CDMTCS
Research
Report
Series

On the Difficulty of Goldbach
and Dyson Conjectures

Joachim Hertel
H-Star, USA

CDMTCS-367
July 2009

Centre for Discrete Mathematics and
Theoretical Computer Science

8888888

ON THE DIFFICULTY OF GOLDBACH AND DYSON
CONJECTURES

JOACHIM HERTEL

ABSTRACT. Using a Measure of Difficulty recently presented by Calude et al.
in [1], we show that Goldbach’s Conjecture is less difficult than previously
assumed. Dyson’s Conjecture states that the reverse of a power of 2 cannot be
written as a power of five and might serve as an easy to understand example
of a true but unprovable statement.We verify Dyson’s Conjecture for all 2%
with k < 108 and show that it’s complexity has an upper bound of 3928 bits.
We conclude that the Measure of Difficulty for Dyson’s Conjecture is roughly
comparable to that of a strong version of the Collatz 3x+1 problem.

1. INTRODUCTION

Some conjectures in Mathematics can be stated in elementary terms only. Almost
270 years ago, Goldbach wrote a letter [6] to Euler, in which he formulated what
is now known as the Goldbach Conjecture (GC).

Conjecture 1 (GC). Every even integer greater than 2 is the sum of two primes.

More recently, Freeman Dyson contributed to the EDGE topic what you believe
but cannot prove a mathematically minded answer [5]. Dyson presents a kind of
recipe for constructing (probably) true, but unprovable statements. Since Goedel
we know, that there are true mathematical statements that cannot be proved.
Dyson gives one embodiment for his recipe, now known as the Dyson Conjecture
(DO).

Conjecture 2 (DC). The reverse of a power of two is not a power of five.

Neither conjecture is proven yet. Dyson even argues, that DC might be true but
unprovable, due to the (yet unproven) fact, that the digits in large powers of two
occur randomly. In [3] Calude comments on that and verifies DC for all 2¥ with
k < 10°.

How difficult are these easy to understand and yet hard to prove or even unprovable
conjectures? In [1] Calude et al. proposed a Measure of Difficulty based on the well
known fact [2] that many problems in Mathematics, including GC and DC, can be
re-stated in terms of the halting question for a suitable Turing Machine. One can
then measure the difficulty of the problem under consideration as the complexity
of the associated Turing Machine. In [1] Calude et al. devised a method to do
S0, by exhibiting a set of instructions and semantic rules for register machines that
provide a natural implementation of a self delimiting, universal Turing Machine.
Both conjectures,GC and DC, belong to the class of finitely refutable problems, that
is, one counter example proves the conjecture to be false. Hence one constructs the

Date: July 19, 2009.

2 JOACHIM HERTEL

register machine programs for these problems such that they HALT iff a counter
example is found. However, as long as the program does not HALT, we are not
gaining any knowledge about whether the conjecture is true or false. We only learn,
that the conjecture is valid for ever increasing intervals. Using this method, Calude
et al. showed that the complexity of GC has an upper bound of 3484 bits. In
chapter 3 we improve this upper bound to 1628 bits. In chapter 4 we verify DC
for all 2% with k& < 10® and show that the complexity of DC has an upper bound
of 3928 bits. To be self contained, we recall from [1] the syntax and semantics of
register machine programs.

2. A UNIVERSAL SELF-DELIMITING TURING MACHINE

In [1] Calude et al. present the syntax and semantics of a register machine
that implements a universal self-delimiting Turing Machine. We refer to [2] for the
background on Algorithmic Information Theory.

Any register machine has a finite number of registers, each of which may contain
an arbitrarily large non-negative binary integer. For encoding we use 4 bits per
character. By default, all registers, labeled with a string of ‘a’ to ‘h’ characters, are
initialized to 0. It is a syntax error if the first occurrence of register j appears before
register i in a program, where j is lexicographic greater than i. Also, all registers
lexicographic less than j must have occurred. Instructions are labelled by default
with 0,1,2,. . . (in binary).The register machine instructions are listed below. Note
that in all cases R2 denotes either a register or a binary constant of the form 1(0
+ 1)* + 0, while R1 and R3 must be register variables.

