
CDMTCS
Research
Report
Series

A Faster P Solution for the
Byzantine Agreement
Problem

Michael J. Dinneen
Yun-Bum Kim
Radu Nicolescu

Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-388
July 2010

Centre for Discrete Mathematics and
Theoretical Computer Science

A Faster P Solution for the
Byzantine Agreement Problem

Michael J. Dinneen, Yun-Bum Kim and Radu Nicolescu

Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand

{mjd,yun,radu}@cs.auckland.ac.nz

July 6, 2010

Abstract

We propose an improved generic version of P modules, an extensible framework
for recursive composition of P systems. We further provide a revised P solution
for the Byzantine agreement problem, based on Exponential Information Gath-
ering (EIG) trees, for N processes connected in a complete graph. Each process
is modelled by the combination of N + 1 modules: one “main” module, plus one
“firewall” communication module for each process (including one for itself). The
EIG tree evaluation functionality is localized into a “main” single cell P module.
The messaging functionality is localized into a three cells communication P mod-
ule. This revised P solution improves overall running time from 9L+ 6 to 6L+ 1,
where L is the number of messaging rounds. Most of the running time, 5L steps,
is spent on the communication overhead. We briefly discuss if single cells can solve
the Byzantine agreement without support and protection from additional commu-
nication cells; we conjecture that this is not possible, within the currently accepted
definitions.

Keywords: P systems, P modules, Byzantine agreement, Distributed algorithms,
Modular design.

1 Introduction

Large distributed systems are typically composed from smaller building blocks. However,
until recently, classical P systems did not offer enough support for effective programma-
bility. Recent papers, such as [18, 17, 15], have started to address these problems. Guided
by similar goals, we recently proposed a new modular framework, called P modules, that
supports generic objects, encapsulation, information hiding and recursive composition [7].
Our proposal is compatible with any data structure based on directed arcs, i.e. it covers

1

cell-like P systems (based on trees), hP systems (based on dags) and nP systems (based
on digraphs).

In this paper, we extend this previous proposal, with external definitions and external
references, which support safer and more flexible module interconnection facilities. We
demonstrate its enhanced expressibility on a couple of simple examples, then we use it
to provide a new and improved P systems solution to the Byzantine agreement problem.

The Byzantine agreement problem was first proposed by Pease et al. in 1980 [16]
and further elaborated in Lamport et al.’s seminal paper [9]. This problem addresses
a fundamental issue in complex systems: correctly functioning processes must be able
to overcome their possible differences and achieve a consensus, despite arbitrarily faulty
processes that can give conflicting information to different parts of the system.

The Byzantine agreement has become one of the most studied problems in distributed
computing—some even consider it the “crown jewel” of distributed computing. Lynch
covers many versions of this problem and their solutions, including a complete description
of the classical algorithm, based on Exponential Information Gathering (EIG) trees as a
data structure [10].

Recent years have seen revived interest in this problem and its solutions, to achieve
higher performance or stronger resilience, in a wide variety of contexts [4, 1, 3, 11],
including, for example, solutions for quantum computers [2].

To the best of our knowledge, except our previous work on Byzantine agreement
problem [7], no other complete solution for P systems has been published. In the context
of P systems, this problem was briefly mentioned, without solutions [6, 5]. Our solution
was based on the classical EIG-based algorithm, where each EIG node was implemented
by a distinct cell.

In this paper, we provide a revised P solution for the Byzantine agreement problem,
based on EIG trees, for N processes connected in a complete graph. Each process is
modelled by the combination of N + 1 modules: one “main” module, plus one “fire-
wall” communication module for each process (including one for itself). The EIG tree
evaluation functionality is localized into a “main” single cell P module. The messaging
functionality is localized into a communication P module with three cells. This revised
P solution uses only duplex channels, uses fewer cells and rules, and improves overall
running time from 9L+ 6 to 6L+ 1, where L is the number of messaging rounds.

The rest of the paper is organized as follows. Section 2 covers a few basic preliminaries,
then introduces a combinatorial definition of the EIG data structure. We describe the
Byzantine agreement problem in detail in Section 3, which also includes a small case
study with four processes. An extended version of P modules is formally introduced in
Section 4. In Section 5, using our new modular framework, we model and develop the
structure of a P systems implementation of the Byzantine agreement problem. The rules
used in our design are described in Section 6, where we also discuss the correctness of
our design. Finally, in Section 7, we summarize our results and discuss related open
problems.

2

2 Preliminaries

We assume that the reader is familiar with the basic terminology and notations: func-
tions, relations, graphs, nodes (vertices), arcs, directed graphs, dags, trees, alphabets,
strings and multisets [12]. Given two sets, A, B, a subset f of their cartesian product,
f ⊆ A × B, is a functional relation if ∀(x, y1), (x, y2) ∈ f ⇒ y1 = y2. Obviously, any
function f : A → B can be viewed a functional relation, {(x, f(x)) | x ∈ A}, and,
vice-versa, any functional relation can be viewed as a function.

We now recall a few basic concepts from combinatorial enumerations. The integer
range from m to n is denoted by [m,n], i.e. [m,n] = {m,m + 1, . . . , n}, if m ≤ n, and
[m,n] = ∅, if m > n. The set of permutations of n of length m is denoted by P (n,m),
i.e. P (n,m) = {π : [1,m]→ [1, n] | π is injective}. A permutation π is represented by the
sequence of its values, i.e. π = (π1, π2, . . . , πm), and we will often abbreviate this further
as the sequence π = π1.π2 . . . πm. The sole element of P (n, 0) is denoted by (), or by λ, if
the context removes any possible ambiguity. Given a subrange [p, q] of [1,m], we define a
subpermutation π(p : q) ∈ P (n, q−p+ 1) by π(p : q) = (πp, πp+1, . . . , πq). The image of a
permutation π, denoted by Im(π), is the set of its values, i.e. Im(π) = {π1, π2, . . . , πm}.
The concatenation of two permutations is denoted by ⊕, i.e. given π ∈ P (n,m) and
τ ∈ P (n, k), such that Im(π) ∩ Im(τ) = ∅, π ⊕ τ = (π1, π2, . . . , πm, τ1, τ2, . . . , τk) ∈
P (n,m+ k).

An Exponential Information Gathering (EIG) tree TN,L, N ≥ L ≥ 0, is a labelled
(ordered) rooted tree of height L that is defined recursively as follows. The tree TN,0 is a
rooted tree with just one node, its root, labelled λ. For L ≥ 1, TN,L is a rooted tree with
1 +N |TN−1,L−1| nodes (where |T | is the size of tree T), root λ, having N subtrees, where
each subtree is isomorphic with TN−1,L−1 and each node, except the root, is labelled by
the least element of [1, N] that is different from any ancestor node or any left sibling
node. Alternatively, TN,L−1 is isomorphic and identically labelled with the tree obtained
from TN,L by deleting all its leaves. It is straightforward to see that there is a bijective
correspondence between the permutations of P (N,L) and the sequences (concatenations)
of labels on all paths from root to the leaves of TN,L. Thus, each node σ in an EIG tree
TN,L is uniquely identified by a permutation πσ ∈ P (N, l), where l ∈ [0, L] is also σ’s
depth, and, vice-versa, each such permutation π has a corresponding node σπ. We will
further use this node-permutation identification, while referring to nodes.

Given EIG tree TN,L, an attribute is a function ℵ : TN,L → V , for some value set V ;
alternatively, ℵ can be given as a functional subset of {π ∈ P (N, t) | t ∈ [0, L]} × V .

See Figure 1 for an example of the EIG tree, T4,2. Level 0 corresponds to permutation
set {λ}. Level 1 corresponds to permutation set {(1), (2), (3), (4)}. Level 2 corresponds
to permutation set {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2),
(4, 3)}. This tree is decorated with two attributes, α and β. Using an alternate notation
for permutations (to avoid embedded parentheses), attribute α corresponds to the func-
tional relation {(λ, 1), (1, 0), (2, 0), (3, 1), (4, 1), (1.2, 0), (1.3, 0), (1.4, 1), (2.1, 0), (2.3, 0),
(2.4, 0), (3.1, 0), (3.2, 1), (3.4, 1), (4.1, 1), (4.2, 1), (4.3, 1)}.

3

1 2 3 4

2 4 1 4 1 4 1 3

0 0 1 0 0 0 1 1 1 1 1

0 0 1 1

0 0 1 0 0 0 1 1 1 1 1

0

0
1

3 3 2 2

λ

0
0

0 1 1

Figure 1: A sample EIG tree, T 3
4,2, completed with two attributes, α and β. The node

labels appear besides the node blob. Each node blob contains its two attribute values:
the α value at the top, and the β value at the bottom.

