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I. LOCATED QUANTUM VALUE INDEFINITENESS

The Kochen-Specker theorem [1, 2] expresses the impossibility of a global truth value as-

signment to some particular (finite) collection of propositions under “mild” side conditions.

In particular, the theorem requires that co-measurable (commuting) observables should be-

have quasi-classically (an assumption which leads to Gleason’s theorem) and the outcomes of

measurements of observables are independent of whatever other co-measurable observables

are measured alongside them (non-contextuality assumption).

Thereby, the Kochen-Specker theorem does not explicitly identify certain particular observ-

ables which violate one or more of these prerequisites. Indeed, the Kochen-Specker theorem

was not designed to actually locate the particular observable(s) which would violate the as-

sumptions. This is not seen as a deficiency of the theorem, because its content suffices for

the many (mostly metaphysical) purposes it has been designed for and applies to.

However, contemporary quantum random number generators can no longer be based upon

and certified by our conviction in the quantum postulate of complementarity alone. They

should also be certified by strictly stronger forms of non-classicality than complementarity,

quantum value indefiniteness being one of them.[3] For these purposes, the Kochen-Specker

theorem, as well as other Bell-type theorems, serve merely as indications that quantum value

indefiniteness possibly “happens somewhere” because it cannot be excluded that particular

individual quanta[4] could still be value definite.

Unfortunately, by their very design these theorems cannot guarantee that a particular ob-

servable actually is value indefinite. One could, for instance, not exclude that a “demon”

could act in such a way that all observables actually measured would be value definite,

whereas other observables which are not measured would be value indefinite.

However, for quantum random number generators we need certification of value indefinite-

ness on the particular observables utilised for that purpose. Thus, one needs a different, in the

sense of locatedness of violation of non-classicality, stronger type of theorem than Kochen

and Specker present, an argument that could (formally) assure that, if quantum mechanics

is correct, the particular quantum observables used for the generation of random number

sequences are provably value indefinite, hence the measured quantum sequences cannot refer

to any consistent property of the measured quanta alone.
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This communication presents such an argument, which will be utilised for a dichotomic

quantum random number generator operating in a three-dimensional Hilbert space. By now

it should be clear that such a device would be strictly preferential to previous proposals

using merely quantum complementarity, or, in addition to that, some type of non-located

violations of global value definiteness.

In what follows we shall first present the basic definitions, then state and prove the afore-

mentioned result, and subsequently apply this result to the proposal of a quantum random

number generator based on located quantum value indefiniteness which produces, as we

prove, a strongly incomputable sequence of bits.

II. DEFINITIONS

A. Notation

We denote the set of natural numbers (in which we include 0) by N = {0, 1, 2, . . . }, the

positive integers by N+ = N \ {0}, and the set of complex numbers by C. We use the

standard quantum mechanical bra-ket notation. That is, we denote vectors in the Hilbert

space Cn by |·〉. If we fix an orthonormal basis for Cn as {|a1〉 , . . . , |an〉}, then an arbitrary

|ψ〉 ∈ Cn can be written |ψ〉 =
∑n

i=1 ci |ai〉 where ci ∈ C for 1 ≤ i ≤ n. If |φ〉 =
∑n

i=1 di |ai〉

is another vector in Cn, then the inner product of |ψ〉 and |φ〉 is 〈φ|ψ〉 =
∑n

i=1 cid
∗
i . The

outer product |ψ〉〈φ| is an n× n complex matrix where the entry at row i and column j is

(|ψ〉〈φ|)i,j = cid∗j . We will have particular interest in the projection operators (represented

by Hermitian matrices) projecting on to the linear space spanned by a non-zero vector |ψ〉,

namely Pψ = |ψ〉〈ψ|
〈ψ|ψ〉

. In this paper we only consider pure quantum states, and will accordingly

not explicitly specify quantum states as pure states as opposed to mixed states.

B. Formal framework

We fix an n ∈ N+. Let O &= ∅ be an abstract set of observables, ⊥ a symmetric relation

on O × O, and C ⊆ {{o1, o2, . . . on} | oi ∈ O and oi ⊥ oj for i &= j} a set of contexts over

O. Let v : {(o, C) | o ∈ O, C ∈ C and o ∈ C} o−→ {0, 1} be a partial function, i.e. it may be
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undefined for some values in its domain. We will call v an assignment function. For some

o, o′ ∈ O and C,C ′ ∈ C we say v(o, C) = v(o′, C ′) if v(o, C), v(o′, C ′) are both defined and

have equal values. If either v(o, C) or v(o′, C ′) are not defined or they are both defined but

have different values, then v(o, C) "= v(o′, C ′).

Definition 1. An observable o ∈ C is value definite in the context C under v if v(o, C) is

defined. Otherwise o is value indefinite in C. If o is value definite in all contexts C ∈ C

for which o ∈ C then we simply say that o is value definite under v. Similarly, if o is value

indefinite in all such contexts C then we say that o is value indefinite under v.

Definition 2. The set O is value definite under v if every observable o ∈ O is value definite

under v.

Definition 3. An observable o ∈ O is non-contextual under v if for all contexts C,C ′ ∈ C

with o ∈ C,C ′ we have v(o, C) = v(o, C ′). Otherwise, v is contextual.

Note that an observable which is value indefinite in a context is always contextual even if

it takes the same value in every context in which it is value definite. On the other hand, if

an observable is value definite in all contexts that it is in, it can be either contextual or not

(and in the latter case its value is constant in all contexts containing it) depending on v.

Definition 4. The set of observables O is non-contextual under v if every observable o ∈ O

which is not value indefinite (i.e. value definite in some context) is non-contextual under v.

Otherwise, the set of observables O is contextual.

Definition 5. The set of observables O is strongly contextual under v if every observable

o ∈ O is contextual under v.

Every strongly contextual set of observables under v is contextual under v, provided that v

is not undefined everywhere. However the converse implication is false, as will follow from

Theorem 9.

If an observable o is non-contextual then it is value definite, but this is not true for sets

of observables: O can be non-contextual but not value definite if it contains an observable
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which is value indefinite.

Definition 6. An assignment function v is admissible if the following hold for all C ∈ C:

• if there exists an o ∈ C with v(o, C) = 1, then v(o′, C) = 0 for all o′ ∈ C \ {o},

• if there exists an o ∈ C such that v(o′, C) = 0 for all o′ ∈ C \ {o}, then v(o, C) = 1.

