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Université de Strasbourg, France

CDMTCS-398
February 2011

Centre for Discrete Mathematics and
Theoretical Computer Science



Continued fractions of transcendental numbers

Yann BUGEAUD

Abstract. We establish new combinatorial transcendence criteria for

continued fraction expansions. Let α = [0; a1, a2, . . .] be an algebraic

number of degree at least three. One of our criteria implies that the

sequence of partial quotients (a�)�≥1 of α cannot be generated by a

finite automaton, and that the complexity function of (a�)�≥1 cannot

increase too slowly.

1. Introduction and results

A well-known open question in Diophantine approximation asks whether the continued

fraction expansion of an irrational algebraic number α either is ultimately periodic (this is

the case if, and only if, α is a quadratic irrational), or it contains arbitrarily large partial

quotients. As a preliminary step towards its resolution, several transcendence criteria for

continued fraction expansions have been established recently [1, 4, 5, 9] (we refer the reader

to these papers for references to earlier works, which include [20, 14, 12]) by means of a

deep tool from Diophantine approximation, namely the Schmidt Subspace Theorem. In the

present note, we show how a slight modification of their proofs allows us to considerably

improve two of these criteria. We begin by pointing out two important consequences of

one of our new criteria. Thus, we solve two problems addressed and discussed in [1] and

we establish for continued fraction expansions of algebraic numbers the analogues of the

results of [3] on the expansions of algebraic numbers to an integer base.

Throughout this note, A denotes a finite or infinite set, called the alphabet. We

identify a sequence a = (a�)�≥1 of elements from A with the infinite word a1a2 . . . a� . . .,
as well denoted by a. This should not cause any confusion.

For n ≥ 1, we denote by p(n,a) the number of distinct blocks of n consecutive letters

occurring in the word a. The function n �→ p(n,a) is called the complexity function of

a. A well-known result of Morse and Hedlund [21, 22] asserts that p(n,a) ≥ n + 1 for

n ≥ 1, unless a is ultimately periodic (in which case there exists a constant C such that

p(n,a) ≤ C for n ≥ 1).

2000 Mathematics Subject Classification : 11J70, 11J81, 11J87. Keywords: con-

tinued fractions, transcendence.
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Our first result asserts that the complexity function of the sequence of partial quotients
of an algebraic number of degree at least three cannot increase too slowly.

Theorem 1. Let a = (a�)�≥1 be a sequence of positive integers which is not ultimately
periodic. If the real number

α := [0; a1, a2, . . . , a�, . . .]

is algebraic, then

lim
n→+∞

p(n,a)

n
= +∞. (1.1)

Theorem 1 improves Theorem 7 from [12] and Theorem 4 from [1], where

lim
n→+∞

p(n,a)− n = +∞

was proved instead of (1.1). This gives a positive answer to Problem 3 of that paper (we
have chosen here a different formulation).

An infinite sequence a = (a�)�≥1 is an automatic sequence if it can be generated by
a finite automaton, that is, if there exists an integer k ≥ 2 such that a� is a finite-state
function of the representation of � in base k, for every � ≥ 1. We refer the reader to [13] for
a more precise definition and examples of automatic sequences. Let b ≥ 2 be an integer. In
1968, Cobham [18] asked whether a real number whose b-ary expansion can be generated
by a finite automaton is always either rational or transcendental. A positive answer to
Cobham’s question was recently given in [3]. We addressed in [1] the analogous question for
continued fraction expansions. Since the complexity function of every automatic sequence
a satisfies p(n,a) = O(n) (this was proved by Cobham [19] in 1972), Theorem 1 implies
straightforwardly a negative answer to Problem 1 of [1].

Theorem 2. The continued fraction expansion of an algebraic number of degree at least
three cannot be generated by a finite automaton.

The proofs of Theorems 1 and 2 rest ultimately on a combinatorial transcendence
criterion established by means of the Schmidt Subspace Theorem. This is as well the case
for the similar results about expansions of irrational algebraic numbers to an integer base,
see [3, 10].

Before stating our criteria, we introduce some notation. The length of a word W on
the alphabet A, that is, the number of letters composing W , is denoted by |W |. For any
positive integer k, we write W k for the word W . . .W (k times repeated concatenation
of the word W ). More generally, for any positive real number x, we denote by W x the
word W [x]W �, where W � is the prefix of W of length �(x− [x])|W |�. Here, and in all
what follows, [y] and �y� denote, respectively, the integer part and the upper integer part
of the real number y. We denote the mirror image of a finite word W := a1 . . . a� by
W := a� . . . a1. In particular, W is a palindrome if, and only if, W = W .

