]’s work is in creating a universal recursive

4 Historically, the syntactic class of partial functions constructed recursively is called
partially recursive functions, see [25,29]. This class coincides with the semantic par-
tial functions implementable by standard models of computation (Turing machines,
URMs, the �-calculus etc.) – the partially computable functions.
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function which takes encodings of Turing machines as inputs, and gives the
same output as those machines would. This formally establishes not only the
existence of universal functions, but also the equivalence of the three models
of computation. While a universal Turing machine is not directly constructed,
its existence can be inferred from the proofs that Turing machines can model
abacus machines, which can in turn model recursive functions. This contrasts
with the direct constructions of a universal Turing machine given in [8]. The
establishment of the equivalence of recursive functions and the �-calculus in [28]
gives us formal proofs of the computational equivalence of the following four
models: Turing machines, abacus machines, partial recursive functions and the
�-calculus.

4.1 Automated proofs in Isabelle

Isabelle is a generic proof-assistant derived from the Higher Order Logic (HOL)
theorem proving software, which in turn is a descendant of Logic for Computable
Functions (LCF). LCF was developed in 1972, HOL became stable around 1988,
and development of Isabelle started in the 1990s [20]. Isabelle is based on a small
core set of logical principles from which theories can be built up. As such, the
confidence with which we can claim any theorem proven in Isabelle to be true is
the same confidence with which we can claim that the small core is true.

Isabelle provides a formal language to work in, and a set of proof methods,
which allow it to prove statements using logical rules, definitions, and axioms,
as well as already proved statements. Proofs in Isabelle are essentially natu-
ral deduction style. A structured proof language, Isar, is provided which aims
to make proofs more human readable, and which serves to greatly reduce the
learning curve required to use Isabelle. In addition to the standard proof meth-
ods, Isabelle has a feature called sledgehammer, which calls external automated
theorem provers in an attempt to prove the current goal. Isabelle is developed
jointly at the University of Cambridge, Technische Universität München and
Université Paris-Sud [5]; see [?] for a good tutorial.

An Isabelle proof proceeds in an interactive manner. The user makes a claim,
and must then prove it. Isabelle’s output (separate to the source code which the
user writes) gives information like the goals currently needing to be proved and
whether any redundancy in proofs has been detected. Using jEdit, the user can
select a line of a completed proof, and check the output to see what was being
done at that point – this “hook” into the proof allows for easier understanding of
new proofs. Note that the Isabelle output is not included with the formal proof
which the user ends up with. Since it is not exported to documentation, we have
used an image of the output below.

4.2 Partial recursive functions in Isabelle

The formalisation of partial recursive functions in Isabelle given by Xu et al.
in [34] makes use of a datatype recf of recursive functions. The constructors for
this datatype follow standard conventions for partial recursive functions, [29].
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Adapting the original Isabelle code definitions to more standard notation and
using the notation xi;j to mean xi, xi+1, . . . , xj we have:

z(x) = 0,

s(x) = x0 + 1,

idmn (x) = xn,

Cnn(f, g)(x) = f(g0(x), . . . , gm(x)),

P rn(f, g)(x) =

(
f(x0;n�2), if xn�1 = 0,

g(x0;n�2, xn�1 � 1, P rn(f, g)(x0;n�2, xn�1 � 1)), otherwise,

Mnn(f)(x) = µ{y | f(x0;n�1, y) = 0}.
(1)

Separately, the termination for partial recursive functions is defined in [34] as
follows (notice that the clauses for z and s implicitly require a 1-ary list).

termi z([n])

termi s([n])

(n < m ^ |x| = m) ! termi idmn (x)

termi f(g0(x), . . . , gm(x)) ^ 8i termi gi(x) ^ |x| = n ! termi Cnn(f, g)(x)

8y < xn�1 termi g(x0;n�2, y, Prn(f, g)(x0;n�2, y))^
termi f(x0;n�2) ^ |x| = n+ 1 ! termi Prn(f, g)(x)

|x| = n ^ termi f(x, r) ^ f(x, r) = 0^
8i < r termi f(x, i) ^ f(x, i) > 0 ! termi Mnn(f)(x)

To see how these definitions work, let us construct an implementation of the
addition function + within the framework [34]. We will take this opportunity to
demonstrate how proofs proceed in the Isabelle system (the rest of this section
has been generated from Isabelle code).

