
CDMTCS

Research

Report

Series

Anytime Algorithms for

Non-Ending Computations

C. S. Calude

1

, D. Desfontaines

2

1

,University of Auckland, NZ

2

´

Ecole Normale Supérieure, Paris, France

CDMTCS-463

June 2014

Centre for Discrete Mathematics and

Theoretical Computer Science

Anytime Algorithms for Non-Ending
Computations

Cristian S. Calude

1

and Damien Desfontaines

2

1

Department of Computer Science, University of Auckland

Private Bag 92019, Auckland, New Zealand

www.cs.auckland.ac.nz/~cristian

2

École Normale Supérieure

45 rue d’Ulm, 75005 Paris, France

desfontain.es/serious.html

June 24, 2014

Abstract

A program which eventually stops but does not halt “too quickly” halts at a
time which is algorithmically compressible. This result—originally proved in [4]—is
shown to be true in a more general setting. Following Manin [9] we convert the
result into an anytime algorithm for the halting problem and we show that the
cut-o� temporal bound is optimal. We conclude with a final discussion about how
undecidable is the halting problem.

1 Introduction

Anytime algorithms exchange execution time for quality of results [6]. Anytime algo-
rithms can be executed in two modes: either by being given a contract time (a set
amount of time to execute), or an interruptable method. To improve the solution, any-
time algorithms can be continued after they have halted. Instead of correctness, an
anytime algorithm returns a result with a “quality measure” which evaluates how close
the obtained result is to the result that would be returned if the algorithm ran until
completion.

Standard anytime algorithms eventually stop, albeit in a prohibitively long time. Fol-
lowing Manin [9] we use a more general form of anytime algorithm as an approximation
for a computation which may not end. The proposed anytime algorithm for the halting
problem works in the following way: to test whether a program eventually stops we first
compute a temporal bound—the interruptable condition—and execute the program for

www.cs.auckland.ac.nz/~cristian
desfontain.es/serious.html

that specific time. If the computation stops then the program was proved to halt; if the
computation does not stop, then we declare that the program never stops and evaluate
the error probability. By running the program a longer time we can improve its perfor-
mance either by getting to the halting time or by improving the probability error. The
essence of the algorithm is based on the fact that programs which take a long time to
halt stop at an algorithmically compressible time.

In the following we will denote by Z+ the set of positive integers {1, 2, · · · } and let
Z+ = Z+ fi {Œ}. The domain of a partial function F : Z+ ≠æ Z+ is denoted dom (F):
dom (F) =

)
x œ Z+ | F (x) ”= Œ

*
. All logarithms (log) are implicitly binary. We denote

by #S the cardinality of the set S. We assume familiarity with elementary algorithmic
information theory, see [8, 1, 5].

2 A glimpse of algorithmic complexity

2.1 Algorithmic complexity

The algorithmic complexity relative to a partially computable function F : Z+ ≠æ Z+

is the partial function Ò
F

: Z+ ≠æ Z+ defined by Ò
F

(x) = inf
)
y œ Z+ | F (y) = x

*
; if

F (y) ”= x for every y Ø 1, then Ò
F

(x) = Œ.

The algorithmic complexity is similar to the complexities studied in [8, 4, 9]; the plain
Kolmogorov complexity is about the logarithm of the algorithmic complexity. While the
Kolmogorov complexity is optimal up to an additive constant, the optimality of Ò is up
to a multiplicative constant.

Proposition 2.1. Let F be a partially computable function. The following are true:

(1) The algorithmic complexity Ò
F

is injective and for all x œ Z+

, F (Ò
F

(x)) = x
and Ò

F

(F (x)) Æ x.

(2) For every M Ø 1 there exists x > M such that Ò
F

(x) Ø x.

(3) For every N Ø 1, #
)
i œ Z+ | Ò

F

(i) Æ N
*

Æ N .

2.2 Universality

In this section we give a new characterisation of universality which will be useful for
some applications.