Example 7. As an example, let n = 3 and consider the set of observables O =

{0, 1, 2, 3, 4, 5, 6, 7, 8} and contexts C = {C1 = {0, 1, 2}, C2 = {0, 3, 4}, C3 = {0, 5, 6}, C4 =

{6, 7, 8}}. This configuration is depicted by a Greechie[5] orthogonality diagram [6–8] in

Fig. 1. Let our assignment function be defined as

v(0, C1) = v(0, C2) = v(6, C4) = 1,

v(1, C1) = v(2, C1) = v(3, C2) = v(4, C2) = v(6, C3) = v(7, C4) = v(8, C4) = 0,

and undefined elsewhere. Observables 0 and 6 are both contextual: although v(0, C1) =

v(0, C2) = 1, observable 0 is value indefinite in C3 since v(0, C3) is not defined; observable

6 is value definite but we have v(6, C3) "= v(6, C4). Observable 5 is value indefinite, since it

appears only in C3 and v(5, C3) is not defined. The other observables only appear in one

context, in which they are all defined, and are thus non-contextual. This set O is neither

value definite nor non-contextual. The function v is admissible, but the function v′ specified

exactly as v, except that it is defined for observable 5 in C3 as v′(5, C3) = 0, would not be

admissible since the second condition for admissibility would not be satisfied in C3.

This formal framework is presented for the purpose of our discussion of hidden variable

theories in quantum mechanics. So far the framework is completely abstract, but, in order

to discuss quantum mechanics, we need to remove some of this abstraction and specify some

components. In particular, we consider quantum mechanical projection observables acting

on a Hilbert space, and contexts are complete sets of compatible observables (i.e. sets of n

orthogonal projectors; see below).

The assignment function v corresponds to the notion of a hidden variable: it specifies in

advance the result obtained from the measurement of an observable. We do not concern

ourselves with the mechanism of v, but rather with its possible existence subject to some
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FIG. 1. (Color online) Greechie orthogonality diagram associated with the configuration of observ-

ables C = {C1 = {0, 1, 2}, C2 = {0, 3, 4}, C3 = {0, 5, 6}, C4 = {6, 7, 8}}. Different contexts Ci are

drawn in different colours.

constraints (specifically, the admissibility of v—we justify this more fully in Section III—

requires that functions of the values associated with compatible observables satisfy the

predictions of quantum theory). Our notion of value definiteness corresponds to the classical

notion of determinism. An observable is value definite if v assigns it a definite value—i.e. we

are able to predict in advance the value obtained via measurement. Non-contextuality, on

the other hand, corresponds to the classical notion that the value obtained via measurement

is independent of other compatible observables measured alongside it.

The notion of admissibility serves as an analogue to the notion of a two-valued (dispersion-

less) measure that is used in quantum logic [7–12], the difference being that the definition

is sound even when not all observables are value definite. This distinction is subtle but,

nevertheless, will allow us to formulate known results, such as the Kochen-Specker theorem

[1, 2, 9, 11–14], as well as the stronger results which we will present in this paper. However,

we stress that this is still a purely formal framework and that, in order to make a connection

to physical reality, further assumptions must be made, specifically pertaining to the nature

of measurement; we defer this connection to physical reality to Section III.

Formally we fix our framework as follows: with n fixed we consider the Hilbert space Cn.

The observables O ⊆ {Pψ | |ψ〉 ∈ Cn} are projections onto one-dimensional linear subspaces

of Cn. These operators can be shown to commute exactly when the corresponding subspaces

are orthogonal (or equal). Consequently, the relation ⊥ on O ×O is defined by: Pψ ⊥ Pφ
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if and only if |ψ〉 is orthogonal to |φ〉 (i.e. 〈ψ|φ〉 = 0). Therefore Pψ ⊥ Pφ implies that Pψ

and Pφ are compatible, so contexts can be viewed as maximal sets of mutually compatible

projection operators.

C. Kochen-Specker Theorem

The Kochen-Specker theorem [2] shows that if n > 2, then certain sets of observables in

Cn cannot be both value definite and non-contextual under any admissible assignment

function. This proves that it is impossible for all projection observables to be value definite

and non-contextual. The Kochen-Specker theorem can be readily presented using the

concepts developed above.

Theorem 8 (Kochen-Specker). If n > 2, there exists a set of projection observables O on

Cn and a set of contexts over O such that there is no admissible assignment function v under

which O is both non-contextual and value definite.

D. Strong contextuality can not be guaranteed

How strong is the incompatibility between non-contextuality and value definiteness stated

in the Kochen-Specker theorem? The theorem tells us that not every observable can be

both non-contextual and value definite, but gives us no information as to how far this

incompatibility goes. Here we show that this incompatibility cannot be maximal: no set of

observables is strongly contextual under every admissible value definite assignment function

on it. In other words, for any set of contexts over any set of observables, there exists an

admissible assignment function under which the set of observables is value definite and at

least one observable is non-contextual.

Theorem 9. Let O be a set of observables and C ⊆ {{o1, o2, . . . on} | oi ∈ O and oi ⊥

oj for i &= j} a set of contexts over O. Then there exists an admissible assignment function

v and an o ∈ O such that v(o, C) = 1 for every context C ∈ C with o ∈ C, and O is value

definite under v.
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FIG. 2. (Color online) Greechie orthogonality diagram with an overlaid value assignment reflecting

the proof of Theorem 9 associated with the configuration of contexts Sa = {C | C ∈ C and a ∈

C} ⊆ C. Different contexts Ci are drawn in different colours.

Proof. Let a ∈ O be any observable, and consider the set Sa = {C | C ∈ C and a ∈ C} ⊆ C

of contexts in which a appears. Define the assignment function va for C ∈ Sa by

va(o, C) =






1, for o = a,

0, for o #= a.

It is clear this satisfies
∑

o∈C va(o, C) = 1, for all C ∈ Sa. For C ∈ C \ Sa, the function va

can be defined in any arbitrary contextual way to satisfy
∑

o∈C va(o, C) = 1. The function

va is then admissible and assigns a definite value (namely 1) to the observable a (which was

arbitrarily chosen) in a non-contextual way—i.e. va(a, C) = 1 for all C ∈ Sa.