3 The EIG-based Byzantine agreement algorithm

Each process starts with its own initial decision choice (typically different). At the end,
all non-faulty processes must take the same final decision, even if the faulty processes
attempt to disrupt the agreement, accidentally or intentionally.

The classical EIG-based algorithm solves the Byzantine agreement problem in the
binary decision case (no = 0, yes = 1), for N processes, connected in a complete graph
(where edges indicate reliable duplex communication lines), provided that N ≥ 3F + 1,
where F is the maximum number of faulty processes. This is a synchronous algorithm;
celebrated results (see for example [10]) show that the Byzantine agreement is not possible
if N ≤ 3F , in the asynchronous case or when the communication links are not reliable.

Without providing a complete description, we provide a sketch of the classical algo-
rithm, reformulated on the basis of the theoretical framework introduced in Section 2.
For a more complete and verbose description of this algorithm, including correctness and
complexity proofs, we refer the reader to Lynch [10].

Each non-faulty process, h, has its own copy of an EIG tree, T hN,L, where L = F +
1. This tree is decorated with two attributes, αh, βh : {π ∈ P (N, t) | t ∈ [0, L]} →
{0, 1, null}, where null designates undefined items (not yet evaluated). Attributes αh

and βh are also known as valh and newvalh [10], or top-down and bottom-up [7]. As their
alternative names suggest, αh is first evaluated, in a top-down tree traversal, in increasing
level order; next, βh is evaluated, in a bottom-up traversal, in decreasing level order.

The algorithm works in two phases. Its first phase is a messaging phase which com-
pletes the evaluation of the top-down attribute αh. Initially, αh(λ) = vh, the initial
choice of process h; all the other αh and βh values are still undefined. Next, there are
L messaging rounds. At round t ∈ [1, L], h broadcasts to all processes (including self),
a reversibly encoded message which identifies its αh values at level t − 1, i.e. the set
{(π, αh(π)) | π ∈ P (N, t − 1)}. All other non-faulty processes broadcast messages, in
a similar way. Process h decodes and processes the messages that it receives. From
process f , f ∈ [1, N], process h receives the set {(π, αf (π)) | π ∈ P (N, t − 1)}. Each
item (π, αf (π)), where f /∈ Im(π), is used to assign further αh values, to the next level
down the EIG tree, by setting αh(π ⊕ f) = αf (π); items where f ∈ Im(π) are silently
discarded. As this formula suggests, it is indeed critical that h “knows” the origin f
of each received message and that this origin mark cannot be faked by faulty processes.

4

Wrong or missing values are replaced by the value of a predefined default parameter,
W ∈ {0, 1}. Thus, there are L messaging rounds and, after the last round, all nodes are
decorated with values of attribute α. In fact, only the last level α values are actually
needed, to start the next phase, a practical implementation can choose to discard the
other α values.

Next, the algorithm switches to its second phase, the evaluation of the bottom-up
attribute βh. First, for leaves, βh(π) = αh(π), π ∈ P (N,L). Next, given βh values for
level t ∈ [1, L], each βh value for the next level up, βh(π), π ∈ P (N, t − 1), is evaluated
on the basis of the βh values of node π’s children, i.e. on the multiset {βh(π ⊕ f) | f ∈
[1, N] \ Im(π)}, using a local majority voting scheme: βh(π) = 0, if a strict majority of
the above multiset values are 0; or, βh(π) = 1, if a strict majority of the above multiset
values are 1; or, βh(π) = W (the same default parameter mentioned above), if there is
a tie. At the end, the βh value for the EIG root, βh(λ), is process h’s final decision. All
non-faulty processes will simultaneously reach the same final decision; any decision taken
by faulty nodes is not relevant.

Example 1 (Sample Byzantine scenario). Consider a Byzantine scenario with N = 4 and
F = 1, thus L = 2. Assume that processes 1, 2, 3 and 4 start with initial choices 0, 0,
1, and 1, respectively. Further, assume that process 1 is faulty and these four processes
exchange the messages described in Figure 2. For a more verbose description of this
example, please see [7].

1

2

4

3

1 2 3 4

Faulty

Round 1
messages
Round 2
messages

Final
decision

Initial
choice

0 0 1 1

Yes No No No

(λ, x) (λ, 0) (λ, 1) (λ, 1)

0 0 0

(1, 0)(2, 0)
(3, y)(4, 1)

(1, 0)(2, 0)
(3, 1)(4, 1)

(1, 0)(2, 0)
(3, 1)(4, 1)

(1, 1)(2, 0)
(3, 1)(4, 1)

?

Process

Figure 2: A sample Byzantine scenario, N = 4, F = 1, where process 1 is faulty. Each
of the non-faulty processes, 1, 2 and 3, broadcasts identical messages to each of the four
processes. The faulty process 1 sends conflicting messages. In our scenario, x = 0, in
the message sent to 1, 2 and 3, but x = 1, in the message sent to 4. Also, y = 1, in
the message sent to 1, 2 and 4, but y = 0, in the message sent to 3. The second phase
is not detailed here, except the common final decisions (the question mark indicates an
irrelevant value).

The second phase is illustrated in Figure 1, for process 3. The EIG tree owned by
process 3, T 3

4,2, is shown completed with all attribute values. The α3 values are filled
from messages received in the two messaging rounds, as indicated in Figure 2. The β3

values are evaluated as required by the algorithm, by a majority voting scheme. The
evaluation of β3(λ) reaches a tie, on multiset {0, 0, 1, 1}, which has two 0’s and two 1’s;
this tie is broken using the default value, here we assume W = 0. Thus, β3(λ) = 0 is

5

the final decision of process 3, which is different from its initial choice, α3(λ) = 1. A
similar argument shows that all other non-faulty processes, 2 and 4, end with the same
final decision, 0, thereby achieving the required agreement, despite starting with different
initial choices and the conflicting messages sent by faulty process 1.

4 P modules

For this section, and the rest of the paper, we assume familiarity with P systems [13, 14],
nP systems [14] and hP systems [12]. We will also use a terminology inspired from
standard modular design.

Intuitively, a P module is one of the above P systems, with additional features, re-
quired for its further assembly into a larger P module. A P module exposes the following
additional features, collectively called generic parameters, which can be further instanti-
ated, when the current module is combined with other modules:

• Besides objects of the initial alphabet, rules can also use generic symbols. A generic
symbol, abbreviated as sym, can be instantiated to one of the already existing
objects or as a new object (thereby extending the initial alphabet).

• Cells can be designated as external definitions. An external definition indicates
either the start or the end of a potential arc and is abbreviated as def↑ or as def↓,
respectively.

• Arcs can be designated as external arcs, indicating potential arcs between existing
cells and external definitions of other modules. An external arc has one uninstan-
tiated start or end cell, called an external reference, which is abbreviated as ref↑
or as ref↓, respectively.

• An external arc can be instantiated by identifying its external reference to a match-
ing external definition from another module, i.e. either its ref↓ reference to a def↓
definition, or its ref↑ reference to a def↑ definition.

Figure 3 illustrates these intuitive ideas. Module Π1 offers a def↓ definition, τ1, and
uses a ref↓ reference, Z1. Module Π2, which can be viewed as a copy of Π1, offers a def↓
definition, τ2, and uses a ref↓ reference, Z2. Module Π3 is the result of their composition,
after instantiating Z1 = τ2 and Z2 = τ1, thereby instantiating arcs (θ1, τ2) and (θ2, τ1).

Definition 2 (P module) A P module is a system Π = (O, K, δ, S,D↑, D↓, R↑, R↓),
where:

1. O is a finite non-empty alphabet of objects ;

2. K is a finite set of cells ;

3. δ is a subset of (K ×K)∪ (K ×R↓)∪ (R↑×K), i.e. a set of parent-child structural
arcs, representing duplex or simplex communication channels, between two existing
cells or between an existing cell and an external reference;

6

τ1

θ1 τ2

θ2 τ1

θ1 τ2

θ2

(a) (b) (c)

Z1

Z2

Π1 Π2 Π3

Figure 3: Composing two simple P modules. Module Π3 is the composition of modules
Π1 and Π2, after instantiating Z1 = τ2, Z2 = τ1. External references are indicated by
labels on outgoing arcs, Z1 and Z2, and external definitions by shaded cells, τ1 and τ2.