A partially computable function U is called universal if for every partially computable
function F : Z+ ≠æ Z+ there exists a constant k

U,F

such that for every x œ dom (F) we
have

Ò
U

(x) Æ k
U,F

· Ò
F

(x) . (1)

2

A universal partially computable function U “simulates” any other partially computable
function F in the following sense: if x œ dom (F), then from (1), one can deduce that
Ò

U

(F (x)) Æ k
U,F

· Ò
F

(F (x)) Æ k
U,F

· x, hence there exists y < k
U,F

in dom (U) such
that U (y) = F (x).

Theorem 2.1. A partially computable function U is universal i� for every partially

computable function F : Z+ ≠æ Z+

there exists a constant c
U,F

such that for every

x œ dom (F) we have

Ò
U

(F (x)) Æ c
U,F

· x. (2)

Proof. Assume U satisfies the condition (1). Taking F to be the identity we get a
constant k

U,id

such that for every z œ Z+

Ò
U

(z) Æ k
U,id

· Ò
id

(z) = k
U,id

· z. (3)

Next take F satisfying (1) and x œ dom (F). By definition of Ò
U

and the hypoth-
esis, Ò

U

(x) < Œ and we have U (Ò
U

(x)) = x, hence F (U (Ò
U

(x))) = F (x) and
Ò

U

(F (U (Ò
U

(x)))) = Ò
U

(F (x)). Let M
F

= F ¶ U . Using in order (1), the inequality
Ò

M

F

(F (x)) Æ Ò
U

(x) and (3) we deduce (2):

Ò
U

(F (x)) Æ k
U,M

F

· Ò
M

F

(F (x)) Æ k
U,M

F

· Ò
U

(x) Æ k
U,M

F

· k
U,id

· x,

hence c
U,F

= k
U,M

F

· k
U,id

.
Conversely, assume F satisfies the condition (2). For every x œ Z+ with Ò

F

(x) < Œ we
deduce in order the relations Ò

F

(x) œ dom (F) and F (Ò
F

(x)) = x, hence:

Ò
U

(x) = Ò
U

(F (Ò
F

(x))) Æ c
U,F

· Ò
F

(x) .

The relation (1) is satisfied for k
U,F

= c
U,F

.

Comment. The di�erence between (1) and (2) is in the role played by F : in the tra-
ditional condition (1), F appears through Ò

F

(which sometimes can be incomputable),
while in (2) F appears as argument of Ò

U

making the second member of the inequality
always computable.
Comment. In [9] a partially computable function U : Z+ ≠æ Z+ is called strongly

universal if for every partially computable function F : Z+ ≠æ Z+ there exists a constant
k

U,F

such that for every x œ Z+ there exists y Æ k
U,F

· x with U(y) = F (x). It is easy to
prove that a partially computable function U is universal i� it is strongly universal and
the constant k

U,F

is the same in both definitions.

Corollary 2.1. For every universal partially computable function U , every partially

computable function F : Z+ ≠æ Z+

and all x œ dom (F) we have:

Ò
U

(F (x)) Æ k
U,F ¶U

· Ò
U

(x) ,

where k
U,F ¶U

comes from (1).

3

Proof. Applying (1) on F ¶ U and F (x) and using the definition of Ò, we get:

Ò
U

(F (x)) Æ k
U,F ¶U

· Ò
F ¶U

(F (x)) Æ k
U,F ¶U

· Ò
U

(x) .

In what follows we will fix a universal partially computable function U and write Ò
instead of Ò

U

.

Theorem 2.2. The complexity Ò is incomputable.

Proof. Assume by contradiction that Ò is computable. Then the partial function
F : Z+ ≠æ Z+ defined by F (x) = inf

)
i œ Z+ | Ò (i) Ø x2

*
is partially computable,

and, by Proposition 2.1, (4), total. Clearly, Ò (F (x)) Ø 2x, for all x œ Z+.

By the universality condition (2), there exists a constant c
F

= c
U,F

such that for all
x œ Z+ we have: Ò (F (x)) Æ c

F

· x, in contradiction with the inequality Ò (F (x)) Ø x2.

2.3 Algorithmic incompressibility (randomness)

Following [9], an incompressibility (randomness) cut-o� function is a computable, in-
creasing and divergent function r : Z+ ≠æ R+ such that the function x ‘æ x

r(x)

is in-
creasing and divergent.

Example 2.1. The following are incompressibility cut-o� functions:

• r (x) = log (x) , x > 1,

• r (x) = x–, 0 < – < 1,

• r (x) = x

log(x+1)

.