Note that the configuration of contexts Sa = {C | C ∈ C and a ∈ C} ⊆ C amounts to a

“star-shaped” Greechie orthogonality diagram, with the common observable a at the centre

of the star, as depicted in Fig. 2.

The above proof actually shows that the following stronger statement is true:

Theorem 10. For every observable o ∈ O there exists an admissible assignment function

vo under which O is value definite and o is non-contextual.

Such a result should not be surprising in view of the predictions of quantum mechanics.

Specifically, for a physical system prepared in an eigenstate of an observable o, the Born rule
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predicts that the probability of measuring the corresponding eigenvalue is (non-contextually)

1. Nevertheless, it is important to place a bound on the degree of non-classicality [15, 16]

that we can guarantee.

It turns out, however, that there are pairs of observables (belonging to different contexts)

such that at most one of them can be assigned the value 1 by an admissible assignment

function under which O is non-contextual. This finding is somewhat stronger than a similar

result by Kochen and Specker [2, 7] derived from the (as Specker used to call them [17])

“bug”-type orthogonality diagrams (a sub-diagram of their diagram Γ1), as not all observ-

ables are assumed to be value definite. Instead, an observable is only deduced to be value

definite where the admissibility of v requires it to be so.

This difference allows us to deduce an even stronger result, with particular relevance to quan-

tum random number generators: there are pairs of observables such that, if one of them is

assigned the value 1 by an admissible assignment function under which O is non-contextual,

the other must be value indefinite. In light of Theorem 10, this is the best guarantee of

located value indefiniteness one could hope for, and we will make use of it in our proposal for

a quantum random number generator. The proof relies on the weaker result described above,

so we demonstrate that first, and deduce the main result as a corollary. Note that there are

larger values than 3√
14

for which these results are true. However, this number is more than

sufficient for our purposes, and the larger values we found require significantly longer proofs.

Theorem 11. Let |a〉 , |b〉 ∈ C3 be unit vectors such that 0 < |〈a|b〉| ≤ 3√
14
. Then there

exists a set of projection observables O containing Pa and Pb, and a set of contexts C over

O, such that there is no admissible assignment function under which O is non-contextual

and Pa, Pb have the value 1.

Proof. We first show that the Theorem holds under the equality |〈a|b〉| = 3√
14
, and then, by

means of a reduction to the case of equality, show it also holds for 0 < |〈a|b〉| < 3√
14
.

By choosing the basis appropriately, without loss of generality we may assume that |a〉 ≡

(1, 0, 0) and |b〉 ≡ 1√
14
(3, 2, 1). Let |ψ〉 = (0, 1, 0) and |φ〉 = (0, 0, 1).

In Table I we define 24 contexts C1, C2, . . . , C24, which are numbered by the column headings.

Each row vector |ϕ〉 in the table is defined relative to the afore-chosen basis {|a〉 , |ψ〉 , |φ〉},
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TABLE I. Assignment table containing the representation of observable propositions (projectors),

together with the contexts in which they appear. See Fig. 3 for an illustration of these.

v 1, 2 3, 4 5, 6 7, 8 9, 10 11, 12 13 14, 15 16, 17 18, 19 20, 21 22, 23 24

1 1 0 0 1 0 0 2 1 1 2 1 1 2 0 1 2 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1

0 0 1 0 0 1 1 1 1̃ 1̃ 1 0 2̃ 1 0 2̃ 1 1 2̃ 1 1̃ 0 1 1̃ 0 1 0 1̃ 1 0 1̃ 1 1 1̃

0 0 0 1 0 1 1̃ 0 1 1̃ 2 5̃ 1 0 1 0 1 5̃ 2̃ 0 0 1 1 1 2̃ 1 2̃ 1 0 1 0 1 2̃ 1̃ 1 1 1̃

1 1̃ 0

1 3 2 1 3 2 1 3 2 0 3 2 0 3 1 1̃ 3 1 1̃ 1 1 0 1 1 0 2 1 1̃ 2 1 1̃ 2 0 1̃ 2 0 1̃ 1 1 2

0 2 3̃ 0 1 1̃ 1̃ 2 3̃ 0 2 3̃ 3 2 3̃ 3 1 1̃ 2 1 1̃ 2 1 1̃ 1 1 1̃ 1 1 0 2 1 0 2 1 1 2

0 3 2 1̃3 1 4̃ 5 0 0 1 6 9̃ 1̃3 0 1 1 1 7̃ 4̃ 1 1̃ 1̃ 1 1̃ 2̃ 0 1 1 2 5̃ 1̃ 0 1 0 1 5̃ 2

and is understood to represent the corresponding projection observable Pϕ. For brevity, we

have omitted commas, brackets and normalisation constants from these vectors, and used

the notation ñ = −n for n ∈ N. As an example, C1 = {Pa, Pψ, Pφ}.

Now let C = {C1, C2, . . . , C24} and O =
⋃24

i=1Ci. Suppose there exists an admissible as-

signment function v under which O is non-contextual and v(Pa, C1) = v(Pb, C2) = 1. By

continual application of the admissibility requirements, one can show that v assigns certain

values to all the observables in Table I. This argument proceeds through the table from

left to right, where the value assigned to each observable is noted in the leftmost column.

For example, in the first step we conclude that v(Pψ, C1) = v(Pφ, C1) = 0. An observable

whose value is determined by the others in the column is marked in bold, provided that the

value given will be used later on. This argument is also illustrated in Fig. 3. We eventually

obtain a contradiction, namely that v(o, C24) = 0 for all o ∈ C24 (the dotted line in Fig. 3).

Therefore there does not exist such admissible assignment function v.

We now show that if 0 < |〈a|b〉| < 3√
14
, and Pa and Pb both have the value 1, then there is a

third observable Pc which must also have the value 1 and satisfies |〈a|c〉| = 3√
14
. The above

proof then applies to again show no admissible v exists satisfying the requirements.

