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Abstract: Little effort has been devoted to studying generalised notions or models1

of (un)predictability, yet is an important concept throughout physics and plays a central2

role in quantum information theory, where key results rely on the supposed inherent3

unpredictability of measurement outcomes. In this paper we continue the programme started4

in [1] developing a general, non-probabilistic model of (un)predictability in physics. We5

present a more refined model that is capable of studying different degrees of “relativised”6

unpredictability. This model is based on the ability for an agent, acting via uniform,7

effective means, to predict correctly and reproducibly the outcome of an experiment using8

finite information extracted from the environment. We use this model to study further9

the degree of unpredictability certified by different quantum phenomena, showing that10

quantum complementarity guarantees a form of relativised unpredictability that is weaker11

than that guaranteed by Kochen-Specker-type value indefiniteness. We exemplify further the12

difference between certification by complementarity and value indefiniteness by showing13

that, unlike value indefiniteness, complementarity is compatible with the production of14

computable sequences of bits.15

Keywords: prediction; unpredictability; randomness; complementarity16
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1. Introduction17

Many physical processes and phenomena are intuitively thought of as unpredictable: the roll of a18

die, the evolution of weather systems, and the outcomes of quantum measurements, to mention a few.19

While ad hoc definitions of unpredictability may exist within certain domains, little work has been done20

towards developing a more general understanding of the concept. Although domain specific notions21

of unpredictability may help describe and categorise phenomena within the domain, the concept of22

unpredictability has a much more central and important role in quantum information theory.23

Many of the advantages promised by quantum information theory and cryptography rely critically24

on the belief that the outcomes of quantum measurements are intrinsically unpredictable [2,3]. This25

belief underlies the use of quantum random number generators to produce “quantum random” sequences26

that are truly unpredictable (unlike pseudo-randomness) [4] and the generation of cryptographic keys27

unpredictable to any adversary [3]. Such claims of quantum unpredictability are generally based28

on deeper theoretical results—such as the Kochen-Specker [5] and Bell [6] theorems, or quantum29

complementarity—but nonetheless remain informal intuition.30

The quantum cryptography community has used a probability theoretic approach to try and make31

use of, and quantify the degree of unpredictability in quantum information theoretical situations, in32

particular by following the cryptographic paradigm of adversaries with limited side-information [7].33

This approach, while suitable in such cryptographic situations precisely because of its epistemic34

nature [8], relies on the probabilistic formalism of quantum mechanics and the subsequently assumed35

unpredictability. In order to fully understand and study the degree of quantum unpredictability and36

randomness, it is instead crucial to have more general models of unpredictability to apply.37

Historically, little work has been devoted to such generalised notions of unpredictability. In [1] we38

discussed in some detail the most notable approaches, in particular those of Popper [9], Wolpert [10],39

and Eagle [11]. In response to these approaches, we outlined a new model based around the ability for a40

predicting agent, acting via uniform, effective means, to predict correctly and reproducibly the outcome41

of an experiment using some finite information the agent extracts from the “environment” as input.42

This model allowed us to consider a specific, ontic, form of unpredictability which was particularly43

suited for analysing the type of unpredictability quantum mechanics claims to provide. However, this44

strong form of unpredictability is too strong in many cases and failed to capture the possible different45

degrees of unpredictability: what is predictable for one agent may not be for another with different46

capabilities.47

In this paper we refine and improve this model of (un)predictability, providing a more nuanced,48

relativised notion of unpredictability that can take into account the epistemic limits of an observer,49

something crucial, for example, in chaotic systems [12]. This also provides the ability to look at the50

degree of unpredictability guaranteed by different possible origins of quantum unpredictability. We51

examine one such case—that of quantum complementarity—in detail, and show that it provides a weaker52

form of unpredictability than that arising from Kochen-Specker-type value indefiniteness as discussed53

in [1]54

2. Relativised model of predictability55
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The model of (un)predictability that we proposed in [1] is based around the ability of an agent to, in56

principle, predict the outcome of a physical experiment. By using computability theory—motivated57

by the Church-Turing thesis—to provide a universal framework in which prediction can occur,58

this information-theoretical approach allows different physical systems and theories to be uniformly59

analysed.60

Here we refine and extend this model to be able to relativise it with respect to the means/resources of61

the predicting agent. This gives our model an epistemic element, where our previous and more objective62

model can be obtained as the limit case. In this framework we can consider the predictive capabilities63

of an agent with limited capacities imposed by practical limitations, or under the constraints of physical64

hypotheses restricting such abilities.65

Before we proceed to present our model in detail, we will briefly outline the key elements comprising66

it.67

1. The specification of an experiment E for which the outcome must be predicted.68

2. A predicting agent or “predictor”, which must predict the outcome of the experiment. We model69

this as an effectively computable function, a choice which we will justify further.70