4. S is a finite alphabet, disjoint of O, of generic sym objects;

5. D↑ is a subset of K, representing def↑ definitions;

6. D↓ is a subset of K, representing def↓ definitions;

7. R↑ is a finite set, disjoint of K, representing ref↑ references;

8. R↓ is a finite set, disjoint of K, representing ref↓ references.

Let Ō = O ∪ S be the original alphabet extended with the generic symbols. Each cell,
σ ∈ K, has the form σ = (Q, s0, w0, R), where:

• Q is a finite set of states ;

• s0 ∈ Q is the initial state;

• w0 ∈ Ō∗ is the initial multiset of objects;

• R is a finite ordered set of multiset rewriting rules of the general form: s x →α

s′ x′ (u)βγ , where s, s′ ∈ Q, x, x′ ∈ Ō∗, u ∈ Ō∗, α ∈ {min, max}, β ∈ {↑, ↓, l,↔},
γ ∈ {one, spread, repl} ∪K ∪ R↑ ∪ R↓. If u = λ, this rule can be abbreviated as
s x →α s

′ x′. The semantics of the rules and of the α, β, γ operators are further
described in the rest of this section.

Remark 3 This definition of P module subsumes several earlier definitions of P systems,
hP systems and nP systems. If δ is a tree, then Π is essentially a tree-based P system
(which can also be interpreted as a cell-like P system). If δ is a dag, then Π is essentially
an hP system. If δ is a digraph, then Π is essentially an nP system.

Remark 4 Most often, our P systems are introduced semi-formally, where the objects,
cells, arcs and rules are inferred from diagrams and listings. In this case, we use angular
brackets to emphasize generic parameters, together with their type. For example, the
generic parameters of module Π1 of Figure 3 can be indicated as 〈def↓ τ1, ref↓ θ1〉, and
the whole module can be emphasized as Π1〈def↓ τ1, ref↓ θ1〉.

7

The rules given by the ordered set R are attempted in weak priority order [14]. If
a rule is applicable, then it is applied and then the next rule is attempted (if any). If a
rule is not applicable, then the next rule is attempted (if any). Note that state-based
rules introduce an extra requirement for determining rule applicability, namely the target
state indicated on the right-hand side must be the same as the previously chosen target
state (if any) [13, 12]. Rules are applied under the usual immediate (“eager”) evaluation
of their left-hand sides and deferred (“lazy”) evaluation of their right-hand sides [13].

With these conventions, one cell’s ordered set of rules becomes a sequence of pro-
gramming statements for a hypothetical P machine, where each rule includes a simple
if-then-fi conditional test for applicability and, as we see below, some while-do-od looping
facilities (max and repl operators), with some potential for in-cell parallelism, in addi-
tion to the more obvious inter-cell parallelism. State compatibility introduces another
intra-cell if-then-fi conditional test, this time between rules.

The rewriting operator α = min indicates that the rewriting is applied once, if the
rule is applicable; and α = max indicates that the rewriting is applied as many times as
possible, if the rule is applicable.

The transfer operator β = ↑ indicates that the multiset u is sent “up”, to the parents;
β = ↓ indicates that the multiset u is sent “down”, to the children; β = l indicates that
the multiset u is sent both “up” and “down”, to both parents and children; and β =↔,
indicates “lateral” transfer, to the siblings (this ↔ operator is not used in this paper).

The additional transfer operator γ = one indicates that the multiset u is sent to one
recipient (parent or child, according to the direction indicated by β). The operator γ =
spread indicates that the multiset u is spread among an arbitrary number of recipients
(parents, children or parents and children, according to the direction indicated by β).
The operator γ = repl indicates that the multiset u is replicated and broadcast to all
recipients (parents, children or parents and children, according to the direction indicated
by β). The operator γ = σ ∈ K∪R↑∪R↓ indicates that the multiset u is sent to σ, if cell
σ is in the direction indicated by β; otherwise, the multiset u is “lost”. By convention, if
cells have unique indices or are labelled and labels are locally unique, we can abbreviate
γ = σ by γ = i, where i is the index or label of σ.

The following examples illustrate the behaviour of these operators. Consider a cell σ,
in state s and containing aa. Consider the potential application of a rule s a→α s

′ b (c)βγ ,
by looking at specific values for α, β, γ operators:

• The rule s a →min s
′ b (c)↑repl can be applied and, after its application, cell σ will

contain ab and a copy of c will be sent to each of σ’s parents.

• The rule s a →max s
′ b (c)↑repl can be applied and, after being applied twice, cell σ

will contain bb and a copy of cc will be sent to each of σ’s parents.

• The rule s a→min s
′ b (c)↓σ′ (where σ′ ∈ K), can be applied and, after its applica-

tion, cell σ will contain ab and a copy of c will be sent to σ′, if σ′ appears among
the children of σ, otherwise, this c will be lost.

• The rule s a→max s
′ b (c)↓σ′ (where σ′ ∈ K) can be applied and, after being applied

twice, cell σ will contain bb and a copy of cc will be sent to σ′, if σ′ appears among
the children of σ, otherwise, this cc will be lost.

8

In this paper, we are only interested in deterministic solutions, and we will exclusively
use the min, max, repl, and K operators, and avoid operators with a higher potential for
non-determinism, such as par, one, spread.

By default, the channels are duplex, allowing simultaneous transmissions from both
ends. Although we do not use them here, simplex channels are also available in our
model; a simplex channel indicates a single open direction, either from parent to child, or
from child to parent (thus there is no necessary relation between the structural directions
and communication direction); messages sent in the other direction are silently “lost”.

Given an arbitrary finite set of P modules, we can construct a higher level P module
by instantiating some of their external references to some of their external definitions,
which implicitly instantiates some new arcs, and by instantiating some of their unspecified
symbols. This construction requires that the original P modules are disjoint, in the sense
specified below.

Consider a finite family of n P modules, P = {Πi | i ∈ [1, n]}, where Πi =
(Oi, Ki, δi, Si, D↑i, D↓i, R↑i, R↓i), i ∈ [1, n]. This family P is cell-disjoint, if their cell
sets disjoint, i.e. Ki ∩Kj = ∅, for i, j ∈ [1, n]. If required, any such family can be made
cell-disjoint, by a deep copy process, which clones all cells and, as a convenience, auto-
matically allocates successive indices to cloned cells (e.g., starting from cell σ, the first
cloned cell is σ1, the second is σ2, etc). However, a good practice is to systematically
index all cells of a P module, by labels related to the generic parameters, such that dis-
tinct copies of the same generic module are automatically cell-disjoint. We will generally
follow this convention.

Given a family P , the result of a composition depends on the actual instantiations, i.e.
which unspecified symbols are instantiated and which external references and definitions
are matched. Symbol instantiation is specified by a partial mapping ω :

⋃
i∈[1,n] Si → Ω,

where Ω is a universal alphabet, covering all alphabets used in a given application. The
symbols that have been instantiated are defined by the domain of ω, i.e. Dom(ω), and
their assigned objects by the image of ω, i.e. Im(ω). External references are similarly
matched to external definitions by two partial mappings, ρ↑ :

⋃
i∈[1,n]R↑i →

⋃
i∈[1,n]D↑i,

ρ↓ :
⋃
i∈[1,n]R↓i →

⋃
i∈[1,n]D↓i. A previously uninstantiated arc (σ, x), σ ∈ Ki, x ∈ R↓i,

i ∈ [1, n], is instantiated as (σ, ρ↓(x)), and a previously uninstantiated arc (x, σ), σ ∈ Ki,
x ∈ R↑i, i ∈ [1, n], is instantiated as (ρ↑(x), σ).

Definition 5 (P modules composition) The P module Ψ = (O,K, δ, S,D↑, D↓, R↑, R↓)
is a composition of the P module family P , if:

• P is cell-disjoint;

• ω, ρ↑, ρ↓ are the partial mappings which define the instantiation (as previously
introduced);

• O =
⋃
i∈[1,n]Oi ∪ Im(ω);

• K =
⋃
i∈[1,n]Ki;

• δ = {(ρ̂↑(σ), ρ̂↓(σ)) | (σ, τ) ∈ ⋃
i∈[1,n] δi}, where ρ̂↑ and ρ̂↓ are defined by ρ̂↑(σ) =

σ ∈ Dom(ρ↑) ? ρ↑(σ) : σ, ρ̂↓(σ) = σ ∈ Dom(ρ↓) ? ρ↓(σ) : σ;

9

• S =
⋃
i∈[1,n] Si \Dom(ω);

• D↑ ⊆
⋃
i∈[1,n]D↑i, D↓ ⊆

⋃
i∈[1,n]D↓i;

• R↑ =
⋃
i∈[1,n]R↑i \Dom(ρ↑), R↓ =

⋃
i∈[1,n]R↓i \Dom(ρ↓).