By scaling |b〉 by a phase factor if necessary, we may assume that 〈a|b〉 ∈ R. Let p = 〈a|b〉

and q =
√

1− p2. Then (|b〉 − |a〉 p)1
q
is a unit vector orthogonal to |a〉. Taking a cross

10



[1 0 0]

[0 1 0]

[0 0 1]

[0 1 1]

[0 1 1̃]

[3 2 1]

[2 3̃ 0][1 1̃ 1̃]

[2 1 1] [3 2 0]

[1 0 2̃] [2 3̃ 3]

[2 0 1][3 1 1̃]

[1 1 2̃]

[1 1̃ 2] [1 1 0]

[1 1̃ 0][1 1̃ 1]

[1 1 1]

[2 1 1̃]

[1 0 1̃]

[1 0 2]

[1 0 1]

[2 0 1̃]

[1 1 1̃]

[1 1 2]

FIG. 3. (Color online) Greechie orthogonality diagram with an overlaid value assignment that can

be used to visualise Table I. The circles and squares represent observables that will be given the

values 0 and 1 respectively. They are joined by smooth lines which correspond to contexts, i.e.

complete sets of compatible observables.
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product, the set {|a〉 , (|b〉 − |a〉 p)1
q
, |a〉 × (|b〉 − |a〉 p)1

q
} forms an orthonormal basis for C3.

Relative to this basis, |a〉 ≡ (1, 0, 0) and |b〉 ≡ (p, q, 0). Set x = 3√
14
, so that p2 < x2. Then

p2(1− x2)

q2x2
=

p2 − p2x2

q2x2
<

x2 − p2x2

q2x2
=

(1− p2)x2

q2x2
= 1.

Now set y = p(1−x2)
qx

, so that y2 = p2(1−x2)
q2x2 (1 − x2) < 1 − x2. Then we can set

z =
√

1− x2 − y2 ∈ R. This choice of z makes |c〉 ≡ (x, y, z) a unit vector in R3. Taking

cross products, we define

|α〉 = |a〉 × |c〉 ≡ (1, 0, 0)× (x, y, z) = (0,−z, y),

|β〉 = |b〉 × |c〉 ≡ (p, q, 0)× (x, y, z) = (qz,−pz, py − qx),

so that 〈α|β〉 = (0,−z, y) · (qz,−pz, py− qx) = pz2+ py2− qxy = p(z2+ y2)−p(1−x2) = 0.

Therefore {|α〉 , |β〉 , |c〉} is an orthogonal basis for C3. This implies that the projection

observables Pα, Pβ and Pc associated with the subspaces of C3 spanned by |α〉, |β〉 and |c〉

are mutually compatible, that is, C25 = {Pα, Pβ, Pc} is a context. Moreover, α is compatible

with a because 〈α|a〉 = 0. Likewise, β is compatible with b. Hence there exist contexts C26

and C27 such that Pα, Pa ∈ C27 and Pβ, Pb ∈ C27.

Define unit vectors |ψ〉 ≡ (0, 2y − z, y + 2z)
√
14
5 and |φ〉 ≡ (0, y + 2z, z − 2y)

√
14
5
. Then it is

easily checked that {|a〉 , |ψ〉 , |φ〉} is an orthonormal basis for C3. Note that

(|a〉 3 + |ψ〉 2 + |φ〉) 1√
14

≡ ( 3√
14
,(4y − 2z + y + 2z)15

,(2y + 4z + z − 2y)15) = (x, y, z) ≡ |c〉 ,

so |c〉 ≡ (3, 2, 1) 1√
14

relative to the basis {|a〉 , |ψ〉 , |φ〉}.

Now let C = {C1, C2, . . . , C27} and O =
⋃27

i=1Ci. Suppose there exists an admissible assign-

ment function v under which O is non-contextual and v(Pa, C26) = v(Pb, C27) = 1. Since v is

admissible, it follows that v(Pα, C26) = v(Pβ, C27) = 0. Therefore v(Pα, C25) = v(Pβ, C25) =

0, so by admissibility v(Pc, C25) = 1. This deduction is illustrated in Fig. 4. However, by

interpreting the observables in Table I as being defined relative to the basis {|a〉 , |ψ〉 , |φ〉},

it is immediately clear that again no such admissible function v exists.

Corollary 12. Let |a〉 , |b〉 ∈ C3 be unit vectors such that
√

5
14 ≤ |〈a|b〉| ≤ 3√

14
. Then there

exists a set of projection observables O containing Pa and Pb, and a set of contexts C over

12
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FIG. 4. (Color online) Greechie orthogonality diagram with an overlaid value assignment that

illustrates the relationship between the contexts C1, C2 and C3 in Theorem 11. The circles and

squares represent observables that will be given the values 0 and 1 respectively. They are joined

by smooth lines which represent contexts.

O, such that there is no admissible assignment function under which O is non-contextual,

Pa has the value 1 and Pb is value definite.

Proof. Again scale |b〉 so that 〈a|b〉 ∈ R. Let p = 〈a|b〉 and q =
√

1− p2. As above we con-

struct an orthonormal basis in which |a〉 ≡ (1, 0, 0) and |b〉 ≡ (p, q, 0). Define |α〉 ≡ (0, 1, 0),

|β〉 ≡ (0, 0, 1) and |c〉 ≡ (q,−p, 0). Then {|a〉 , |α〉 , |β〉} and {|b〉 , |c〉 , |β〉} are orthonormal

bases for C3, so we can define the contexts C1 = {Pa, Pα, Pβ} and C2 = {Pb, Pc, Pβ}. Note

that p2 ≥ 5
14 and hence

〈a|c〉 = q =
√
1− p2 ≤

√
1− 5

14 = 3√
14
.

From Theorem 11 it follows that there are sets of observables Ob, Oc and contexts Cb, Cc
such that there is no admissible assignment function under which Ob (Oc) is non-contextual

and a, b (a, c) have the value 1. We combine these sets to give O = Ob ∪ Oc ∪ {Pα, Pβ}

and C = Cb ∪ Cc ∪ {C1, C2}. Suppose there exists an admissible assignment function v under

which O is non-contextual, v(Pa, C1) = 1 and Pb is value definite. Then v(Pb, C2) )= 1 by

the definition of Ob, so v(Pb, C2) = 0. Since v(Pa, C1) = 1 and v is admissible, v(Pβ, C1) = 0

and hence v(Pβ, C2) = 0 as well. So by admissibility v(Pc, C2) = 1, which is impossible by

the definition of Oc. Therefore there does not exist such a function v.
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The difference between the above result and the Kochen-Specker theorem is subtle but

critical. The Kochen-Specker theorem, under the assumption of non-contextuality, only

finds a contradiction with the hypothesis that all observables are value definite—it does

not allow any specific observable to be proven value indefinite. Corollary 12, however,

allows just this—specific value indefinite observables can be identified. While we delay the

physical interpretation of this result until the following section, we mention that it applies to

measurements of an observable on a physical system in an eigenstate of a different observable.