=R1,R2,R3 : If the contents of R1 and R2 are equal, then the execution
continues at the R3-th instruction, where R3 = 0 denotes the first instruction
of the program. If they are not equal, then execution continues with the next
instruction in sequence. If the content of R3 is outside the scope of the program,
then we have an illegal branch error.

&R1,R2 : The contents of register R1 is replaced by the contents of register R2.

+R1,R2: The contents of register R1 is replaced by the sum of the contents of
registers R1 and R2.

IR1 : One bit is read into the register R1, so the numerical value of R1 becomes
either Oor 1. Any attempt to read past the last data-bit results in a run-time error.
Note: Read instructions are not used in GC nor DC.

%: This is the HALT and last instruction for each register machine program
before the raw data. It halts the execution in two possible states: either successfully
halts or it halts with an under-read error.

A register machine program consists of a finite list of labelled instructions from
the above list, with the restriction that the HALT instruction appears only once, as
the last instruction of the list. The input data (a binary string) follows immediately
after the HALT instruction. A program not reading the whole data or attempting
to read past the last data-bit results in a run-time error. Some programs (as the
ones presented in this paper) have no input data. To aid the presentation and
development of the programs we use a consistent style for subroutines. We use the
following conventions:

(1) The letter ‘L’ followed by characters (usually 0, . . . , 9) and terminated
by ‘7 is used to mark line numbers. These are local within the subroutine.

ON THE DIFFICULTY OF GOLDBACH AND DYSON CONJECTURES 3

References to them are replaced with the binary constant in the final
program.

(2) For unary subroutines, registers a = argument, b = return line, ¢ = answer
(a and b are unchanged on return).

(3) For binary subroutines, registers a = argument1, b = argument2, ¢ = return
line, d = answer (a, b and ¢ are unchanged on return).

(4) For subroutines, registers e, . . . , h are used for temporary values and
may be modified.

(5) For Boolean data types we use integers 0 = False and 1 = True.

3. AN IMPROVED UPPER BOUND FOR THE COMPLEXITY OF THE GOLDBACH
CONJECTURE

In [1] Calude et al. present an upper bound for the complexity of the Goldbach
Conjecture. They show Complexity(GC) < 3848 bits. We improve this upper
bound to 1628 bits!.

The improvement is largely based on a simple insight which saves many register
machine program instructions and thus reduces the complexity. Given two integers
a and b, the register machine program in [1] relies on the argument that b does
not divide a if Mod(a,b) = 0. That is correct. However, the implementation of
the Mod function consumes many instructions. We devise a simple boolean binary
subroutine isDivisible(a,b) that returns True if b is a (proper) divisor of a and
False otherwise. This subroutine needs 11 instructions only. We also use relative
addressing to streamline the subroutine isPrime() and the main routine Goldbach
as displayed in [1]. By relative addressing we mean this. Assume one needs to
load labels L1 and L2 > L1 to registers ¢ and d, respectively. Usually one uses the
instructions &c, L1 and &d, L2. An alternative way to achieve this is to use &c, L1
followed by &d,c and +d, k, with k = L2 — L1. A quick calculation shows, that
relative addressing consumes less characters as long as

Lenght[L2] — Length[k] > 4

We consequently apply this recipe throughout the code. The annotated register
machine program to test GC is as follows:

LCristian S. Calude made available a draft version dated 7/19/2009 of related work [4] in which
the complexity of GC is even further reduced to 1068 bits.