Let a = (a�)�≥1 be a sequence of elements from A. We say that a satisfies Condition
(∗) if a is not ultimately periodic and if there exist three sequences of finite words (Un)n≥1,
(Vn)n≥1 and (Wn)n≥1 such that:
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(i) For every n ≥ 1, either the word WnUnVnUn or the word WnUnVnUn is a prefix of

the word a;

(ii) The sequence (|Vn|/|Un|)n≥1 is bounded from above;

(iii) The sequence (|Wn|/|Un|)n≥1 is bounded from above;

(iv) The sequence (|Un|)n≥1 is increasing.

Equivalently, the word a satisfies Condition (*) if there exists a positive real number ε
such that, for arbitrarily large integers N , the prefix a1a2 . . . aN of a contains two disjoint

occurrences of a word of length [εN ] or it contains a word W of length [εN ] and its mirror

image W , provided that W and W are disjoint.

We summarize our two new combinatorial transcendence criteria in the following the-

orem.

Theorem 3. Let a = (a�)�≥1 be a sequence of positive integers. Let (p�/q�)�≥1 denote
the sequence of convergents to the real number

α := [0; a1, a2, . . . , a�, . . .].

Assume that the sequence (q1/�� )�≥1 is bounded. If a satisfies Condition (∗), then α is
transcendental.

Theorem 3 is the combination of two transcendence criteria, a first one for stammering

continued fractions (see Theorem 5; the terminology ‘stammering’ means that in (i) the

word WnUnVnUn is a prefix of the word a for infinitely many n) and a second one for

quasi-palindromic continued fractions (see Theorem 6; the terminology ‘quasi-palindromic’

means that in (i) the word WnUnVnUn is a prefix of the word a for infinitely many n). The

condition that the sequence (q1/�� )�≥1 has to be bounded is not very restrictive, since it is

satisfied by almost all real numbers (in the sense of the Lebesgue measure). Furthermore,

it is clearly satisfied when (a�)�≥1 is bounded. However, this condition can be removed if

a begins with arbitrarily large squares UnUn (Theorem 2.1 from [9]) or with arbitrarily

large palindromes UnUn (Theorem 2.1 from [5]).

Theorem 3 encompasses all the combinatorial transcendence criteria for continued

fraction expansions established in [1, 4, 5, 9] under the assumption that the sequence

(q1/�� )�≥1 is bounded.

Let a be a sequence of positive integers. If there exist three sequences of finite words

(Un)n≥1, (Vn)n≥1 and (Wn)n≥1 such that a satisfies (i) to (iv) above and if, furthermore,

|Wn| < |Un| for n ≥ 1 (this is a crude simplification, one needs in fact a stronger as-

sumption), then the transcendence of [0; a1, a2, . . .] was already proved in [1, 9, 5]. The

novelty in Theorem 3 is that we allow |Wn| to be large, provided however that the quotients

|Wn|/|Un| remain bounded independently of n. This is crucial for the proofs of Theorems

1 and 2.

At present, we do not know any transcendence criterion involving palindromes for

expansions to integer bases (see, however, [2]).

We end this section with an application of Theorem 5 to quasi-periodic continued

fractions.
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Theorem 4. Consider the quasi-periodic continued fraction

α = [0; a1, . . . , an0−1, an0 , . . . , an0+r0−1� �� �
λ0

, an1 , . . . , an1+r1−1� �� �
λ1

, . . .],

where the notation implies that nk+1 = nk+λkrk and the λ’s indicate the number of times
a block of partial quotients is repeated. Let (p�/q�)�≥1 denote the sequence of convergents

to α. Assume that the sequence (q1/�� )�≥1 is bounded. If the sequence (a�)�≥1 is not
ultimately periodic and

lim inf
k→∞

λk+1

λk
> 1, (1.2)

then the real number α is transcendental.

Theorem 4 improves Theorem 3.4 from [4], where, instead of the assumption (1.2),
the stronger condition lim infk→∞ λk+1/λk > 2 was needed.

Throughout the present note, the constants implied in � are absolute.

2. Transcendence criterion for stammering continued fractions

In this section, we use the same notation as in [1] and we establish the part of Theorem
3 dealing with stammering continued fractions. Let a = (a�)�≥1 be a sequence of elements
from A. Let w and w� be non-negative real numbers with w > 1. We say that a satisfies
Condition (∗∗)w,w� if a is not ultimately periodic and if there exist two sequences of finite
words (Un)n≥1, (Vn)n≥1 such that:

(i) For every n ≥ 1, the word UnV w
n is a prefix of the word a;

(ii) The sequence (|Un|/|Vn|)n≥1 is bounded from above by w�;

(iii) The sequence (|Vn|)n≥1 is increasing.

