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Abstract

A program which eventually stops but does not halt “too quickly” halts at a
time which is algorithmically compressible. This result—originally proved in [4]—is
shown to be true in a more general setting. Following Manin [9] we convert the
result into an anytime algorithm for the halting problem and we show that the
cut-off temporal bound is optimal. We conclude with a final discussion about how
undecidable is the halting problem.

1 Introduction

Anytime algorithms exchange execution time for quality of results [6]. Anytime algo-
rithms can be executed in two modes: either by being given a contract time (a set
amount of time to execute), or an interruptable method. To improve the solution, any-
time algorithms can be continued after they have halted. Instead of correctness, an
anytime algorithm returns a result with a “quality measure” which evaluates how close
the obtained result is to the result that would be returned if the algorithm ran until
completion.

Standard anytime algorithms eventually stop, albeit in a prohibitively long time. Fol-
lowing Manin [9] we use a more general form of anytime algorithm as an approximation
for a computation which may not end. The proposed anytime algorithm for the halting
problem works in the following way: to test whether a program eventually stops we first
compute a temporal bound—the interruptable condition—and execute the program for
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that specific time. If the computation stops then the program was proved to halt; if the
computation does not stop, then we declare that the program never stops and evaluate
the error probability. By running the program a longer time we can improve its perfor-
mance either by getting to the halting time or by improving the probability error. The
essence of the algorithm is based on the fact that programs which take a long time to
halt stop at an algorithmically compressible time.

In the following we will denote by Z* the set of positive integers {1,2,---} and let
7+ = Z* U {oco}. The domain of a partial function F': Z+ — Z7 is denoted dom (F):
dom (F) = {x € Z* | F (z) # oo}. All logarithms (log) are implicitly binary. We denote
by #S the cardinality of the set S. We assume familiarity with elementary algorithmic
information theory, see [8, 1, 5].

2 A glimpse of algorithmic complexity

2.1 Algorithmic complexity

The algorithmic complezity relative to a partially computable function F': 7zt — 7+
is the partial function Vp: ZT — Z* defined by Vp (x) = inf {y € ZT | F (y) = z}; if
F (y) # x for every y > 1, then Vp (x) = oc.

The algorithmic complexity is similar to the complexities studied in [8, 4, 9]; the plain
Kolmogorov complexity is about the logarithm of the algorithmic complexity. While the
Kolmogorov complexity is optimal up to an additive constant, the optimality of V is up
to a multiplicative constant.

Proposition 2.1. Let F be a partially computable function. The following are true:
(1) The algorithmic complexity Vg is injective and for all x € Z, F (Vg (z)) = z
and Vi (F(x)) < x.
(2) For every M > 1 there exists x > M such that V (z) > x.

(3) For every N>1, #{i€Z" |Vp(i) <N} <N.

2.2 Universality

In this section we give a new characterisation of universality which will be useful for
some applications.

A partially computable function U is called universal if for every partially computable
function F': ZT — Z+ there exists a constant ky g such that for every z € dom (F') we
have

Vo (z) < kup- Ve (@), (1)



A universal partially computable function U “simulates” any other partially computable
function F' in the following sense: if x € dom (F), then from (1), one can deduce that
Vu (F(z)) < kyrp-VE(F(x)) < kyr -, hence there exists y < ky p in dom (U) such
that U (y) = F (x).

Theorem 2.1. A partially computable function U is universal iff for every partially
computable function F: ZT —s 7% there exists a constant cu,r such that for every
x € dom (F') we have

Vu (F(x) <cur-x. (2)

Proof. Assume U satisfies the condition (1). Taking F' to be the identity we get a
constant kgiq such that for every z € Z+

Vu (2) < kuida - Via (2) = kuia - 2. (3)

Next take F' satisfying (1) and x € dom (F'). By definition of Vi and the hypoth-
esis, Vy (z) < oo and we have U (Vy (x)) = =, hence F (U (Vy (z))) = F(x) and
Vu (F (U (Vy(x)))) =Vu (F(x)). Let Mp = FoU. Using in order (1), the inequality
Ve (F(x)) <V (x) and (3) we deduce (2):

Vu (F () <kvmp - Ve (F(2) <kume - Vo () < kyvg - kuia - @,

hence CU,F = kU,MF : k;U,id'

Conversely, assume F satisfies the condition (2). For every x € ZT with Vg (z) < oo we
deduce in order the relations Vg (z) € dom (F') and F (Vg (z)) = =, hence:

Vu (:U) =Vyu (F (VF (.1‘))) <cyr-Vr (x) .
The relation (1) is satisfied for ky rp = cy p. O

Comment. The difference between (1) and (2) is in the role played by F: in the tra-
ditional condition (1), F' appears through Vg (which sometimes can be incomputable),
while in (2) F appears as argument of Vi making the second member of the inequality
always computable.

