8888888

CDMTCS
Research
Report
Series

Fermat’s Last Theorem and
Chaoticity

Elena Calude
Massey University, NZ

CDMTCS-383
June 2010

Centre for Discrete Mathematics and
Theoretical Computer Science

Fermat’s Last Theorem and Chaoticity

Elena Calude

Institute of Information and Mathematical Sciences, Massey University at
Albany, Private Bag 102-904, North Shore MSC New Zealand

Abstract

Proving that a dynamical system is chaotic is a central problem in chaos
theory [11]. In this note we apply the computational method developed in [4,
2, 3] to show that Fermat’s last theorem is in the lowest complexity class €y ;.
Using this result we prove the existence of a two-dimensional Hamiltonian
system for which the proof that the system has a Smale horseshoe is in the
class €y, i.e. it is not too complex.

1. Introduction

A system is chaotic if small differences in initial conditions could yield
widely diverging outcomes; for such a system long-term prediction is in gen-
eral impossible. Even deterministic systems whose dynamics are fully deter-
mined by their initial conditions, and no random elements are involved, can
be chaotic [13, §].

There are only few “bridges” between chaotic dynamical systems and
complexity theories, in particular algorithmic information theory. Recently,
9] showed that in classical chaotic dynamics, typicality corresponds exactly
to Schnorr randomness; this means that a chaotic system may produce a
computable sequence of bits provided the initial point is suitable chosen, but
this event has probability zero (the set of initial points can be infinite).

Virtually any “interesting” question about non-trivial dynamical systems
is undecidable. Undecidability does not imply the impossibility to prove non-
trivial properties of dynamical systems, in particular, chaoticity: it says that
there is no general method, new specifically designed methods are required
for different problems.

Email address: e.calude@massey.ac.nz (Elena Calude)

Preprint submitted to Physics and Computation 2010 June 17, 2010

How difficult is to prove chaoticity? Building on results in [15, 12] in [7]
a two-dimensional Hamiltonian system H was constructed with the property
that in Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC) proving
the existence of a Smale horseshoe in H is equivalent to proving Fermat’s
last theorem. We say that “ZFC proves s” in case there is a proof in ZFC
for s. We can now state more precisely the result described above:

Theorem 1. [7] Assume ZFC is arithmetically sound (that is, any theorem
of arithmetic proved by ZFC is true). Then, one can effectively construct
in the formal language of ZFC the expression describing a two-dimensional
Hamiltonian system 'H such that ZFC proves that H has a Smale horseshoe
iff ZFC proves Fermat’s last theorem.

The choice of the Fermat’s last theorem in [7] was motivated by the
contrast between the short length of this elementary statement and the belief
that any proof of the theorem has to be very complicated; this belief was
indeed confirmed by the proof in [17].

Is the excruciating long proof of the Fermat’s last theorem [17] a good
indication that any proof that the corresponding two-dimensional Hamilto-
nian system is chaotic should be very complex, hence proving chaoticity is a
difficult problem?

First, the fact that the known proof is complex is not a proof that every
proof for Fermat’s last theorem is complex.

Secondly, the result proven in [10]—which shows that in ZFC one can
(effectively) find infinite sets of trivially true theorems which require as long
proofs as the hardest theorems—indicates that the length of a proof may not
be an adequate complexity measure for how complicated/deep the theorem
is. In the words of Hartmanis [10]:

In every formalization, infinite sets of trivial theorems will require
very long proofs. ... It also gives a warning that a necessarily
long proof in a formal system does not certify that the result is
non-trivial.

Using the method developed in [4, 2, 3] we prove that Fermat’s last the-
orem is in the class €y, hence from this point of view its complexity is
low.

The paper is organised as follows. In the next section we present a short
proof for Theorem 1; in section 3 we briefly describe the complexity measure;

in section 4 we use this measure to obtain an upper bound on the complex-
ity of Fermat’s last theorem which shows that this statement is in the class
€1 and this bound is transferred to the statement regarding the chaotic-
ity of a specific two-dimensional Hamiltonian system via the equivalence in
Theorem 1; in section 5 we present some conclusions and an open problem.

2. A proof for Theorem 1

Following Richardson [15], Caviness [5] and Wang [16] we fix a positive
integer n and denote by &, a set of expressions representing real valued, par-
tially defined functions of real variables and by F(&,) the set of functions
represented by the expressions in &,. By e(xy,z9,...,x,) we denote the
function represented by the expression e € &,. We assume that &, is gen-
erated by: i) the rational numbers and 7 as constant functions, ii) variables
x1,Z,..., Ty, i) the functions sin, i, s, and iv) the operations of addition,
subtraction, multiplication and composition.! Here p and s are expressions
denoting two unary functions such that u(x) = |z|, s(z) = 1, for all = # 0.