&a, Goldbach
=b,c,a

//isDivisible(a, b)

&d, 0
&e, LO
&f,b
&g, 1
LO:+f,b
+g,1
&d, 0
=a,g,c
&d, 1

=a, f,c
+a,a,e

//isPrime(a)
&h, b

&aa, LO

&ab, L1

&b, 10

L4 :=a,b,ab
&d, isDivisible
&e, L3
=a,a,d
L3:=d,1,aa
+b, 1

&d, L4
=a,a,d

LO: &c,0

&b, h

=a,a,b

L1: &ec, 1

&b, h

=a,a,b

JOACHIM HERTEL

//load Adr(Goldbach)
//goto Goldbach

//returns True if b is a proper divisor of a ,else False.l < b < a is assumed

//return False, if g = a

//return True, if a = g x b with g integer and g < a

//returns True if a is prime, else False

//save return address

//load Adr(L0)

//load Adr(L1)

// b will be a potential proper divisor of a . Init b with 2

//exit to L1 if b has reached a: we have not found a proper divisor,hence a is prime
//load Adr(isDivisible)

//perform isDivisible(a,b)
//yes, 1 < b < ais a proper divisor of a,hence a is NOT prime,goto L0
//continue testing with the successor of b

//continue at L4

//prepare to exit with False, i.e. a is not prime
//reload return address

//go back to caller

//prepare to exit with True, i.e. a is prime
//reload return address

//go back to caller

ON THE DIFFICULTY OF GOLDBACH AND DYSON CONJECTURES 5

//Goldbach start of Goldbach Conjecture testing program

&ac, 10 //ac enumerates all even integers

&ad,isPrime //load Adr(isPrime)

&ae, L5 //load Adr(L5)

&af, LO //load Adr(LO0)

&ag, L2 //load Adr(L2)

&b, L6 //register b will always be the return address for isPrime()

&ah,b //set ah to L7 = L6+ 7

+ah, 111 //set ah to L7 = L6+ 7

L0 : +ac, 10 //start loop over all even integers greater than 2

&a, 10 //start finding prime p;

&ba, ae //switch branch labels to p; search mode

&bb, ag //switch branch labels to p; search mode

=a,a,ad //perform isPrime(a)

L6 :=¢,1,bb //if yes go to L2

L7: +a,1 //test the successor of a

= a,ac, ba // if a = ac : end ps search mode at L4, or end p; search mode at L5
=a,a,ad //perform isPrime(a)

L2 : &be,a //save prime p; to bc

&ba, L4 //switch branch labels to ps search mode: set ba to L4

+bb, A //switch branch labels to ps search mode: set bb to L3 = L2+ A

L3 : &bd,a //save a as prime ps in register bd

+bd, be //set bd to p1 + po

= ac,bd,af //test GC: if ac = py + pa proceed with next even integer at LO
=a,a,ah //ac # p1 + pa: continue at L7 in po search mode as long as p1 < pa < ac
L4 : &ba,ae //switch branch labels to p; search mode

&bb, ag //switch branch labels to p; search mode

&a, be //reload p; back to register a

=a,a,ah //continue testing at L7

L5: % //HALT: counter example found: even integer ac is not the sum of two primes

The machine executable version of the Goldbach Conjecture testing program (see
Appendix 2) complies with the syntax and semantic rules as explained in Chapter
2. Tt has 60 register machine instructions and consists of 407 4-bit characters. It
has a complexity of 1628 bits. Thus we have reduced the upper bound for the
complexity of the GC testing program from 3484 bits to 1628 bits and conclude,
that the Goldbach Conjecture is less difficult than previously estimated.

6 JOACHIM HERTEL

NUMERICAL VERIFICATION OF THE DYSON CONJECTURE

For n € N let R(n) denote the integer with the decimal digits of n in reverse
order.

Example 1. n = 256 gives R(256) = 652
The Dyson Conjecture (DC) states, that

Vk,j > 0,R(2%) #£ 5

We have verified DC to be valid for 0 < k < 10%. We need to test only those
exponents k that fulfill certain conditions that need to be true for a potential
DC counterexample. These conditions allow a fast implementation and sieve out
roughly 90% of integers in any large interval on N. This is due to the probable fact,
that digits in large powers of two occur randomly. In particular, on the interval
[1,108] only 1,107,630 integers allow a potential DC counterexample. All other
exponents k give values of 2¥ such that it is immediately clear that R(2*) cannot be
a power of 5. First, we observe that & must be such that 2* has the most significant
decimal digit (MSD) 5. If MSD(2%) # 5 then obviously mod(R(2¥),5) # 0 and
hence R(2*) cannot be a power of 5. Next,assume k to be such that MSD(2F) = 5.
Let u denote the least significant decimal digit of 2. Obviously v = mod(2*, 10)
and since u € {2,4, 6,8} we conclude that 2¥ and R(2*) must have the same number
d of decimal digits, with d given by

d = floor(k *10g(10,2)) + 1

and MSD(R(2¥)) = u. Now, to be a DC counterexample, 5/ must also have d
decimal digits, and we conclude that the integer j is given by

j = floor(d = log(5,10)