Comment. In [9] a partially computable function U: Zt — Z+ is called strongly
universal if for every partially computable function F: Zt — Z+ there exists a constant
ku r such that for every z € Z* there exists y < ky g -z with U(y) = F(x). It is easy to
prove that a partially computable function U is universal iff it is strongly universal and
the constant ky r is the same in both definitions.

Corollary 2.1. For every universal partially computable function U, every partially
computable function F : ZT — Z+t and all x € dom (F) we have:

Vu (F(x)) < kurov - Vu (),

where ky poy comes from (1).



Proof. Applying (1) on F o U and F' (z) and using the definition of V, we get:

Vu (F (2)) < kyrov - Vrou (F (2)) < kurov - Vo (2)

g

In what follows we will fix a universal partially computable function U and write V
instead of V.

Theorem 2.2. The complezity V is incomputable.

Proof. Assume by contradiction that V is computable. Then the partial function
F: 7% — Z% defined by F () = inf {i € ZT | V (i) > 22} is partially computable,
and, by Proposition 2.1, (4), total. Clearly, V (F (x)) > 2z, for all z € Z*.

By the universality condition (2), there exists a constant cp = cy p such that for all
r € ZT we have: V (F (z)) < ¢ -z, in contradiction with the inequality V (F (z)) > 2.

O]

2.3 Algorithmic incompressibility (randomness)

Following [9], an incompressibility (randomness) cut-off function is a computable, in-

creasing and divergent function r: ZT — R™ such that the function z r(xT) is in-

creasing and divergent.

Example 2.1. The following are incompressibility cut-off functions:
o r(x)=log(x),z>1,
e r(x)=z*0<a<l,

er (l’) - log(i—i-l) ’

Let 7 be an incompressibility cut-off function. An integer x € ZT is said to be r-
(algorithmic) incompressible (random) if V (x) > el

Theorem 2.3. [2] The set

Incompress (1) = {m €LT|V(2) 2 r ZL’)}

18 immune, i.e. it contains no infinite computably enumerable subsets.



Proof. By the definition of r and Proposition 2.1 (2) the set Incompress (r) is infi-
nite. Assume by absurdity that Incompress () contains an infinite computably enu-
merable subset, hence, it contains an infinite computable subset E. Define the function
F:Z%" — Z* by F(z) = inf {’L €EF| r(ZT) > x2} and observe that F is computable.
By the universality condition (2) there is a constant cg such that for all z € ZT,
V(F(z)) <cp-u.

In view of the definition of F we have z? < T(I;((?))' Because E C Incompress (1), we

then have V (F'(x)) > 5,(@))' Consequently, for every x € Z* we have:

—_— T
* < ———= <V (F(z)) <cp-u,
a contradiction. O

Using Proposition 2.1 we get the following two corollaries.

Corollary 2.2. The set {x € Z' | V (z) > z} is immune.

Proof. The set {x €Z% |V (z) >z} is an infinite subset of the immune set
Incompress (1), for any incompressibility cut-off function 7. O

Corollary 2.3. Let r be an incompressibility cut-off function. Then, for all N € Z we
have:

#llcesNiVe =g}

1.
N =TI Neoroo

3 Incompressibility cut-off

In this section we generalise a result proved by Manin [9] which gives a sufficient condition
that the value of a partially computable function F' in a point x from its domain is r—
compressible.

Theorem 3.1. Let F : Zt — 7 be a partially computable function and x € dom (F).
Assume that

——— >kp-V(z), (4)

where kr comes from (1). Then, F (x) is r-compressible.

Proof. Using (1) we get: V (F (2)) <kp-V (z) < r(l;((xx))).



Example 3.1. [Manin’s incompressibility cut-off] Assume that F is a partially
computable function satisfying the following two conditions for some x € dom (F) and
e >0:

1) F(z) >V ()",
V(z)®
2) oy 2 kr-

Then, F (z) is log—compressible.

Proof. We have:

F(x) v (2)+
g (F (@) = (11 o)log (V (@) = 77 V(@
so by Theorem 3.1:
F(x)
VEE) S Ew)

O]

The bound (4) used in Theorem 3.1 depends on V (z)—an incomputable quantity. This
choice is due to the fact that by (3), V (z) = O (z), so a bound of the form g (V (z)) is
better than the bound ¢ (x). These bounds are asymptotically (up to a multiplicative
constant) the same if x is r—incompressible, but the first one can be significantly smaller
if V (z) < z. The disadvantage of bound (4) comes from its incomputability. We can
get a computable bound in the following way:

Corollary 3.1. Let F': Zt —s ZF be a partially computable function and x € dom (F).
Assume that

r(F (x))

where cgp comes from (2). Then, F (x) is not r—incompressible.