Theorem 5. Let a = (a�)�≥1 be a sequence of positive integers. Let (p�/q�)�≥1 denote
the sequence of convergents to the real number

α := [0; a1, a2, . . . , a�, . . .].

Assume that the sequence (q1/�� )�≥1 is bounded. If there exist non-negative real numbers
w and w� with w > 1 such that a satisfies Condition (∗∗)w,w� , then α is transcendental.

Theorem 5 improves Theorem 2 from [1] and Theorem 3.1 from [9], where the as-

sumption w > ((2logM/ logm)− 1)w� + 1 was required, with M = lim sup�→+∞ q1/�� and

m = lim inf�→+∞ q1/�� . Furthermore, it contains Theorem 3.2 from [4].
The fact that Theorem 5 implies the stammering part of Theorem 3 is easy to see.

Indeed, let a = a1a2 . . . be an infinite word over Z≥1. Assume that there exist three
sequences of finite words (Un)n≥1, (Vn)n≥1 and (Wn)n≥1 satisfying (ii), (iii) and (iv) of
Condition (∗) and such that a begins withWnUnVnUn for n ≥ 1. Then, by (ii) of Condition
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(∗), there exists w > 1 such that a begins with Wn(UnVn)w for n ≥ 1. It then follows from
(iii) of Condition (∗) and Theorem 5 that [0; a1, a2, . . .] is transcendental if the assumption
on the growth of the sequence of partial quotients is satisfied. Conversely, the stammering
part of Theorem 3 clearly implies Theorem 5.

Theorem 5 is the exact analogue of the combinatorial transcendence criterion for
expansions to integer bases proved in [10].

Proof.
Since this proof is very close to that of Theorem 2 in [1], we do not write it completely.

The new ingredient is estimate (2.6) below.
Assume that the real numbers w and w� are fixed, as well as the sequences (Un)n≥1

and (Vn)n≥1 occurring in the definition of Condition (∗∗)w,w� .
Set rn = |Un| and sn = |Vn|, for n ≥ 1. We assume that the real number α :=

[0; a1, a2, . . .] is algebraic of degree at least three. Let (p�/q�)�≥1 denote the sequence of
convergents to α. Recall that the theory of continued fraction implies that

|q�α− p�| < q−1
�+1, for � ≥ 1, (2.1)

and
q�+h ≥ q�(

√
2)h−1, for h, � ≥ 1. (2.2)

We observe that α admits infinitely many good quadratic approximants obtained by
truncating its continued fraction expansion and completing by periodicity. Precisely, for

every positive integer n, we define the sequence (b(n)k )k≥1 by

b(n)h = ah for 1 ≤ h ≤ rn + sn,

b(n)rn+h+jsn
= arn+h for 1 ≤ k ≤ sn and j ≥ 0.

The sequence (b(n)k )k≥1 is ultimately periodic, with preperiod Un and with period Vn. Set

αn = [0; b(n)1 , b(n)2 , . . . , b(n)k , . . .]

and note that, since the first rn + [wsn] partial quotients of α and of αn are the same, we
have

|α− αn| ≤ q−2
rn+[wsn]

. (2.3)

Furthermore, αn is root of the quadratic polynomial

Pn(X) := (qrn−1qrn+sn − qrnqrn+sn−1)X
2

− (qrn−1prn+sn − qrnprn+sn−1 + prn−1qrn+sn − prnqrn+sn−1)X

+ (prn−1prn+sn − prnprn+sn−1).

By (2.1), we have

|(qrn−1qrn+sn − qrnqrn+sn−1)α− (qrn−1prn+sn − qrnprn+sn−1)|
≤ qrn−1|qrn+snα− prn+sn |+ qrn |qrn+sn−1α− prn+sn−1|
� qrn q−1

rn+sn

(2.4)
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and, likewise,

|(qrn−1qrn+sn − qrnqrn+sn−1)α− (prn−1qrn+sn − prnqrn+sn−1)|
� q−1

rn qrn+sn .
(2.5)

Using (2.3), (2.4), and (2.5), we then get

|Pn(α)| = |Pn(α)− Pn(αn)|
= |(qrn−1qrn+sn − qrnqrn+sn−1)(α− αn)