3. An extractor ⇠ is a physical device the agent uses to (uniformly) extract information pertinent to71

prediction that may be outside the scope of the experimental specification E. This could be, for72

example, the time, measurement of some parameter, iteration of the experiment, etc.73

4. A prediction made by the agent with access to a set ⌅ of extractors. The set of extractors ⌅ provides74

the relativisation of the model.75

This model is explicitly a non-probabilistic one, a fact that may seem overly restrictive given that76

highly probable events seem predictable. However, the uncertainty present in “high probabilities”77

represents an important latent unpredictability in such processes, and certainty is needed if predictions78

are to be related to definite properties of physical systems [13], as in quantum scenarios, for example.79

It should be noted that our model does not assess the ability to make statistical predictions about80

physical processes (as one might about the throw of a dice, for example)—as probabilistic models81

might—but rather the ability to predict precise measurement outcomes.82

We will next elaborate on the individual aspects of the model.83

2.1. Predictability model84

Experimental specification. An experiment is a finite specification for which the outcome is to85

be predicted. We restrict ourselves to the case where the result of the experiment, i.e. the value to be86

predicted, is a single bit: 0 or 1. However, this can readily be generalised for any finite outcome. On the87

other hand it does not make sense to predict an outcome requiring an infinite description, such as a real88

number, since this can never be measured exactly. In such a case the outcome would be an approximation89

of the real—a rational number, and thus finitely specifiable.90

The experimental specification, being finite, cannot normally specify exactly the required setup91

of the experiment, as a precise description of experimental conditions generally involves real-valued92
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parameters. Rather, it is expressed with finite precision by the experimenter within their limited93

capacities—making use, for example, of the pertinent symmetries to describe the experiment. A94

particular trial of E is associated with the parameter � which fully describes the “state of the universe”95

in which the trial is run. As an example, one could consider E to specify the flipping of a certain coin,96

or it could go further and specify, up to a certain accuracy, the initial dynamical conditions of the coin97

flip. In both cases, � contains further details—such as the exact initial conditions—which could be used98

by an agent in trying to predict the result of E.99

The parameter � will generally1 be “an infinite quantity”—for example, an infinite sequence or a100

real number—structured in an unknown manner. Forcing a specific encoding upon �, such as a real101

number, may impose an inadequate structure (e.g. metric, topological) which is not needed for what102

follows. While � is generally not in its entirety an obtainable quantity, it contains any information that103

may be pertinent to prediction—such as the time at which the experiment takes place, the precise initial104

state, any hidden parameters, etc.—and any predictor can have practical access to a finite amount of this105

information. We can view � as a resource from which one can extract finite information in order to try106

and predict the outcome of the experiment E.107

Predicting agent. The predicting agent (or “predictor”) is, as one might expect, the agent trying to108

predict the outcome of a particular experiment, using potentially some data obtained from the system109

(i.e. from �) to help in the process. Since such an agent should be able to produce a prediction in a finite110

amount of time via some uniform procedure, we need the prediction to be effective.111

Formally, we describe a predicting agent as a computable function P
E

(i.e. an algorithm) which halts112

on every input and outputs either 0,1, or “prediction withheld”. Thus, the agent may refrain from making113

a prediction in some cases if it is not certain of the outcome. P
E

will generally be dependent on E,114

but its definition as an abstract algorithm means it must be able to operate without interacting with the115

subsystem whose behaviour it predicts. This is necessary to avoid the possibility that the predictor affects116

the very outcome it is trying to predict.117

We note finally that the choice of computability as the level of effectivity required can be strengthened118

or weakened, as long as some effectivity is kept. Our choice of computability is motivated by the119

Church-Turing thesis, a rather robust assumption [14].120

Extractor. An extractor is a physically realisable device which a predicting agent can use to extract121

(finite) useful data that may not be a part of the description of E from � to use for prediction—i.e. as122

input to P
E

. In many cases this can be viewed as a measurement instrument, whether it be a ruler, a123

clock, or a more complicated device.124

Formally, an extractor produces a finite string of bits ⇠(�) which can be physically realised without125

altering the system, i.e. passively. In order to be used by P
E

for prediction, ⇠(�) should be finite and126

effectively codable, e.g. as a binary string or a rational number.127

1 If one insists on a discrete or computational universe—whether it be as a “toy” universe, in reality or in virtual
reality—then � could be conceived as a finite quantity. This is, however, the exception, and in the orthodox view of
real physical experiments � would be infinite, even if the prediction itself is discrete or finite, so we will adopt this view
here.
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Prediction. We define now the notion of a correct prediction for a predicting agent having access to128

a fixed (finite or infinite) set ⌅ of extractors.129

Given a particular extractor ⇠, we say the prediction of a run of E with parameter � is correct for ⇠ if130

the output P
E

(⇠(�)) is the same as the outcome of the experiment. That is, it correctly predicts E when131

using information extracted from � by ⇠ as input.132

However, this is not enough to give us a robust definition of predictability, since for any given run133

it could be that we predict correctly by chance. To overcome this possibility, we need to consider the134

behaviour of repeated runs of predictions.135

A repetition procedure for E is an algorithmic procedure for resetting and repeating the experiment136