For any DC counter example we further observe that M SD(R(2%)) = u = MSD(57).
That further restricts j to be such that

log(10,u) < fractionalpart(j = log(10,5)) < log(10,u + 1)

We call an integer k DC-admissable, if k fulfills these criteria and allows for a
suitable exponent j. We have generated® all DC-admissable integer k € [1,108]. In
this interval, a total of 1,107,630 DC-admissable integer exist. The smallest one
is k = 29 with an allowed 57 = 12. However, testing all DC-admissable integers
k € [1,10%] shows that all of them produce values for 2* such that R(2%) # 5.
Hence the Dyson Conjecture is valid for Vk € [1,108].

The Mathematica™ implementation for verifying DC is shown in Appendix 1.

4. THE DIFFICULTY OF THE DYSON CONJECTURE

The program to test DC is straightforward. We enumerate all powers of 2,
and for each 2% we compute the reverse integer $(2F).We then enumerate all
powers of 5 up to R(2¥) and check if there exists an integer j, such that 57
= R(2%).The program HALTS iff it finds a pair of integers (k > 0,7 > 0) such
that 5/ = R(2¥).Otherwise it continues with the next power of 2. The register
machine program uses subroutines Cmp,Sub,Mul,Div and Mod which where taken

2The data are available on request from the author

ON THE DIFFICULTY OF GOLDBACH AND DYSON CONJECTURES

7

from [1]. Here, we present these subroutines in a re-written and streamlined form.
The new subroutine Rev computes the reverse of a given integer. The main routine
Dyson is the actual test program for the Dyson Conjecture. The annotated version

is as follows:

&a,Dyson
=b,c,a

//Cmp(a,b)
&d, 0
=a,b,c

&e, 0

&f, L1

&g, L2

&d, 1

//Mul(a,b)
&d, 0

&e, L1

&f,0

L1:= f,b,c
+f,1

+d,a
=a,a,e

//Sub(a,b)
&d, 0
=a,b,c
&e, b
&f, L1
L1:4d,1
+e,1
=a,e,c

= a? a?f

//Load Adr(Dyson)
//goto Dyson

Returns 1if a<b, 0if a=0,2if a >

//Set return value to 0
//return to caller if a = b

//set return value to 1
//return to caller if a < b
//goto L2 ifa > b

//set return value to 2
//return to caller with a > b
Returns a x b

//Set return value to 0

//if f =0breturn to caller with a *b

Returns a — b, a > b is assumed

//Div(a,b)
&d, 1
=a,b,c
&h, c

&aa, L1
&ab, b
&ac, Cmp
&ad, 0

&, aa
=a,a,ac
&e, L2
=d,0,c
~+c, 101
=d,1,c
+ad, 1

~+b, ab
&e,aa
=a,a,ac
L2 : +ad,1
L3:&d,ad
&b, ab

&e, h

=a,a,c

//Mod(a,b)
&ae, a
&af,b
&ag, ¢

&e, L1

&d, Div
=a,a,d
L1: &a,d
&d, Mul
+c, A
=a,a,d
L2 : &a,ae
&b, d

&d, Sub
+c, A
=a,a,d
L3: &b, af
&c,ag
=a,a,c

JOACHIM HERTEL

returns floor(%), b > 0 is assumed

//return 1 if a =0
//save return address ¢ to h

//save input b to ab

//load Adr(Cmp)

//init counter to 0

//load Adr(L1)

//perform Cmp(a,b = (14 ad))
//load Adr(L2)