Addition is fairly easy to define using primitive recursion. We simply follow
the Robinson Arithmetic approach of defining

x+ y =

(
x, if y = 0,

(s(x)) + z, if y = s(z).

Using primitive recursion, we have + := Pr1(id10, Cn3(s, [id32])). We note that
we use indices starting at 0. This is very similar to the Isabelle source code:

definition "rec_add = (Pr 1 (id 1 0) (Cn 3 s [(id 3 2)]))"

Within Isabelle, we can prove that rec_add is indeed the addition function +.
The following lemma achieves this through an induction on the second argument.

lemma [simp] : "rec_exec rec_add [m, n] = m + n"

apply(induction n)
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by(simp_all add:rec_add_def)

First we have stated the statement of the lemma. The command rec_exec

tells Isabelle to evaluate the function rec_add (that is, we are using Definition
(1) from above). Note that since they are unbound, there is an implicit universal
quantification over the variables m,n. We have flagged this lemma as a simplifi-
cation ([simp]), which tells Isabelle’s simp proof method that whenever it sees
rec_exec rec_add [m, n] it can be replaced by m+n. Our first step in the proof
is to apply induction to argument n. Isabelle determines that n is a natural
number (since the recursive functions are defined over them) and so adopts the
appropriate inductive hypothesis. As such there are two goals to prove. The first
is that adding 0 to m returns m, and the second is that if addition is correct
for m + n it is also correct for m + (n + 1). At this point, the Isabelle output
gives the information shown in Figure 1. Both subgoals can be proved easily by
unpacking the definition of rec_add. Our final command is to apply the simp
proof method to all remaining subgoals, making use of the definition of rec_add.
The simp method utilises a large number of built in simplification rules, as well
as those rules added to it by [simp] flags in an attempt to prove the current
goal(s). Here it succeeds. Both commands by and apply apply the proof methods
indicated; the di↵erence is that by tells Isabelle we have finished the proof – it is
a streamlining of an apply command followed by the qed end-of-proof command.

Figure 1. The Isabelle output after applying the induction proof method.

Next, we will show that rec_add terminates on all inputs. This proceeds in a
more complex fashion. First, we establish that the unpacked definition terminates
(which requires a complete sub-proof), and then apply the definition to show that
rec_add terminates.

lemma [simp] : "terminate rec_add [m, n]"

proof -

have "terminate (Pr 1 (id 1 0) (Cn 3 s [(id 3 2)])) ([m]@[n])"

proof

show "terminate (id 1 0) [m]" by (simp add: termi_id)

show "length [m] = 1" by simp

{fix y assume "y < n"

have "terminate (Cn 3 s [id 3 2]) [m, y, rec_exec (Pr 1 (id 1 0) (Cn

3 s [id 3 2])) [m, y]]"

proof

show "length [m, y, rec_exec (Pr 1 (id 1 0) (Cn 3 s [id 3 2])) [m,

y]] = 3" by simp
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have "terminate (id 3 2) [m, y, rec_exec (Pr 1 (id 1 0) (Cn 3 s [id

3 2])) [m, y]]"

by (simp add: termi_id)

thus "8 g2set [id 3 2]. terminate g [m, y, rec_exec (Pr 1 (id 1 0)

(Cn 3 s [id 3 2])) [m, y]]"

by simp

show "terminate s (map (�g. rec_exec g [m, y, rec_exec (Pr 1 (id 1

0) (Cn 3 s [id 3 2])) [m, y]]) [id 3 2])"

by (simp add: termi_s)

qed

}
hence "8 y < n. terminate (Cn 3 s [(id 3 2)])

([m, y, rec_exec (Pr 1 (id 1 0) (Cn 3 s [(id 3 2)])) [m, y]])"

by blast

thus "8 y<n. terminate (Cn 3 s [recf.id 3 2])

([m] @ [y, rec_exec (Pr 1 (recf.id 1 0) (Cn 3 s [recf.id 3

2])) ([m] @ [y])])" by simp

qed

thus ?thesis by (simp add: rec_add_def)

qed

This proof uses a di↵erent style to the previous proof – the Isar mark up
language. Isar is designed to reflect the style of informal proofs, and is intended
to be fairly human readable. Commands such as hence, show and thus have
strict meanings within the system, which are similar to their natural language
meanings.

