
CDMTCS
Research
Report
Series

Is there a Universal Image
Generator?

C. S. Calude1 and J. P. Lewis2

1University of Auckland, NZ
2Massey University, NZ

CDMTCS-344
January 2009

Centre for Discrete Mathematics and
Theoretical Computer Science

Is There a Universal Image Generator?

Cristian S. Caludec,, J. P. Lewisd,d

cDepartment of Computer Science, The University of Auckland, Private Bag 92019, Auckland,
New Zealand

dWeta Digital and Massey University, Wellington, New Zealand

Abstract

Synthetic pattern generation procedures have various applications, and a number
of approaches (fractals, L-systems, etc.) have been devised. A fundamental under-
lying question is: will new pattern generation algorithms continue to be invented,
or is there some “universal” algorithm that can generate all (and only) the percep-
tually distinguishable images, or even all members of a restricted class of patterns
such as logos or letterforms? In fact there are many complete algorithms that can
generate all possible images, but most images are random and not perceptually
distinguishable. Counting arguments show that the percentage of distinguishable
images that will be generated by such complete algorithms is vanishingly small.
In this paper we observe that perceptually distinguishable images are compress-
ible. Using this observation it is evident that algorithmic complexity provides an
appropriate framework for discussing the question of a universal image generator.
We propose a natural thesis for describing perceptually distinguishable images
and argue its validity. Based on it, we show that there is no program that gener-
ates all (and only) these images. Although this is an abstract result, it may have
importance for graphics and other fields that deal with compressible signals. In
essence, new representations and pattern generation algorithms will continue to
be developed; there is no feasible “super algorithm” that is capable of all things.

Key words: Image generation algorithm, algorithmic complexity, natural image

∗Corresponding author.
Email addresses: cristian@cs.auckland.ac.nz (Cristian S. Calude),

noisebrain@gmail.com (J. P. Lewis)

Preprint submitted to AMC March 22, 2011

1. Introduction

Is there a universal image construction, meaning a single algorithm that can gener-
ate all (and only) the possible perceptually distinguishable images? In an essay in
Metamagical Themas [10] Hofstadter considered a similar but simpler question:
is there an algorithm that can generate all possible letterforms. As it seems triv-
ially possible to create any desired letterform with a spline drawing program such
as Adobe Illustrator, the question needs to be explained. A universal generation
algorithm for a class of images is an algorithm that can generate all members of
that class and that never (or only very rarely) generates objects outside that class.
In the case of Hofstadter’s essay one imagines a master typeface program that will
generate all possible letterforms as user-specified style parameters are varied, or
that generates all possible letterforms automatically with no user input. The pro-
gram’s outputs should be predominantly images of the intended class—a small
percentage of non-letterform patterns among the outputs of a letterform generator
might be acceptable for some purposes, but a letterform generator that only rarely
produces letterforms hardly justifies the name.

We adopt Hofstadter’s terminology in describing the problem. Making an anal-
ogy to Gödel Incompleteness in mathematics, Hofstadter terms a letter forming
algorithm complete if it can generate all possible letterforms, and consistent if it
generates only letterforms and no other types of images. In these terms we define
a universal algorithm to be one that is both consistent and complete. Hofstadter
suggests that a universal (complete and consistent) letterform algorithm does not
exist. The essay argues that a single algorithm cannot encompass the variety of un-
usual (but recognisable) letterforms that have been devised, as well as the infinity
of letterforms that have yet to be designed, and points out that existing recognis-
able examples of the letter “A” do not even have any single feature in common
(Fig. 1). Although it falls short of a proof, the argument and examples shown in
the essay are quite convincing.

The possibility of a universal image construction is of philosophical and some
practical interest. Hofstadter framed the question philosophically, as an issue of
whether the essence of something like a letter can be algorithmically defined.
Practical graphics tasks such as designing a corporate logo could benefit from uni-
versal visual pattern generators. Creative activities can sometimes be decomposed
into a creative phase of devising a number of candidate designs or ideas, followed
by an “editorial” phase of selecting from these possibilities [3]. The existence of

3

Figure 1: The letter “A” in a variety of typefaces. Reproduced from [10].

a universal logo generator might allow graphic designers to skip the construction
of candidates and merely select from a long list of possibilities generated by the
program.