> cp-x, (5)

Proof. Using (2) we have: V(F (z)) <cp -z < T(FF((CCI)))'




4 Temporal bounds

Theorem 3.1 and Corollary 3.1 are general results in the sense that they apply to every
partially computable function. “Computing” an r—compressible output doesn’t seem so
difficult (in contrast with generating r—incompressible positive integers). So, what is the
use of such a computation?

In this section we will illustrate the use of Corollary 3.1 for a special partially computable
function, the time complexity.

Let Steps: ZT — ZT be the partially computable function such that U (z) < oo iff
U (Steps (x)) < oo, and if U (z) < oo, then U (x) stops in Steps (x) steps.

If we apply Theorem 3.1 and Corollary 3.1 to Steps we get a similar result to the main
theorem of [4], where the bound can be expressed with or without V ().

Theorem 4.1. Assume that U (x) halts in t, steps, with t, such that Tft—zz) > ksteps: V ()

or % > CSteps - - Then, t; is not r—incompressible.

To get the entire power of Theorem 4.1 we need to use it in conjunction with the following
result stating that the r—incompressible times (at which a computation can halt) is a
“small” set of positive integers. To this aim we will work with the (natural) density
on P (ZT). The natural density is not a probability in Kolmogorov’s sense (no such
probability can be defined for all subsets of positive integers). However, if a positive
integer is “randomly” selected from the set {1,2,...,m}, then the probability that it
belongs to a given set A C Z* is

o () = Lm0 ),

m

If lim 00 P (A) exists and is equal to §, then the set A C Z* has density d (A4) = §.

In a sense, the density d(A) models “the probability that a randomly chosen integer
x €ZT isin A",
A set A C Z7 is said to have constructive density zero if there exists a computable

function b: Z+ — Z* such that for every i € Z* we have p,, (4) < 27¢ provided
m > b(i).

Fact 4.1. For every incompressibility cut-off function r, the following set
{1 <z <N|V(x)< %} has constructive density zero.

Proof. The map = — T(IT) is increasing as 7 is an incompressibility cut-off function, so
we have

{1§x§N|V(a:)<nggc)}g{lgxgsz(:ckrévm}.



Consequently,

Pm ({1 <2 < N |z ¢ Incompress (r)}) <

for N > 2" + 1, as r is computable, increasing and divergent.

O

Assume that U (z) does not stop in time 7 satisfying the second inequality in Theo-
rem 4.1, i.e.

T

—— >k - x.
T‘(Tx) Steps * L

Then for every m > T, we have:

1 .
r(m)

DPm ({1, ..., T} N Incompress (r)) <
Hence, for every s € Z1, if n > MZ* = min {n € Z* | r (n) > s}, then

Dn ({1, ..., Ty} N Incompress (r)) <

®» | =

Given z,s € Z", compute M?, and run U (z) for the contracted time MZ. If the
computation doesn’t stop in time MY, then either

e U (x) eventually halts and the halting time belongs to a set of density smaller than

l? or
s

e U (z) never stops.

We have obtained the following interruptable divergence anytime algorithm:

If U (z) doesn’t stop in time M7, then the probability
(according to density) that U (z) never stops is larger than
1—1.

S

We can improve the estimation of the time M7 in the following way. Consider an injec-
tive enumeration (uy), cz+ of the complement of Incompress () (which is computably
enumerable). Then, for every K, we define

E(K):min{j€Z+\ui§K, foralllgigj}.



Hence, for every n > T, we have:

. }) # ({1 N{z11<2 <0,V (2) < 355))

Dn ({z|1§z§Tx,V(z)< e

n

# {4+ 1,0 {z 1 V() < 351)

n
_# ({1, n}N{z1 V() < ;55 }) - E(T)
A A
- n
1 EB(D)
= r(n) n
For s > 1 we define:
1 EB(T)

hence, foreverynszc,pn({zl1§Z§Tz’v(z)< (Z}>S '

r\Z

@ =

~—

Comment. Theorem 4.1 was formulated for the time complexity. In fact it works
for every abstract Blum complexity measure for U, i.e. for every partially computable
function B: Z* — Z% with the following two properties: a) B (z) < oo iff U (z) < oo;
and b) the predicate “B (z) = n” is computable.

5 Optimality of temporal bounds

Let us assume that we have some control over the number of computational steps taken
by U. More precisely, we consider the following

Assumption. There exist two integers a and b and a (computable) family
of programs (zgr)pcy+ such that U (zg) halts in exactly a + R - b steps and
TR S b-R.

This condition may seem artificial, but it is actually verified by all “reasonable” models of
computation. Indeed, one can write a program xr executing the following instructions:

1. compute a large number b from a constant ¢ hard-coded in the source code (for
example, b = ¢3);

2. read the input tape, on which we have placed R, and executes a dummy loop b
times;



3. and halt.

