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Abstract

We introduce a new notion of a cluster of in�nite two player games between

players 0 and 1. This is an in�nite collection of games whose game trees can be

composed into a graph which is similar to a tree except that the graph might not

have the initial node. For each node of the graph there is an ancesstor node. We

call this graph the arena of the cluster. For a game cluster we introduce a notion

of a winner for the whole cluster. This notion is weaker than the requirement

to win every game of the cluster. Any two player game can be viewed as a game

cluster consisting of all its residual games [3, 18]. We extend the restricted memory

determinacy (RMD) theorem of Gurevich-Harrington (GH), [3] to game clusters.

We think that the notion of a game cluster improves the modeling power of two

player games used to give semantics for concurrent processes [10, 11].

1 Introduction

In 1982 Yuri Gurevich and Leo Harington [3] published their celeb-

trated \short proof" of Rabin's decision method for S2S [15]. As a basic

vehicle for this proof they introduced a new kind of game determinacy for

two person games. Following [18], [19], [20] we call this kind of game deter-

minacy, restricted memory determinacy (RMD). The Gurevich-Harrington

1This paper has been accepted to 15th IMACS (International Association for Mathe-

matics and Computers in Simulation) World Congress on Scienti�c Computing, Modelling

and Applied Mathematics Berlin, Germany August 24-29, 1997
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RMD is based on restricting the winning strategies to strategies respecting

a certain equivalence relation over the game tree (arena). The Gurevich-

Harrington proof of RMD as well as the Buchi's notion of state strategies

[1], [2] inspired A. Nerode, A. Yakhnis, V. Yakhnis, and others to apply two

player games to develop semantics of concurrent (shared memory and dis-

tributed) computations [10], [11] as well as models for behaviour of real-time

control systems [9]. A number of researchers continued the work of Gurevich

and Harrington by giving more detailed proofs (Monk, [5], McNaughton, [7]),

providing extensions (Yakhnis-Yakhnis [18], [19], Zeitman, [20]), and apply-

ing the Gurevich-Harri ngton RMD theorem for modal logics of programs

(Jutla, [4], Stuart, [16]). More general two player games are used by Y.

Moschovakis to give a novel semantics for concurrent processes (see [6] and

his subsequent papers).

This paper uses ideas of the original Gurevich-Harrington paper [3] in or-

der to develop an extension of Gurevich-Harrington game-theoretic methods.

We think that game-theoretic ideas developed by Gurevich-Harrington can

be applied in a wide range of areas: logic, theory of concurrent and paral-

lel computations, logic programming, real-time computing sytsems, arti�cial

intelligence, robotics, operating systems design and veri�cation, and hybrid

systems theory, etc. Therefore, a goal of our extension is to expand potential

applications of GH games.

Gurevich-Harrington games have several features. Each game generates

a structure, a tree or a graph [Gurevich - Harrington [3], McNaughton [7],

Zeitman [20],Yakhnis - Yakhnis[18] [19]], which has a �xed element, called

initial position. Each play of the game begins from this initial position.

For example, in games occuring on trees these elements are the roots of

trees. The structures generated by games are strongly locally �nite, that

is the number of neighbours of every element is bounded by an n 2 !. In

addition, each player of the game has a �nite alphabet from which the player

picks elements and makes moves. This is �niteness of the game alphabet

in [Gurevich - Harrington]. Each move of any player is identi�ed with the

choice of a letter from the alphabet. We omit all the above restrictions in

our games. Namely, our game structures need not have initial elements. The

game structures are not supposed to be locally �nite. Each player of our

games potentially has in�nitely many choices to make moves.

One of our other intensions is to model proccesses which can be character-

ized as proccesses with unknown past. An example of a such proccess is a
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human{computer interaction: a user (computer) beginning to interact with a

computer (user) does not neccessarily know the past history of the computer

(user). We would like to point out that it is not a new idea to ivestigate

proccessses with unknown past. For example, automata-theoretic treatment

of procedures with unknown past has also been developed in [Nivat-Perrin

[12], Perrin-Shupp [13], Semenov [14]]. The approach taken in these papers is

motivated by problems from ergodic theory and symbolic dynamics [Nivat-

Perrin [12], Perrin-Shupp [13]]. Another example is that investigations in

modal and temporal logics with past tense temoral operators [17]. We also

hope that our generalization of Gurevich{Harrington games is appropriate to

develop a game-theoretic approach for investigating proccesses with unknown

past.

The Gurevich-Harrington strategies with restricted memory have an

important property. These strategies do not rely on the knowledge of a

starting position of a play. On the other hand, as we already mentioned the

Gurevich-Harrington RMD theorem refers to games which have the standard

beginning position, the root, for all the plays of the game. A natural question

arises: how to generalize the notion of a two player game in such a way as to

include an idea of a game where plays are permitted to begin arbitrarily far

in the past? Of course, we would like to preserve the \restricted memory"

property for the winning strategies in the new games.