//go to cif floor(}) =1+ ad
//set ¢ to Adr(L3) = Adr (L2) +5
//go to cif floor(}) = ad
//continue

//continue

//reload ¢ to Adr(L1)
//perform Cmp(a,b* (1 4+ ad))
//add deferred 1 to counter
//set return value

//reload input value

//reload return address
//return to caller

//returns amodb,b > 0 is assumed
//save input a
//save input b
//save input c

//load Adr(Div)
//perform Div(a,b)

//load Adr(Mul)

//set ¢ to Adr(L2) by adding A = Adr(L2)
//perform Mul(floor(%),b)

//reload input a

//load Adr(Sub)

//set ¢ to Adr(L3) by adding A = Adr(L3)
//perform Sub(a,b* floor(%))

//reload input b

/ /reload return address

//return to caller

— Adr(L1)

— Adr(L2)

ON THE DIFFICULTY OF GOLDBACH AND DYSON CONJECTURES 9

//Rev(a,b)
&ah,c
&ba,a
&bb, b
&be, 1
&bd, a
&be, b
&bf,1010
&bg, Mul
&bh, Div
&ca, 0

L0 : &a, be
&b, bf

&e, L1
=a,a,bh
L1 : &be,d
&b, d

&a, bd

+e, 11101
=a,a,bh
L2: &a,d
&b, be
+¢,11000
=a,a,bg
L3 : +4ca,d
&a, bd

&b, be

&d, Mod
+c, A
=a,a,d
L4 : &bd, d
&a, be

&b, bf

+e¢, 11110
=a,a,bg
L5 : &be,d
&a, ba

&b, bb

&c, ah

&d, ca
=be,1,c
&d, L0
=a,a,d

returns the reverse of a; b = 10" with n = floor(log(10,a)) + 1 is assumed
//save input

//save input

//save input

//counter be keeps track of digit count and is 10¢ with d > 0 the digit position
//bd will hold the leading digits of a

// be contains 10* with 0 < k < n = floor(log(10,a)) + 1

//load constant decimal 10

//load Adr(Mul)

//load Adr(Div)

//ca keeps the reversed integer

//prepare to go from 10% to 10%—1

//perform Div(10% | 10)
//update be from 10* to 10¥~1

//set ¢ to Adr(L2) by adding Adr(L2) — Adr(L1) =29
//perform Div(a,10%71)
//load a with the result: a = d = floor(i5i=1)

//set ¢ to Adr(L3) by adding Adr(L2) — Adr(L1) = 24
//perform Mul(a,be), where be is 10¢ with d > 0 the digit position
//add to cb, thus building the reversed integer

//load Adr(Mod)

//set ¢ to Adr(L4) by adding A = Adr(L4) — Adr(L3)

//perform Mod(be,bf), thus stripping off the current leading digit
//update be with the leading digit removed

//prepare the next round to multiply bd by 10 for the next digit position
//load constant decimal 10

//set ¢ to Adr(L5) by adding Adr(L5) — Adr(L4) =30

//perform Mul(bd, 10)

//update bd = 10 * bd

//reload input a

//reload input b

//reload input ¢

//load reversed integer

//if be = 1, we are done, that is all digits of a have been reversed,branch back to caller
//be # 1, not all digits are yet reversed. Continue with next round at L0
//branch to LO

10 JOACHIM HERTEL

//Dyson start of Dyson Conjecture testing program
&cb,Cmp //load Adr(Cmp)

&ee, Mul //load Adr(Mul)

&ed, 1 //init cd to enumerate 2%

LO: +cd,cd]/ go from 2F to 2k+1

&ce, 1010 //prepare the loop...