Let r be an incompressibility cut-o� function. An integer x œ Z+ is said to be r-

(algorithmic) incompressible (random) if Ò (x) Ø x

r(x)

.

Theorem 2.3. [2] The set

Incompress (r) =
;

x œ Z+ | Ò (x) Ø x

r (x)

<

is immune, i.e. it contains no infinite computably enumerable subsets.

4

Proof. By the definition of r and Proposition 2.1 (2) the set Incompress (r) is infi-
nite. Assume by absurdity that Incompress (r) contains an infinite computably enu-
merable subset, hence, it contains an infinite computable subset E. Define the function
F : Z+ ≠æ Z+ by F (x) = inf

Ó
i œ E | i

r(i)

Ø x2

Ô
and observe that F is computable.

By the universality condition (2) there is a constant c
F

such that for all x œ Z+,
Ò (F (x)) Æ c

F

· x.

In view of the definition of F we have x2 Æ F (x)

r(F (x))

. Because E µ Incompress (r), we
then have Ò (F (x)) Ø F (x)

r(F (x))

. Consequently, for every x œ Z+ we have:

x2 Æ F (x)
r (F (x)) Æ Ò (F (x)) Æ c

F

· x,

a contradiction.

Using Proposition 2.1 we get the following two corollaries.

Corollary 2.2. The set

)
x œ Z+ | Ò (x) Ø x

*
is immune.

Proof. The set
)
x œ Z+ | Ò (x) Ø x

*
is an infinite subset of the immune set

Incompress (r), for any incompressibility cut-o� function r.

Corollary 2.3. Let r be an incompressibility cut-o� function. Then, for all N œ Z+

we

have:

#
Ó

1 Æ x Æ N | Ò (x) Ø x

r(x)

Ô

N
Ø 1 ≠ 1

r (N)
≠æ

NæŒ
1.

3 Incompressibility cut-o�

In this section we generalise a result proved by Manin [9] which gives a su�cient condition
that the value of a partially computable function F in a point x from its domain is r–
compressible.

Theorem 3.1. Let F : Z+ ≠æ Z+

be a partially computable function and x œ dom (F).
Assume that

F (x)
r (F (x)) Ø k

F

· Ò (x) , (4)

where k
F

comes from (1). Then, F (x) is r-compressible.

Proof. Using (1) we get: Ò (F (x)) Æ k
F

· Ò (x) Æ F (x)

r(F (x))

.

5

Example 3.1. [Manin’s incompressibility cut-o�] Assume that F is a partially

computable function satisfying the following two conditions for some x œ dom (F) and

Á > 0:

1) F (x) Ø Ò (x)1+Á

,

2) Ò(x)

Á

(1+Á)log(Ò(x))

Ø k
F

.

Then, F (x) is log–compressible.

Proof. We have:

F (x)
log (F (x)) Ø Ò (x)1+Á

(1 + Á) log (Ò (x)) Ø k
F

· Ò (x) ,

so by Theorem 3.1:

Ò (F (x)) Æ F (x)
r (F (x))

.

The bound (4) used in Theorem 3.1 depends on Ò (x)—an incomputable quantity. This
choice is due to the fact that by (3), Ò (x) = O (x), so a bound of the form g (Ò (x)) is
better than the bound g (x). These bounds are asymptotically (up to a multiplicative
constant) the same if x is r–incompressible, but the first one can be significantly smaller
if Ò (x) π x. The disadvantage of bound (4) comes from its incomputability. We can
get a computable bound in the following way:

Corollary 3.1. Let F : Z+ ≠æ Z+

be a partially computable function and x œ dom (F).
Assume that

F (x)
r (F (x)) Ø c

F

· x, (5)

where c
F

comes from (2). Then, F (x) is not r–incompressible.

Proof. Using (2) we have: Ò (F (x)) Æ c
F

· x Æ F (x)

r(F (x))

.

6

4 Temporal bounds

Theorem 3.1 and Corollary 3.1 are general results in the sense that they apply to every
partially computable function. “Computing” an r–compressible output doesn’t seem so
di�cult (in contrast with generating r–incompressible positive integers). So, what is the
use of such a computation?