Let P, be the set of exponential polynomials with integral coefficients in
the variables xq, zo, ..., T,.

Lemma 2. [15, 5, 16] For every polynomial P(x1,xs,...,2z,) € P, there

exists fp(x1,xa,...,x,) € F(E,) such that the following conditions are equiv-
alent.

1. There are naturals xy, s, ..., T, such that P(xy,xo,...,x,) = 0.

2. There are reals x1,Zs, ..., x, such that fp(r1,xq,...,2,) = 0.

3. There are reals x1,xs, ..., x, such that fp(ri,xa,...,2,) < 1.

We can now present the proof of Theorem 1.

Proof. Let P(m,z,y,2) = (x+1)™3 + (y+)™ — (2 + 1)™"3. In view of
Lemma 2 we have the following sequence of equivalences:

1. for every natural m,x,y, z, P(m,z,y,z) # 0,
2. for every natural m, —(3 natural x,y, z such that P(m,z,y, z) = 0),
3. for every natural m, —=(3 real x,y, z such that fp(m,z,y,2) =0),

n fact we can omit subtraction and =, cf. [16, 14].

4. for every natural m, =(3 real x,y, z such that fp(m,z,y,z) <
5. for every natural m, —=(3 real z,y, z such that Fp(m,z,y,2) <

1
6. for every natural m, =(3 real z,y, z such that Fp(m,z,y, 2) 0;:
where
Fp(m,z,y,2) =s(u(fp(m,z,y,2) — 1) + fp(m,z,y,2) — 1),
and

Fp(m,z,y,2z) =0iff fp(m,x,y,z) < 1.

Further on, observe that Fp(m,x,y, z) € {0, 1}, so if we denote by h, k the
Hamiltonian for the free particle and the Hamiltonian for the two-dimensional
system with a horseshoe in [12] (Example 4) then one can prove in ZFC that
the Hamiltonian

H="Fp-h+(1—Fp)-k (1)

has a horseshoe iff one can prove in ZFC the condition “for every natural
m,x,y, z, P(m,x,y,2) # 07, i.e. ZFC proves Fermat’s last theorem.
([

3. A complexity measure

In this section we present a complexity measure [4, 2, 3] forlIl ;-statements
(i.e. statements of the form “VYn Pred(n)”, where Pred is a computable
predicate) defined by means of register machine programs.

We use a fixed “universal formalism” for programs, more precisely, a
universal self-delimiting Turing machine U. The machine U (which is fully
described below) has to be minimal in the sense that none of its instructions
can be simulated by a program for U written with the remaining instructions.

To everyll ;—problem ¢ = VmP(m) we associate the algorithmll p =
inf{n : P(n) = false} which systematically searches for a counter-example
for 0. There are many programs (for U) which implementIl p; without
loss of generality, any such program will be denoted also byll p. Note that
o is true iff U(Ilp) never halts.

The complexity (with respect to U) of a II;—problem o is defined by
the length of the smallest-length program (for U) Ilp—defined as above—

where minimisation is calculated for all possible representations of o as o =

VnP(n):?
Cy(o) = min{|Ilp| : 0 =VnP(n)}.

Because the complexity Cy is incomputable, we can work only with upper
bounds for Cy. As the exact value of Cy is not important, following [3] we
classifyll ;—problems into the following classes:

€y, = {0 : ois all ;—problem, Cyy(0) < n kbit3}.

We briefly describe the syntax and the semantics of a register machine
language which implements a (natural) minimal universal prefix-free binary
Turing machine U used for evaluating the complexity of Fermat’s last theo-
rem, all ;—problem.

Any register program (machine) uses a finite number of registers, each of
which may contain an arbitrarily large non-negative integer.

By default, all registers, named with a string of lower or upper case letters,
are initialised to 0. Instructions are labeled by default with 0,1,2,...

The register machine instructions are listed below. Note that in all cases
R2 and R3 denote either a register or a non-negative integer, while R1 must
be a register. When referring to R we use, depending upon the context,
either the name of register R or the non-negative integer stored in R.

—R1,R2,R3

If the contents of R1 and R2 are equal, then the execution continues at the
R3-th instruction of the program. If the contents of R1 and R2 are not
equal, then execution continues with the next instruction in sequence. If the
content of R3 is outside the scope of the program, then we have an illegal
branch error.

&R1,R2
The contents of register R1 is replaced by R2.

2For Cy it is irrelevant whether o is known to be true or false. In particular, the
program containing the single instruction halt is not all p program, for any P.
3A Kkilobit (kbit or kb) is equal to 20 bits.