Although a program that can generate all possible letterforms, or all possible cor-
porate logos, seems somewhat conceivable, a program that generates all possible
images (including for example a picture of you on a vacation that you will take in
the future) initially seems more farfetched. As discussed in Section 2, programs
that enumerate all possible images do exist, but they are inconsistent and therefore
are not useful. The possibility of a universal image generation algorithm remains
an open question.

The existence of such an algorithm would be of fundamental interest to graph-
ics researchers. Algorithmic construction and processing of images is intimately
tied to the chosen representation, and existing representations are not universally
advantageous. For example, spline outline representations are well suited for rep-
resenting letterforms but are usually a poor choice for representing photographs.

4

Various new approaches to signal analysis and representation periodically appear
in graphics research—fractal image compression was a popular topic in the 1980s,
and wavelets were equally popular a decade later. One may wonder whether new
representations will continue to arise indefinitely, or on the other hand, whether
there is some “best” representation that will ultimately be discovered. A universal
image construction presumably might embody some best approach to representing
and building images.

Many researchers may find it intuitive that there is no universal approach to con-
structing images. In Sections 4 and 5 we present arguments from algorithmic
information theory [4] that support this intuition. Before proceeding to the ar-
guments, Section 2 provides further background on our problem, showing that
there are many universal (but not consistent) image algorithms, and that the lack
of this second property makes them useless; attempts to fix this shortcoming are
discussed. Section 3 defines some terms and concepts used in the following argu-
ments.

2. Complete but Inconsistent Image Algorithms

All possible binary strings can be generated by a “British Museum” algorithm,
i.e., by an exhaustive enumeration. In fact there are infinitely many algorithms
to accomplish this, for example, the quasi-lexicographical enumeration, 0, 1, 00,
01, 10, 11, 000, 001, 010, . . . In a similar way, going from 1D to 2D, all possible
images can be generated simply by enumerating all pixel combinations, i.e., for
an image with n pixels, do the equivalent of n nested loops, each looping over
all pixel values. An infinite number of other procedures exist—pick any complete
image basis and enumerating all coefficient values in that basis will generate all
possible images. Since a unitary transform is analogous to a rotation there are
an infinite number of such algorithms even considering only linear orthogonal
representations. In addition to exhaustive enumerations, the use of a “reliable”
source of randomness e.g. quantum generated randomness [5] to pick pixel values
or coefficients will eventually generate any possible picture.

Completeness vs. Consistency

Each of the above universal methods produces a complete set of images; are they
consistent? Although in theory a set of pictures documenting all aspects of your

5

Figure 2: “Random television noise” images are not memorable and easily dis-
tinguishable.

life will appear in the output of these programs if you wait long enough, in fact the
images generated by these approaches will look very homogeneous—almost all
images will look like the “television noise” images in Fig. 2 (a counting argument
in Section 3 will justify this statement). A program that in practice only generates
noise images is of little value as a universal image generator. The issue is not
just that most images generated with these approaches will not look like natural
images, but that one would have to wait a very long time to observe anything
resembling a real-world image.

It is worth characterising the magnitude of the quantities we are discussing. If we
take a black-and-white 642 8-bit image as a minimal image representation, and
generously assuming 8:1 lossless compression can be obtained, then the number
of images is 84096/23 = 212285. Recall that even 264 is an intractable quantity:
current processors are approaching speeds of 232 instructions per second (four gi-
gahertz clocks), but to apply some N instruction operation to each of 264 objects
using such a processor will take 232 · N seconds, or about 136 · N years. Opera-
tions such as these, that are theoretically possible but practically impossible, will
be labelled infeasible; they should be distinguished from both practically achiev-
able operations and problems (such as the halting problem) that are theoretically
incomputable.

Perceptual Parameterization

A different approach to our issue is to observe that the parameterisation of im-
age space embodied in a pixel or Fourier basis is not matched to our perception.
Most of the space in each of these representations maps to images that are indis-
tinguishable, while the set of perceptually distinguishable images is a tiny subset

6

Figure 3: Example of a random piecewise smooth approximation to a “natural-
like” image. A collection of such images would not be particularly distinguish-
able.

