8888888

CDMTCS
Research
Report
Series

An Observer-Based
De-Quantisation of Deutsch’s

Algorithm

C. S. Calude!, M. Cavaliere?,

R. Mardare’®

'University of Auckland, NZ

2CNB - CSIC, Madrid, Spain

SMicrosoft Research-University of Trento,
[taly

CDMTCS-382
May 2010; revised September 2010

Centre for Discrete Mathematics and
Theoretical Computer Science

k

September 28, 2010 9:41 WSPC/INSTRUCTION FILE ”Deutsch'ijfcs - re-

ised”

International Journal of Foundations of Computer Science
© World Scientific Publishing Company

An Observer-Based De-Quantisation of Deutsch’s Algorithm

Cristian S. Calude*

Department of Computer Science
University of Auckland, New Zealand
cristian@cs. auckland.ac.nz
www. cs. auckland. ac. nz/ ~cristian

Matteo Cavaliere

CNB - CSIC
Madrid, Spain
mcavaliere@cnb.csis.es

Radu Mardare

Microsoft Research-University of Trento, Italy
mardare@cosbi.eu

Received September 28, 2010
Accepted (Day Month Year)
Communicated by (xxxxxxxxxx)

Deutsch’s problem is the simplest and most frequently examined example of computa-
tional problem used to demonstrate the superiority of quantum computing over classical
computing. Deutsch’s quantum algorithm has been claimed to be faster than any classical
ones solving the same problem, only to be discovered later that this was not the case. Var-
ious de-quantised solutions for Deutsch’s quantum algorithm—classical solutions which
are as efficient as the quantum one—have been proposed in the literature. These solutions
are based on the possibility of classically simulating “superpositions”, a key ingredient of
quantum algorithms, in particular, Deutsch’s algorithm. The de-quantisation proposed
in this note is based on a classical simulation of the quantum measurement achieved
with a model of observed system. As in some previous de-quantisations of Deutsch’s
quantum algorithm, the resulting de-quantised algorithm is deterministic. Finally, we
classify observers (as finite state automata) that can solve the problem in terms of their
“observational power”.

Keywords: Deutsch problem, Deutsch’s quantum algorithm, de-quantisation

2010 Mathematics Subject Classification: 68W01,81P68

*Corresponding author.

k

September 28, 2010 9:41 WSPC/INSTRUCTION FILE ”Deutsch'ijfcs - re-

ised”

2 C. S. Calude, M. Cavaliere, R. Mardare

1. Introduction

The “brute-force” classical simulation of a quantum algorithm—derived from the
matrix mechanics formulation of quantum mechanics [13]—increases exponentially
the computational time. Is it possible to do it better? The answer is affirmative.
The de-quantisation of a quantum algorithm is a technique to develop a classical
algorithm which: a) solves the same problem as the given quantum algorithm, b) is
not exponentially slower in time compared to the quantum algorithm. The paper
[2] reviews the main techniques and results in de-quantisation.

Why de-quantisation? Quantum algorithms are notoriously difficult to run, so a
quantum algorithm would be preferred to a classical algorithm only if the quantum
algorithm is provable faster than any classical one solving the same problem. For
most known quantum algorithms such results are not available. Understanding the
conditions when de-quantisation is impossible reveals features that are necessary
for a quantum algorithm to be faster than any classical one. Conversely, successful
de-quantisations produce efficient classical algorithms designed on radically new
techniques inspired from quantum computation.

Deutsch’s problem is the simplest and most frequently examined example of
computational problem used to show the power and superiority of quantum comput-
ing over classical computing [11, 10, 14, 16, 4]. De-quantised solutions for Deutsch’s
quantum algorithm have been proposed in the literature [3,4, 15, 1]. These solutions
are based on the possibility of efficiently simulating “superpositions”. In this note
we take a different approach: we focus on the interplay between an observed system
and its observer. More precisely, we use a model of observed system® to present an
observer-based de-quantisation of the Deutsch’s quantum algorithm which allows
us to investigate the role of the “power” of the external observer. As in some previ-
ous studies [4,1, 2], our de-quantised algorithm is deterministic and produces more
information than Deutsch’s quantum algorithm.

2. Automata theory preliminaries

We use some basic notions from automata theory and formal languages [17]. By
V* we denote the set of strings over the alphabet V; A is the empty string and
V+ =V*\ {A}. The concatenation of the strings w; andws is denoted by wyws.