In this section we will illustrate the use of Corollary 3.1 for a special partially computable
function, the time complexity.

Let Steps : Z+ ≠æ Z+ be the partially computable function such that U (x) < Œ i�
U (Steps (x)) < Œ, and if U (x) < Œ, then U (x) stops in Steps (x) steps.

If we apply Theorem 3.1 and Corollary 3.1 to Steps we get a similar result to the main
theorem of [4], where the bound can be expressed with or without Ò (x).

Theorem 4.1. Assume that U (x) halts in t
x

steps, with t
x

such that

t

x

r(t

x

)

> k
Steps

·Ò (x)
or

t

x

r(t

x

)

> c
Steps

· x. Then, t
x

is not r–incompressible.

To get the entire power of Theorem 4.1 we need to use it in conjunction with the following
result stating that the r–incompressible times (at which a computation can halt) is a
“small” set of positive integers. To this aim we will work with the (natural) density

on P
!
Z+

"
. The natural density is not a probability in Kolmogorov’s sense (no such

probability can be defined for all subsets of positive integers). However, if a positive
integer is “randomly” selected from the set {1, 2, . . . , m}, then the probability that it
belongs to a given set A µ Z+ is

p
m

(A) = # ({1, . . . , m} fl A)
m

.

If lim
N≠æŒ p

m

(A) exists and is equal to ”, then the set A µ Z+ has density d (A) = ”.

In a sense, the density d (A) models “the probability that a randomly chosen integer
x œ Z+ is in A”.

A set A µ Z+ is said to have constructive density zero if there exists a computable
function b : Z+ æ Z+ such that for every i œ Z+ we have p

m

(A) < 2≠i provided
m Ø b (i).

Fact 4.1. For every incompressibility cut-o� function r, the following setÓ
1 Æ x Æ N | Ò (x) < x

r(x)

Ô
has constructive density zero.

Proof. The map x ‘æ x

r(x)

is increasing as r is an incompressibility cut-o� function, so
we have

;
1 Æ x Æ N | Ò (x) <

x

r (x)

<
™

;
1 Æ x Æ N | Ò (x) <

N

r (N)

<
.

7

Consequently,

p
m

({1 Æ x Æ N | x ”œ Incompress (r)}) Æ 1
r (N) Æ 2≠i,

for N Ø 2i + 1, as r is computable, increasing and divergent.

Assume that U (x) does not stop in time T
x

satisfying the second inequality in Theo-
rem 4.1, i.e.

T
x

r (T
x

) > k
Steps

· x.

Then for every m Ø T
x

, we have:

p
m

1
{1, . . . , T

x

} fl Incompress (r)
2

Æ 1
r (m)

.

Hence, for every s œ Z+, if n Ø Mx

s

= min
)
n œ Z+ | r (n) Ø s

*
, then

p
n

1
{1, . . . , T

x

} fl Incompress (r)
2

Æ 1
s

.

Given x, s œ Z+, compute Mx

s

, and run U (x) for the contracted time Mx

s

. If the
computation doesn’t stop in time Mx

s

, then either

• U (x) eventually halts and the halting time belongs to a set of density smaller than
1

s

, or

• U (x) never stops.

We have obtained the following interruptable divergence anytime algorithm:

If U (x) doesn’t stop in time Mx

s

, then the probability

(according to density) that U (x) never stops is larger than

1 ≠ 1

s

.

We can improve the estimation of the time Mx

s

in the following way. Consider an injec-
tive enumeration (u

n

)
nœZ+ of the complement of Incompress (r) (which is computably

enumerable). Then, for every K, we define

E (K) = min
Ó

j œ Z+ | u
i

Æ K, for all 1 Æ i Æ j
Ô

.

8

Hence, for every n Ø T
x

, we have:

p
n

3;
z | 1 Æ z Æ T

x

, Ò (z) <
z

r (z)

<4
=

#
1
{1, ..., n}

u Ó
z | 1 Æ z Æ T

x

, Ò (z) < z

r(z)

Ô2

n

=
#

1
{T

x

+ 1, ..., n}
u Ó

z | Ò (z) < z

r(z)

Ô2

n

Æ
#

1
{1, ..., n}

u Ó
z | Ò (z) < z

r(z)

Ô2
≠ E (T

x

)
n

Æ
n

r(n)

≠ E (T
x

)
n

Æ 1
r (n) ≠ E (T

x

)
n

.