Figure 4: a), b) Images from pseudo-randomly chosen DCT coefficients, (left)
with uniform amplitude in 8×8 blocks; (right) a single 1282 block with amplitude
falling as f−1.5 in the DCT frequency space.

of the space that random sampling will never locate in any feasible time (Fig. 5
and Section 3).

This suggests that consistency means that we algorithmically generate all possi-
ble perceptually distinguishable members of a class of images. Since our visual
systems are evolved to distinguish the types of images that arise in nature we will
term these perceptually distinguishable images as natural-like (NL) images. Most
invented images are also designed to be perceptually distinguishable and hence
fall in the NL category. For example, computer graphics images of imaginary ob-
jects are usually easily distinguishable, as are many other graphic designs. On the
other hand, the human visual system is not designed to distinguish pictures such
as those in Fig. 2; random images are not NL.

Are the complete enumerations described above consistent? Certainly, not. Can
they be adapted to satisfy consistency, i.e., to account for perception? In theory

7

Figure 5: Caricature of the space of all possible images. The space of natural
images (black sliver), though vast, is a tiny subset that random sampling will not
locate.

this might be accomplished by defining a perceptual metric. The space would
be sampled as seen through this metric, so indistinguishable areas of the image
space would not be repeatedly sampled. While in concept we could use pairwise
similarity rankings in conjunction with multidimensional scaling (or other mani-
fold learning procedures) to identify a perceptually parameterized space, there is
a stubborn underlying problem—again, the space of images is infeasibly large.
Consider a set of several thousand images that subjects are to rank for similar-
ity (a boat, a dog, a car...). This is such a small subset of the space of possible
images that extrapolation to other images is not reasonable, and simultaneously
the distance between the individual images is so large that interpolation is also ill
posed. Each pair of images will have significant differences in many thousands of
coordinates; there is not enough information in the ranked distance to know what
combination of coordinates is responsible for that distance.

Projecting onto the Subspace of Natural Images

Before giving up on the general idea of being able to generate all possible percep-
tually distinguishable images, consider an abstract approach that first characterises
the subspace of NL images and then projects onto this subspace from a random
location (image). As an approximation of this approach, take the characterisation
of NL images to be those that are piecewise smooth. An attractive continuation
method, graduated non-convexity (GNC), has been formulated for the problem of
fitting a piecewise-smooth surface to data [2]. The GNC ‘weak membrane’ model
fits a smooth surface through the data but also allows discontinuities where the
modelled surface changes by more than a threshold between pixels. In Fig. 3 we
applied the weak membrane to an initially random (television noise) image, as an
approximation of this idea of projecting on the NL manifold(s). Fig. 3 suggests
that this characterisation of “natural-like” does not produce particularly distin-

8

Figure 6: Algorithmic complexity (vertical axis) versus number of objects (hori-
zontal axis). Random objects (top) vastly outnumber natural-like objects (middle),
which in turn outnumber simple procedural patterns such as fractals (bottom).

guishable images and is too simplistic.

These ideas can be concretely illustrated by considering JPEG images. JPEG can
represent all possible distinguishable pictures, and the representation is such that
perceptually insignificant information is discarded. A JPEG decoder could be
adapted to generate pictures by driving it with random discrete cosine transform
(DCT) coefficients. Despite the fact that JPEG discards some perceptually indis-
tinguishable data, however, an attempt to employ it as an image generator will
result in noise images (Fig. 4).

It seems that the approaches mentioned in this section cannot be developed be-
cause of our incomplete understanding of human perception and the character of
natural images. In fact, the abstract argument in Section 4 indicates that the goal
of algorithmically producing all distinguishable images is not possible in any case.

3. Algorithmic Complexity

In this section we will briefly present some relevant results in Algorithmic Infor-
mation Theory (AIT). Algorithmic complexity and entropy are related in some
ways and have some similar theorems [9], but whereas entropy is the complexity
of describing particular objects from a population given their probability, algorith-
mic complexity deals with the complexity of a single object.