A finite state automaton (FSA), with no final states, is a 4-tuple A = (Q,V, 4, Qo)
where Q is a set of states, Qg C Q is the set of initial states, V is the input
alphabet and § is the transition function § : @ x (V U {A\}) — 22 (22 is the power
set of Q). The extended transition function 6* is defined by 0*(¢,A) = {¢} and
6"(¢, ax) = U, es 0" (p,) with S = d(q, a).

A configuration of A is a string uqu where ¢ € Q and uv € V*; the configuration

a“Computing by observing” is a paradigm where the computation is obtained by observing and
interpreting the trajectories of a monitored system. The technique [8] was originally presented in
the area of P systems developed by G. P&un and then extended to other areas [6,7].

k

September 28, 2010 9:41 WSPC/INSTRUCTION FILE ”Deutsch'ijfcs - re-

ised”

An Observer-Based De-Quantisation of Deutsch’s Algorithm 3

denotes the current state ¢, the read input u and the input yet to be read v. A
configuration is initial when v = X\ and g € Q. The automaton A can move from a
configuration C; = ugiav to a configuration Cy = uagsv, where q1,q2 € Q, uv € V*
and a € V, if g3 € §(q1,a); such move, called transition, is represented by the string
C1 : C5, where : is a symbol not in VUQ. A computation of A on input v € V* from
initial state ¢ € Qg is a finite sequence of transitions (represented as (qv : C1,C1 :
Cy,-+,C;: Ciy1,Ciq1 : Ciga, -+, Cr_1 : v¢')). For a non-deterministic FSA there
may be several computations on v. The set of all possible computations of A on
v € V* starting from the state g € Qo is denoted by A(q,v); A(v) = Ugeg,Alg, v).
We denote by F'SA the class of finite state automata.

Following [9], an observeris a tuple O = (Q, W, §, {q},U, o), where (Q, W, 4, {q})
is an FSA, with no final state and having only one initial state ¢; U is the output
alphabet and o : Q@ — U U {\} is a labelling function. The output of an observer
is the label associated to the state of the observer in which the observer halts. For
a string w € W* and an observer @ we then write O(w) for this output; for a
sequence (wi, ..., wy,) of n > 1 strings over V* we write O({wy,...,w,)) for the
string O(wy) - - - Owy,).

A System/Observer system (S/O system) is a pair constituted by an observed
system A = (Q,V,5,Qq) and an observer O = (Q, VU QU {:},¢,{¢'},U,0). We
denote such an observed system/observer by @ = A @ @. To make possible the
desired interaction between the observed system and the observer, in an S/O system
the input alphabet of the observer @ must be V U Q U {:}, the alphabet used to
describe transitions of the observed system A.

In an S/O system the observer O translates the computations of the ob-
served system A (i.e., sequences of transitions) into strings over the output al-
phabet of the observer. Formally, given Q@ = A @ O, v € V* and ¢ € Qo,
we define Q(q,v) = {O((wo,ws,...,wy)) | {wo,wr,...,wy) € Ag,v)}, Q) =
{O({wo, w1, ..., wy)) | (wo,w1,...,wn) € A()}, QV*) = {O(wo, w1, ..., wy)) |
(wo, w1, -, wy) € A(V*)}. We will often (informally) refer to the strings present
in the various sets (over U) 2 as observed behaviors of the observed system A.

Example 1. We construct three S/O systems. The observed system described in
Figure 1 is the FSA A = (Q,V,,Qq), with Q@ = {qo,q1,¢2}, V = {a,b}, Qo =
{qo}. The transition function & is defined as follows: §(qo,a) = {q1},9(qo0,b) =
{ao}. 0(qr1,a) = {@1},6(q1,b) = {g2},0(a2, a) = {2}, (g2,) = {ga}.

We consider three distinct observers Q tin, Qint, Ochange with output alphabet U
and different computational powers, given by the following mappings (we fixp € U):

A, if w=zqav : zaq'v,z € V*, a €V,
veVt g q €q,
@fin(w): q, ifwzzqa:zaq',zeV*,aEV,q,q’EQ,

peU, ifwé{zqav:zaqv,z € V*,ae Vive VT qq €Q}
U{zqa:zaq,z€V*a eV, q,q € Q}.