In this case, the P modules in P are called components of Ψ. We omit here the straight-
forward but lengthy details of the required translations of the rulesets. Note that we
can keep any of the previous external definitions, even those matched by external refer-
ences (for further matches), thus the instantiations alone do not completely define the
composition result.

This modular approach provides encapsulation, information hiding and recursive com-
position, facilitating the design of P programs for complex algorithms. We now give a
more elaborated example, where we use modules both to build a more complex system
and to argue about its properties.

Example 6 (A composite P module for computing the GCD). The left diagram of Figure 4
illustrates a logical flowchart for computing the standard Euclidean Greatest Common
Divisor (GCD) algorithm, where, initially, x and y are the two positive integer inputs,
and, on termination, the final value of y is the resulting GCD. For illustrative purposes,
this design is recursively built, starting from four elementary blocks, Π1, Π2, Π3 and Π4.
We first combine Π1, Π2 and Π3 into a high-level block Π5, and then combine Π5 and Π4

into a higher-level block Π6. Our correctness proofs can start from the elementary blocks
and then follow up this recursive composition.

The right diagram of Figure 4 illustrates a closely related recursive composition of
four elementary P modules, Π1, Π2, Π3 and Π4, which solves the same problem (modulo
a straightforward encoding).

x ≥ y

x← x− y

x = 0

z ← x, x← y, y ← z

No

Y es

Y es

No

Π1

Π3

Π2

Π4

Π5

Π6

N1

Y1

Z6 = Y4

N4

Π1

Π3

Π2

Π4

Π5

Π6

σ1

σ3

σ4

σ2

Z3

Z2

Figure 4: Diagrams for computing GCD: left, a logical flowchart; right, a recursive
composition of P modules.

Module Π1〈def↓ σ1, ref↓ Y1, ref↓ N1〉 contains a single cell, σ1, which also appears as
an external def↓ definition, and makes external ref↓ references to two unspecified cells,

10

Y1 and N1. Using the ruleset which follows this paragraph, a straightforward argument
shows that, if cell σ1 receives x copies of a and y copies of b, then Π1 ends by sending x
copies of a and y copies of b; to Y1, if x ≥ y; or to N1, otherwise.

1. s0 ab→max s1 cde

2. s1 a→max s2 c

3. s1 b→max s3 d

4. s1 e→max s2

5. s1 e→max s3

6. s2 c→max s0 (a)↓Y1

7. s2 d→max s0 (b)↓Y1

8. s3 c→max s0 (a)↓N1

9. s3 d→max s0 (b)↓N1

Module Π2〈def↓ σ2, ref↓ Z2〉 contains a single cell σ2, which also appears as an
external def↓ definition, and makes external ref↓ references to one unspecified cell, Z2.
Using the ruleset which follows this paragraph, a straightforward argument shows that,
if cell σ2 receives x copies of a and y copies of b, then Π2 ends by sending, to Z2, y copies
of a and x copies of b.

1. s0 a→max s0 (b)↓Z2

2. s0 b→max s0 (a)↓Z2

Module Π3〈def↓ σ3, ref↓ Z3〉 contains a single cell σ3, which also appears as an
external def↓ definition, and makes external ref↓ references to one unspecified cell, Z3.
Using the ruleset which follows this paragraph, a straightforward argument shows that,
if cell σ3 receives x copies of a and y copies of b, then Π3 ends by sending, to Z3, x

′ copies
of a and y′ copies of b, where x′ = x−min(x, y), y′ = min(x, y).

1. s0 ab→max s0 (b)↓Z3

2. s0 a→max s0 (a)↓Z3

Module Π4〈def↓ σ4, ref↓ Y4, ref↓ N4〉 contains a single cell σ4, which also appears as
an external def↓ definition, and makes external ref↓ references to two unspecified cells,
Y4 and N4. Using the ruleset which follows this paragraph, a straightforward argument
shows that, if cell σ4 receives x copies of a and y copies of b, then, if x = 0, Π4 ends by
sending, to Y4, y copies of c; or, if x 6= 0, Π4 ends by sending, to N4, x copies of a and y
copies of b.

1. s0 a→max s1 a

11

2. s0 b→max s0 (c)↓Y4

3. s1 a→max s0 (a)↓N4

4. s1 b→max s0 (b)↓N4

We first combine Π1, Π2 and Π3, using the following generic instantiations: Y1 =
σ3, N1 = σ2, Z2 = σ3; this instantiates the connecting arcs (σ1, σ3), (σ1, σ2) and (σ2, σ3).
The result is a composite module with two generic parameters, an external definition and
an external reference, Π5〈def↓ σ1, ref↓ Z3〉. Module Π5’s behaviour can be inferred from
the behaviour of its constituent modules, Π1, Π2 and Π3. If cell σ1 receives x copies of a
and y copies of b, then Π5 ends by sending, to Z3, x

′ copies of a and y′ copies b, where
x′ = max(x, y)−min(x, y), y′ = min(x, y).

We further combine Π5 and Π4, using the following generic instantiations: Z3 =
σ4, N4 = σ1; this instantiates the connecting arcs (σ3, σ4) and (σ4, σ1). The result is an-
other composite module with two generic parameters, an external definition and an exter-
nal reference, Π6〈def↓ σ1, ref↓ N4〉, which can also be renamed as Π6〈def↓ σ1, ref↓ Z6〉.
Module Π6’s behaviour can be inferred from the behaviour of its constituent modules,
Π5 and Π4. If cell σ1 receives x copies of a and y copies of b, then Π6 ends by sending,
to Z6, z copies of c, where z = gcd(x, y).

5 Revised Byzantine agreement solution

Our revised P solution for the Byzantine agreement problem is still based on Exponential
Information Gathering (EIG) trees, for N processes connected in a complete graph, with
“hardcoded” parameters L, the EIG tree height, and W , the default value (for missing
or wrong messages). Each non-faulty process h, h ∈ [1, N], is modelled by a “process”
module, Πh, which is a combination of N + 1 modules: one “main” module, Ψh, which
provides the main EIG functionality; plus one “firewall” communication module, Γhf , for
each process f , f ∈ [1, N]. Compared to the previous solution, this revised P solution
uses fewer cells and rules and only duplex channels.

Elementary modules are illustrated in Figure 5. Module Ψh has a single cell, ψh,
which is also offered as an external definition, 〈def↓ ψh〉. Module Γhf has three cells,
γhf , γ

′
hf , γ

′′
hf , offers one external definition 〈def↓ γ′hf〉, and uses two external references

〈ref↓ ψh, ref↓ γ′fh〉.
As mentioned, process module Πh is composed from modules {Ψh}∪{Γhf | f ∈ [1, N]};

this composition instantiates arcs {(γhf , ψh) | f ∈ [1, N]}. Module Πh offers N external
definitions, 〈def↓ γ′hf | f ∈ [1, N]〉, and uses N external references, 〈ref↓ γ′fh | f ∈ [1, N]〉.
Composite module Πh, for N = 4, L = 2, is illustrated in Figure 6.

Any arbitrary module can play the role of a faulty module; however, to provide maxi-
mal adversity, it needs connection facilities similar to the expected facilities of non-faulty
module. Therefore, without loss of generality, we model faulty processes by arbitrary
modules Θh, h ∈ [1, N], which offer N def↓ definitions and use N ref↓ references.

The final system is the composition of N modules from {Πh | h ∈ [1, N]} ∪ {Θh |
h ∈ [1, N]}, that instantiates arcs {(γ′′hf , γ′fh) | h, f ∈ [1, N]}. The Byzantine agreement

12

Γhf

γ′hf

γhf

γ′′hf

γ′fh

Ψh

ψh

(a)

(b)

ψh

Figure 5: Elementary P modules for Byzantine agreement: (a) main module Ψh, (b)
communication module Γhf . The ref↓ references are indicated by labels on outgoing
arcs and the def↓ definitions are indicated by shaded cells.

ψh

Γh4

Πh

Ψh

Γh3Γh2Γh1

γ′h1

γh1

γ′h2

γh2

γ′h3

γh3

γ′h4

γh4

γ′′h1 γ′′h2 γ′′h3 γ′′h4

γ′1h γ′2h γ′3h γ′4h

Figure 6: The process module Πh, for N = 4, L = 2. Its ref↓ references are indicated
by labels on outgoing arcs (γ′1h, γ

′
2h, γ

′
3h, γ

′
4h) and its def↓ definitions are indicated by

shaded cells (γ′h1, γ
′
h2, γ

′
h3, γ

′
h4).

problem can be solved if at least b2(N − 1)/3c of these modules are non-faulty, i.e. from
the Πh family. Figure 7 shows a fragment with two modules, Π2 and Π3, of the four
process modules of the final system, for the case N = 4, L = 2.