The algorithmic complexity C(x) of a string (digital object) x is the length of

9

the shortest computer program that generates that string (object). It formalises an
intuitive notion of algorithmic complexity. Consider the three patterns:

111111111111111111111111111111
123123123123123123123123123123
992625800923176251906030137620

These strings (over the alphabet {0, 1, 2, . . . , 9}) have the same length 33, but
the first two strings appear to be simpler than the third. This subjective ranking
cannot be explained with a classical probability argument (all strings have uniform
probability 10−33), but is reflected in the length of the programs needed to produce
these strings. For the first string the program is a few bytes in length,

for i:=1 to n print(’1’);

The program for the second string is slightly longer since it will contain either
nested loops or the literal ‘123’. As there is no (visible) pattern to the third
string, the shortest program to produce it seems to be the program that includes
the whole string as literal data and prints it—this string seems incompressible or
algorithmically random.1 Fig. 2 is an illustration of an incompressible image.

Ideally the complexity of an object should be a property only of the object itself,
but the choice of computer and programming language affects program lengths;
however the resulting “uncertainty” is bounded by a fixed constant depending on
the choice of the programming language. The choice of an inelegant language
or machine adds only a constant amount to the algorithmic complexity, since a
translator or simulator from any language or machine to any other is a fixed-size
program. In the limit, for large objects this constant becomes insignificant. It
should be emphasised that most AIT arguments, including those in Section 4,
similarly become “sharper” in the limit of increasingly large objects. We imagine
taking pictures of a natural scene with a succession of cameras of increasing res-
olution, or alternately running an image generation algorithm with an increasing
series of output resolutions.

1We have used the imprecise verb “seems” instead of the exact “is” because although most
images are algorithmically random there is no way to prove that a specific image is indeed algo-
rithmically random; of course, one can sometimes prove that a specific image is not algorithmically
random. More details will be presented in the Section 5.

10

The Gödel Incompleteness Theorem states that every finitely-specified theory
which is strong enough to include arithmetic cannot be both consistent and com-
plete. A theory is sound if it can prove only true statements. The flavour of
algorithmic complexity reasoning is illustrated in the following alternative argu-
ment of mathematical incompleteness: proving complexity is beyond the power
of standard mathematical theories.

Chaitin Algorithmic Incompleteness Theorem. A consistent, finitely-specified,
sound theory with N bits of axioms cannot prove statements of the form ‘C(x) >
t’ if t is much greater than N .

The proof is by contradiction. Because of the arithmetic ‘embedded’ in the theory,
a statement of the form ‘C(x) > t’ can be formalised in the theory. If the state-
ment C(x) > t can be proved then it should be possible to extract from the proof
the particular x that is used, and the extraction procedure is fairly simple (the the-
ory is sound and well-specified). Then by appending this extraction algorithm to
the proof sequence (of length C(x) ≈ N) one can generate the string x using
slightly over N bits. But the proof has shown that the algorithmic complexity of
x is C(x) > t " N resulting in contradiction.2 An important result—that will
be needed in Section 4—follows directly from the above theorem: algorithmic
complexity is incomputable!

A string x is (algorithmically) m-random if C(x) ≥ |x| − m, where |x| is the
string length and m is a number significantly smaller than |x|. So, a string is m-
random if it cannot be compressed by more than m bits. Random strings defined
in this way pass all traditional tests of randomness.

Thus, AIT defines randomness by incompressibility. A central question is, what
proportion of all strings are incompressible? The question is answered in a stan-
dard counting argument that is the foundation of many algorithmic complexity
results and provides a quantitative underpinning for some of the statements about
images made in Section 2. This argument observes that there are 2n possible n-bit
strings (or objects), but fewer than 2n strings that are shorter than n bits. Thus, not
all objects can be compressed regardless of the chosen compression algorithm—
there are not enough short strings to uniquely represent each of the objects in

2Actually, a stronger result is true [7] for a slightly different type of algorithmic complexity:
the theorems of a consistent, finitely-specified, sound theory cannot be significantly more complex
than the theory itself.

11

20 40 60 80 100 k
0.0002

0.0004

0.0006

0.0008

i 8

i 4

i 2

i 1

Figure 7: Number of n that violate (1) for several i, plotted as a proportion of 2k.

compressed form. Formal incompressibility results in AIT are just extensions of
this argument.