L,September 28,2010 9:41 WSPC/INSTRUCTION FILE ”Deutsch'ijfcs - re-
ised”

4 C. S. Calude, M. Cavaliere, R. Mardare

a,b

Fig. 1. The observed system is represented by the FSA A = ({qo0,q1,92,a,b,:},{a,b},d,{qo}). For
instance, the string aqiba : abgza denotes the transition from state g; to state gz reading the
symbol b. A computation of A is described by a sequence of strings over the alphabet of A.

Oie(w) = q, if w=zqav : zaq'v,z,v € V*,;a € V,q € Q,
ot C\pel, ifwé {zqav: zaqv,z,v € V*,a € V,qeQ}.

c, if w=zqav : zaq'v,z,v € V*,a €V,
7,4 €Q,q# ¢, cgVUQU{A}
Ochange(w) = < u, if w=zqav : zaqu,z,v € V* a €V, q € Q,

peU, ifwé {zqav: zaq'v,z,v € V* a € V,q,¢d € Q,q# ¢}
U{z,v eV* aeV,qeQ}.

FAS implementations of the observers are described in Figures 2 and 3. We
can compose the observed system A (Fig. 1) with the above defined observers and,
for each composition, we obtain a specific observed behavior of the system A.
For instance, Qchange(qo, aabb) = {cucu}, Qin(qo, aabb) = {q2}, Qint(qo, aabb) =
{n919242}

changing the observer, we get different observed behaviors for A, as is discussed
in Figure 4.

3. Expressing Deutsch’s problem in terms of FSA’s

Given a Boolean function f : {0,1} — {0,1} and a black box for computing this
function, Deutsch’s problem asks to test whether f is constant (that is, f(0) = f(1))
or balanced (f(0) # f(1)) using only one query on the black box.

The quantum technique pioneered Deutsch in [11] “embeds” the classical com-
puting box (given by f) into a quantum box, then use the quantum device on a
“superposition” state, and finally make a single measurement of the output pro-
duced. The problem was extended in [12] and fully solved in [10] (see [5, 14, 16,4]).
The quantum solution is obtained with probability one. The de-quantisation in [4] is
deterministic and relies on an efficient classical superposition; this technique works
when the quantum algorithm does not use entanglement [2].

k

September 28, 2010 9:41 WSPC/INSTRUCTION FILE ”Deutsch'ijfcs - re-

ised”

An Observer-Based De-Quantisation of Deutsch’s Algorithm 5

Fig. 2. The observer in the left is Qf;,, = (Z,W,6,{21},U,0), where Z = {z1,22,23,24},U =
{q0,q1,q2,\}, o(21) = A\, 0(22) = qo,0(23) = q1,0(24) = q2; in the right, the observer is Q;ps =
(Z,W,6,{z1},U,0) where Z = {z1,22,23,24,25},U = {qo0,q1,q2}, 0(21) = o(22) = any p € U,
o(23) = qo,0(24) = q1,0(25) = q2. Each observer takes as input a string representing a transition
of the observed system and output the symbol associated to the state where the observer stops.
For example, if observer Qy;, reads the string representing the transition agiba : abgza (of the
observed system in Figure 1), then the observer stops in the state z1, hence the observer output
the symbol A = o(z1). The observer Qy;,, can watch the state of the observed system only when
this has completely read its input while Q;,;: can watch any state passed by the observed system
processing its input.

We show that Deutsch’s problem is equivalent to the problem of identifying
a certain unknown FSA, in a given class of FSA’s, using a specific observer. The
success of such individuations is related to the computational power of the observer,
and the way the observer is implemented.

In comparing the quantum solution with the classical solution proposed here it is
important to note the role played by the “new black box” in which the original black
box is embedded. The quantum solution embeds the classical box into a quantum
black box capable of computing with superpositions, a feature unavailable to the
original box. Our new black box has the capability of evaluating on strings not only
on 0 and 1, again, a feature unavailable to the original box. It is a difficult open
problem to define and evaluate the complexity of the embedding; see more in [2].

Let A =(Q,V,4,Q0) be an arbitrary FSA and a € V an arbitrary symbol. A is
a-constant if there exists ¢ € Q such that for any ¢’ € Q, §(¢',a) C {¢}. If A is not
a-constant, then it is a-balanced.