III. PHYSICAL INTERPRETATION

In order to make operational use of the results of the previous section we connect the formal

entities with measurement outcomes. In the process of doing this, we make explicit the

assumptions our results rely on.

A. The role of measurement

An inherent assumption in the attempt to attribute physical meaning to the Kochen-Specker

theorem (as well as the other theorems we have proved), and one which we shall also make,

is that measurement is actually a physically meaningful process. In particular, we assume:

Measurement assumption. Measurement yields a physically meaningful and unique re-

sult.

This may seem rather self-evident, but it is not true of interpretations of quantum mechanics

such as the many-worlds interpretation, where measurement is just a process by which the

apparatus or experimenter becomes entangled with the state being ‘measured’. In such an

interpretation it does not make sense to talk about the unique ‘result’ of a measurement,

let alone any definite values which one may pre-associate with them.

To establish the relationship between the quantum system of interest and the function v

assigning definite values in advance, we need to restrict ourselves to assignment functions

which agree with quantum mechanics. Specifically, definite values prescribed by the
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function should be just that; they must guarantee the result of a measurement.

Definition 13. Let v be a value assignment function. We say that v is a faithful represen-

tation of a realisation rψ of a state |ψ〉 if a measurement of observable o in the context C

on the physical state rψ yields the result v(o, C) whenever o has a definite value under v.

Usually, it is implicitly assumed that a value assignment function is faithful—if it is not then

it has no real relation to the physical system that it is meant to model and is of little interest.

Nonetheless, since we intend to make all assumptions explicit here, we will make clear that

we are referring to faithful assignment functions when necessary. Of course, an assignment

function which is defined nowhere meets this condition, but this complete indefiniteness does

not fully capture our knowledge of a quantum system; we should at least be able to predict

the outcomes of some measurements. We discuss this issue of when to assign definite values

in Section IIIC.

B. Value indefiniteness

The Kochen-Specker theorem leaves two possibilities: either we give up the idea that every

observable should be simultaneously value definite, or we allow observables to be defined

contextually. Of course, some combination of both options is also possible. Here we opt to

assume non-contextuality of observables for which the outcome is predetermined, and thus

give up the historic notion of complete determinism (classical omniscience).

This assumption might be in contradiction to that of physicists who, in the tradition of

the realist Bell (see the oft-quoted text, [18]), tend to opt for contextuality. The option

for contextuality saves realistic omniscience and ‘contextual value definiteness’ at the price

of introducing a more general dependence of at least some potential observables on the

measurement context. In what follows we make no attempt to save realism and instead

require the non-contextuality of any pre-determined properties.

Non-contextuality assumption. The set of observables O is non-contextual.

While from the Kochen-Specker theorem and Theorem 9 it is mathematically conceivable

that only some observables are forced to be value indefinite, while others remain both non-
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contextual and value definite, this is a difficult stance to argue physically in favour of due

to overall uniformity and symmetry. Regardless, if we can guarantee that one observable a

is value definite, with the value 1 (e.g. by preparing the system in an eigenstate of a with

eigenvalue 1), Corollary 12 gives us some observables that must be value indefinite.

C. Predictability implies value definiteness

A more subtle assumption relates to the question of when we should consider a physical

observable to have a definite value associated with it, and the connection between these

definite values and probability. Einstein, Podolsky and Rosen (EPR), in their seminal paper

on the EPR paradox as it is now known, said [19, pp. 777]:

If, without in any way disturbing a system, we can predict with certainty (i.e.,

with probability equal to unity) the value of a physical quantity, then there

exists an element of physical reality[20] [(e.p.r.)] corresponding to this physical

quantity.

From the physicist’s point of view, the ability to predict the value of an observable with

certainty seems sufficient to posit the existence of a definite value associated with that

observable. However, the identification that EPR make between certainty and probability

one is less sound. Mathematically, the statement is simply not true: for infinite measure

spaces probability zero events not only can, but must occur—every point has probability 0

under the Lebesgue measure. With a frequentist view of probability, the two notions cannot

be united even for finite spaces. One can only say an event is certain if its complement is

the empty set.

With the formalism of quantum mechanics entirely based on probability spaces, what then

can we say about any definite values in physical reality? A deterministic theory is based

on a description of a state which is complete in that it specifies definite values for all

observables. The state in quantum theory, however, is given as a wave function, which in

turn is determined by the operators for which the system is an eigenstate of. Quantum

theory is thus based on the notion that a physical state is “completely characterised by the

wave function”, which is an eigenstate of some operator and is determined for any context
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containing the said operator; as EPR note, the “physical quantity” corresponding to that

operator has “with certainty” the corresponding eigenvalue [19, pp. 778]. The theory then

presents a probabilistic framework to express behaviour in other contexts. A reasonable

assumption based on this principle is the:

Eigenstate assumption. Let |ψ〉 be a (normalised) quantum state and v a faithful assign-

ment function. Then v(o, C) = 1 and v(o′, C) = 0 for the projection observables o = |ψ〉〈ψ|

and o′ ⊥ o, and any context C ∈ C with o, o′ ∈ C.

While this is a reasonable condition under which to assign an initial set of definite values,

its use is restricted to contexts containing the ‘preparation’ observable. In order to extend

this, we must more carefully formulate the notion of being able to predict the value of an

observable with certainty.

Let us consider a system which we prepare, measure, rinse and repeat ad infinitum. Let

x = x1x2 . . . denote the infinite sequence produced by concatenating the outputs of these

measurements. Fix a set of observables O and contexts C and let oi, Ci denote the observable

and corresponding context of the ith measurement. We can predict with certainty the value

of each measurement if there exists a computable function f : N×O×C → {0, 1} such that,

for every i, f(i, oi, Ci) = xi. Why do we require that f be computable? Since we must with

every measurement obtain a result, there is guaranteed to be some function giving x from

the measurements, but if it is not computable then this function offers no method to predict

the values. Why do we formulate this for infinite sequences? The notion of computability,

and thus concrete predictability, only makes sense for infinite sequences; it is clear that any

technique which allows prediction of every measurement with certainty must also do so when

the measurements are continued ad infinitum.