For s Ø 1 we define:
ms

x

= min
;

n | 1
r (n) ≠ E (T

x

)
n

Æ 1
k

<
,

hence, for every n Ø ms

x

, p
n

1Ó
z | 1 Æ z Æ T

x

, Ò (z) < z

r(z)

Ô2
Æ 1

s

.

Comment. Theorem 4.1 was formulated for the time complexity. In fact it works
for every abstract Blum complexity measure for U , i.e. for every partially computable
function B : Z+ ≠æ Z+ with the following two properties: a) B (x) < Œ i� U (x) < Œ;
and b) the predicate “B (x) = n” is computable.

5 Optimality of temporal bounds

Let us assume that we have some control over the number of computational steps taken
by U . More precisely, we consider the following

Assumption. There exist two integers a and b and a (computable) family
of programs (x

R

)
RœZ+ such that U (x

R

) halts in exactly a + R · b steps and
x

R

Æ b · R.

This condition may seem artificial, but it is actually verified by all “reasonable” models of
computation. Indeed, one can write a program x

R

executing the following instructions:

1. compute a large number b from a constant c hard-coded in the source code (for
example, b = c3);

2. read the input tape, on which we have placed R, and executes a dummy loop b
times;

9

3. and halt.

The number corresponding to the program is bounded by K ·c2 ·R, where K is constant:
c needs 2 log (c) bits to be stored in the source code, while R needs log (R) bits to be
written on the input tape. So, we have

x
R

b · R
Æ K · c2 · R

c3 · R
= K

c
.

If we make c large enough then we have x
R

Æ b · R.
One can easily verify that this method allows to e�ectively write a 2–tape Turing ma-
chine, or a C/C++ program, having the desired property.
The Assumption above allows us to show that the bound in Theorem 4.1 is optimal.
First we need the following independent result.

Lemma 5.1. Let f be a computable, strictly increasing function such that

f(x)

r(f(x))

= o (x).
Then g (R) = a + b · f (R) is r-incompressible for infinitely many R.

Proof. Firstly, let us remark that g(x)

r(g(x))

= o (x). Indeed, we have:

g (x)
r (g (x)) = a + b · f (x)

r (a + b · f (x)) Æ a + b · f (x)
r (f (x)) Æ a + b · f (x)

r (f (x)) = o (x) .

Secondly, as g is injective, there exists a computable function g≠1 such as for all x œ Z+,
g≠1 (g (x)) = x. Using the universality of U and Corollary 2.1, there exists a constant
k

g

≠1 such that Ò
!
g≠1 (x)

"
Æ k

g

≠1 · Ò (x). Using Proposition 2.1 (2) and the fact that
g(x)

r(g(x))

= o (x), we can choose R so that it satisfies the inequalities:

Ò (R) > R and R > k
g

≠1 · g (R)
r (g (R))

. (6)

We then have:

k
g

≠1 · g (R)
r (g (R)) < R < Ò (R) = Ò

1
g≠1 (g (R))

2
Æ k

g

≠1 · Ò (g (R)) ,

hence Ò (g (R)) Ø g(R)

r(g(R))

, that is, g (R) is r-incompressible. As we can choose arbitrarily
large integers R verifying (6), the proof is concluded.

Theorem 5.1. In Theorem 4.1, the condition “

t

x

r(t

x

)

> c
Steps

·x” cannot be replaced with

the condition “t
x

> f (x)”, where f is a computable, strictly increasing function that

verifies the relation

f(x)

r(f(x))

= o (x).

10

Proof. By contradiction, let us assume that Theorem 4.1 is true with the new condition.
Let (x

R

) be the family of programs previously defined: there exist two integers a and b
such that x

f(R)

halts in a + b · f (R) steps for any R, and x
f(R)

Æ b · f (R). Let us prove
that this quantity can be made r-incompressible.

Choose R be such that g (R) is r-incompressible. Using Lemma 5.1 and the fact that f
is strictly increasing we have:

f
1
x

f(R)

2
Æ b · f (R) < g (R) = t

x

f(R) .