Let f1, f2, f3, fa : {0,1} — {0,1} be the four Boolean functions that appear
in Deutsch’s problem, i.e. the functions defined by f1(0) = 0, f1(1) = 1, f2(0) =
L fo(1) = 0, f3(0) = 0, f5(1) = 0, f2(0) = 1, fu(1) = L.

Without adding extra information, we can associate to these functions four
FSA’s, with states Q@ = {qo,q1}:

A = (Q{a},61,Q) with d1(qo,a) = {q} and di(qi,a) = {a1}, Ar =
(9,{a}, b2, Q) with d2(go,a) = {q1} and d2(q1,a) = {q0}, As = (9, {a}, I3, Q) with

k

September 28, 2010 9:41 WSPC/INSTRUCTION FILE ”Deutsch'ijfcs - re-

ised”

6 C. S. Calude, M. Cavaliere, R. Mardare

a,b,:

a,b,:

a,b

Fig. 3. The observer Qchange = (Z,W,8,{21},U,0), where Z = {z1,...,2z10},W = {a,b,
q1,92,q3}, U = {u,c},0(z1) = o(22) = 0(23) = 0(24) = any p in U,0(z5) = o(27) = 0(29) =
u,0(26) = 0(28) = 0(210) = c. The observer output u or ¢ depending on the observed transitions.
For instance, the observer reading the transition aqiba : abgaa, stops in the state zg and then out-
put the symbol c. The observer O¢pange can see when the observed system has changed its state.
If the observers presented in Figures 2 and 3 read a string that syntactically does not represent a
transition then they output any p from U.

qyaabb: aq,aabb aq,aabb:aaq,bb aaq,bb:aabg,b aabq,b:aabbq,

| Lo

Qchange(qoﬁaabb) ¢ b ¢ b
Qim(qo’aabb) q q [¢F) [¢F)
Q.. (q,,aabb) A A A Cb)

Fig. 4. The three S/O systems Qchange; Qfin and Qin; are obtained by coupling A, system is
the FSA A described in Figure 1, with observers,Q;y, Qi and Ocpange described in Figures 2
and 3. The observed behaviours of A Q ¢;,,(qo, aabb), Qint(go, aabb) and Qcpange(go, aabb) are then
presented.

d3(q0,a) = {qo} and 03(q1,a) = {qo}, As = (Q, {a}, s, Q) with 4(qo,a) = {g1} and
04(q1,a) = {q1}. In this way, a black box that computes one of the functions f; can
be seen as a black box simulating the corresponding FSA A;.

Therefore, we can reformulate Deutsch’s problem using FSA’s Ap, Ay, As and
Ay (see Figure 5), in the following way: Given a black box that simulates an FSA
A e {A1, A0, As, Ay}, decide whether or not A is a-constant or a-balanced, by using

k

September 28, 2010 9:41 WSPC/INSTRUCTION FILE ”Deutsch'ijfcs - re-

ised”

An Observer-Based De-Quantisation of Deutsch’s Algorithm 7

only one input (one query on the black box). In other words, the Deutsch’s problem
is equivalent with the problem of deciding, given an arbitrary unknown FSA A €
{A1,A9, Az, Ay}, whether A is a-constant or a-balanced, by providing to A a single
input. In the paper this is referred as (reformulated) Deutsch’s problem.

Ay Ay Az Ay

Fig. 5. Original FSA’s.

The next step is to provide an embedding of each FSA A;, i =1,...,4, into an
FSA AY,i=1,...,4 (see Figure 6), in such a way that the black box simulating A;
is not “opened”, that is, the operation of embedding does not use/depend on any
specific information identifying A;.

For each A; = (9Q,{a},0;,Q), i = 1...4, we define the FSA A’ =
(Q,{a,b},7:, Q) with vi(g;,a) = di(gj,a) for j = 0,1, %(qo,0) = {} and

Yi(q1,b) = {qo}-
O, (1) (0) ()
bb (la ab bu
o

Ab Ab A Ab

Fig. 6. “Embedded” FSA’s.

Observe that AY = Ay UA, A = Ay UA, A} = AzUA, A = A, UA, where A =
(9, {b}, 6, Q) for some b # a, and §(go, b) = {q1} and 5(¢1,b) = {qo}. (We recall that,
given two finite state automata A = (Q, %, 9, Qo) and A’ = (Q', X', ', Qy), the union

k

September 28, 2010 9:41 WSPC/INSTRUCTION FILE ”Deutsch'ijfcs - re-

ised”

8 C. S. Calude, M. Cavaliere, R. Mardare

of A and A’ is the finite state automaton AUA" = (QUQ',ZUX,6Ud, Qo UQy),
with §Ud'(q,a) = 6(q,a) Ud' (g, a), for each ¢ € QNQ’;5U (¢, a) = §(q, a) for each
geEQ\Q; 06U (q,a) =06 (q,a), foreach ¢ € Q\ Q’.)