6 Rules and correctness

The following objects are used by all non-faulty processes: Ω = {xvπ | v ∈ {0, 1, ?, ∗}, t ∈
[0, L − 1], π ∈ P (N, t)} ∪ {xvπ | v ∈ {0, 1}, π ∈ P (N,L)}. Object xvπ is viewed as an
encoding of pair (π, v), which associates a permutation π, i.e. an EIG node, with a value
v; object xvλ can be abbreviated as v. Encodings with binary digit values, xvπ, v ∈ {0, 1},
are called value objects and represent EIG nodes with known αh or βh values. Where
process number h is clearly inferred from the context, we will use α and β instead of αh

and βh, respectively. Encodings with asterisks, x∗π, are called placeholder objects, and
represent EIG nodes with still undefined βh values. Encodings with question marks,
x?
π, are called template objects, and are used to filter incoming messages which are not

well-formed.
Besides encodings in Ω, faulty process can send any other available objects. The set of

13

ψ2

Γ21

Π2

Ψ2

Γ22 Γ23 Γ24

γ′24

γ24

γ′23

γ23

γ′22

γ22

γ′21

γ21

γ′′24γ′′23γ′′22γ′′21

ψ3

Γ34

Π3

Ψ3

Γ33Γ32Γ31

γ′31

γ31

γ′32

γ32

γ′33

γ33

γ′34

γ34

γ′′31 γ′′32 γ′′33 γ′′34

γ′12

γ′13

γ′22 γ′42

γ′23 γ′33 γ′43

γ′32

Figure 7: Interconnection details between process modules Π2 and Π3, for N = 4, L = 2.

all possible objects is denoted by a universal set f, i.e. f = Ω∪ {all other objects which
can be sent by a faulty process}.

The following sets of objects, which appear in several of the subsequent sections, are
defined here:

Rαh

t = {xαh(π)
π | π ∈ P (N, t)}, t ∈ [0, L]

Rβh

t = {xβh(π)
π | π ∈ P (N, t)}, t ∈ [0, L]

Rv
t = {xvπ | π ∈ P (N, t)}, t ∈ [0, L], v ∈ {0, 1, ?, ∗}

R0,1
t = {xvπ | π ∈ P (N, t), v ∈ {0, 1}}, t ∈ [0, L]

The first three sets, Rαh

t , Rβh

t , Rv
t , describe functional relations, on the underlying

permutation π; the last one, R0,1
t , is not. Where h can be unambiguously inferred from

the context, the superscript h can be dropped from attribute names, α and β, i.e. in

such cases, Rα
t = Rαh

t , Rβ
t = Rβh

t .

6.1 Rule sequence for Ψh’s cell ψh

According to the following rules, and as illustrated in the diagram of Figure 8, cell ψh
progresses through states s0 (start state), s1, . . ., sL, eL, eL−1, . . ., e0 (final state).

1. st x
v
π →min st+1 x

∗
π (xvπx

?
π)↑repl , for v ∈ {0, 1}, t ∈ [0, L− 1], π ∈ P (N, t)

14

s0 s1 sL eL. . .
L-1s e0e1. . .

L-1e

Figure 8: State diagram for module Ψh, i.e. cell ψh.

2. sL x
v
π →min eL x

v
π, for v ∈ {0, 1}, π ∈ P (N,L)

3. et+1 x
0
π⊕kx

1
π⊕l →max et, for v ∈ {0, 1}, t ∈ [0, L−1], π ∈ P (N, t), k, l ∈ [1, N]\Im(π),

k 6= l

4. et+1 x
v
π⊕kx

∗
π →min et x

v
π, for v ∈ {0, 1}, t ∈ [0, L−1], π ∈ P (N, t), k ∈ [1, N]\Im(π)

5. et+1 x
v
π⊕k →max et, for v ∈ {0, 1}, t ∈ [0, L− 1], π ∈ P (N, t), k ∈ [1, N] \ Im(π)

6. et+1 x
∗
π →min et x

W
π , for t ∈ [0, L− 1], π ∈ P (N, t)

The following is an itemized expansion for the case L = 2.

1. s0 v →min s1 ∗ (v?)↑repl , for v ∈ {0, 1}
s1 x

v
j →min s2 x

∗
j (xvjx

?
j)↑repl , for v ∈ {0, 1}, j ∈ [1, N]

2. s2 x
v
jk →min e2 x

v
jk, for v ∈ {0, 1}, j, k ∈ [1, N], j 6= k

3. e2 x
0
jkx

1
jl →max e1, for j, k, l ∈ [1, N], j 6= k, j 6= l, k 6= l

e1 x
0
jx

1
k →max e0, for j, k ∈ [1, N], j 6= k

4. e2 x
v
jkx
∗
j →min e1 x

v
j , for v ∈ {0, 1}, j, k ∈ [1, N], j 6= k

e1 x
v
j∗ →min e0 v, for v ∈ {0, 1}, j ∈ [1, N]

5. e2 x
v
jk →max e1, for v ∈ {0, 1}, j, k ∈ [1, N], j 6= k

e1 x
v
j →max e0, for v ∈ {0, 1}, j ∈ [1, N]

6. e2 x
∗
j →min e1 x

W
j , for j ∈ [1, N]

e1 ∗ →min e0 W

Initially, cell ψh is in state s0 and contains a value object describing its initial choice,
vh. Cell ψh is a def↓ definition, thus, if properly connected, is able to receive and send
objects from/to one or more parent cells, belonging to one or more “parent” modules.
Cell ψh works in two phases, which roughly correspond to the two phases of the classical
EIG-based algorithm: first, a messaging phase, implemented by rule groups 1 and 2, and,
secondly, a bottom-up phase, implemented by rule groups 3, 4, 5 and 6.

The external behaviour of cell ψh’s messaging phase, and therefore of module Ψh, is
governed by the external contract described by the following paragraph.

Module Ψh’s messaging phase takes L+ 1 rounds, indexed by [0, L]. The first round,
0, starts immediately, triggered by the presence of the initial value object. Each other
round t, t ∈ [1, L], starts after receiving, collectively from its parent modules, the set
Rαh

t . Each round t, except the last, t ∈ [0, L − 1], ends by sending up, to each parent
module, by replication, the set Rαh

t ∪R?
t . Each round t, t ∈ [0, L], is completed in exactly

one P step. Module Ψh is idle between successive rounds.

15

Each x
α(π)
π sent up is accompanied by a corresponding template object, x?

π, which is
used, by cell ψh’s parents, to build a filter, for next round value objects.

Messaging rounds here have different granularity and boundaries than in Section 3:
in the classical EIG algorithm, a round starts by sending and continues by receiving
messages; here, a round is triggered by receiving objects (except the first round, which is
triggered by the initial choice) and continues by processing and sending objects (except
the last round, which does only processing). This explains why, here, this messaging
phase has L+ 1 rounds, but the messaging phase of Section 3 has L rounds.

The internal behaviour of cell ψh is very important, during both phases. At all steps,
cell ψh’s contents can be viewed as forming a virtual EIG tree, similar, but not identical,
to the classical EIG tree of process h. The nodes of this virtual tree are represented by
objects from the sets Rα

t , Rβ
t , R∗t , t ∈ [0, L].

This virtual tree is gradually built, in increasing level order, during the messaging
phase, and it gradually shrinks, in decreasing level order, during the bottom-up phase.
Messaging round t, t ∈ [0, L], is triggered by receiving value objects Rα

t . Just before
receiving Rα

t , the virtual tree is given by
⋃
l∈[0,t−1]R

∗
l . Then, receiving Rα

t extends this

virtual tree to (
⋃
l∈[0,t−1]R

∗
l) ∪ Rα

t . Next, if t ∈ [0, L− 1], messaging round t transforms
the tree by “replacing” α value objects by placeholders, i.e. the virtual tree is now given
by (

⋃
l∈[0,t]R

∗
l) (which maintains the invariant); otherwise, if t = L, the virtual tree is

not changed.
Using rule groups 1 and 2, an induction argument on round number t, t ∈ [0, L],

shows that cell ψh maintains its external contract for round t, gradually builds its virtual
tree as mentioned, and transits from state st to state st+1, except for round t = L, when
it transits from state sL to state eL.

As an example, consider that cell ψ3 corresponds to process 3 in the scenario of
Example 1. Figures 9 (a,b,c,d,e) illustrate the gradual completion of the virtual EIG
tree, via the three messaging rounds of cell ψ3.