In the first step of the proof, we claim that Pr1(id10, Cn3(s, [id32])) (our ad-
dition function) halts on the arbitrary inputs m,n. This is established inside
the sub-proof. There we first show two simple facts – that the identity function
terminates on [m] and that [m] is a list of length 1. Next, we must establish the
following goal:

8y < n(terminate Cn3(s, [id32])([m, y, Pr1(id10, Cn3(s, [id32]))([m, y]))).

This establishes termination for the recursive cases of the addition function. We
prove this statement by fixing an arbitrary y < n and showing that it is true
for that y. This requires another sub-proof, this time for the termination of
Cn3(s, [id32]). There are three goals to achieve: First that the correct number of
arguments is supplied (i.e. the list is of length 3), second that id32 terminates on
a list of length 3 and third that the successor function terminates on a list of
length 1. Each is a straightforward unpacking of definitions, achieved by simp.

Having established that Pr1(id10, Cn3(s, [id32])) terminates on arbitrary in-
puts m,n, we show our thesis (namely, that rec_add terminates on arbitrary
m,n) by applying the definition of rec_add. The command qed indicates the end
of a (successful) proof.
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5 Formalising the halting problem and its undecidability

In [34] a detailed mechanised proof of the undecidability of the halting problem,
including proofs of correctness for all programs used, is given. The proof uses the
Turing machine model of computation and follows, in broad strokes, the classical
proof. The assumption is made of the existence of a Turing program H which
can solve the halting problem. Specifically, given an encoding hM,ni of a Turing
machine M and input n, H outputs 0 if M halts on n and 1 otherwise.

The following modification D of H is then constructed: DhMi = 1 if MhMi
halts, and DhMi = 1, otherwise, and a contradiction is reached by computing:
DhDi = 1 i↵ DhDi halts.

Any formalisation requires a number of aspects in the proof to be made ex-
plicit. For example, the modification D must be constructed, and the changes to
H shown to be correct. Furthermore, explicit notions of halting and correctness
must be defined. Since proofs are computer checked, special care must be taken
with the implementation of halting.

In what follows we give an overview of the formal proof provided in [34] of
the undecidability of the halting problem. The formalisation of Turing machines
uses a two-way infinite single tape Turing machine in which tape cells can be in
one of two states – blank or occupied. The tape is represented by a pair (l, r)
of lists, with l representing the cells to the left of the read/write head and r
the cell being read and those to the right of it. Five actions are available; write
blank, write occupied, move left, move right and do nothing. A Turing program
is simply a list of pairs of actions and natural numbers representing states – the
order of the pairs encodes which instruction maps to which state and input. An
example program from [34] follows:

dither := [

read Bkz }| {
(WBk, 1),

read Ocz }| {
(R, 2)| {z }

state 1 (start)

, (L, 1), (L, 0)| {z }
state 2

]

The program begins in state 1. If it reads a blank cell, it writes a blank cell and
goes to state 1. If it reads an occupied cell, it moves right and goes to state 2.
In state 2, it moves left, returning to state one if it saw a blank cell and going to
state 0 (the halting state) if it saw an occupied cell. Hence this program halts
on a tape containing two occupied cells, and loops indefinitely on any tape with
fewer such cells.

In order to ease construction of programs, a sequential composition of Turing
programs is introduced. Essentially, this modifies the programs by increasing the
state numbers of any subsequent programs and changing the halting state to the
start state of each next program. This composition is used to combine three
Turing programs: a copy program (to copy a machine’s code so it can read it),
the supposed program to solve the halting problem (H above) and a program to
loop infinitely in certain cases (the “dither” program). This result is the machine
D from above. Both the copying program and dither must be proved correct. We
will outline how this proceeds for dither.
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Correctness of a Turing program is established through the use of Hoare
triples. Essentially, the triple {P}p{Q} indicates that program p run on a tape
satisfying P will result in a tape satisfying Q. We can also write {P}p " to
indicate that p run on a tape satisfying P will never halt. The program dither
should satisfy the triples

{�tp.9k.tp = (Bkk, h1i)} dither {�tp.9k.tp = (Bkk, h1i)}
{�tp.9k.tp = (Bkk, h0i)} dither "

if it is to match the description above. The first statement can be established
in Isabelle by calculation; provided a tape matching the first condition, run the
dither program and see what happens. Due to the design of the implementa-
tion, this is straightforward and very easily automated. A proof of the second
statement clearly cannot proceed in the same manner – running dither on such a
tape should result in an infinite loop, a phenomenon which will a↵ect any Isabelle
simulation of the machine. Instead, the second statement can be established by
an induction on the number of steps performed, starting with the given input
tape.