The proposed embedding (transforming A; in A?) is essentially a function F :
FSA — FSAby F(X) =X UA. The function plays a similar role as the standard
quantum embedding used by Deutsch’s algorithm. The following lemma is a simple
consequence of the definitions.

Lemma 2. (i) A; is a-balanced iff A is a-balanced, for any i = 1...4. (ii) A; is
a-constant iff Ab is a-constant, for any i =1...4.

We now consider S/O systems obtained by coupling the FSA’s A i =1...4, (as

(]

observed systems) with the observers QOcpange; O fin, Qiny defined in Example 4. We
present results that show how the reformulated Deutsch’s problem (i.e., deciding if
an unknown observed system is a-constant or a-balanced) can be solved depending
on the computational power of the allowed observer and on the possibility of finding
a “smart” input for the observed system.

Consider the FSA’s A? = (Q, {a,b},7:,Q),i=1...4 and let Q;m =A@ Oyyn,
i =1...4. Dividing all the possible inputs on their lengths (odd/even) or on their
number of symbols bs, and assuming an arbitrary initial state for the observed

system, one can prove the following result.

Theorem 3. Given an arbitrary S/O system Q@ = A @ O € {Q,, OF,,
Q%5 Qi there exist no input w € {a,b}* and no computable function f :

Q{a,b}*) — {0,1}, such that f(Q(w)) = {1} iff A is a-constant.

Proof. We start by remarking that, for all w € {a,b}*, Q@ = A & O, €
{Q}m,ﬂfcm, Qi;’cm, Q‘]%m} and any initial state of A, there exists at least a computa-
tion on input w of A. However, it is possible to decide whether A is a-constant or
a-balanced using the set Qy;,(w) if and only if Q¢ (w) = {¢;} (if A is a-balanced)
and Qi (w) = {g;} (if A is a-constant), where {7, j} = {1,2}. Consequently, there
would exist an input w for which, independently of the initial (starting) state of
the A%, A% (the a-balanced FSA’s), Qi (w), 23, (w) are the set {g;}, i € {1,2}.
However this is impossible as A} stops in a state different than the initial state on
inputs of odd length and a final state identical with the initial state on inputs of
even length. Hence, there is no computation of A that produces the same final state
for A5 no matter what is the initial state of A5. A similar argument can be found
for A% by taking into account not the parity of the length of input w, but the parity
of the number of occurrences of b in w: an odd number of occurrences of b in w
changes the state, an even number conserves the state. Therefore the function f
cannot be constructed and this proves the theorem. O

However, the reformulated Deutsch’s problem can be solved with one input if
one permits the observer Q;,;. One can check that the two inputs aaba, or abaa, can

k

September 28, 2010 9:41 WSPC/INSTRUCTION FILE ”Deutsch'ijfcs - re-

ised”

An Observer-Based De-Quantisation of Deutsch’s Algorithm 9

be used to determine if the observed system is a-constant or a-balanced. Moreover,
any input whose length is equal or shorter than 3, is not enough to determine the
type of the observed system.

Theorem 4. Consider the FSA’s A = (Q, {a,b},v;, Q) and let QF , = A? ® Oy,
i=1...4. Let Q = A® Oy €{Q,,2,.Q3 ., Q% .} be an arbitrary S/O system.

(i) There exist no input w € {a,b}* with lw| < 3 and no computable function
f:Q{a,b}*) — {0,1} such that f(Qw)) = {1} iff A is a-constant.

(i1) There exist an input w € {a,b}* with |w| =4 and a computable function f :
Q({a,b}*) — {0, 1}, such that f(QUw)) = {1} iff A is a-constant. Moreover, there
exist a computable function ' : Q({a,b}*) — {1,2,3,4}, and an input w € {a,b}*
such that f'(Q(w)) = {i} iff Q= Qt,, for anyi=1...4.