E. Generally this will be of the form “E is prepared, performed and reset in a specific fashion”. The137

specific procedure is of little importance, but the requirement is needed to ensure the way the experiment138

is repeated cannot give a predicting agent power that should be beyond their capabilities or introduce139

mathematical loopholes by “encoding” the answer in the repetitions; both the prediction and repetition140

should be performed algorithmically.141

We say the predictor P
E

is correct for ⇠ if for any k and any repetition procedure for E (giving142

parameters �1,�2, . . . when E is repeated) there exists an n � k such that after n repetitions of E143

producing the outputs x1, . . . , xn

, the sequence of predictions P
E

(⇠(�1)), . . . , PE

(⇠(�
n

)):144

1. contains k correct predictions,145

2. contains no incorrect prediction; e.g. the remaining n� k predictions are withheld.146

From this notion of correctness we can define predictability both relative to a set of extractors, and in147

a more absolute form.148

Let ⌅ be a set of extractors. An experiment E is predictable for ⌅ if there exists a predictor P
E

and149

an extractor ⇠ 2 ⌅ such that P
E

is correct for ⇠. Otherwise, it is unpredictable for ⌅.150

This means that P
E

has access to an extractor ⇠ 2 ⌅ which, when using this extractor to provide151

input to P
E

, can be made to give arbitrarily many correct predictions by repeating E enough (but finitely152

many) times, without ever giving an incorrect prediction.153

The more objective notion proposed in [1] can be recovered by considering all possible extractors.154

Specifically, an experiment is (simply) predictable if there exists a predictor P
E

and an extractor ⇠ such155

that P
E

is correct for ⇠. Otherwise, it is (simply) unpredictable.156

The outcome x of an single trial of the experiment E performed with parameter � is predictable (for157

⌅) if E is predictable (for ⌅) and P
E

(⇠(�)) = x. Otherwise, it is unpredictable (for ⌅). We emphasise158

here that the predictability of the result of a single trial is predictability with certainty.159

2.2. Relativisation160

While the notion of simple predictability provides a very strong notion of unpredictability—one that161

seems to correspond to what is often meant in the context of quantum measurements [1]—in some162

physical situations, particularly in classical physics, our inability to predict would seem to be linked to163

our epistemic lack of information, often due to measurement. Put differently, unpredictability is a result164
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of only having access to a set ⌅ of extractors of limited power. Our relativised model of prediction165

attempts to capture this, defining predictability relative to a given set of extractors ⌅.166

2.2.1. Specifying the set of extractors ⌅167

In defining this notion, we deliberately avoided saying anything about how ⌅ should be specified.168

Here we outline two possible ways this can be done.169

The simplest, but most restrictive, way would be to explicitly specify the set of extractors. As an170

example, let us consider the experiment of firing a cannonball from a cannon and the task of predicting171

where it will land (assume for now that the muzzle velocity is known and independent of firing angle).172

Clearly, the position will depend on the angle the cannonball is fired at. Then, if we are limited to173

measuring this with a ruler, we can consider, for example, the set of extractors174

⌅ = {⇠ | ⇠(�) = (x, y) where x and y are the muzzle position to an accuracy of 1cm}

and then consider predictability with respect to this set ⌅. (For example, by using trigonometry to175

calculate the angle of firing, and then where the cannonball will land.)176

Often it is unrealistic to characterise completely the set of extractors available to an agent in this177

way—think about a standard laboratory full of measuring devices that can be used in various ways.178

Furthermore, such devices might be able to measure properties indirectly, so we might not be able179

to characterise the set ⌅ so naively. Nonetheless, this can allow simple consideration and analysis of180

predictability in various situations, such as under-sensitivity to initial conditions.181

A more general approach, although often requiring further assumptions, is to limit the “information182

content” of extractors. This avoids the difficulty of having to explicitly specify ⌅. Continuing with the183

same example as before, we could require that no extractor ⇠ 2 ⌅ can allow us to know the firing angle184

better than 1�. This circumvents any problems raised by the possibility of indirect measurement, but of185

course requires us to have faith in the assumption that this is indeed the case; it could be possible that we186

can extract the angle better than this, but we simply don’t know how to do it with our equipment. (This187

would not be a first in science!) Nonetheless, this approach captures well the epistemic position of the188

predicting agent.189

Let us formalise this more rigorously. We hypothesise that we cannot do any better than a hypothetical190

extractor ⇠0 extracting the desired physical quantity. Then we characterise ⌅ by asserting: for all ⇠ 2 ⌅191

there is no computable function f such that for every parameter �, f(⇠(�)) is more accurate than ⇠0.192