2

− (qrn−1prn+sn − qrnprn+sn−1 + prn−1qrn+sn − prnqrn+sn−1)(α− αn)|
= |α− αn| · |(qrn−1qrn+sn − qrnqrn+sn−1)α− (qrn−1prn+sn − qrnprn+sn−1)

+ (qrn−1qrn+sn − qrnqrn+sn−1)α− (prn−1qrn+sn − prnqrn+sn−1)

+ (qrn−1qrn+sn − qrnqrn+sn−1)(αn − α)|
� |α− αn| ·

�
qrn q−1

rn+sn + q−1
rn qrn+sn + qrnqrn+sn |α− αn|

�

� |α− αn|q−1
rn qrn+sn

� q−1
rn qrn+sn q−2

rn+[wsn]
.

(2.6)
This estimate, more precise than (16) from [1] (namely, we gain a factor q−2

rn ), is the main
source for our improvement. Continuing exactly as in [1], we consider the four linearly
independent linear forms:

L1(X1, X2, X3, X4) =α2X1 − α(X2 +X3) +X4,

L2(X1, X2, X3, X4) =αX1 −X2,

L3(X1, X2, X3, X4) =αX1 −X3,

L4(X1, X2, X3, X4) =X1.

Evaluating them on the quadruple

zn := (qrn−1qrn+sn − qrnqrn+sn−1, qrn−1prn+sn − qrnprn+sn−1,

prn−1qrn+sn − prnqrn+sn−1, prn−1prn+sn − prnprn+sn−1),

it follows from (2.4), (2.5), (2.6), and (2.2) that

�

1≤j≤4

|Lj(zn)| � q2rn+sn q−2
rn+[wsn]

� 2−(w−1)sn

� (qrnqrn+sn)
−δ(w−1)sn/(2rn+sn),

if n is sufficiently large, where we have set

M = 1 + lim sup
�→+∞

q1/�� and δ =
log 2

logM
.
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Thus, with η = δ(w − 1)/(2w� + 1), we see that
�

1≤j≤4

|Lj(zn)| � (qrn qrn+sn)
−η

holds for any sufficiently large integer n. We have obtained exactly the same estimate as
in [1], but under a weaker assumption.

Following the proof from [1], we apply a first time the Schmidt Subspace Theorem. It
implies that the points zn lie in a finite number of proper subspaces of Q4. As in [1], we
deduce that there exists an infinite set of distinct positive integers N1 such that

qrn−1prn+sn − qrnprn+sn−1 = prn−1qrn+sn − prnqrn+sn−1

for n in N1. Thus, for n in N1, the polynomial Pn(X) can simply be expressed as

Pn(X) := (qrn−1qrn+sn − qrnqrn+sn−1)X
2

− 2(qrn−1prn+sn − qrnprn+sn−1)X + (prn−1prn+sn − prnprn+sn−1).

Consider now the three linearly independent linear forms:

L�
1(X1, X2, X3) =α2X1 − 2αX2 +X3,

L�
2(X1, X2, X3) =αX1 −X2,

L�
3(X1, X2, X3) =X1.

Evaluating them on the triple

z�n := (qrn−1qrn+sn − qrnqrn+sn−1, qrn−1prn+sn − qrnprn+sn−1,

prn−1prn+sn − prnprn+sn−1),

for n in N1, it follows from (2.4) and (2.6) that
�

1≤j≤3

|L�
j(z

�
n)| � qrn qrn+sn q−2

rn+[wsn]
� (qrn qrn+sn)

−η,

with the same η as above, if n is sufficiently large.
The rest of the proof remains unchanged and we refer the reader to [1].

3. Transcendence criterion for quasi-palindromic continued fractions

In this section, we use the same notation as in [5] and we establish the part of Theorem
3 dealing with quasi-palindromic continued fractions. Let a = (a�)�≥1 be a sequence of
elements from A. Let w be a real number. We say that a satisfies Condition (∗)w if a is
not ultimately periodic and if there exist three sequences of finite words (Un)n≥1, (Vn)n≥1

and (Wn)n≥1 such that:

(i) For every n ≥ 1, the word WnUnVnUn is a prefix of the word a;

(ii) The sequence (|Vn|/|Un|)n≥1 is bounded from above;

(iii) The sequence (|Un|/|Wn|)n≥1 is bounded from below by w;

(iv) The sequence (|Un|)n≥1 is increasing.

It is understood that, if Wn is the empty word, then |Un|/|Wn| is infinite.