The number corresponding to the program is bounded by K -¢?- R, where K is constant:
¢ needs 2log (¢) bits to be stored in the source code, while R needs log (R) bits to be
written on the input tape. So, we have

TR <K-62~R K

bR~ 3R ¢

If we make ¢ large enough then we have xp < b- R.

One can easily verify that this method allows to effectively write a 2-tape Turing ma-
chine, or a C/C++ program, having the desired property.

The Assumption above allows us to show that the bound in Theorem 4.1 is optimal.
First we need the following independent result.

Lemma 5.1. Let f be a computable, strictly increasing function such that T’(f((mx))) =o(x).

Then g(R) =a+b- f(R) is r-incompressible for infinitely many R.

Proof. Firstly, let us remark that % = o(x). Indeed, we have:

g(@) _ atb-f(z) _a+b-fl@) _
Fe@) ratb @) - 0@ TG @)

Secondly, as ¢ is injective, there exists a computable function ¢~' such as for all z € Zt,

g (g (z)) = z. Using the universality of U and Corollary 2.1, there exists a constant

kg1 such that V (¢7* (2z)) < k-1 - V (2). Using Proposition 2.1 (2) and the fact that

% = o(x), we can choose R so that it satisfies the inequalities:

V(R)>Rand R > kj-1 - (6)

g — .
(g (R))
We then have:

by O <R <V () =V (7 (0 (R)) by Vg (R),

hence V (g (R)) > %a that is, g (R) is r-incompressible. As we can choose arbitrarily
large integers R verifying (6), the proof is concluded.

d

Theorem 5.1. In Theorem 4.1, the condition “% > Cgteps - T 7 cannot be replaced with

the condition “t, > f(x)”, where f is a computable, strictly increasing function that
f(x)

verifies the relation 7o = o(x).

10



Proof. By contradiction, let us assume that Theorem 4.1 is true with the new condition.
Let (zg) be the family of programs previously defined: there exist two integers a and b
such that (g halts in a +b- f (R) steps for any R, and x ;) <b- f (R). Let us prove
that this quantity can be made r-incompressible.

Choose R be such that g (R) is r-incompressible. Using Lemma 5.1 and the fact that f
is strictly increasing we have:

f(2pm) b f(R) < g(R) = tu

Applying Theorem 4.1 with the new condition implies that g (R) is not r-incompressible,
a contradiction. O

6 How incomputable is halting set?

It is well known that the halting set Halt(U) = {z € Z" | U (z) < 0o} is computably
enumerable but not computable. In [7] it was proved that if we take U to be the single
semi-infinite tape, single halt state, binary alphabet universal Turing machine, then
Halt(U) is decidable on a set of asymptotic probability one, i.e. there exists a decidable,
density one set R C Z* such that Halt(U) NS is decidable.

The result in [7] depends on the chosen universal U as it was proved in [3]. Can we prove
a similar result for every universal U? A weak positive answer based on Theorem 4.1 is
provided below.

To this aim we extend the notion of density for pairs of positive integers. Let E C
Z* x Z* and denote by E (N, M) the set # ({(z,t) e F|1 <z < N,1<t<M}). If
E(N,M) /(MN) tends to a limit § as N and M tend to infinity independently, then we
say that the set F has density § and we write d (E) = 4.

The halting set Halt(U) = {x € Z" | U (z) < oo} can be rewritten as Halt(U) =
{x € Z" | there exists t such that U (x) halts in time ¢}. This form suggests to rewrite
Halt(U) as a set of pairs (z,t) such that U halts in time ¢.

Theorem 6.1. The set {(z,t) € ZT x Z" | U (z) halts in time t} can be written as a
disjoint union of a decidable set and a constructive density zero set.

Proof. By Theorem 4.1 and Fact 4.1 the set {(z,t) € ZT x Z* | U (z) halts in time ¢}
can be written as a disjoint union of the following two sets:

o {(z,t) €ZT xZ" |t <T, and U (x) halts in time ¢}, and

o {(z,t) €ZT xZ" |t >T, and U (x) halts in time ¢}.

11



The first set is decidable. We show that the second set has constructive density zero.
Indeed, if we define

H(N,M)=+#{(z,t) €{1,2,...,N} x{1,2,...,M} | t > T, U (x) halts in time t}),

then
. H(N,M)
AN
M—o0
< I # {(z,t) €{1,2,...,N} x{1,2,...,M} | t € Incompress (7)})
- Ngnoo NM
M—co
<t <
< lim # ({1 <t < M]|t¢Incompress(r)}) _o,
M—o0 M
constructively by Fact 4.1. O
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