Obviously, the evaluation of “more accurate” requires a (computable) metric on the physical quantity193

extracted, something not unreasonable physically given that observables tend to be measured as rational194

numbers as approximations of reals [15].195

This general approach would need to be applied on a case by case basis, given assumptions about196

the capabilities available to the predicting agent. Assumptions have to be carefully justified and, ideally,197

subject themselves to experimental verification.198

Either of these approaches, and perhaps others, can be used with our relativised model of prediction.199

In any such case of relativisation, one would need to argue that the set ⌅ unpredictability is proven for is200

relevant physically. This is unavoidable for any epistemic model of prediction.201
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2.2.2. A detailed example202

Let us illustrate the use of relativised unpredictability with a more interesting example of an203

experiment which is predictable, but its intuitive unpredictability is well captured by the notion of204

relativised unpredictability. In particular, let us consider a simple chaotic dynamical system. Chaos is205

often considered to be a form of unpredictability, and is characterised by sensitivity to initial conditions206

and the mixing of nearby dynamical trajectories [12]. However, chaos is, formally, an asymptotic207

property [16], and we will see that as a result the unpredictability of chaotic systems is not so simple as208

might be initially suspected.209

For simplicity, we will take the example of the dyadic map, i.e. the operation on infinite sequences210

defined by d(x1x2x3 . . . ) = x2x3 . . . , as in [1]. We work with this example since it is mathematically211

clear and simple, and is an archetypical example of a chaotic system, being topologically conjugate212

to many other well-known systems [17]. However, the analysis could equally apply to more familiar213

(continuous) chaotic physical dynamics, such as that of a double pendulum.214

Let us consider the hypothetical experiment E
k

(for fixed k � 1) which involves iterating the dyadic215

map k times (i.e. dk) on an arbitrary “seed” x = x1x2 . . . . The outcome of the experiment is then taken216

to be the first bit of the resulting sequence dk(x) = x
k+1xk+2 . . . , i.e. x

k+1. This corresponds to letting217

the system evolve for some fixed time k before measuring the result.218

While the shift d (and hence dk) is chaotic and generally considered to be unpredictable, it is clearly219

simply predictable if we have an extractor that can “see” (or measure) more than k bits of the seed. That220

is, take the extractor ⇠
k

(�
x

) = x
k+1 which clearly extracts only finite information, and the identity Turing221

machine I as P
Ek

so that, for any trial of E
k

with parameter �
x

we have P
Ek
(⇠

k

(�
x

)) = I(x
k+1) = x

k+1,222

which is precisely the result of the experiment.223

On the other hand, if we consider that there is some limit l on the “precision” of measurement of x224

that we can perform, the experiment is unpredictable relative to this limited set of extractors ⌅
l

defined225

such that for every sequence x and every computable function f there exists � such that for all j > l,226

f(⇠(�)) 6= x
j

. It is clear that for l = k, given the limited precision of measurements assumption,227

the experiment E
k

is unpredictable for ⌅
k

. Indeed, if this were not the case, the pair (⇠, P
Ek
) allowing228

prediction would make arbitrarily many correct predictions, thus contradicting the assumption on limited229

precision of measurements.230

This example may appear somewhat artificial, but this is not necessarily so. If one considers the more231

physical example of a double pendulum, as mentioned earlier, one can let it evolve for a fixed time t and232

attempt to predict its final position (e.g. above or below the horizontal plane) given a set limit l on the233

precision of any measurement of the initial position in phase space. If the time t is very short, we may234

well succeed, but for long t this becomes unpredictable.235

This re-emphasises that chaos is an asymptotic property, occurring only strictly at infinite time. While236

in the limit it indeed seems to correspond well to unpredictability, in finite time the unpredictability of237

chaotic systems is relative: a result of our limits on measurement. Of course, in physical situations such238

limits may be rather fundamental: thermal fluctuation or quantum uncertainty seem to pose very real239

limits on measurement precision [15], although in most situations the limits actually obtained are of a240

far more practical origin.241
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3. Unpredictability in quantum mechanics242

As we discussed in the introduction, the outcomes of individual quantum measurements are generally243

regarded as being inherently unpredictable, a fact that plays an important practical role in quantum244

information theory [18,19]. This unpredictability has many potential origins, of which quantum value245

indefiniteness is perhaps one of the most promising candidates to be used to certify it more formally.246

3.1. Quantum value indefiniteness247

Value indefiniteness is the notion that the outcomes of quantum measurements are not predetermined248

by any function of the observables and their measurement contexts—that there are no hidden variables.249