7



Theorem 6. Let a = (a�)�≥1 be a sequence of positive integers. Let (p�/q�)�≥1 denote
the sequence of convergents to the real number

α := [0; a1, a2, . . . , a�, . . .].

Assume that the sequence (q1/�� )�≥1 is bounded. If there exists w > 0 such that a satisfies
Condition (∗)w, then α is transcendental.

Theorem 6 improves Theorem 2.4 from [5], where the assumption w > (2logM/ logm)−
1 was required, with M = lim sup�→+∞ q1/�� and m = lim inf�→+∞ q1/�� .

Proof.
We keep the notation of the proof of Theorem 2.4 from [5] and we explain which

changes should be made in order to establish Theorem 6.
Assume that the real number w is fixed, as well as the sequences (Un)n≥1, (Vn)n≥1

and (Wn)n≥1. Set rn = |Wn|, sn = |WnUn| and tn = |WnUnVnUn|, for n ≥ 1. Assume
that the real number α := [0; a1, a2, . . .] is algebraic of degree at least three.

For n ≥ 1, consider the rational number Pn/Qn defined by

Pn

Qn
:= [0;WnUnVnUn Wn]

and denote by P �
n/Q

�
n the last convergent to Pn/Qn which is different from Pn/Qn. It has

been proved in [5] that

|Qnα− Pn| < Qnq
−2
tn , |Q�

nα− P �
n| < Qnq

−2
tn , (3.1)

|Qnα−Q�
n| < Qnq

−2
sn , (3.2)

and
Qn ≤ 2qrnqtn ≤ 2qsnqtn . (3.3)

Inequality (3.2) is a consequence of the mirror formula

q�−1

q�
= [0; a�, a�−1, . . . , a1], for � ≥ 1,

which is a key ingredient for the proof of the combinatorial transcendence criteria for
quasi-palindromic continued fractions. Since

α(Qnα− Pn)− (Q�
nα− P �

n) = αQn

�
α− Pn

Qn

�
−Q�

n

�
α− P �

n

Q�
n

�

= (αQn −Q�
n)

�
α− Pn

Qn

�
+Q�

n

�
P �
n

Q�
n

− Pn

Qn

�
,

it follows from (3.1), (3.2) and (3.3) that

|α2Qn − αQ�
n − αPn + P �

n| � Qnq
−2
sn q−2

tn +Q−1
n

� Q−1
n .

(3.4)

8



Instead of considering the four linearly independent linear forms with algebraic coefficients

L1(X1, X2, X3, X4) =αX1 −X3,

L2(X1, X2, X3, X4) =αX2 −X4,

L3(X1, X2, X3, X4) =αX1 −X2,

L4(X1, X2, X3, X4) =X2,

as in [5], we introduce the linear form

L5(X1, X2, X3, X4) = α2X1 − αX2 − αX3 +X4,

and we deduce from (3.1), (3.2), (3.3) and (3.4) that

�

2≤j≤5

|Lj(Qn, Q
�
n, Pn, P

�
n)| � Q2

n q
−2
tn q−2

sn � q2rn q−2
sn .

By (2.2) and (3.3), we have

q2rn q−2
sn � 2−|Un| � Q−δ(sn−rn)/(rn+tn)

n ,

if n is sufficiently large, where we have set

M = 1 + lim sup
�→+∞

q1/�� and δ =
log 2

logM
.

Consequently, since a satisfies Condition (∗)w, there exists ε > 0 such that

�

2≤j≤5

|Lj(Qn, Q
�
n, Pn, P

�
n)| � Q−ε

n ,

for every sufficiently large n. We have obtained exactly the same estimate as in (6.18)
from [5], but under a weaker assumption.

Following the proof from [5], we apply a first time the Schmidt Subspace Theorem. It
implies that the points (Qn, Q�

n, Pn, P �
n) lie in a finite number of proper subspaces of Q4.

As in [5], we deduce that there exists an infinite set of distinct positive integers N2 such
that Q�

n = Pn for n in N2. Thus, for n in N2, we have

|α2Qn − 2αQ�
n + P �

n| � Q−1
n , (3.5)

instead of (3.4). Consider now the three linearly independent linear forms:

L�
1(X1, X2, X3) =α2X1 − 2αX2 +X3,

L�
2(X1, X2, X3) =αX2 −X3,

L�
3(X1, X2, X3) =X1.
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Evaluating them on the triple (Qn, Q�
n, P

�
n) for n in N2, it follows from (3.1), (3.3) and

(3.5) that

�

1≤j≤3

|L�
j(Qn, Q

�
n, P

�
n)| � Qnq

−2
tn � qrnq

−1
tn � qrnq

−1
sn � Q−ε/2

n ,

with the same ε as above, if n is sufficiently large.