Having established the correctness of copy and dither, one can proceed to
prove the undecidability of the halting problem, following the standard method.
Here a definition of the halting problem must be introduced. The property of a
Turing machine p halting on an input n is defined using Hoare triples as follows:5

halts p n := {�tp.tp = ([], hni)} p {�tp.9k,m, l.tp = (Bkk, hmi@Bkl)}.

We then assume that a machine H exists which solves the halting problem.
Formally within Isabelle this is captured by the following Hoare triples:

halts M n ! {�tp.tp = ([Bk], h(hMi, n)i)} H {�tp.9k.tp = (Bkk, h0i)}
¬halts M n ! {�tp.tp = ([Bk], h(hMi, n)i)} H {�tp.9k.tp = (Bkk, h1i)}.

Then we define the diagonalising Turing machine contra by

contra := copy;H; dither

where ; indicates the sequential composition of the programs. The contradiction
is now reached through reasoning established from the proofs of correctness for
copy and dither, and the Hoare triple assumptions for H.

6 Correctness vs. Termination in Isabelle

In this section, we discuss some relations between the undecidable properties of
correctness and termination of functions in Isabelle. As a formal proof-assistant,

5 In Isabelle, the @ symbol indicates concatenation of lists. Also note that this defini-
tion of halts assumes functions with some number of inputs and a single output.
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Isabelle is charged with being able to prove both these properties (or their nega-
tions) for arbitrary functions. A partially computable function is correct if it
gives the expected (with respect to some specifications) output on every input.
Correctness is a relative notion – a function may be syntactically fine, but if it
was intended to do multiplication and actually does division, it is not correct.
In contrast, the notion of termination of a function is absolute. The evaluation
of a partially computable function f terminates on input x is equivalent to the
mathematical property of f being defined on x. The two terminologies reflect
the dual origins of computability theory: partially recursive functions are exactly
the partially computable functions, i.e. the partial functions computed by Turing
machines. Correctness is more undecidable than termination, see [16].

Proofs of correctness and termination form a critical part of computability
theory and any formalisation of computability theory theorems cannot avoid
such proofs. For this reason, any implementation of partial recursive functions
within Isabelle needs to be able to handle correctness and termination. Clearly,
as we have discussed above, this presents a challenge. All results discussed in
this section have been generated from within the Isabelle system.

Suppose we have a unary partially computable function f (x and n are nat-
urals) and define the following partial function:

g(x, n) =

(
f(x), if n > 0,

0, otherwise.

Mathematically, for n > 0, g(x, n) is defined if and only if f(x) is defined.
Since g is defined for all values of x when n = 0, we have dom(g) = {(x, 0) | x 2
N} [ {(x, n+ 1) | x 2 dom(f) ^ n 2 N}.

In practice, it is possible that n is the output of some other function
which tests properties of x. For example, we might take n = h(x). The re-
sulting function t(x) = g(x, h(x)) has a domain which requires testing of h:
dom(t) = {x 2 N | x 2 dom(h) ^ (h(x) > 0 ! x 2 dom(f))}.

If h is total and has the property that h(x) > 0 ! x 2 dom(f) then this
gives a computable restriction of f ; in those cases where f(x) is undefined (and
possibly in some other cases), g(x, h(x)) = 0 since h(x) = 0. This can be useful
for working with f without worrying about incomputability. Of course, it may
be prudent to assume that f(x) 6= 0 for all x, so that we can identify when a
potentially incomputable argument has been supplied.

Let us consider how g could be constructed in Isabelle, using the implemen-
tation of partial recursive functions from [34]. For any definition of g we should
be able (in principle) to establish three facts. First, that it meets the definition
of g (and thereby is correct). Second, specifically that it returns 0 when n = 0.
Third, that in the case n = 0 it terminates. This third requirement may seem
superfluous at first – if the function returns 0 then surely it terminates – but as
we will see soon, the definitions for recursive functions in this interpretation do
not always result in termination behaving as expected.