As we said, there are 2n such strings—how many of them are compressible by at
mostm bits, i.e., C(x) ≥ |x|−m? There are at most 20+21+22+. . .+2n−m−1 =
2n−m−1 possible programs of size n−m−1 or less (note the “at most”), so there
are no more than 2n−m − 1 strings x with C(x) < |x|−m. For example there are
at most 2n−1 − 1 programs of size n− 2 or less, so fewer than half of the strings x
can be of algorithmic complexity C(x) ≤ n − 1. Likewise, less than a quarter of
all strings are compressible by two or more bits, and less than 1/2m of all strings
have complexity less than n−m. This trend has been dubbed “exponentially few
strings are exponentially compressible” (Fig. 6).

Fix two integers k, i ≥ 0. With the exception of finitely many n, the proportion
of n-bit strings x having algorithmic complexity C(x) < k is smaller than n−i, a
quantity that (effectively) converges to 0 when n tends to infinity (Fig. 7). Here is
a counting argument proving this assertion. Take n such that

k ≤ n − i log n, (1)

and observe that only finitely many n do not satisfy (1); here log n is the integer
part of the base 2 logarithm of n. Out of all 2n n-bit strings, at most 2n−i log n − 1
strings can have C(x) < k ≤ n − i log n, hence for each n satisfying (1) the
proportion of n-bit strings x having algorithmic complexity C(x) < k is smaller
than 2n−i log n/2n ≤ n−i.

Incompressibility provides a quantitative answer to several questions raised in
Section 2 concerning the ‘enumerate all coefficients’ or ‘British Museum’ ap-
proach to complete image generation.

• Any complete image synthesis procedure of the ‘British Museum’ sort will
not only generate random images such as Fig. 2, but these types of images

12

will vastly outnumber the non-random ones. This is because almost all
digital objects are incompressible.

• The fact that almost all objects are incompressible is true regardless of the
basis used to represent the objects [4, 6, 13]. The algorithmic complexity
perspective provides an easy indirect proof of the fact that, choosing ran-
dom coefficients in some other basis (e.g. Fourier) nevertheless generally
produces a noise image.

• The likelihood of encountering anything other than a noise image can be
quantified. A 642 8-bit image is 8 · 26 · 26 = 32k bits uncompressed. An
image with half of the complexity (2:1 compression) might be sufficiently
compressible that it would not look like another noise image. Such an image
would be smaller by 16k bits; the proportion of strings that are 16k bits less
complex than a random string is 2−16384 —an infeasible minority.

4. A Model for NL Images

In this section we develop a complexity-theoretic model for the notion of NL
Image.

Are NL Images Compressible?

The fact that the somewhat unnatural images represented in Fig. 2 are also not
compressible suggests that perhaps the converse is also the case, i.e. that natural
images are compressible. This is certainly true – lossless compression of about
2.5:1 is commonly achieved [12], and lossy compression of 10:1 or more can be
achieved with little or no perceptual degradation.

Is it accurate to conclude that most or all images that are potentially of interest are
also compressible? Most images of the real world depict objects that have some
formative process, and that process can be approximately or statistically modelled
to obtain compression. Even some random timeseries that occur in nature are
correlated (1/f noise) or consist of intermittent events (radioactive decay) and
are thus compressible, although this is not the case in general [8]. Similarly in
the realm of human creations, most designs reflect some internal logic rather than
being completely random. Additional evidence is provided by the fact images

13

typically have a power-law spectrum [11] and thus are compressible (it is argued
that human vision takes advantage of this fact [1]).

One way to model this evidence is to require that one can compress an NL image
x by at least the logarithm of its length:

C(x) ≤ |x|− log |x|. (2)
(The exact form of the upper bound in (2) will be relaxed in Section 5.)

How Compressible Are NL Images?