The last assumption is the

Elements of physical reality (e.p.r.) assumption. If there exists a computable function

f : N×O × C → {0, 1} such that for every i f(i, oi, Ci) = xi, then there is a definite value

associated with oi at each step, i.e. vi(oi, Ci) = f(i, oi, Ci).

We note that the assumption above does not postulate the existence of an effective way to

find or to compute the computable function f : such a function simply exists. This is visible

in classical hidden variable type theories such as statistical mechanics for thermodynamics,
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where we can hardly claim to be able to even describe fully the momentum and position of

each particle in a gas, but it is sufficient to know that we can do so and that these hidden

variables exist in the sense that they allow us, in principle, to predict the outcome of any

measurement in advance. Further, we follow EPR in noting that this is certainly only a

sufficient condition for definite values to be present; it is by no means necessary.

D. Connection to quantum theory

The final step is to justify our requirement of the admissibility of the assignment function.

We begin by stating the following well known fact about projection operators.

Fact 14. Let {|ψ1〉 , . . . , |ψn〉} be an orthonormal basis for Cn. Then
∑n

i=1 |ψi〉〈ψi| = 1.

Lemma 15. Let C = {o1, . . . , on} be a context of projection observables, v a faithful assign-

ment function and v(o1, C) = 1. Then v(oi, C) = 0 for all 2 ≤ i ≤ n.

Proof. Since o1 and oi are compatible (physically co-measurable), if we measure them both,

the system will collapse into the eigenstate of o1, corresponding to the eigenvalue 1. Since

this final state would also be an eigenstate of oi, it follows from Fact 14 that this state

corresponds to the eigenvalue 0 of oi and hence v(oi, C) = 0.

Lemma 16. Let C = {o1, . . . , on} be a context of projection observables and v a faithful

assignment function. Suppose that for 2 ≤ i ≤ n we have v(oi, C) = 0. Then we must have

v(o1, C) = 1.

Proof. Since o2,. . . ,on are all compatible, if we measure them all the system will collapse

into a simultaneous eigenstate of each of these operators corresponding, in every case, to the

eigenvalue 0. Since this final state is also an eigenstate of o1, it follows from Fact 14 that

this state corresponds to the eigenvalue 1 of o1 and hence v(o1, C) = 1.

Theorem 17. A faithful assignment function v must be admissible.

Proof. The proof follows directly from the previous two Lemmata.
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This theorem justifies our definition of an admissible v. Indeed, admissibility of v is the

direct generalisation of the “sum rule” used in proofs of the Kochen-Specker theorem [2, 21]

to the case where value definiteness is not assumed. In our proof of Theorem 17 we are

particularly careful in using our assumptions to show that admissibility is required if simple

relations of projection observables are to be satisfied.

Corollary 18. Let |ψ〉 ∈ C3 be a quantum state describing a system. Also let |φ〉 ∈ C3 be

any other state which satisfies
√

5
14 ≤ |〈ψ|φ〉| ≤ 3√

14
. Then, assuming non-contextuality, Pφ

cannot be assigned a definite value by a faithful assignment function.

Proof. From the Eigenstate assumption, Pψ must be assigned the value 1. By Corollary 12

and Theorem 17 it follows that Pφ must be value indefinite.

IV. A RANDOM NUMBER GENERATOR

From our assumptions of non-contextuality along with our physical assumptions in the

preceding section, we arrived at the key result of Corollary 18, which allows us to identify

particular observables which must be value indefinite. This guarantee of indefiniteness, which

both the Bell [18] and Kochen-Specker theorems cannot yield, adds extra conviction to the

widely accepted (but not proven) unpredictability of the result of quantum measurements.

Since quantum random number generators (QRNGs) [22–28] depend entirely on this, it

seems clear we should make use of this extra certification in their design. In this section

we present such a design of a QRNG, and use Corollary 18 to prove that such a device

will produce strongly incomputable sequences of bits—a strong, explicit certification of the

QRNG.

A. Random number generator design

The QRNG setup is shown in Fig. 5. Spin-1 particles are prepared in the Sz = 0 state

(thus, by the Eigenstate assumption, this operator has a definite value), and then the Sx

operator is measured. Since the preparation state is an eigenstate of the Sx = 0 projector
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FIG. 5. Experimental setup of a configuration of quantum observables rendering random bits

certified by quantum value indefiniteness.

with eigenvalue 0, this outcome has a definite value and cannot be obtained. Thus, while

the setup uses spin-1 particles, the outcomes are dichotomic and the Sx = ±1 outcomes can

be assigned 0 and 1 respectively. Further, since 〈Sz = 0|Sx = ±1〉 = 1/
√
2, it follows from

Corollary 18 that neither of the Sx = ±1 outcomes can have pre-assigned definite value.

While this design is very simple, it has the two key properties we need from such a QRNG: it

produces bits certified by value indefiniteness, and it produces the bits 0 and 1 independently

and with 50/50 probability.

B. Certification via value indefiniteness

Consider the QRNG described in the previous section, and let us consider that we run it

repeatedly ‘to infinity’—i.e. we use it repeatedly to generate bits and concatenate them

together to produce, in the limit, the binary sequence x = x1x2 . . . xn . . . . Here we consider

the sequence x produced in such a manner and show that, under our assumptions, it is

guaranteed to be incomputable. Note that we are using the Measurement assumption here,

since we must assume that x is actually produced (not that, for example, all infinite sequences

are generated in different universes).