Arguably the most obvious implementation of g is primitive recursion on n.
Indeed, if we define g this way we are able to establish all three requirements in
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Isabelle with no di�culty. Instead, let us consider a function which we can prove
“correct” in some sense, but which does not terminate.

Take rec_times to be a computable function for multiplication, and rec_sg

to be the signature function: signature(0) = 0, signature(x) = 1 if x > 0.
These functions are defined as recursive functions using the implementation

from [34]. The following lemmata show that rec_times and are correctly defined.

lemma "rec_exec rec_times [x,y] = x*y" using rec_times_def by simp

lemma "rec_exec rec_sg [x] = (if x > 0 then 1 else 0)" using rec_sg_def

by simp

Here we notice an interesting interplay between object and meta languages.
The left-hand side of each lemma references a formally defined recursive func-
tion, using [34]’s implementation in Isabelle. For example, rec_exec rec_times

[x,y] = x*y evaluates the formal function rec_times on input [x,y]. The right-
hand side utilises built-in Isabelle functions, such as multiplication *, if then

statements and greater-than >. These can be seen as meta-language operations,
with rec_times and rec_sg in the object language. An interesting observation is
that the Isabelle language is meta with respect to these functions. However, as
part of a formal system, it would generally be regarded as the object language.
The two lemmata show correctness of the functions, which follows from their
definitions (suppressed for clarity) using the simp proof method.

Now consider the following function intended to implement g.

definition "g2 F = Cn 2 rec_times [Cn 2 F [id 2 0], Cn 2 rec_sg [id 2 1]]"

In this definition, we simply multiply F (x) by signature(n). If n > 0 then the
answer will be F (x) and if n = 0 the answer will be F (x)⇥ 0. In mathematical
notation, we have

g2(F ) := Cn2(⇥, [Cn2(F, [id20]), Cn2(signature, [id21])]).

Expanding out the compositions, we have simply g2(F )(x, n) = F (x) ⇥
signature(n). Indeed, we can establish this in Isabelle by unpacking the defi-
nitions.

lemma "rec_exec (g2 F) [x, n] = (rec_exec F [x])*(rec_exec rec_sg [n])"

by(simp add:g2_def)

The reader familiar with partial recursive functions, however, should have
noted an important problem with g2, if it is to implement g. As defined,
g(F )(x, 0) = 0, regardless of whether or not F (x) is defined. However F (x)⇥0 =
0 only if F (x) is defined. Specifically, for this construction we have dom(g2) =
{(x, n) | x 2 dom(F )}, which di↵ers from the domain for g. Hence g2 does not
implement g. Worryingly, we can still prove the following lemma in Isabelle.

lemma "rec_exec (g2 F) [x, n] = (if n>0 then rec_exec F [x] else 0)"

by (simp add: g2_def)

Once again this lemma follows by a simple unpacking of the definition. Notice
that the else condition does not depend upon F (x) being defined. According to
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this lemma, if n = 0 then g2(F )(x, 0) = 0 for arbitrary F, x. Indeed, we can be
more specific.

lemma "rec_exec (g2 F) [x, 0] = 0"

by(simp add:g2_def)

Does this then mean that this implementation of partial recursive functions in
Isabelle is flawed? Arguably, yes. We have been able to show an incorrect lemma,
or at least a lemma which is incorrect given the natural understanding of the
rec_exec command. However we have not yet shown all the three facts needed
to be established. And it is with termination that we (as might be expected)
encounter problems.

lemma "terminate (g2 F) [x, 0]"

apply(simp add:g2_def)

proof

show "length [x, 0] = 2" by simp

show "terminate rec_times (map (�g. rec_exec g [x, 0]) [Cn 2 F [id 2 0],

Cn 2 rec_sg [id 2 (Suc 0)]])" by simp

show "8 g2set [Cn 2 F [id 2 0], Cn 2 rec_sg [id 2 (Suc 0)]]. terminate g

[x, 0]"

proof -

have "terminate (Cn 2 rec_sg [id 2 (Suc 0)]) [x, 0]" using termi_id

termi_cn by simp

moreover have "terminate (Cn 2 F [id 2 0]) [x, 0]"