Proof. (i) We first prove that any input of length at most 3 cannot be used to
decide if A is a-constant or a-balanced. If |w| = 1 the result derives as in the proof
of Theorem 3. If |w| = 2, we have two cases:
(1) if w = aa or w = ab, then QL ,(w,qo) = Q3. (w, qo).
(2) if w = ba or w = bb, then Q! ,(w,q1) = Q3 ,(w,q1).
If Jw| = 3, we have four cases:
(1) if w = aaa or w = aab, then Q,,(w, q)= 23, (w,qo).
(2) if w = aba or w = abb, then O ,(w,qo) = Q. (w, qo).
(3) if w = baa or w = bab, then O, ,(w,q1)= Q3 ,(w, q1).
(4) if w = bba or w = bbb, then Q! ,(w,q1)= Q} (w0, q1).

As we can see there is no input that can differentiate the case when A is a-balanced;
therefore the function f cannot exist. (ii) We prove now that w = aaba can precisely
identify €, i.e., it can also decide if A is a-constant or a-balanced. For doing this
we show that for each Q¢ ,, i =1...4, the result is different.

If Q = Ql,, the two possibilities with aaba are: Q(aaba,qo) = {qogoq1q1},
Qaaba,q1) = {q1q1q0q0}. If @ = Q2 ,, the two possibilities with aaba are
Q(aaba, qo0) = {q190q190 },(aaba, q1) = {qoqi1qoq1 }. If @ = Q2 ,, the two possibilities
with aaba are Q(aaba, qo) = {q0q0q1q0}, Q(aaba, q1) = {qoqoq1q0}- If Q@ = QF,, the
two possibilities with aaba are Q(aaba, o) = {q1q190q1 }, Qaaba, ¢1) = {q1q190¢1 }-

The computable function f’: Q({a,b}*) — {1,2,3,4} can be then defined by:

if v € {g0g0q191, (1919090}
if v € {q1909190, 90919091 },
, if v € {90909190, 90909190 }»
, if v € {19191, (101901 }-
It is easy to verify that f/(Q(w)) = {i} if Q = Q¢ ,
We can also define f: Q({a,b}*) — {0,1} by

o trm e
1, if f'(v) € {3,4},

f'(v) =

— W N

forany i =1...4.

flv) =

k

September 28, 2010 9:41 WSPC/INSTRUCTION FILE ”Deutsch'ijfcs - re-

ised”

10 C. S. Calude, M. Cavaliere, R. Mardare

and check that f(Q(w)) = {1} iff A is a-constant.
In a similar way one can show that there are only two inputs of length 4, aaba
and abaa, that can distinguish the two classes and identify (2. O

If we decrease the “observational power” by working with the observer Qcpange
one can still decide if the automaton A is a-balanced or a-constant using a specific
input, but, in this case, it is not possible to identify the precise automaton. In fact,
the input aaba (or abaa) can be used to differentiate if the observed system is a-
constant or a-balanced. Any other input of length shorter than 4 is not enough to
distinguish the type of observed system.

Theorem 5. Consider the FSA’s A? = (Q,{a,b},7,Q), with i = 1...4
and QF = Al @ Ochange for @ = 1...4. Let Q@ = A ® Ocpange €

change
1 2 3 4 .
{Qchange, Qnanges Yonange: Qchange} be an arbitrary S/0 system.

(i) There exist no input w € {a,b}* with |w| < 3 and computable function
f:Q({a,b}*) — {0,1} such that f(Q(w)) = {1} iff A is a-constant.

(ii.a) There exist an input w € {a,b}* with |w| = 4 and a computable function f :
O({a,b}*) — {0,1} such that f(QUw)) = {1} iff A is a-constant. (ii.b) Moreover,
there are no computable function f' : Q({a,b}*) — {1,2,3,4} and input w €
{a,b}* such that f'(Qw)) = {i} iff Q= Qpopger 1 =1...4.

Proof. (i) The proof is similar to that of Theorem 4. (ii.a) We show that, us-
ing the input w = aaba one can differentiate A @ Ochange, With A a-constant,
from A ® Ochange with A a-balanced. There are only four possible cases. If

Q= Qihangw we have Q(aaba, qo) = {ucu}, Q(aaba, q) = {ucu}. Iif Q = Qghmge,
we have Q(aaba,qo) = {ccc},Q(aaba,q1) = {ccch. If Q@ = Q3 we have
Q(aaba, o) = {ucc},Q(aaba, q1) = {ucc}. I @ = QF, ..., we have Q(aaba, qo) =

{ucc}, Q(aaba, q1) = {ucc}.
It is easy to verify that f(Q(w)) = {1} iff A is a-constant for the function
f:Q(V*) — {0,1} defined by

fo) = {0, if v € {ucu, cec},

1, if v € {ucc}.