Before presenting our argument we note that Martin-Löf’s theorem in algorithmic informa-

tion theory [29] shows that there are no pure, true or perfect random sequences: there are

patterns in every sequence, a deterministic provable fact which is much stronger than the

typical highly probable results (facts true with probability one) proved in probability the-

ory. As we cannot speak about pure, true or perfect randomness we have no option but to

study degrees and symptoms of randomness: some sequences are more random than others.
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Uniform distribution within a sequence (Borel normality [30]) is a symptom of randomness:

however, there exist computable uniformly distributed sequences, e.g. Champernowne se-

quence [29] which are far from being random in any meaningful way. Unpredictability is

another symptom; (strong) incomputability is one mathematical way to express it. Uniform

distribution and unpredictability are independent; while the lack of uniform distribution

can be easily mitigated by procedures à la von Neumann [31], transforming a computable

sequence into an incomputable one is a much more difficult problem.

Quantum randomness is usually qualified in terms of the probability distribution of the

source. This only allows for probabilistic claims about the outcomes of individual mea-

surements. For example, with probability one any sequence of quantum random bits is

incomputable; such a statement is weaker than saying that the sequence is provably in-

computable. Nevertheless, claims made in different articles, even recent ones like [23, 32]

or websites [33, 34], according to which “perfect randomness can be obtained via quantum

experiments”, are only of this statistical nature. Here we are able to prove the guaranteed

incomputability of quantum randomness; but, due to Martin-Löf’s theorem, even this result

cannot be called “perfect randomness”.

For the sake of contradiction let us assume that x as described above is computable. Then,

by definition, there must exist a Turing machine T (and thus a computable function) that

can be associated with x allowing us to predict with certainty every value xi. From the

e.p.r. assumption, it follows that each observable oi is value definite and vi(oi, C) = xi. This

contradicts the implications of Corollary 18. Thus we conclude that xmust be incomputable.

This proof can easily show the stronger claim: that x is bi-immune, that is, no infinite

sub-sequence of x is computable. This can easily by seen by the same argument: if there

was a computable subsequence then we could assign definite values to the observables giving

rise to this subsequence, contradicting our assumption of value indefiniteness everywhere.

We have proved:

Theorem 19. Assume Non-contextuality, Measurement, Eigenstate and e.p.r. assumptions.

Then there exits a QRNG which generates a bi-immune binary sequence.

We further note that this result is more general than that proved in [35] and does not require
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any assumption about the uniformity of the bits produced.

C. Experimental robustness

Before we proceed to describe an explicit realisation of the QRNG described above, we wish

to briefly make a couple of points on the robustness of this certification by value indefiniteness

to experimental imperfections.

We can describe the measurement context more generally by the spin observable S(θ,φ),

where θ and φ are the polar and azimuthal angles respectively, and we thus have Sx =

S(π/2, 0) and Sz = S(0, 0). Explicitly, this operator is represented in matrix form as

S(θ,φ) =






cos(θ) e−iφ sin(θ)√
2

0
eiφ sin(θ)√

2
0 e−iφ sin(θ)√

2

0 eiφ sin(θ)√
2

− cos(θ)






. (1)

Misalignment and imperfection in the experimental setup will, in general, lead to angles

θ and φ differing slightly from π/2 and 0 respectively. While a change in φ only induces

a phase-shift and does not alter the probability of measuring any particular eigenvalue, a

change in θ will alter the probabilities of detection. However, a detailed calculation shows

that

|〈Sz = 0|S(θ,φ) = ±1〉| = sin θ/
√
2, (2)

and the difference in probabilities of measuring a bit as 0 or 1 is not affected by such a

change in θ. This is in distinct contrast to setups based on single beam-splitters, in which

misalignment introduces bias into the distribution of bits.

From Corollary 18, we see that the QRNG will provide bits by measurement of S(θ,φ) that

are certified by value indefiniteness whenever
√

5
14 ≤ |〈Sz = 0|S(θ,φ) = ±1〉| ≤ 3√

14
. This

inequality is, from equation (2), readily seen to be satisfied for angles π
3 ≤ θ ≤ 2π

3
. This has

the important consequence of protecting against inevitable experimental misalignment: even

in the presence of relatively significant misalignment, the device would produce bits which

are certified by value indefiniteness. Otherwise, if the certification only held for the ideal

case of π
2
, any experimental imperfections would render this theoretical result inapplicable

to any real experiment.
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Furthermore, calculation shows that 〈Sz = 0|S(θ,φ) = 0〉 = cos θ, and since 〈Sz = 0|S(θ,φ) =

0〉 = 0 only when θ = π
2
, a third detector measuring the |S(θ,φ) = 0〉 outcome could be em-

ployed to monitor the degree of misalignment present in the system. The number of counts at

this detector would allow quantification of the angle θ, and provide an experimental method

to test that the condition of
√

5
14 ≤ 〈Sz = 0|S(θ,φ) = ±1〉 ≤ 3√

14
is indeed being realised.

Without monitoring this third outcome, one could not determine from the |S(θ,φ) = ±1〉

counts alone if this is indeed the case.

V. GENERALISED BEAM-SPLITTER QUANTUM RANDOM NUMBER GEN-

ERATOR

In this section we describe a physical realisation of the QRNG described in the previous

section. Since it is not particularly feasible to directly use spin-1 particles in a QRNG with

an acceptably high bit-rate, the realisation we present uses photons and is expressed in terms

of generalised beam-splitters [36–38]. Generalised beam-splitters are based on the possibility

to (de)compose an arbitrary unitary transformation Un in n-dimensional Hilbert space into

two-dimensional transformations U2 of two-dimensional subspaces thereof; a possibility that

can be used to parameterize Un [39]. In more physical terms, they amount to serial stacks

of phase shifters and beam-splitters in the form of an interferometer with n input and

output ports,beam-splitter such that the beam-splitters affect only two (sub-)paths which,

together with the phase shifters (affecting single paths at any one time), realise the associated

transformations in U(2). These components can be conveniently arranged into “triangle

form” with n in- and out-bound beam paths.