It is thus a formalised notion of indeterminism, and the measurement of such observables results in an250

outcome not determined before the measurement took place.251

While it is possible to hypothesise value indefiniteness in quantum mechanics [20], its importance252

comes from the fact that it can be proven (for systems represented in dimension three or higher Hilbert253

space) to be true under simple classical hypotheses via the Kochen-Specker theorem [5,21,22]. We will254

not present the formalism of the Kochen-Specker theorem here, but just emphasise that this gives value255

indefiniteness a more solid status than a blind hypothesis in the face of a lack of deterministic explanation256

for quantum phenomena.257

In [1] we used our model to prove that value indefiniteness can indeed be used to explain quantum258

unpredictability. Specifically, we showed that If E is an experiment measuring a quantum value indefinite259

projection observable, then the outcome of a single trial of E is (simply) unpredictable.260

Although value indefiniteness guarantees unpredictability, it relies largely on, and is thus relative to,261

the Kochen-Specker theorem and its hypotheses [5,21,23], which only holds for systems in three or262

more dimensional Hilbert space. It is thus useful to know if any other quantum phenomena can be used263

to certify unpredictability that would be present in two-dimensional systems or in the absence of other264

Kochen-Specker hypotheses, and if so, what degree of unpredictability is guaranteed.265

3.2. Complementarity266

The quantum phenomena of complementarity has also been linked to unpredictability and, contrary to267

the value indefiniteness pinpointed by the Kochen-Specker theorem, is present in all quantum systems.268

By itself quantum complementarity is not a priori incompatible with value definiteness (there exist269

automaton and generalised urn models featuring complementarity but not value indefiniteness [24,25])270

and hence constitutes a weaker hypothesis, even though it is sometimes taken as “evidence” when271

arguing that value indefiniteness is present in all quantum systems.272

It is therefore of interest to see if complementarity alone can guarantee some degree of273

unpredictability, and is an ideal example to apply our model to. This interest is not only theoretical,274

but also practical as some current quantum random generators [4] operate in two-dimensional Hilbert275

space where the Kochen-Specker theorem cannot be used to certify value indefiniteness, and would276

hence seem to (implicitly) rely on complementarity for certification.277
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3.2.1. Quantum complementarity278

Let us first discuss briefly the notion of quantum complementarity, before we proceed to an analysis279

of its predictability.280

The principle of complementarity was originally formulated and promoted by Pauli [26]. It is indeed281

more of a general principle rather than a formal statement about quantum mechanics, and states that282

it is impossible to simultaneously measure formally non-commuting observables, and for this reason283

commutativity is nowadays often synonymous with co-measurability. It is often discussed in the context284

of the position and momentum observables, but it is equally applicable to any other non-commuting285

observables such as spin operators corresponding to different directions, such as S
x

and S
y

, which286

operate in two-dimensional Hilbert space.287

Given a pair of such “complementary” observables and a spin-12 particle, measuring one observable288

alters the state of the particle so that the measurement of the other observable can no longer be performed289

on the original state. Such complementarity is closely related to Heisenberg’s original uncertainty290

principle [27], which postulated that any measurement arrangement for an observable necessarily291

introduced uncertainty into the value of any complementary observable. For example, an apparatus292

used to measure the position of a particle, would necessarily introduce uncertainty in the knowledge293

of the momentum of said particle. This principle and supposed proofs of it have been the subject of294

longstanding (and ongoing) debate [28–30].295

More precise are the formal uncertainty relations due to Robertson [31]—confusingly also often296

referred to as Heisenberg’s uncertainty principle—which state that the standard deviations of the position297

and momentum observables satisfy �
x

�
p

� h̄/2, and give a more general form for any non-commuting298

observables A and B. However, this mathematically only places constraints on the variance of repeated299

measurements of such observables, and does not formally imply that such observables cannot be300

co-measured, let alone have co-existing definite values, as is regularly claimed [32, Ch. 3].301

Nonetheless, complementarity is usually taken to mean the stronger statement that it is impossible302

to simultaneously measure such pairs of observables, and that such measurement of one will result in a303

loss of information relating to the non-measured observable following the measurement. We will take304

this as our basis in formalising complementarity, but we do not claim that such a loss of information305

need be more than epistemic; to deduce more from the uncertainty relations one has to assume quantum306

indeterminism—that is, value indefiniteness.307

3.2.2. Complementarity and value definiteness: a toy configuration308

In order to illustrate that complementarity is not incompatible with value definiteness we briefly309

consider an example of a toy-model of a system that is value definite but exhibits complementarity. This310

model was outlined in [25] and concerns a system modelled as an automaton; a different, but equivalent,311

generalised urn-type model is described in [24].312

Although this example is just a toy model and does not correspond to a complete quantum system,313

it represents well many aspects of quantum logic, and serves to show that complementarity itself is not314

incompatible with value definiteness.315
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The system is modelled as a Mealy automaton A = (S, I, O, �,W ) where S is the set of states, I and316