However, NL images are “not too simple” in the sense that their complexity is not
too low. For example, the images in Fig. 4 have low complexity (more precisely,
theirC complexity is about the logarithm of their length plus a constant: a pseudo-
random string can be generated by a seed amplified by a short algorithm, hence
one needs a constant plus the length of the output to produce it; the output length
can be encoded in log |x| bits). To model this fact we require that one cannot
compress an NL image x by more than the logarithm of its length plus a constant:

C(x) > log |x| + constant. (3)

Thesis

From the above discussion we conclude that NL images are compressible, but not
too simple. These facts are expressed mathematically by (2) and (3), so we are led
to formulate the following

Thesis: Every natural-like image x satisfies (2) and (3),

i.e. NL images can be coded by the infinite set of strings

{x : log |x| + constant < C(x) ≤ |x|− log |x|}. (4)

If this Thesis is accepted—more arguments supporting it will be discussed later
in Section 5—algorithmic complexity arguments will show that that there is no
single program that can generate all NL images.

14

5. The Argument

First let us introduce two classical notions in Computability Theory3: computably
enumerable (c.e.) and computable sets. A set is computable if its membership
predicate is decidable, i.e., can be computed by an algorithm. The set of primes
or the set of syntactically correct programs are decidable. Every finite set is com-
putable. A c.e. set is one whose members are output by an algorithm, possibly
in arbitrary order and with repeats. The set of programs that halt is a standard
example of a c.e. set. The following procedure is called dovetailing: programs
are bit-strings, and all possible bit-strings can be enumerated; generate the first
bit-string potential program, execute it for one time step, generate the next po-
tential program, add it to the pool of programs, run each one for one time step,
and continue in this fashion, printing all programs that halt. If a program halts
this procedure will eventually print that fact. But since the maximum runtime of
programs of a particular size cannot be algorithmically computed (the maximum
runtime rises faster than any computable function of the program length), one does
not know how long to wait for an answer. In general, a computable enumeration
of a set does not guarantee an answer to whether a particular object is in that set,
although it may provide that answer. Every decidable set is c.e., but the converse
implication is false: the set of halting programs is c.e. but not computable [4].

Fix k ≥ 0 and consider a set of very simple images represented by the bounded
algorithmic complexity strings,

Ak = {x : C(x) ≤ k}.
The set Ak is c.e. (generate all the strings of size less than k, consider them as
potential programs, then run them dovetailed), finite (so computable), but not uni-
formly computable in k. Indeed, Ak has at most 2k−1 elements, so is computable.
Can membership inAk be decided by an algorithm working with parameter k (i.e.
uniformly in k)? The answer is negative because the function

f(k, x) =

{
1, if C(x) ≤ k,
0, otherwise ,

is not computable and the reason is that the set A = {(x, k) : C(x) ≤ k} is c.e.,
but not computable ([4], Corollary 5.37). Note that this negative result holds true
in spite of the set Ak being very small, as we have shown in the previous section.

3See more details in [4].

15

Suppose the universal image construction program exists and further suppose that
the time it requires to generate each image has some computable limit. This limit
may be long, i.e. we allow the program to run for hours (or even centuries) to
generate each image, but there is nevertheless some bound, perhaps one that is
a function of the resolution and bit depth. Then we can adapt this program to
compute the algorithmic complexity of an arbitrary string, which is impossible.

The fact that the simple strings cannot be identified can also be seen as a con-
sequence of algorithmic incompleteness. If a simple program could identify all
the simple (complexity ≤ k) strings of a particular size, it could be modified to
print the first string in any enumeration of all strings of the chosen size that is not
simple. If k is larger than the size of the program, a contradiction results.

There Is No Universal Image Generator

In view of Corollary 5.37 in [4], the set of compressible strings

{x : C(x) ≤ |x|− log |x|}

is c.e. but not computable.

This set is also very small. Indeed, the counting argument in Section 3 applies:
the proportion of n-bit compressible strings in the set of a n-bit strings is smaller
than 2n−log n/2n ≤ 1/n which tends to 0 when n tends to infinity.

There are sets much more incomputable than c.e. (but not computable) sets. One
such class is the immune sets, i.e. infinite sets that contain no infinite c.e. subset.
For example, the set {x : log |x| + constant < C(x)} is immune (Corollary 5.34
in [4]).

Now we can prove our main result:

Assume the Thesis. Then the set of NL images is not c.e., hence there
is no program that generates all (and only) the NL images.

Indeed,NL is an infinite subset of {x : log |x|+constant < C(x) ≤ |x|−log |x|},
so is an infinite subset of the immune set {x : log |x| + constant < C(x)}, hence
NL is not c.e.