As we mentioned Gurevich-Harrington games give semantics for con-

current processes. When a play (concurrent process) is in progress the infor-

mation about the start of the play (process) and a substantial part of its past

is not always available. Therefore, we think that the notion of a game cluster

improves the modeling power of two player games used to give semantics to

concurrent processes.

Game Clusters. To achieve the above goals we introduce a new notion

of game clusters. A game cluster is a collection of games between 0 and 1

which have the following property. There is a single directed graph called

\left ray tree" (LRT ) such that:

1. Every two nodes of the graph have a common ancestor.

2. Every two nodes which are not ancestors of each other have no common

decendant.

3. A node of the graph may have an in�nite number of ancestors. We call
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a left ray the collection of all ancestors of a node.

The LRT graphs are similar to trees except they may possess in�nite

left rays. We require that for every game of the cluster its game tree is

a subgraph of the graph LRT , and the LRT graph is the union of such

subgraphs. Next, we require that if a graph node belongs to any two game

trees, the same player makes his moves from this node in the corresponding

games. Finally, we require that the winning sets for the games of the cluster

must be related in the following way. There is a set W of nonextendible

paths through the graph such that for every game � of the cluster each path

from the winning set of � is extendible to a path from W . If a node p is the

root of � we denote by Wp the winning set of �.

We then introduce the notion of winner for the game cluster. The

graph LRT has its nodes naturally partitioned between players 0 and 1 as

the nodes at which the corresponding players make moves. Therefore there

is a notion of a strategy for each player which the player can use in every

game of the cluster. We say that the player 0 wins the game cluster if there

is a strategy for player 0 and a left ray in the LRT graph such that this

strategy wins every game of the cluster whose root belongs to the left ray.

We say that the player 1 wins the game cluster if the player has a strategy

such that for every left ray there is a game of the cluster with its root on the

left ray such that this strategy wins the game. Thus we can present a game

cluster as a triple � = (A;W; 0), where A is an LRT graph. This means that

the games of the cluster can be presented in the Gurevich-Harrington form

as triples �p = (Ap;Wp; 0), where Ap is the arena of a game from the cluster

and p 2 A. This completes the description of a game cluster.

We restrict the winning sets W to the Gurevich-Harrington form. I.e.

we �x a �nite collection of subsets of the LRT graph and for each such subset

C consider the set [C] of all the nonextendible paths through the graph which

meet C in�nitely often. The set W has a Gurevich-Harrington form if it is

a boolean combination of sets [C]. We call the �nite collection of sets C the

collection of colors [20].

We would like to explain brie
y how to generalize the Gurevich-

Harrington Latest Appearance Record (LAR), their restricted memory equiv-

alence and and the notion of a strategy respecting this equivalence for game

clusters. The di�culty is that the arena of a cluster might not have a root

and Gurevich-Harrington de�nition of LAR does not apply directly. We by-

4



pass the di�culty by de�nig a new equivalence relation E. This equivalence

is based on LARs with respect to nodes on a �xed left ray in the arena of the

game cluster. The same left ray is used to de�ne an equivalence E over the

arena, which is an extension of the Gurevich-Harrington RMD equivalence.

In particular, xEy implies that the games from the cluster with roots at x

and y are isomorphic structures in a suitable language. This replaces the

Gurevich-Harrington notion of coincidence of residual games. Let �x and

�y be the structures just mentioned. We say that a strategy f for player 0

over arena strictly respects E if xEy implies that the structures (�x; fx) and

(�y; fy) are isomorphic, where fz is a unary predicate which is true on all

nodes consistent [18] with f after z.

In the next two sections we give exact de�nitions for the above notions

and state our RMD theorem as Theorem 3.1.

2 Games, Arenas, and Strategies

Our games occur on the arenas de�ned as follows.

De�nition 2.1 A partially ordered set A is an arena if it satis�es the fol-

lowing axioms (every set possessing only one minimal element is linearly

ordered, every two tree nodes have a common ancestor below each of them,

and the partial order is discrete):

1. 8xyz(x � y
V
z � y ! (x � z

W
z � x).

2. 8xy9z(z � x
V
z � y).

3. 8xy(x � y ! 9n9nz(x < z < y)).

Let T0 and T1 be subsets of A such that:

1. T0
S
T1 = T .

2. T0
T
T1 = ;.

3. For any x 2 T , if x 2 T� then Suc(x) � T1��, where �� 1 = 0 if � = 1,

and �� 1 = 1 if � = 0; and Suc(x) = fyjx < y&:9z(x < z < y)g.

We say that the set T� is the set of nodes for the player �.