O the input and output alphabets, respectively, � : S⇥I ! S the transition function and W : S⇥I ! O317

the output function. If one is uncomfortable thinking of a system as an automaton, one can consider the318

system as a black-box, whose internal workings as an automaton are hidden. The state of the system319

thus corresponds to the state s of the automaton, and each input character a 2 I corresponds to a320

measurement, the output of which is W (s, a) and the state of the automaton changes to s0 = �(s, a). To321

give a stronger correspondence to the quantum situation, we demand that repeated measurements of the322

same character a 2 I (i.e. observable) gives the same output: for all s 2 S W (s, a) = W (�(s, a), a). The323

system is clearly value definite, since the output of a measurement is defined prior to any measurement324

being made.325

However, if we have two “measurements” a, b 2 I such that W (s, a) 6= W (�(s, b), a) then the system326

behaves contextually; a and b do not commute. Measuring b changes the state of the system from s to327

s0 = �(s, b), and we lose the ability to know W (s, a).328

3.3. Complementarity and unpredictability329

Complementarity tends to be more of a general principle than a formal statement, hence in order330

to investigate mathematically the degree of unpredictability that complementarity entails we need to331

give complementarity a solid formalism. While several approaches are perhaps possible, following332

our previous discussion we choose a fairly strong form of complementarity and consider it not as an333

absolute impossibility to simultaneously know the values of non-commuting observables, but rather334

as a restriction on our current set of extractors—i.e. using standard quantum measurements and other335

techniques we currently have access to.336

Formally, we say the set of extractors ⌅ is restricted by complementarity if, for any two incompatible337

quantum observables A,B (i.e., [A,B] 6= 0), there does not exist an extractor ⇠ 2 ⌅ and a computable338

function f such that, whenever the value v(A) of the observable A is known2, then for all �, f(⇠(�)) =339

v(B).340

This states that, if we know v(A) we have no way of extracting, directly or indirectly, the value v(B)341

without altering the system. We stress that this doesn’t imply that A and B cannot simultaneously have342

definite values, simply that we cannot know both at once.343

2 We assume for simplicity that the observables A and B have discrete spectra (as for bounded systems), that is, the
eigenvalues are isolated points, and hence the values v(A) and v(B) can be uniquely determined by measurement.
Furthermore, since the choice of units is arbitrary (e.g., we can choose h̄ = 1) one can generally assume that v(A)

and v(B) are rational-valued, and hence can be known ‘exactly’. Even if this were not the case, a finite approximation of
v(A) is sufficient to uniquely identify it, and thus is enough here.

For continuous observables it is obviously impossible to identify precisely v(A) or v(B). Such systems are generally
idealisations, but one can still handle this case by considering observables A

0 and B

0 that measure A and B to some
fixed accuracy. Protection by complementarity may depend on this accuracy. For example, for position and momentum,
one expects complementarity to apply only when the product of accuracies in position and momentum is less than h̄/2

according to the uncertainty relations.
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Let us consider an experiment E
C

that prepares a system in an arbitrary pure state | i, thus giving344

v(P
 

) = 1 for the projection observable P
 

= | ih |, before performing a projective measurement onto345

a state |�i with 0 < h |�i < 1 (thus [P
 

, P
�

] 6= 0) and outputting the resulting bit.346

It is not difficult to see that this experiment is unpredictable relative to an agent whose predicting347

power is restricted by complementarity. More formally, if a set of extractors ⌅ is restricted by348

complementarity, then the experiment E
C

described above is unpredictable for ⌅. For otherwise, there349

would exist an extractor ⇠ 2 ⌅ and a computable predictor P
EC such that, under any repetition procedure350

giving parameters �1,�2, . . . we have P
EC (⇠(�i)) = x

i

for all i, where x
i

is the outcome of the ith351

iteration/trial. But if we take f = P
EC , then the pair (⇠, f) contradicts the restriction by complementarity,352

and hence E
C

is unpredictable for ⌅.353

It is important to note that this result holds regardless of whether the observables measured are value354

definite or not, although the value definite case is of more interest. Indeed, if the observables are value355

indefinite then we are guaranteed unpredictability without assuming restriction by complementarity, and356

hence we gain little extra by considering this situation.357

As a concrete example, consider the preparation of a spin-12 particle, for instance an electron, prepared358

by in a S
z

= +h̄/2 state before measuring the complementary observable 2S
x

/h̄ producing an outcome359

in {�1,+1}. This could, for example, be implemented by a pair of orthogonally aligned Stern-Gerlach360

devices. Next let us assume that the system is indeed value definite. The preparation step means that,361

prior to the trial of the experiment being performed, v(S
z

) is known, and by assumption v(S
x

) exists362

(i.e., is value definite) and is thus “contained” in the parameter �. The assumption that ⌅ is restricted363

by complementarity means that there is no extractor ⇠ 2 ⌅ able to be used by a predictor P
E

giving364

P
E

(⇠(�
i

)) = 2v(S
x

)/h̄ = x
i

, thus giving unpredictability for ⌅.365

As we noted at the start of the section, this is a fairly strong notion of complementarity (although366

not the strongest possible). A weaker option would be to consider only that we cannot directly extract367

the definite values: that is, there is no ⇠ 2 ⌅ such that ⇠(�) = v(S
x

), for all �. However, this does not368

rule out the possibility that there are other extractors allowing us to indirectly measure the definite values369