(ii.b) The only two inputs of length 4 that can differentiate the S/O system €,
where A is a-constant automaton from the S/O systems where A is an a-balanced
automaton, are aaba and abaa. However, they cannot distinguish the S/O sys-

tems having A as a-balanced FSA’s. Indeed, Q3 .(aaba) = Q3. (aaba) and
Q2 ange (abaa) = QL ge(abaa) which shows the impossibility to construct f. O

The computable functions f defined in Theorems 4 and 5 can be implemented by
a finite state transducer. In this way, a single finite state automaton can be obtained
by a standard Cartesian product of the corresponding observers and transducers.

k

September 28, 2010 9:41 WSPC/INSTRUCTION FILE ”Deutsch'ijfcs - re-

ised”

An Observer-Based De-Quantisation of Deutsch’s Algorithm 11

4. Conclusions

We have applied the technique of computing by observing to de-quantise Deutsch’s

quantum algorithm by isolating the external observer from the observed system.
We have shown that the ability to solve Deutsch’s problem depends on the compu-
tational power of the external observer and we have classified observers (as finite
state automata) that can solve the problem.

Acknowledgment

We thank A. Abbott and the anonymous referee for constructive criticism.

References

[1]

(17]

A. A. Abbott. The Deutsch-Jozsa Problem: De-quantization and Entanglement,
CDMTCS Research Report 371, 2009, 16 pp; to appear in Natural Computing.

A. A. Abbott, C. S. Calude. Understanding the quantum computational speed-up via
de-quantisation, in S. B. Cooper, E. Kashefi, P. Panangaden (eds.). Developments in
Computational Models (DCM 2010) EPTCS 26, 2010, pp. 1-12.

Arvind. Quantum entanglement and quantum computational algorithms. Pramana.
Journal of Physics, 56(2 & 3) (2001), 357-365.

C. S. Calude. De-quantising the solution of Deutsch’s problem, International Journal
of Quantum Information 5, 4(2007), 1-7.

C. S. Calude, G. Paun. Computing with Cells and Atoms, Taylor & Francis Publishers,
London, 2001.

M. Cavaliere. Computing by observing: A short survey, Proceedings of Computability
in Europe 2008, Logic and Theory of Algorithms, LNCS 5028, Springer, 2008, 110—
119.

M. Cavaliere. Computing by observing, Scholarpedia, 5(1):9335, 2010.

M. Cavaliere, P. Leupold. Evolution and observation. A new way to look at membrane
systems, Proceedings Workshop on Membrane Computing 2003, LNCS 2933, Springer,
2004, 153-172.

M. Cavaliere, P. Leupold. Evolution and observation: A non-standard way to generate
formal languages, Theoretical Computer Science, 321, 2-3 (2004), 233-248.

R. Cleve, A. Ekert, C. Macchiavello, M. Mosca. Quantum algorithms revisited, Pro-
ceedings of the Royal Society of London Series A454 (1998), 339-354.

D. Deutsch. Quantum theory, the Church-Turing principle, and the universal quan-
tum computer, Proceedings of the Royal Society of London Series A400 (1985), 97-117.
D. Deutsch and R. Jozsa. Rapid solutions of problems by quantum computation,
Proceedings of the Royal Society of London Series A439 (1992), 553.

A. Ekert, R. Jozsa. Quantum algorithms: Entanglement enhanced information pro-
cessing, Philosophical Transactions of the Royal Society A 356, 1743, (1998),1769—
1782.

J. Gruska. Quantum Computing, McGraw-Hill, London, 1999.

M. S. Hannachi, F. Dong, Y. Hatakeyama, and K. Hirota. On the use of fuzzy logic for
inherently parallel computations. In 3rd International Symposium on Computational
Intelligence and Intelligent Informatics, 2007, 89-92.

M. A. Nielsen, I. L. Chuang. Quantum Computation and Quantum Information, Cam-
bridge University Press, Cambridge, 2001.

A. Salomaa, Formal Languages, Academic Press, 1987.