Applying Theorem 4.1 with the new condition implies that g (R) is not r-incompressible,
a contradiction.

6 How incomputable is halting set?

It is well known that the halting set Halt(U) =
)
x œ Z+ | U (x) < Œ

*
is computably

enumerable but not computable. In [7] it was proved that if we take U to be the single
semi-infinite tape, single halt state, binary alphabet universal Turing machine, then
Halt(U) is decidable on a set of asymptotic probability one, i.e. there exists a decidable,
density one set R µ Z+ such that Halt(U) fl S is decidable.

The result in [7] depends on the chosen universal U as it was proved in [3]. Can we prove
a similar result for every universal U? A weak positive answer based on Theorem 4.1 is
provided below.

To this aim we extend the notion of density for pairs of positive integers. Let E µ
Z+ ◊ Z+ and denote by E (N, M) the set # ({(x, t) œ E | 1 Æ x Æ N, 1 Æ t Æ M}). If
E (N, M) /(MN) tends to a limit ” as N and M tend to infinity independently, then we
say that the set E has density ” and we write d (E) = ”.

The halting set Halt(U) =
)
x œ Z+ | U (x) < Œ

*
can be rewritten as Halt(U) =)

x œ Z+ | there exists t such that U (x) halts in time t
*
. This form suggests to rewrite

Halt(U) as a set of pairs (x, t) such that U halts in time t.

Theorem 6.1. The set

)
(x, t) œ Z+ ◊ Z+ | U (x) halts in time t

*
can be written as a

disjoint union of a decidable set and a constructive density zero set.

Proof. By Theorem 4.1 and Fact 4.1 the set
)
(x, t) œ Z+ ◊ Z+ | U (x) halts in time t

*

can be written as a disjoint union of the following two sets:

•
)
(x, t) œ Z+ ◊ Z+ | t Æ T

x

and U (x) halts in time t
*
, and

•
)
(x, t) œ Z+ ◊ Z+ | t > T

x

and U (x) halts in time t
*
.

11

The first set is decidable. We show that the second set has constructive density zero.
Indeed, if we define

H (N, M) = # ({(x, t) œ {1, 2, . . . , N} ◊ {1, 2, . . . , M} | t > T
x

, U (x) halts in time t}) ,

then

lim
NæŒ
MæŒ

H (N, M)
NM

Æ lim
NæŒ
MæŒ

({(x, t) œ {1, 2, . . . , N} ◊ {1, 2, . . . , M} | t ”œ Incompress (r)})
NM

Æ lim
M≠æŒ

({1 Æ t Æ M | t ”œ Incompress (r)})
M

= 0,

constructively by Fact 4.1.

Acknowledgement

The authors have been supported in part by the Quantum Computing Research Initia-
tives at Lockheed Martin.

References
[1] C. S. Calude. Information and Randomness: An Algorithmic Perspective, Springer-

Verlag, Berlin, 2002 (2nd Edition).

[2] C. Calude, I. Chi�escu. Strong noncomputability of random strings, Internat. J.

Comput. Math. 11 (1982), 43–45.

[3] C. S. Calude, D. Desfontaines. Universality and Almost Decidability, CDMTCS

Research Report 462, 2014

[4] C. S. Calude, M. A. Stay. Most programs stop quickly or never halt, Advances in

Applied Mathematics, 40 (2008), 295–308.

[5] R. Downey, D. Hirschfeldt. Algorithmic Randomness and Complexity, Springer, Hei-
delberg, 2010.

[6] J. Grass. Reasoning about computational resource allocation. An introduction to
anytime algorithms, Magazine Crossroads 3, 1 (1996), 16–20.

12

[7] J. D. Hamkins, A. Miasnikov. The halting problem is decidable on a set of asymp-
totic probability one, Notre Dame J. Formal Logic 47 (4) (2006), 515–524.

[8] Yu. I. Manin. A Course in Mathematical Logic for Mathematicians, Springer, Berlin,
1977; second edition, 2010.

[9] Yu. I. Manin. Renormalisation and computation II: time cut-o� and the Halting
Problem, Math. Struct. in Comp. Science 22 (2012), 729–751.

13