(unless we take the strong step of assuming ⌅ is closed under composition with computable functions, for370

example). This weaker notion of complementarity would thus seem insufficient to derive unpredictability371

for ⌅, although it would not show predictability either. We would thus, at least for the moment, be left372

unsure about the unpredictability of measurements limited by this weak notion of complementarity.373

4. Unpredictability, computability and complementarity374

In an effort to try and understand exactly how random quantum randomness—the randomness375

generated by measuring unpredictable quantum observables—actually is, we showed in [21] that376

quantum value indefiniteness leads to a strong form of incomputability.3 Since this type of377

incomputability represents a notion of purely algorithmic unpredictability [1], one may be tempted378

3 Technically: A sequence x1x2 . . . is bi-immune if it contains no computable subsequence, that is, no computable function
can compute exactly the values of more than finitely many bits of the sequence.
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to think that this is a result not so much of quantum value indefiniteness, but rather of quantum379

unpredictability.380

In [1], however, we showed that this is not the case: there are unpredictable experiments capable of381

producing both computable and strongly incomputable sequences when repeated ad infinitum. It is thus382

a fortiori true that the same is true for relativised unpredictability, and there is no immediate guarantee383

that measurements of complementary observables must lead to incomputable sequences as is the case384

with value indefiniteness.385

4.1. Incomputability and complementarity386

Even though the (relativised) unpredictability associated with complementary quantum observables387

cannot guarantee incomputability, one may ask whether this complementarity may, with reasonable388

physical assumptions, lead directly to incomputability, much as value indefiniteness does.389

Here we show this not to be true in the strongest possible way. Specifically, we will show how an,390

admittedly toy, (value definite) system exhibiting complementarity (and thus unpredictable relative for391

extractors limited by the complementarity principle) can produce computable sequences when repeated.392

Consider an experiment E
M

involving the prediction of the outcome of measurements on an393

(unknown) Mealy automaton M = (Q,⌃,⇥, �,!), which we can idealise as a black box, with {x, z} 2394

⌃ characters in the input alphabet, output alphabet ⇥ = {0, 1} and satisfying the condition that x and z395

are complementary: that is, for all q 2 Q we have !(q, z) 6= !(�(q, x), z) and !(q, x) 6= !(�(q, z), x).396

This automaton is deliberately specified to resemble measurements on a qubit. This very abstract model397

can be viewed as a toy interpretation of a two-dimensional value definite quantum system, where the398

outcome of measurements are determined by some unknown, hidden Mealy automaton. Since the399

Kochen-Specker theorem does not apply to two-dimensional systems, this value definite toy model poses400

no direct contradiction with quantum mechanics [5], even if it is not intended to be particularly realistic.401

We complete the specification of E
M

by considering a trial of E
M

to be the output on the string xz, that402

is, if the automaton is initially in the state q, the output is !(�(q, x), z), and the final state is �(�(q, x), z).403

This is a clear analogy to the preparation and measurement of a qubit using complementary observables,404

of the type discussed earlier.405

Let us show that E
M

is unpredictable for a set ⌅
C

of extractors that expresses the restriction by406

complementarity present in Mealy automata. In particular, let us consider the set ⌅
C

that, in analogy407

to the restriction by complementarity of two quantum observables defined earlier, is restricted by an408

analogue of complementarity for the inputs x, z 2 ⌃ in the following sense: there is no extractor ⇠ 2 ⌅
C

409

and computable function f such that, if �
M

is the state of a system with Mealy automaton M in a state410

q such that �(q, x) = q (or �(q, z) = q, that is, in an “eigenstate” x or z), then f(⇠(�
M