&cf,1 //...to determine smallest cf = 10" > cd
L1: &a,cf

&b, ce

&e, L2

=a,a,cc //perform Mul(cf,10)

L2: &cf,d //update cf to 10 x cf

&a, cf

&b, cd

+¢, 11110 //set ¢ to L3 = L2+ 30

=a,a,cb //perform Cmp(cf,cd)

L3: &c, L1

=d,1,c //goto L1 if c¢f < ed

&a, cd //here we have the smallest cf = 10" > cd
&b, cf

&c, L4

&d, Rev //load Adr(Rev)

=a,a,d //perform Rev(2¥)

&a,d

&b, 1

+c, 10111 //set ¢ to Lb = L4+ 23

=a,a,ch //perform Cmp(Rev(2*),57), for 7 >0

L5 : &ec, LO

=d,1,c //if Rev(2¥) < 57 goto next power of 2 at LO

&e, L6

=d,0,c //if Rev(2F) = 57 goto L6

&g,a //Rev(2¥) > 57 proceed with next power of 5. Save Rev(2¥)
&a, 101 //prepare to go to the next power of 5

&e, LT

= a,a,cc //perform Mul(5,57) (Note: Mul is not using register g)
L7:&b,d //load b with next power of 5

&a, g //reload a with Rev(2F)

&e, L5 //1load return address for Cmp

=a,a,ch //perform Cmp(Rev(2F),57+1)

L6: % //HALT: counter example found : 3k, > 0 such that Rev(2*) = 57

The machine executable version of the Dyson Conjecture testing program (see
Appendix 3) complies with the syntax and semantic rules as explained in Chapter
2. It has 150 register machine instructions and consists of 982 4-bit characters. It
has a complexity of 3928 bits. Its complexity roughly compares to that of a strong
version of the Collatz 3x+1 problem for which an upper bound of 3232 bits was
given by Calude et al. in [1].

ON THE DIFFICULTY OF GOLDBACH AND DYSON CONJECTURES 11

Acknowledgement. The author thanks Cristian S. Calude for review and comments
and for making available related research results prior to publication.

5. APPENDIX 1

The Mathematica™ program DCTest[k] returns k if k is DC-admissable,
otherwise 0.

LDla_Integer, b_Integer, n_Integer] := LoglOln] <= FractionalPart[b* Logl0[a]] < LoglO[n + 1]

DCTest[k Integer] := Module[{ret = 0, s =2, j =0, d = 1},

(*check if 2F has leading digit 5*)

If[LD[2, k, 5],

(*yes,now calculate the least significant digit s of 2F%)

s = PowerMod[2, k, 10];

(*calculate the number of digits d of 2Fx)

d = Floor[k*Logl0[2]] + 1;

(*calculate the possible index j for a possible 57 having the same number of digits
and the correct leading digit™)

j = Floor[d* Logl[5, 1011;

(*now check if leading digits of 57 is the same as least significant digit of 2F%)

If[LD[5, j, s]l,ret = k,Nulll],

Null

1;

Return[ret]

1;

The Mathematica™ program isDysonQ[n] takes an integer n as input and
returns True if an integer j exists such that Reverse[2"] = 5, else False.

DCQIn_Integer] := Log[5, FromDigits|Reverse[IntegerDigits[2 n]]]]
isDysonQ [n_Integer] := Block[{p = DCQ[nl}, IntegerPart[p] == p];
Note on Performance:

Using Mathematica™ 7 on an Intel™ Core2™ Quad™ CPU with 2.66 GHz,
WinXP SP3 and using the statement

Apply[Or, ParallelMaplis Dyson@®, DC]]

with DC the set of 1,107,630 DC-admissable integers in [1,10%] needs roughly
950h of elapsed time to produce False.

12 JOACHIM HERTEL

6. APPENDIX 2

The machine executable version of the Goldbach Conjecture testing program.
Read the sequence of instructions down each of the two columns, left to right.

&a,11000000
=b,c,a

=a,a,b
&ac,10

&d,0 &ad, 1001000
&e,100110 &ae, 110010110
&fb &af,100010000
&g, 1 &ag,101001000
+£b &b,100101110
+g,1 &ah,b

&d,0 +ah,111
=a,g,c +ac,10

&d,1 &a,10

=a,f,c &ba,ae

=a,a,e &bb,ag

&h,b =a,a,ad

&aa, 10100100 =c¢,1,bb
&ab,10110010 +a,1

&b,10 =a,ac,ba
=a,b,ab =a,a,ad
&d,10001 &bce,a
&¢,10001001 &ba,101111110
=a,a,d +bb,11011
=d,1,aa &bd,a

+b,1 +bd,bc
&d,1101001 =ac,bd,af
=a,a,d =a,a,ah

&c,0 &ba,ae

&b,h &bb,ag

=a,a,b &a,be

&c,1 =a,a,ah

&b,h %

ON THE DIFFICULTY OF GOLDBACH AND DYSON CONJECTURES 13

7. APPENDIX 3

The machine executable version of the Dyson Conjecture testing program. Read
the sequence of instructions down each of the four columns, left to right.