These trees are represented with the help of the following sets; R∗0 = {x∗λ}, R∗1 =
{x∗1, x∗2, x∗3, x∗4}, Rα

0 = {x1
λ}, Rα

1 = {x0
1, x

0
2, x

1
3, x

1
4}, Rα

2 = {x0
12, x

0
13, x

1
14, x

0
21, x

0
23, x

0
24,

x0
31, x

1
32, x

1
34, x

1
41, x

1
42, x

1
43}. Rβ

2 = Rα
2 , Rβ

1 = {x0
1, x

0
2, x

1
3, x

1
4}, Rβ

0 = {x0
λ}. For a comparison,

see also Figure 1.
There are L + 1 messaging rounds. Cell ψh completes each round in one P step and

stays idle between rounds. Thus, the messaging phase will take L(1 + θ) + 1 steps in
total, where θ is the interval when cell ψh is idle, assumed fixed. (As we will see later,
this interval is indeed fixed, θ = 4, making a total of five P steps, required for sending
objects from cell ψh to another cell ψf , f ∈ [1, N], and vice-versa).

State eL triggers the start of the bottom-up evaluation of attribute β, on the virtual
EIG tree, in decreasing level order. Each level evaluation takes exactly one P step.
Because β(π) = α(π), for π ∈ P (N,L), the virtual tree at state eL can be alternatively
viewed as (

⋃
t∈[0,L−1]R

∗
t) ∪ Rβ

L. An induction argument on t = L,L − 1, . . . , 1, 0, shows

that, after L − t steps since it has reached state eL, cell ψh transits to state et and the
virtual tree “shrinks” to (

⋃
u∈[0,t−1]R

∗
u) ∪Rα

t .

Intuitively, at each transition from et+1 to et, the β value objects for level t+ 1, Rβ
t+1,

are removed, and the placeholder objects for level t, R∗t , are “replaced” by β value objects

16

(e)

∗

∗ ∗ ∗

0 0 1 0 0 0 0 1 1

∗

1 1 1
2 3 4

1

λ

2 3 4

1 3 4 1 2 4 1 2 3

∗

0 0 1
1 2 3

λ

1
4

λ

(f)

(g)

0

λ

(a)

∗
λ

(b)

∗

0 0 1
1 2 3

λ

1
4

(c)

∗
1 2 3

λ

4

(d)
∗ ∗ ∗ ∗

1

Figure 9: The evolution and involution of cell ψ3’s virtual EIG tree. Message round 0:
(a) ⇒ (b); Message round 1: (c) ⇒ (d); Message round 2: (d) ⇒ (e); Bottom-up step 1
: (e)⇒ (f); Bottom-up step 2 : (f) ⇒ (g).

for level t, Rβ
t .

Rule groups 3, 4, 5 and 6 run the required strict majority voting scheme, transiting
from state et+1 to state et. For each EIG sibling group at level t+ 1,

• Rule group 3 cancels pairs of β value objects at level t + 1 with opposite binary
values, until there either remains only objects with the same binary value, or no β
value objects at all.

• Rule group 4 takes one of the remaining β value objects at level t+ 1, if there is a
strict majority, and creates a corresponding β value object at level t.

• Rule group 5 removes all superfluous remaining β value objects at level t+ 1.

• Rule group 6 is activated in the tie case and creates a β value objects at level t
with the default value W .

The last step of the bottom-up iteration evaluates Rβ
λ, which contains a single β value

object, x
β(λ)
λ , where β(λ) is the final decision of process h. At the same time, cell ψh

stops, because it reaches the final state e0.
Figures 9 (e,f,g) continue the previous example, based on process 3 of the scenario of

Example 1, and illustrate how the virtual tree “shrinks” after each step of the bottom-up
evaluation. Note the tie breaker required for the last bottom-up step.

Including the root, the EIG tree has L + 1 levels. Therefore, after receiving and
processing the last round objects, which records the β(π) = α(π) values, for the leaves
π, π ∈ P (N,L), cell ψh needs L more P steps to reach the final state e0 and evaluate the
final decision value.

6.2 Rule sequences for Γhf

Conceptually, module Γhf belongs to process h and stands as a local firewall, between its
main module Ψh and a corresponding firewall module Γfh, belonging to untrusted remote

17

process f .
Module Γhf contains three distinct cells, γ′hf , γ

′′
hf , γhf , each having its own rule

sequence and states. As indicated before, on one side (the “home” side), module Γhf is
connected to the main module Ψh, and, on the other side (the “foreign” side), module Γhf
expects to be connected to module Γfh (part of a “friend-or-foe” process f). Specifically,
cell γhf is connected as parent of main cell ψh (which is given as an external reference),
cell γ′′hf is connected as parent of foreign cell γ′fh (which is given as an external reference),
and cell γ′hf (which is given as an external definition) is connected as child of foreign cell
γ′′fh.

As will be shown in the next three subsections, cells γ′hf , γ
′′
hf , γhf , work in lockstep,

cycling continuously through a five P steps period, each period corresponding to a com-
plete messaging round. As shown in Section 6.1, cell ψh completes its messaging related
tasks in short one P step activity bursts, thus module Ψ does not have its own time
constraints for the messaging phase. Therefore, (a) the overall progress of module Ψh,
during the messaging phase, is also determined by module Γhf , and (b) between succes-
sive messaging rounds, cell ψh stays idle for exactly four P steps, and the parameter θ,
used in Section 6.1, is 4).

If counter s designates the global step number, s = 1, 2, . . ., then the messaging round
number is given by counter t = (s − 1)/5, and counter u ∈ [0, 4], defined by u = s − 1
(mod 5), indicates the current substep inside the five steps period, which is also indicated
by their current state index (e.g., cell γ′hf ’s states are indexed as cu, u ∈ [0, 4]). Module
Γhf ’s cells and their external connections are expected to switch their responsibilities
according to this counter u. Provided that both processes, h and f , are non-faulty, the
expected messaging workflow of module Γh can be summarized as follows:

1. when u = 0, external cell ψh is expected to send up, to cell γhf , the object set

Rαh

t ∪R?
t ;

2. when u = 1, cell γhf is expected to send down, to cell γ′′hf , the object set Rαh

t ;

3. when u = 2, cell γ′′hf is expected to send down, to external cell γ′fh, the object set

Rαh

t , and, vice-versa, external cell γ′′fh is expected to send down, to cell γ′hf , the

object set Rαf

t ;

4. when u = 3, cell γ′hf is expected to send down, to cell γhf , the object set Rαf

t ;

5. when u = 4, cell γhf is expected to send down, to cell ψh, the object set Rαf

t .

If these expectations are not met, i.e. if the foreign process f is faulty, module Γhf
works as firewall, protecting its associated main module Ψh against bad, wrongly timed
and missing messages. The message flow will not stop and, instead of bad or expected
but missing objects, module Ψh will timely receive objects recreated with the default
value W . A faulty process f might receive back some of the wrong messages it has itself
sent to h, but this does not harm the algorithm.

Figure 10 illustrates a fragment of this workflow, by tracing the actual messages
between cells ψ2, ψ3, the main cells associated to processes 2 and 3, respectively, in the
Byzantine scenario of Example 1.

18

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

1 ?

0 ?

1

0

1
0

1

0

(2,0)

(3,1)

(1) (2) (3) (4) (5)

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

(6) (7) (8) (9) (10)

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

ψ3

ψ2

γ32

γ′
32 γ′′

32

γ′′
23 γ′

23

γ23

(1,0)(1,?)
(2,0)(2,?)
(3,1)(3,?)
(4,1)(4,?)

(1,0)(1,?)
(2,0)(2,?)
(3,1)(3,?)
(4,1)(4,?)

(1,0)
(2,0)
(3,1)
(4,1)

(1,0)
(2,0)
(3,1)
(4,1)

(1,0)
(2,0)
(3,1)
(4,1)

(1,0)
(2,0)
(3,1)
(4,1)

(1,0)
(2,0)
(3,1)
(4,1)

(1,0)
(2,0)
(3,1)
(4,1)

(1.3,0)
(2.3,0)
(4.3,1)

(1.2,0)
(3.2,0)
(4.2,1)

Figure 10: Traces of the messaging phase between main cells ψ2 and ψ3, in the Byzantine
scenario of Example 1.

Module Γhf is hardwired for given level L. After L messaging phases, cell γhf stops
working and enters its final state. The other two cells, γ′hf and γ′′hf continue to loop over
their five step cycles. This can be easily fixed, if this is not desired. However, this will
involve a state-based countdown counter, because these two cells are on the frontline
towards an untrusted process f , which potentially can alter their contents at any time.