)) = !(q, z) (or411

f(⇠(�
M

)) = !(q, x)). That is, if M is in an “eigenstate” of x, we cannot extract the output of the input412

z (and similarly for z and x interchanged).413

Let us assume for the sake of contradiction that E
M

is predictable for ⌅
C

: that is, there is a predictor414

P
EM and an extractor ⇠ 2 ⌅

C

such that E
M

is predictable for ⌅
C

. Thus, from the definition of415

predictability, the pair (P
EM , ⇠) must provide infinitely many correct predictions when repeated with the416

following iteration procedure (in analogy to preparing in an x eigenstate): the black box containing M417
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is prepared by inputting “x”, and then the experiment is run and the output recorded. The next repetition418

is performed on the same system, preparing the box once again by inputting “x” and performing the419

experiment. Thus, from the definition of Mealy automata, for each repetition i the automaton M is in420

a state q
i

such that �(q
i

, x) = q
i

before the ith trial is performed. Thus, the output of the ith trial of421

E
M

is precisely !(�(q
i

, x), z) = !(q
i

, z), and for each trial we have P
EM (⇠(�

i

)) = !(q
i

, z), but since422

P
EM is a computable function this predictor/extractor pair contradicts the restriction by this form of423

complementarity of ⌅
C

, and hence we conclude that E
M

is unpredictable for ⌅
C

.424

The main question is thus the (in)computability of sequences produced by the concatenation of425

outputs from infinite repetitions of E
M

. The experiment can be repeated under many different repetition426

scenarios, but the simplest is by performing the experiment again on the same black box (and thus with427

the same automaton) with the final state of M becoming the initial state for the next repetition4. In this428

case, the sequence produced is computable—even cyclic—as a result of the automaton M used. Thus,429

even if this is not the case under all repetition scenarios, we cannot guarantee that the sequence produced430

is incomputable, even though E
M

is unpredictable for ⌅
C

.431

We note that one could easily consider slightly more complicated scenarios where the outcomes432

are controlled not by a Mealy automaton, but an arbitrary computable—or even, in principle,433

incomputable—function; complementarity is agnostic with respect to the computability of the output434

of such an experiment. Such a computable sequence may be obviously computable—e.g. 000 . . . , but435

it could equally be something far less obvious, such as the digits in the binary expansion of ⇡ at prime436

indices, e,g, ⇡2⇡3⇡5⇡7⇡11 . . . . Hence, this scenario cannot be easily ruled out empirically, regardless of437

the computability, that is, low complexity, of the resulting sequences. Further emphasising this, we note438

that computable sequences can also be Borel-normal, as in Champernowne’s constant or (as conjectured)439

⇡, and thus satisfy many statistical properties one would expect of random sequences.440

Our point was not to propose this as a realistic physical model—although it perhaps cannot441

be dismissed so easily—but to illustrate a conceptual possibility. Value indefiniteness rules this442

computability out, but complementarity fails to do the same in spite of its intuitive interpretation as443

a form of quantum uncertainty. At best it can be seen as an epistemic uncertainty, as it at least444

poses a physical barrier to the knowledge of any definite values. The fact that complementarity445

cannot guarantee incomputability is in agreement with the fact that value definite, contextual models446

of quantum mechanics are perfectly possible [1,33]; such models need not contradict any principle of447

complementarity, and can be computable or incomputable.448

5. Summary449

In this paper, following on from previous work in [1], we developed a revised and more nuanced450

formal model of (un)predictability for physical systems. By considering prediction agents with access451

to restricted sets of extractors with which to obtain information for prediction, this model allows various452

intermediate degrees of prediction to be formalised.453

4 Recall that the internal state of M is hidden and not part of the description of EM , so there is no requirement that it be
reset for each repetition.
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Although models of prediction such as this can be applied to arbitrary physical systems, we have454

discussed in detail their utility in helping to understand quantum unpredictability, which plays a key role455

in quantum information and cryptography.456

We showed that, unlike measurements certified by value indefiniteness, those certified by457

complementarity alone are not necessarily simply unpredictable: they are unpredictable relative to the458

ability of the predicting agent to access the values of complementarity observables—a more epistemic,459

relativised notion of predictability. This is a general result about complementarity, not specifically460

in quantum mechanics, and certification by complementarity and value indefiniteness need not be461

mutually exclusive. Indeed, in dimension three and higher Hilbert space, relative to the assumptions462

of the Kochen-Specker theorem [21] one has certification by both properties, value indefiniteness thus463

providing the stronger certification. However, our results are of more importance for two-dimensional464

systems, since although quantum complementarity is present, this does not necessarily lead to value465

indefiniteness. While one may postulate value indefiniteness in such cases as well, this constitutes an466

extra physical assumption, a fact which should not be forgotten [1]. In assessing the randomness of467

quantum mechanics, one thus needs to take carefully into account all physical assumptions contributing468

towards the conclusions that one reaches.469

The fact that quantum complementarity provides a weaker certification than value indefiniteness470

is emphasised by our final result, showing that complementarity is compatible with the production471

of computable sequences of bits, something not true for value indefiniteness. Thus, quantum472

value indefiniteness and the Kochen-Specker theorem appear, for now, essential in certifying the473

unpredictability and incomputability of quantum randomness.474
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