+R1,R2

The contents of register R1 is replaced by the sum of the contents of R1 and
R2.

'R1

One bit is read into the register R1, so the contents of R1 becomes either 0
or 1. Any attempt to read past the last data-bit results in a run-time error.

%

This is the last instruction for each register machine program before the input
data. It halts the execution in two possible states: either successfully halts
or it halts with an under-read error.

A register machine program consists of a finite list of labeled instructions
from the above list, with the restriction that the halt instruction appears
only once, as the last instruction of the list. The input data (a binary string)
follows immediately after the halt instruction. A program not reading the
whole data or attempting to read past the last data-bit results in a run-time
error. Some programs (as the ones presented in this paper) have no input
data; these programs cannot halt with an under-read error.

The instruction =R,R,n is used for the unconditional jump to the n-th
instruction of the program. For Boolean data types we use integers 0 =
false and 1 = true.

For longer programs it is convenient to distinguish between the main pro-
gram and some sets of instructions called “routines” which perform specific
tasks for another routine or the main program. The call and call-back of a
routine are executed with unconditional jumps.

To compute an upper bound on the complexity of the Fermat last theorem
we need to compute the size in bits of the programll permat, SO we need to
uniquely code in binary the programs for U. To this aim we use a prefix-free
coding as follows.

The binary coding of special characters (instructions and comma) is the
following (e is the empty string):

special characters | code || instruction | code
, € -+ 111

& 01 ! 110

= 00 % 100

Table 1

For registers we use the prefix-free regular code code; = {0712 | 2 € {0,1}*}.
Here are the codes of the first 14 registers:*

register | code; | register | code;y
R, 010 Rg 0001001
R» 011 Ry 0001010
Rs 00100 Rqo 0001011
R4 00101 R 0001100
Rs 00110 Rio 0001101
Rg 00111 Ris 0001110
R~ 0001000 Ry 0001111

Table 2

For non-negative integers we use the prefix-free regular code codey; =
{1710z | # € {0,1}*}. Here are the codes of the first 16 non-negative integers:

integer | codes || integer | code, || integer | code, || integer code,

0 100 4 11010 8 1110010 12 1110110
1 101 5 11011 9 1110011 13 1110111
2 11000 6 1110000 10 1110100 14 111100000
3 11001 7 1110001 11 1110101 15 111100001

Table 3

The instructions are coded by self-delimiting binary strings as follows:

1. &R1,R2 is coded in two different ways depending on R2:°
0lcode; (R1)code;(R2),

where ¢ = 1 if R2 is a register and ¢ = 2 if R2 is an integer.

4The register names are chosen to optimise the length of the program, i.e. the most
frequent registers have the smallest code; length.
5As re = ex = , for every string z € {0,1}*, in what follows we omit .

4.

. +R1,R2 is coded in two different ways depending on R2:

111code;(R1)code;(R2),

where ¢ = 1 if R2 is a register and ¢ = 2 if R2 is a non-negative integer.

=R1,R2,R3 is coded in four different ways depending on the data types
of R2 and R3:

00code; (R1)code;(R2)code;(R3),

where ¢ = 1 if R2 is a register and ¢ = 2 if R2 is a non-negative integer,
j = 1if R3 is a register and 7 = 2 if R3 is a non-negative integer.
IR1 is coded by

110code; (R1).

. % is coded by

100.

4. The complexity of Fermat’s last theorem

Fermat’s last theorem is one of the most famous theorems in the history
of mathematics. It states that there are no positive integers x, y, z satisfying
the equation z" 4+ y™ = 2", for any integer value n > 2. The result was
conjectured by Pierre de Fermat in 1637, and it was proven only in 1995 by
A. Wiles [17] (see also [1]). Many illustrious mathematicians failed to proved
it, but their efforts stimulated the development of algebraic number theory.
The register machine program presented below uses the integer B > 5 to
enumerate all 4-tuples of integers (x,y,z,n) with 2 < B,x,y < z,n < B for
which the equality 2" 4+ y™ = 2" is tested.

The register machine program for Fermat’s last theorem is:

O ~NO O d WN - O

=a,a,14

&e,0 //===a"b
&d,1

+e,1

&f,0

&g,0

+f,1

+g,a

=f,d,10

9. =a,a,b6

10. &d,g //g = axd

11. =e,b,13

12. =a,a,3

13. =a,a,c //d = a’b

14. &B,4 //===main program
15. +B,1

16. &n,3

17. +n,1

18. =n,B,15

19. &z,3

20. +z,1

21. =z,B,17

22. &x,3

23. +x,1

24. =x,z,20

25. &y,3

26. +y,1

27. =y,z,23

28. &b,n

29. &a,x

30. &c,32

31. =a,a,l //d = x°n

32. &E,d

33. &a,y

34. +c,4 //c 36

35. =a,a,l //d = y°n

36. +E,d //E =x"n + y°n
37. &a,z

38. +c,4 //c 40

39. =a,a,1 //d =2z"n

40. =E,a,42 //xn + y"n = z"n
41. =a,a,26 //x"n + y'n =/= z
42. % //Fermat Theorem is false