The following three subsections detail the rules of module Γhf ’s three cells and discuss
their behaviour.

6.3 Rule sequence for Γhf ’s cell γ′hf

According to the following rules, and as illustrated in Figure 11 (a), cell γ′hf cycles
continuously through states c0 (start state), c1, c2, c3, c4.

19

c0 c1 c2 c3

p0
0 p0

1

c4

d0 d1 d2 d3 d4

p0
2 p0

3 p0
4

p1
0 p1

1 p1
2 p1

3 p1
4

p1
L1-p0

L1- p2
L1- p3

L1- p4
L1-

pL
0

(a)

(b) (c)

Figure 11: State diagrams for module Γhf : (a) for cell γ′hf , (b) for cell γ′′hf , (c) for cell
γhf .

1. c0 →min c1

2. c1 →min c2

3. c2 →min c3

4. c2 o→max c3, for o ∈ f

5. c3 →min c4

6. c3 x
v
π →min c4 (xvπ)↓γhf , for v ∈ {0, 1}, t ∈ [0, L− 1], π ∈ P (N, t)

7. c4 →min c0

The following is an itemized expansion for the case L = 2.

1. c0 →min c1

2. c1 →min c2

3. c2 →min c3

4. c2 o→max c3, for o ∈ f

5. c3 →min c4

6. c3 v →min c4 (v)↓γhf , for v ∈ {0, 1}
c3 x

v
j →min c4 (xvj)↓γhf , for v ∈ {0, 1}, j ∈ [1, N]

7. c4 →min c0

Assume that s, t and u, are the correlated counters, defined in Section 6.2. When
u = 2, cell γ′hf is in state c2, clears its contents by rule group 4 (practically useful, but not

strictly needed) and expects Rαf

t from γ′′fh, if process f is non-faulty; however, a faulty
process f may send, at any time, any objects in f. Next, when u = 3, cell γ′hf is in state

20

c3 and, by rule group 6, forwards, to γhf , R ∩ (
⋃
l∈[0,L−1]R

0,1
l), a filtered subset of the

actually received object set, R. This filter is “good-enough”, but not complete, because
it does not ensure that the forwarded objects form a functional relation on π or that π
matches the current message round t. However, this mechanism protects cell γhf against
wrongly timed objects or bad objects which could corrupt its internal consistency. As
we will see, cell γhf is able to solve the remaining formatting issues. For other values of
u, cell γ′hf keeps cycling, without doing any other significant work.

6.4 Rule sequence for Γhf ’s cell γ′′hf

According to the following rules, and as illustrated in Figure 11 (b), cell γ′′hf cycles
continuously through states d0 (start state), d1, d2, d3, d4.

1. d0 →min d1

2. d1 →min d2

3. d1 o→max d2, for o ∈ f

4. d2 x
v
π →max d3 (xvπ)↓γ′

fh

, for v ∈ {0, 1}, t ∈ [0, L− 1], π ∈ P (N, t)

5. d3 →min d4

6. d4 →min d0

The following is an itemized expansion for the case L = 2.

1. d0 →min d1

2. d1 →min d2

3. d1 o→max d2, for o ∈ f

4. d2 v →min d3 (v)↓γ′
fh

, for v ∈ {0, 1}
d2 x

v
j →min d3 (xvj)↓γ′

fh

, for v ∈ {0, 1}, j ∈ [1, N]

5. d3 →min d4

6. d4 →min d0

Assume that s, t and u, are the correlated counters, defined in Section 6.2. When
u = 1, cell γ′′hf is in state d1, clears its contents by rule group 3 (practically useful, but

not strictly needed) and expects Rαh

t from γhf . Next, when u = 2, cell γ′′hf is in state d2

and, by rule group 4, forwards down, to γ′fh, the previously received objects, i.e. Rαh

t .
For other values of u, cell γ′′hf keeps cycling, without doing any other significant work.

21

6.5 Rule sequence for Γhf ’s cell γhf

According to the following rules, and as illustrated in Figure 11 (c), cell γhf progresses
through states p0

0 (start state), p0
1, p

0
2, p

0
3, p

0
4, p

1
0, p

1
1, p

1
2, p

1
3, p

1
4, . . . , p

L
0 (final state).

1. pt0 →min p
t
1, for t ∈ [0, L− 1]

2. pt1 →min p
t
2, for t ∈ [0, L− 1]

3. pt1 x
v
π →min p

t
2 (xvπ)↓γ′′

hf

, for v ∈ {0, 1}, t ∈ [0, L− 1], π ∈ P (N, t)

4. pt2 →min p
t
3, for t ∈ [0, L− 1]

5. pt3 →min p
t
4, for t ∈ [0, L− 1]

6. pt4 →min p
t+1
0 , for t ∈ [0, L− 1]

7. pt4 x
?
π x

0
π →min p

t+1
0 (x0

π⊕f)↓ψh , for t ∈ [0, L− 1], π ∈ P (N, t), f /∈ Im(π)

8. pt4 x
?
π x

1
π →min p

t+1
0 (x1

π⊕f)↓ψh , for t ∈ [0, L− 1], π ∈ P (N, t), f /∈ Im(π)

9. pt4 x
?
π →min p

t+1
0 (xWπ⊕f)↓ψh , for t ∈ [0, L− 1], π ∈ P (N, t), f /∈ Im(π)

10. pt4 o→max p
t+1
0 , for t ∈ [0, L− 1], o ∈ Ω

The following is an itemized expansion for the case L = 2.

1. p0
0 →min p

0
1

p1
0 →min p

1
1

2. p0
1 →min p

0
2

p1
1 →min p

1
2

3. p0
1 v →min p

0
2 (v)↓γ′′

hf

, for v ∈ {0, 1}
p1

1 x
v
j →min p

1
2 (xvj)↓γ′′

hf

, for v ∈ {0, 1}, j ∈ [1, N]

4. p0
2 →min p

0
3

p1
2 →min p

1
3

5. p0
3 →min p

0
4

p1
3 →min p

1
4

6. p0
4 →min p

1
0

p1
4 →min p

2
0

7. p0
4 ? 0→min p

1
0 (x0

f)↓ψh
p1

4 x
?
j x

0
j →min p

2
0 (x0

jf)↓ψh , for j ∈ [1, N], f 6= j

8. p0
4 ? 1→min p

1
0 (x1

f)↓ψh
p1

4 x
?
j x

1
j →min p

2
0 (x1

jf)↓ψh , for j ∈ [1, N], f 6= j

22

9. p0
4 ?→min p

1
0 (xWf)↓ψh

p1
4 x

?
j →min p

2
0 (xWjf)↓ψh , for j ∈ [1, N], f 6= j

10. p0
4 o→max p

1
0, o ∈ Ω

p1
4 o→max p

2
0, o ∈ Ω

Assume that s, t and u, are the correlated counters, defined in Section 6.2. When
u = 0, cell γhf is in state pt0, is empty, and expects Rαh

t ∪R?
t from ψh. Next, when u = 1,

cell γhf is in state pt1 and, by rule group 3, forwards down, to γ′′hf , the value objects

destined to process f , Rαh

t but keeps the template objects, R?
t . Next, when u = 2, cell

γhf is in state pt2 and keeps cycling, by rule group 4, without doing any other significant
work. Next, when u = 3, cell γhf is in state pt3 and expects, from cell γ′hf , a set of

good-enough value objects, ideally Rαf

t , but could be any subset of (
⋃
l∈[0,L−1]R

0,1
l).

Case u = 4 describes a critical step, where cell γhf uses the process number f to
tag the objects which are forwarded to ψh. Consider the partial function Sf : Ω → Ω,
defined by Sf (xvπ) = xvπ⊕f , for π ∈ (

⋃
l∈[0,L−1] P (N, l)), v ∈ {0, 1}. Cell γhf is in state

pt4 and forwards down, to cell ψh, either (a) the set Sf (Rαf

t), if process f is non-faulty;
or, (b) a reconstructed version, where unavailable objects are replaced by value objects,
reconstructed with the default value W .

The correct format is checked by matching received value objects against template
objects R?

t . Rule group 7 applies when a 0 valued object can be matched against a
template. Rule group 8 applies when a 1 valued object can be matched against a template.
Rule group 9 applies when no value object matched the template and recreates a missing
value object based on the default value W . After this, cell γhf clears all its contents, by
rule group 10, preparing itself for the next cycle.