proof

show "length [x, 0] = 2" by simp

show "8 g2set [id 2 0]. terminate g [x, 0]" using termi_id by simp

show "terminate F (map (�g. rec_exec g [x, 0]) [id 2 0])" sorry

qed

ultimately show ?thesis by simp

qed

oops

First we establish that the length of input is correct. We second show that
rec_times terminates on the required inputs. Decoded, this second statement
seems to be of the form terminate F (x) ⇥ signature(n). In fact it is slightly
more subtle. We are asked to show that rec_times terminates on F (x) and
signature(0), but an inherent assumption in the Isabelle system is that these
are both defined natural numbers; that the inputs are in a correct format. Since
rec_times is a total function, we are able to prove this statement.

Finally, we are required to establish that both Cn2(F, [id20])(x, 0)
and Cn2(signature, [id21])(x, 0) terminate. The second claim is simple;
Cn2(signature, [id21])(x, 0) is a primitive recursive function and so will terminate
– an unpacking of definitions will establish this. The first claim is impossible to
establish however. We have Cn2(F, [id20](x, 0) = F (x) and so to establish that
Cn2(F, [id20](x, 0) terminates we must establish first that F (x) terminates (that
is, F (x) is defined).

Since F is arbitrary, we cannot establish termination for g2 on (x, 0). Hence
g2 does not implement g correctly. The problem of incorrectly establishing the
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correctness of g2 can then be explained by requiring that correctness should
include termination. The implementation of partial recursive functions by [34]
has split evaluation of functions from their termination as a way to overcome
termination issues within Isabelle. This has come at the cost of clarity in the
implementation, and a departure from the standard definition of partial recursive
functions, where termination and evaluation are inextricably linked.

6.1 Reuniting evaluation and termination

In standard definitions of partial recursive functions, evaluation of the func-
tion is explicitly linked to the termination of any functions involved. For ex-
ample, in [12] the first mention of each function type specifies its domain.
Functions are built up recursively, and, for example, a function ✓ obtained
through composition ✓(x1, . . . , xn) =  (�1(x1, . . . , xn), . . . ,�m(x1, . . . , xm)) has
the domain defined as dom(✓) = {(x1, . . . , xn) 2 Nn | (x1, . . . , xn) 2Tm

i=1 dom(�i) and (�1(x1, . . . , xn), . . . ,�m(x1, . . . , xn)) 2 dom( )}.
This explicit mentioning of domain contrasts with [34]’s implementation.

In their implementation, the function executions are defined as having N⇤ =
N [ N2 [ N3 [ . . . as their domain. That is, Isabelle will happily (attempt to)
evaluate a function on any input, regardless of whether it is in the domain of
that function. Restrictions to domain, and to correct arity of arguments, are
implemented entirely within the termination definitions.6

Partial recursive functions have domains built into them directly. Divorcing
domains from the function definitions – motivated by the wish to increase un-
derstandability – is not a correct solution. Creating an implementation of partial
recursive functions in Isabelle in which termination and evaluation are presented
at once would be di�cult. Isabelle requires proofs of termination for certain func-
tions, which is likely part of the reason [34] decided to split the definitions. Proofs
involving combined definitions are likely to be much messier than the current
model, since domains must explicitly be dealt with. From a formal perspective,
the separation allows for separate proofs, which are more easily digested. How-
ever, it would be enough for a combined model to establish equivalence with
the [34] model. If we could implement partial recursive functions in Isabelle,
using a model defined as closely to a standard pen-and-paper definition (such as
that provided by [12]) as possible, we would have greater confidence that that
model adequately represents the mathematical notion of partial recursive func-
tion. Subsequently establishing the equivalence of this model with that in [34]
would allow the “importing” of results proved by [34]. This solution would mean
greater ease of formal proofs from the split model while maintaining connection
to the original model of partial recursive functions.

A tempting diversion in implementing partial recursive functions is ensuring
they can be evaluated by the proof system. This would mean the proof system

6 Of course it should be noted that if an input is not within that domain of a function,
Isabelle’s attempt to evaluate is likely not to terminate. However, consequential
strange behaviours can be observed, such as in g2.
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acting as an interpreter, and actually running the programs specified by the
functions. When we evaluate rec_add, actual recursive calls are made to find the
result.