The register machine program for Fermat’s last theorem has 43 instruc-
tions. Its size is 597 bits®, hence the Fermat’s last theorem is in €. Ac-

6Weuse: R1:a,RQZd,RgZZ,R4:C,R5ZB,RGZX,R7ZH,R8=}7,R9=€,

9

cording to Theorem 1 we obtain:

Theorem 3. Assume ZFC is arithmetically sound. Then, one can effectively
construct in the formal language of ZFC the expression describing a two-
dimensional Hamiltonian system H such that ZFC proves that H has a Smale
horseshoe iff there exists a I1;-statement o € €1 such that ZFC proves o.

5. Conclusions

Using the computational method in [4, 2, 3] we have shown that the
problem of proving the existence of a Smale horseshoe in a two-dimensional
Hamiltonian system is in the class €1, i.e. it has low complexity according to
our complexity measure. The specific pair of two-dimensional Hamiltonians
used in the proof of Theorem 1 plays no specific role: any pair of Hamiltoni-
ans, one for a dynamics displaying chaotic behaviour and one for a smooth
dynamics, will be equally useful in Eq (1).

It will be interesting to investigate whether the results presented in this
note for Fermat’s last theorem can be generalised for anyll ;-statement (in
[7] it is claimed that Theorem 1 is true for a couple of otherlI ;-statements).

References

[1] A. Aczel. Fermat’s Last Theorem: Unlocking the Secret of an Ancient
Mathematical Problem, Dell Publishing, New York, 1996.

[2] C.S. Calude, E. Calude. Evaluating the Complexity of Mathematical
Problems. Part 1 Complex Systems, 19 (2009), 267-285.

[3] C.S. Calude, E. Calude. Evaluating the Complexity of Mathematical
Problems. Part 2, Complex Systems 18 (2010), 387-401.

[4] C.S. Calude, E. Calude, M. J. Dinneen. A new measure of the difficulty
of problems, Journal for Multiple-Valued Logic and Soft Computing 12
(2006), 285-307.

[5] B. F. Caviness. On canonical forms and simplification, Journal of the
Association for Computing Machinery 17, 2 (1970), 385-396.

[6] G. J. Chaitin. Algorithmic Information Theory, Cambridge University
Press, Cambridge, 1987. (third printing 1990)

Rio =1, Ri1 = g, Ri2 = E, Riz3 = b.

10

[7]

[11]

[12]

[13]

[14]

N. C. A. da Costa, F. A. Doria, A. F. Furtado do Amaral. Dynamical
system where proving chaos is equivalent to proving Fermat’s conjec-
ture, International Journal of Theoretical Physics 32, 11 (1993), 2187—
2206.

R. L. Devaney. An Introduction to Chaotic Dynamical Systems, 2nd
ed. Westview Press, 2003.

P. Gécs, M. Hoyrup, C. Rojas. Randomness on computable probability
spaces. A dynamical point of view, Symposium on Theoretical Aspects
of Computer Science 2009 (Freiburg), pp. 469-480.

J. Hartmanis. On effective speed-up and long proofs of trivial theorems
in formal theories, Informatique Théorique et Applications 10 (1976),
29-38.

M. Hirsch. The chaos of dynamical systems, in P. Fisher, W. R. Smith
(eds.). Chaos, Fractals and Dynamics, Marcel Dekker, 1985, 189-195.
P. J. Holmes, J. E. Marsden. Horseshoes in perturbations of Hamilto-
nian systems with two degrees of freedom, Communications in Mathe-
matical Physics 82 (1982), 523-544.

S. H. Kellert. In the Wake of Chaos: Unpredictable Order in Dynamical
Systems, University of Chicago Press, 1993.

M. Laczkovich. The removal of 7 from some undecidable problems in-
volving elementary functions, Proceedings of the American Mathemat-
ical Society 131, 7 (2002), 2235-2240.

D. Richardson. Some unsolvable problems involving elementary func-
tions of a real variable, Journal of Symbolic Logic 33 (1968), 514-520.
P. Wang. The undecidability of the existence of zeros of real elementary
functions, Journal of the Association for Computing Machinery 21 4,
(1974), 586-589.

A. Wiles. Modular elliptic curves and Fermat’s Last Theorem, Annals
of Mathematics 141 (3) (1995), 443-551.

11