We then apply again the Schmidt Subspace Theorem and we continue as in the proof

of Theorem 2.4 from [5]. We omit the details.

4. Proofs of Theorems 1 and 4

Proof of Theorem 1.
Let a be as in the statement of the theorem. Assume that there is an integer κ ≥ 2

such that the complexity function of a satisfies

p(n,a) ≤ κn for infinitely many integers n ≥ 1. (4.1)

This implies in particular that a is written over a finite alphabet, consequently the sequence

(q1/�� )�≥1 is bounded. In the proof of Theorem 1 from [3], it is shown that, under the

assumption (4.1), the word a satisfies Condition (∗∗)1+1/κ,4κ. Consequently, Theorem 1

follows from Theorem 5.

Proof of Theorem 4.
If the sequence (rk)k≥0 is bounded, then Theorem 4 is Corollary 3.3 of [4]. Thus,

we assume that (rk)k≥0 is unbounded and we consider the infinite set K composed of the

positive integers k such that rk > max{r0, . . . , rk−1}. Let ε > 0 and k0 be such that

λk0 > 2 and λk+1 > (1 + ε)λk for k ≥ k0. Let k be in K with k > k0. Set

Uk = a1a2 . . . ank−1

and

Vk = (ank . . . ank+rk−1)
[λk/2].

Observe that a begins with UkV 2
k . Furthermore, setting

n�
0 = n0 +

k0−1�

h=0

λhrh,

we have

|Uk| ≤ n�
0 +

k−1�

h=k0

λhrh

≤ n�
0 + rkλk

�
1

1 + ε
+ . . .+

1

(1 + ε)k−k0

�

≤ n�
0 + rkλk/ε
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and
|Vk| ≥ (λk − 1)rk/2.

Consequently, there exists a positive real number w� such that the word a = a1a2 . . .
satisfies Condition (∗∗)2,w� . We conclude by applying Theorem 5.

5. Concluding remarks

It seems that we are now able to get the analogues for continued fraction expansions
to all the transcendence results established recently for expansions to an integer base and
whose proofs ultimately rest on the Schmidt Subspace Theorem. For instance, combining
the arguments of [11] with Theorem 3, it is easy to prove that if 1 ≤ m < M are integers
and a = a1a2 . . . is a word over {m,M} such that [0; a1, a2, . . . , a�, . . .] is algebraic, then
there are arbitrarily large (finite) blocks W such that W 7/3 occurs in a.

Further recent developments have shown that the use of quantitative versions of the
Schmidt Subspace Theorem allows us often to strengthen or to complement results estab-
lished by means of the qualitative Schmidt Subspace Theorem, see for instance the survey
[16]. In particular, proceeding as in [6, 7, 8], it is very likely that we can get transcendence
measures for automatic continued fractions and for transcendental real numbers whose
sequence of partial quotients a is such that n �→ p(n,a)/n is bounded.

Furthermore, proceeding as in [15] and in [17], we can prove that if a = a1a2 . . . is
a word over Z≥1 such that α = [0; a1, a2, . . . , a�, . . .] is algebraic of degree at least three,
then there exists δ > 0 such that

lim sup
n→+∞

p(n,a)

n(log n)δ
= +∞,

and there exists an effectively computable positive constant M such that

p(n,a) ≥
�
1 +

1

M

�
n, for n ≥ 1.

We plan to return to these questions in a subsequent note.
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d’irrationalité et de transcendance, J. reine angew. Math. To appear.

[9] B. Adamczewski, Y. Bugeaud, and L. Davison, Continued fractions and transcen-
dental numbers, Ann. Inst. Fourier (Grenoble) 56 (2006), 2093–2113.

[10] B. Adamczewski, Y. Bugeaud et F. Luca, Sur la complexité des nombres algébriques,
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Sturmian or morphic continued fractions, J. Number Theory 91 (2001), 39–66.

[13] J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, General-

izations, Cambridge University Press, Cambridge, 2003.

[14] A. Baker, Continued fractions of transcendental numbers, Mathematika 9 (1962),

1–8.

[15] Y. Bugeaud, An explicit lower bound for the block complexity of an algebraic number,
Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19

(2008), 229–235.

[16] Y. Bugeaud, Quantitative versions of the Subspace Theorem and applications, J.
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