If � is a path in an arena A and p 2 �, then the left ray from p is the

set l(�p) = fyjy 2 �&y � pg.
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De�nition 2.2 1. A game cluster is a triple � = (A;W; 0), where A is

an arena, W is a set of paths in A, and 0 is a player.

2. If the arena A has no minimal elements then the game � is called a

game cluster with unbounded �nite past.

A strategy for the player � is a many valued function from T (�) to

T (�� 1) such that for every x 2 T (�), f(x) 2 Suc(x).

De�nition 2.3 Let � = (A;W; 0) be a game cluster with unbounded �nite

past.

1. The player 0 wins the game cluster � if there exits a strategy f for 0

and a left ray � such that for any node p 2 �, f wins �p.

2. The player 1 wins the game cluster � if there exits a strategy g for 1

such that for any left ray � there exists p 2 � such that g wins �p.

Note that our de�nition of winner is unsimmetrical. This is caused by a

possible absence of an initial node in the arena of the game cluster. However,

for two player games our de�nition is equivalent to the standard de�nition

of a winner.

3 Restricted Memory Determinacy

Theorem

Let � = (A;W; 0) be a game cluster, and let x 2 A. We de�ne a model

corresponding to a residual game �x as follows:

1. The domain of the model is Ax = fyjx � y 2 Ag.

2. Predicates (T0)x; (T1)x are de�ned by A
T
T0 and A

T
T1.

3. For each � 2 W , we de�ne a unary predicate Ax

T
l�.

We denote this model by �x as we do the residual game.

De�nition 3.1 An equivalence relation � on A is a congruence if the fol-

lowing two properties hold:
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1. If (x; y) 2 �, then models �x and �y are isomorphic.

2. If (x; y) 2 �, x � z, then for any isomorphism � : �x ! �y the pair

(z; �(z)) belongs to �.

De�nition 3.2 A strategy f strictly respects a congruence � if for all (x; y) 2

�, every isomorphism between the models �x and �y is an isomorphism be-

tween the models (�x; fx) and (�y; fy), where fx is de�ned in the introduction.

Let A be an arena of a game cluster, S be a �nite set of "colors",

C = (Cs; s 2 S) be a list of subsets of the arena colored by a corresponding

color s. We permit the members of C to intersect. We de�ne the notions of

display and the latest appearance record as follows. We linearly order the

set of colors S. Call any word over S in which every color occurs only once

a display. Denote by Display(S) the set of all displays.

De�nition 3.3 For any two nodes x; y 2 A; x � y de�ne the latest appear-

ance record of colors (LAR) as follows. Let d 2 Display(S). We de�ne a

function LAR(x; d; y):

LAR(x; d; x) = Delete(d � l(x));

where � denotes a concatenation of words, and l(x) is a word whose letters

are all of the colors from fs 2 S j x 2 Csg written in their linear order in S

from the least to the largest. Here Delete is an operation that deletes from

two concatenated words the letters of the �rst word that also appear in the

second word. Suppose LAR(x; d; t) is de�ned, then for every y 2 Suc(t)

LAR(x; d; y) = Delete(LAR(x; d; t) � l(y)):

We cover any arena by a disjoint collection of trees called sectors and

de�ne a congruence over the arena by means of this cover as follows.

Fix a node p 2 A. Consider a left ray � � A which ends at p. For every

j 2 � de�ne the sectors Sectj as follows:

Sectj = fx 2 A j x � j ^ 8j 0 2 �(j < j 0 ! :(j 0 � x
_

x � j 0)g:

Thus we have divided the arena into in�nitely many sectors. Fig.1 presents

this de�nition of sectors in the case when each node of the LRT has exactly

tow immideate successors:
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For every node p as above and any display d 2 Display(S), we de�ne a

congruence over the arena A as follows. First abbreviate ELAR as a binary

relation generated over the arena by the sectors and LAR:

ELAR(x; y), ELAR1(x; y)
W
9jj 0(x 2 Sectj&y 2 Sectj0&j 6= j 0 !

LAR(j; d; x) = LAR(j 0d; y)):

De�ne a congruence by

Ed;p = f(x; y) j x; y 2 A ^ (A;C)x �= (A;C)y ^ ELAR(x; y)g:

We abbreviate by BooL(C) = Bool([Cs]; s 2 S) the collection of all the

sets of paths fromA which are boolean combinations of the sets ([Cs]; s 2 S).

Theorem 3.1 Consider an arena A, a �nite set of colors S, a list C of

subsets of A colored by a corresponding color, a set of pathsW 2 Bool(C) and

a game cluster � = (A;W; 0): Fix a node p 2 A, a display d 2 Didsplay(S),

and a congruence Ed;p. Then one of the players � 2 f0; 1g wins the game

cluster � and has a winning strat egy which strictly respects Ed;p:

A partial case of this theorem is the Gurevich - Harrington's deter-

minacy theorem [3]. A full proof of this theorem will appear in a more

general form in [8].
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