This would be a very interesting approach – enlisting a modern computer
to simulate a decades old model of computation. However, from a standpoint
of formal proof, it is unnecessary. Proofs involving partial recursive functions at
most require unpacking general definitions – explicit evaluation of functions is
rarely required. That is, while evaluating addition through recursive calls may
be fun, it is highly unlikely that any proofs will require it; since proofs generally
deal with the abstract, we are less concerned with what 1 + 2 is and more with
how x + y works. Due to this, it would be acceptable for an implementation
of partial recursive functions to combine “evaluation” and termination at the
expense of the system actually being able to evaluate the functions.

7 ‘Symptoms’ of Undecidability in Isabelle

The problems in [34]’s implementation give one example of how undecidability
impacts Isabelle. The careful nature in which the model is constructed, and the
split of evaluation from termination are direct consequences of the undecidability
of the halting problem. The sledgehammer feature, which searches for proofs to
given claims, has a time restriction built in, again to combat undecidability.

Isabelle is a programming language, so its programs may terminate or not.
When dealing with models of computation, what happens when Isabelle attempts
to simulate such programs?

Isabelle has the ability to evaluate functions within the system. The user
can type value "1+2" and Isabelle’s output will display the answer. For basic
functions this acts as a calculator, and for functions defined in Isabelle it can
be used to ensure they behave as expected. It is interesting to see how Isabelle
handles non-terminating computations, since identifying them is undecidable.

Consider the partial recursive function defined byMn1(+)(x) = µ{y | x+y =
0}. It is obvious that Mn1(+)(0) = 0 and Mn1(+)(x) = 1 for x > 0.

How then will Isabelle evaluate value "rec_exec (Mn 1 rec_add) [1]"? In
fact Isabelle refuses to try, throwing instead a well-sortedness error. This makes
sense. The Mn function requires finding the least element of a possibly empty set.
Since Isabelle has no guarantee the set is non-empty, it refuses to evaluate.

Isabelle’s cautious nature comes at a cost, failing to evaluate any recursive
function. The addition function is a recursive function and its definition does not
use minimisation. This puts it into the class of computable functions. If Isabelle
were to attempt to calculate value "rec_exec rec_add [1, 1]", it would succeed.
However, Isabelle again refuses to try, throwing the same well-sortedness error.
Even a proof of general termination for rec_add does not help. Isabelle notices
that the rec_exec definition incorporates a minimisation clause, and so refuses
to have anything to do with evaluation. It even refuses to attempt evaluation of
value "rec_exec z [0]".
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Yet all is not lost. We can still prove rec_exec rec_add [1, 1] = 2. In fact,
this is almost trivial, since we have proved already the general statement that
rec_exec rec_add [m, n] = m + n, and m+n (the Isabelle function) can be cal-
culated by Isabelle. This leads to an interesting contrast: Isabelle will not attempt
to evaluate partial recursive functions, but is happy to attempt to prove a claim
made by the user. While both operations involve skirting close to undefined
functions, in proofs Isabelle can o✏oad much responsibility to the user. For our
original addition minimisation function Mn1(+), we can obviously not prove
an output for any input other than 0, but rec_exec (Mn 1 rec_add) [0] = 0 is
provable in Isabelle.

8 Concluding Remarks

The nature of computability makes automated proofs a particularly interesting
area. The landmark results of Gödel and Turing still loom large. Where they were
discussing hypothetical computation models, we are using equivalent models to
prove their own limitations. Yet we are still able to carve out larger sections of
what can be achieved. To avoid the inherent complications, novel approaches
need to be adopted, and the original proofs modified to achieve the required
goals, given the abilities of modern proof-assistants (see, for example, [22]).

The formalisation of recursive functions we have considered is a good example
of this. The model, though very similar, is not the traditional partial recursive
functions as termination and evaluation have been separated. It would be nice if
a combined model of partial recursive functions could be shown, within Isabelle,
to be equivalent to the model provided in [34].

Great progress has been made in both formal proving and developing com-
putability theory. Unexpectedly, the use of proof-assistants brings new connec-
tions between incompleteness and undecidability into sharp focus, so formal
proving can contribute to semantics too. We expect that the role of proof-
assistants for the working mathematician will steadily increase.
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