For the sake of an explicit demonstration, consider an orthonormal cartesian standard basis

|1〉 ≡ (1, 0, 0), |0〉 ≡ (0, 1, 0), and | − 1〉 ≡ (0, 0, 1). Then, in order to realise observables

such as the spin state observables S(θ,φ) and, in particular, spin states measured along the

x-axis; that is, for θ = π
2 and φ = 0,

Sx = S

(π
2
, 0
)
=






0 1√
2

0

1√
2

0 1√
2

0 1√
2

0






(3)
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in terms of generalised beam-splitters, the associated normalised row eigenvectors

|Sx : +1〉 ≡ 1
2

(
1,
√
2, 1

)
,

|Sx : 0〉 ≡ 1√
2
(1, 0,−1) ,

|Sx : −1〉 ≡ 1
2

(
1,−

√
2, 1

)
(4)

have to be “stacked” on top of one another [36], thereby forming a unitary matrix Ux which

corresponds to the spin state operator Sx for spin state measurements along the x-axis; more

explicitly,

Ux =
1

2






1
√
2 1

√
2 0 −

√
2

1 −
√
2 1






. (5)

While many variations on the unitary matrix to represent a beam-splitter exist [36, 40–42],

without loss of generality we can represent an arbitrary U(2) matrix realised by a beam-

splitter and external phase shift as



√
T ieiφ

√
R

i
√
R eiφ

√
T



 , (6)

where φ represents the phase of an external phase shifter on the second input port, and

T,R ∈ [0, 1] are the transmittance and reflectance of the beam-splitter respectively (with

R + T = 1). The beam-splitter arrangement to realise Ux can be found by transforming Ux

into the identity matrix I3 by successive right-multiplication by adjoints of U(2) matrices of

the above form—each one making an individual off-diagonal element equal to zero—followed

by a final set of phase shifters [36].

In our specific case, we have





1 0 0

0 −i 0

0 0 −i






·






√
1
3

√
2
3 0

i
√

2
3 −i

√
1
3 0

0 0 1






·






√
3
4 0 −i

√
1
3

0 1 0

i
√

1
4 0 −

√
3
4






·






1 0 0

0
√

1
3

√
2
3

0 i
√

2
3 −i

√
1
3






= Ux. (7)

This corresponds to three beam-splitters with transmittances T3,2 = T2,1 =
1
3 , T3,1 =

3
4 , and

phases φ3,2 = φ2,1 = −π/2, φ3,1 = π, where Ti,j and φi,j are the parameters for the beam-

splitter operating on beams i and j (beams 1,2,3 correspond to Sz = +1, 0,−1 respectively).

Two final phase shifts of −π/2 are needed on beams 2 and 3. The physical realisation of Ux

is depicted in Fig. 6.
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FIG. 6. (Color online) Configuration of a random number generator with a preparation and a mea-

surement stage, including filters blocking |Sz : −1〉 and |Sz : +1〉. (For ideal beam-splitters, these

filters would not be required.) The measurement stage (right array) realises a unitary quantum

gate Ux, corresponding to the projectors onto the Sx state observables for spin state measurements

along the x-axis, in terms of generalised beam-splitters..

This setup is equivalent to the spin-1 setup for which we are guaranteed value indefiniteness

under the conditions discussed in the previous section. Even in the case of non-perfectly con-

figured beam-splitters, as long as the observable corresponding to the unitary transformation

implemented by the beam-splitters has eigenstates |a = ±1〉 (corresponding to output ports

1 and 3) which fall within the bounds
√

5
14 ≤ 〈Sz = 0|a = ±1〉 ≤ 3√

14
then the QRNG will

still be protected by value indefiniteness. As discussed in the previous section, this allows

for a considerable amount of error (more than would be desirable with respect to deviation

from 50/50 bias) under which value indefiniteness is still guaranteed.
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VI. MONITORING VALUE INDEFINITENESS

The rendition of value indefiniteness requires a quantised system with at least three mutually

exclusive outcomes, corresponding to an associated Hilbert space dimension equal to the

number of these outcomes—a direct consequence of the Kochen-Specker theorem.

Of course, if one is willing to accept physical value indefiniteness based purely on formal

Hilbert space models of quantum mechanics [43], there is no further need of empirical ev-

idence. In this line of thinking, Theorem 11, and hence the quantum value indefiniteness

resulting from it via Corollary 12, needs no more empirical corroboration than the arithmetic

fact that, in Peano arithmetic with standard addition, one plus one equals two.

QRNGs which monitor Bell-inequality violation simultaneously with bit-generation have

been proposed in the literature [23, 44]. Given the non-trivial assumptions used in the

proof of Theorem 11—in particular, the mutual physical coexistence of complementary

observables—should our QRNG be monitored in this way too, in addition to value indefi-

niteness certification?

First, we stress that, in contrast with our proposed QRNG, the aforementioned devices

require an initial random seed and hence operate as secure randomness expander, rather

than generator: the quality of randomness produced by such a device depends crucially

upon the quality of randomness of the seed.

Secondly, violation of Bell-inequalities alone is a purely statistical phenomenon and only

indicates non-classical correlations: in no way does it necessitate a Hilbert-space structure

and hence it cannot give the certification of (strong) incomputability our proposal does via

value indefiniteness.

Thirdly, in the case that our QRNG is treated as an untrusted-device, as is common in

cryptography (due to the users inability to verify the device’s workings), the set up could

be modified to test such inequalities. This is the scenario in which monitoring inequality

violation has most to offer, since violation of Bell-inequalities can be derived from Kochen-

Specker type arguments[45] and thus gives some indication of non-classicality in the absence

of trust in the device, even if it cannot guarantee incomputability. An even better monitoring

method—which might necessitate a revision of our current QRNG set up—may use the type
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of non-classical outcomes typically encountered in empirical realisations of Greenberger-

Horne-Zeilinger type arguments [46, 47], as, at least ideally, they do not involve any statistics,

but require a violation of local realism at every triple of outcomes.

To summarise, we have presented a formal conceptualisation of value (in-)definiteness, and

proven that there always exists an admissible assignment function making a single observ-

able value definite; one cannot hope to prove all observables are value indefinite. We also

showed that, in an extension of the Kochen-Specker theorem, after preparing a pure state in

three dimensional Hilbert space, certain precisely identified observables are provably value

indefinite.

We have applied these results to a proposal to generate bit sequences by a quantum random

number generator. Any such sequence is, as we showed, then “certified by” quantum value

indefiniteness (in the sense of the Bell-, Greenberger-Horne-Zeilinger-, and Kochen-Specker

theorems) to produce a strongly incomputable sequence of bits.

To what extent we can guarantee value indefiniteness remains an open question. We know

that not all observables can be value indefinite, and at least one can be guaranteed to be,

but how far does this value indefiniteness go? We conjecture that only a single observable

in the Hilbert space can be assigned the value one.
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