&a,1010111010 &¢,100011000 &bg,1011000 ~+cd,cd

=b,c,a =d,0,c &bh,10101011 &ce,1010

&d,0 +¢,101 &ca,0 &cf,1

=a,b,c =d,l,c &a,be &a,cf

&e,0 +ad,1 &b, bf &b,ce
&f£,111000 +b,ab &¢,1000001011 &¢,1100000100
&g,1001110 &c,aa =a,a,bh =a,a,cc

&d,1 =a,a,ac &be,d &cf,d

=e,a,C +ad,1 &b,d &a,cf

=e,b,g &d,ad &a,bd &b,ced

+e,1 &b,ab +¢,11101 +¢,11110
=a,a,f &c,h =a,a,bh =a,a,cb

+d,1 =a,a,c &a,d &¢,1011100110
=a,a,c &ae,a &b,bc =d,l,c

&d,0 &af,b +¢,11000 &a,cd
&e,1101010 &ag,c =a,a,bg &b,cf

&£,0 &¢c,101011101 +ca,d &, 1101011110
=fb,c &d, 10101011 &a,bd &d,110101011
+£,1 =a,a,d &b,be =a,a,d

+d,a &a,d &d, 100110001 &a,d

—a.ae &d,1011000 1¢,101010 &b,1

&d,0 +¢,11100 =a,a,d +c¢,10111
=a,b,c =a,a,d &bd,d =a,a,cb

&e,b &ajae &a,be &c,1011010011
&£,10010111 &b,d &b,bf =d,1,c

+d,1 &d, 1111110 +¢,11110 &c,1111010101
+e,1 +¢,100010 =a,a,bg =d,0,c

=a,e,C =a,a,d &be,d &g.a

=a,a,f &b,af &a,ba &a,101

&d,1 &e,ag &b,bb &e, 1110111001
=a,b,c =a,a,c &c,ah =a,a,Ccc

&h,c &ah,c &d,ca &b,d
&4aa,11100100 &ba,a =be,1,c &a,g

&ab,b &bb,b &d,111101101 &¢,1101110101
&ac,10011 &be,1 =a,a,d =a,a,cb

&ad,0 &bd,a &cb,10011 %

&c,aa &be,b &cc,1011000

=a,a,ac &bf,1010 &cd,1

14 JOACHIM HERTEL

REFERENCES

[1] C.S. Calude, Elena Calude, M.J. Dinneen. A New Measure of the Difficulty of Problems,
Journal for Multiple-Valued Logic and Soft Computing 12 (2006), 285-307

(2] C.S. Calude.Information and Randomness: An Algorithmic Perspective, 2nd Edition, Revised
and Extended, Springer-Verlag, Berlin, 2002.

(3] C.S. Calude. Dyson Statements that are likely to be True but Unprovable (2008), see also
http://www.cs.auckland.ac.nz/~cristian/fdyson.pdf

[4] C.S. Calude, Elena Calude. Evaluating the Complexity of Mathematical Problems.Part2,
Draft, dated July 19,2009

(5] F. Dyson. in J. Brockman. What We Believe but Cannot Prove, Harper Perennial, New York,

2005, 82-83. See also http://www.edge.org/q2005/q05 9.html#dysonf

Goldbach, C. (1742). Letter to L. Euler, http://www.mathstat.dal.ca/~jerg/pic/g-letter.jpg

E-mail address: jhertel@h-star.com
Current address: H-Star,Inc 20801 Biscayne Blvd 4th Floor Aventura,FL 33180 USA

6