6.6 Module Πh

Collecting the above results, we can now complete the last item required by the contract
between the main module, Ψh, with its firewall modules, Γhf , f ∈ [1, N]. Assume again
that s, t and u, are the correlated counters, defined in Section 6.2 and t ∈ [0, L− 1]. As
shown in Section 6.5, when u = 4, for each h, f ∈ [1, N], cell Γhf sends down, to cell

ψh, either (a) the set Sf (Rαf

t), if process f is non-faulty; or, (b) a reconstructed version,
where unavailable objects are replaced by value objects, reconstructed with the default
value W .

Therefore, the cell ψh receives, collectively from its parent modules, the set

S =
⋃

f∈[1,N]

Sf (Rαf

t) .

A straightforward argument shows that sets Sf (Rαf

t), f ∈ [1, N], are disjoint, and their

union S is S = Rαh

t+1. This triggers the next messaging round t + 1, with the required
new set of value objects, which completes the argument.

23

6.7 Complexity

As indicated by the next theorem, this new version of the Byzantine algorithm improves
the runtime of the previous version [7], from 9L+6 to 6L+1, where, typically, L = dN/3e.
Theorem 7. This revised EIG-based Byzantine algorithm takes 6L+ 1 steps, where L is
the number of messaging rounds.

Proof. As seen above, it takes 5L P steps from start until the last message is received
by the main cells, ψh, h ∈ [1, N], One additional P step is required to transit from ψh’s
state sL to state eL, i.e. to transit from from the messaging phase to the bottom-up
phase. Finally, cell ψh needs L more P steps for its bottom-up phase, to evaluate its final
decision value and reach the final state. Thus, the revised Byzantine algorithm takes a
total of 5L+ 1 + L = 6L+ 1 steps.

The new version reduces the total number of cells required, from super-exponential,
O(N !), to a small polynomial, O(N2). However, some other static complexity measures
are still very large. The new version does not change the message complexity of the
previous version, which is mostly determined by the EIG algorithm itself. Table 12
summarizes these complexity measures.

Table 12: Summary of complexity measures (where, typically, L = dN/3e).
Complexity measure Previous version Current version
Number of steps 9L+ 6 6L+ 1
Number of cells per Π module 2N + 1 +O(N !) 3N + 1
Number of objects O(N !) O(N !)
Maximum number of states
per elementary module

O(L) O(L)

Maximum number of rules per
elementary module

O(N !) O(N !)

Number of messages ex-
changed between Π modules

N2L N2L

7 Conclusions and open problems

In this paper, we proposed an improved generic version of P modules, an extensible frame-
work for recursive composition of P systems, and used it to provide a faster P solution for
the Byzantine agreement algorithm, based on Exponential Information Gathering (EIG)
trees.

Our modular framework offers three types of generic parameters: generic objects, ex-
ternal definitions and external references and supports encapsulation, information hiding
and modular composition.

Our revised P solution uses only duplex channels, fewer cells and fewer rules, while
improving overall running time from 9L+6 to 6L+1, where L is the number of messaging
rounds.

24

We proved that modules, i.e. cell clusters, can solve the classical Byzantine agreement
problem. Our design uses 3N + 1 cells for each module, with one “main” cell and 3N
ancillary cells, which enclose the main cell inside a “firewall”. Can we solve the Byzantine
agreement directly between individual cells, without help from any additional firewall?

In our case, firewall cells have a complex role. They protect the main cell against badly
formatted, wrongly timed and missing messages. If they reach the main cell, wrongly
timed bad messages have the potential to corrupt the internal structures, required by
the internal cell logic. Additionally, our firewall cells tag incoming messages with un-
forgeable origin marks (a feature that current passive channels do not offer). This is a
critical feature of the EIG-based algorithm itself (not of the cell implementing it). If the
originator is not guaranteed, this algorithm will fail.

We believe that some of these firewall tasks can be retrofitted into the main cell itself,
but not all required critical features. Thus, it seems that it is not possible to achieve
a Byzantine agreement between individual cells, if we rely on the classical EIG-based
algorithm.

However, there are many other algorithms for the Byzantine agreement, thus, our
question is more general. Is there any other algorithm able to solve the Byzantine agree-
ment at the cell level, still using passive channels, as in the current framework? We
conjecture that the answer is negative. If this is indeed the case, what is the minimal
size of one firewall component, one, two, three?

One can make a parallel to the history of the Internet. “The Internet protocols were
originally designed for openness and flexibility, not for security. The ARPA researchers
needed to share information easily, so everyone needed to be an unrestricted insider
on the network” [8]. It seems that this was also the case in the early development
of P systems. Are there simple ways to enhance our passive channels to provide more
safety? Besides distributed computing, would this be useful in other modelling scenarios?
A related problem, are there real-life biological scenarios, which need sophisticated fault-
tolerant mechanisms, similar to the Byzantine agreement algorithms used in distributed
computing, and, if yes, how do these really work?

Besides the above conjecture, our investigation leaves open a number of other inter-
esting and challenging problems. Can we extend our P system solution to cover 2F + 1
connected graphs, but not necessarily complete? Can we design P system solutions for
other Byzantine agreement algorithms, not EIG-based, for example using reliable broad-
casts? Will other solutions work “better”, e.g., faster or with smaller communication
overhead? Is it possible to solve the Byzantine agreement problem with a fixed number
of P rules? If not, which is likely the case, can we solve this problem by proposing simple
“natural” extensions to current rule system? Finally, can we provide solutions for some
types of asynchronous P systems and what additional constraints will be needed in this
case?

References

[1] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Re-
iter, and Jay J. Wylie. Fault-scalable Byzantine fault-tolerant services. In Andrew

25

Herbert and Kenneth P. Birman, editors, SOSP, pages 59–74. ACM, 2005.

[2] Michael Ben-Or and Avinatan Hassidim. Fast quantum Byzantine agreement. In
Harold N. Gabow and Ronald Fagin, editors, STOC, pages 481–485. ACM, 2005.

[3] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantino-
ple: Practical asynchronous Byzantine agreement using cryptography. J. Cryptology,
18(3):219–246, 2005.

[4] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive
recovery. ACM Trans. Comput. Syst., 20(4):398–461, 2002.

[5] Gabriel Ciobanu. Distributed algorithms over communicating membrane systems.
Biosystems, 70(2):123–133, 2003.

[6] Gabriel Ciobanu, Rahul Desai, and Akash Kumar. Membrane systems and dis-
tributed computing. In Gheorghe Păun, Grzegorz Rozenberg, Arto Salomaa, and
Claudio Zandron, editors, WMC-CdeA, volume 2597 of Lecture Notes in Computer
Science, pages 187–202. Springer-Verlag, 2002.

[7] Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu. P systems and the Byzan-
tine agreement. The Journal of Logic and Algebraic Programming, In Press, Cor-
rected Proof, 2010.

[8] Fritz E. Froehlich and Allen Kent. Encyclopedia of Telecommunications, Volume 15.
CRC Press, 1997.

[9] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[10] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996.

[11] Jean-Philippe Martin and Lorenzo Alvisi. Fast Byzantine consensus. IEEE Trans.
Dependable Sec. Comput., 3(3):202–215, 2006.

[12] Radu Nicolescu, Michael J. Dinneen, and Yun-Bum Kim. Towards structured mod-
elling with hyperdag P systems. International Journal of Computers, Communica-
tions and Control, 2:209–222, 2010.

[13] Gheorghe Păun. Membrane Computing: An Introduction. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2002.

[14] Gheorghe Păun. Introduction to membrane computing. In Gabriel Ciobanu, Mario J.
Pérez-Jiménez, and Gheorghe Păun, editors, Applications of Membrane Computing,
Natural Computing Series, pages 1–42. Springer, 2006.

[15] Gheorghe Păun and Mario J. Pérez-Jiménez. Solving problems in a distributed
way in membrane computing: dP systems. International Journal of Computers,
Communications and Control, 5(2):238–252, 2010.

26

[16] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in
the presence of faults. J. ACM, 27(2):228–234, 1980.

[17] Francisco José Romero-Campero, Jamie Twycross, Miguel Cámara, Malcolm Ben-
nett, Marian Gheorghe, and Natalio Krasnogor. Modular assembly of cell systems
biology models using P systems. Int. J. Found. Comput. Sci., 20(3):427–442, 2009.

[18] Traian Serbanuta, Gheorghe Stefanescu, and Grigore Rosu. Defining and executing P
systems with structured data in K. In David W. Corne, Pierluigi Frisco, Gheorghe
Paun, Grzegorz Rozenberg, and Arto Salomaa, editors, Workshop on Membrane
Computing, volume 5391 of Lecture Notes in Computer Science, pages 374–393.
Springer, 2008.

27