16

Is the Thesis Valid?

Early in this section we have presented arguments in favour of the Thesis. Next
we complement them with a mathematical analysis which shows the robustness
of the Thesis.

The specific logarithmic functions used in (2) and (3) may seem rather arbitrarily
chosen. Fortunately all our previous results hold true in a more general context.
Consider the class of possible thresholds

T = {f : f = computable, lim
n→∞

f(n) = ∞, ∃c > 0 (lim
n→∞

n− cf(n) = ∞)}. (5)

The threshold functions used in the Thesis, f(n) = log n + constant, g(n) =
n − log n, are clearly in T . The functions log log n,

√
n, %n/2& are in T , but the

function n − 2 is not in T because it grows too fast.

The class T has a few interesting properties: a) if f ∈ T and a is a positive integer
then af ∈ T , b) if f, g ∈ T thenmin{f, g}, max{f, g}, f + g ∈ T , c) if f, g ∈ T
then there is a constant c > 0 such that g(n) < n/c − f(n) for almost all n. For
b) note we need to prove that f + g ∈ T provided f, g ∈ T : if f(n), g(n) satisfy
the second condition in (5) with constants cf , cg, respectively, then f + g satisfies
the condition for c = min{cf + cg}/2; c) follows from b).

With a very similar argument (and using the same results in [4]) we can show
that for all functions f, g ∈ T with f(n) < g(n) almost everywhere, the set
{x : f(|x|) < C(x) ≤ g(|x|)} is immune.

6. Conclusion

In summary, we have obtained the following result.

• We have argued that the goal of generating “all possible” images is poorly
posed, since the set of all images is overwhelmingly composed of nearly
indistinguishable noise images like Fig. 2.

• We proposed that generating all (and only) the compressible images is a
reasonable restatement of this goal. The compressible images contain all
the NL images, but the vast set of noise images is excluded.

17

• We proposed a natural Thesis for NL images and argued its validity.

• Assuming the Thesis we have shown that there is no program that generates
all (and only all) NL images. As a consequence, there is no algorithmwhich
can distinguish an NL image from a non-NL image; this result remains true
even we restrict the problem to the finite set of all images of sufficiently
large bounded length.

The argument in this paper can be applicable in other fields that generate or sim-
ulate compressible data.

Acknowledgements

Doug Fidaleo, Dan Ruderman, John Schlag, Ludwig Staiger and two anonymous
referees have provided helpful comments; we warmly thank them. Fig. 2 uses
random bits from a physical source, obtained from www.random.org. Figs. 3,
4 use pseudorandom values.

References

[1] J. Atick and A. N. Redlich. What does the retina know about natural scenes.
Neural Computation, (4):196–210, 1992.

[2] A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, Cambridge,
MA, 1987.

[3] M. Boden. The Creative Mind: Myths and Mechanisms. Routledge, London,
2004.

[4] C. S. Calude. Information and Randomness: An Algorithmic Perspective.
Springer-Verlag, 2002.

[5] C. S. Calude. Algorithmic randomness, quantum physics, and incomplete-
ness. In Machines, computations, and universality, volume 3354 of Lecture
Notes in Comput. Sci., pages 1–17. Springer, Berlin, 2005.

18

[6] C. S. Calude and H. Jürgensen. Randomness as an invariant for number
representations. In Results and trends in theoretical computer science (Graz,
1994), volume 812 of Lecture Notes in Comput. Sci., pages 44–66. Springer,
Berlin, 1994.

[7] C. S. Calude and H. Jürgensen. Is complexity a source of incompleteness?
Adv. in Appl. Math., 35(1):1–15, 2005.

[8] C. S. Calude and K. Svozil. Quantum randomness and value indefiniteness.
Advanced Science Letters, 1(1):165–168, 2008.

[9] D. Hammer, A. E. Romashchenko, A. Shen, and N. K. Vereshchagin. In-
equalities for Shannon entropy and Kolmogorov complexity. Journal of
Computer and System Sciences, 60(2):442–464, 2000.

[10] D. Hofstadter. Metafont, metamathematics, and metaphysics: Comments
on Donald Knuth’s article “The Concept of a Meta-Font”. In Metamagical
Themas: Questing for the Essence of Mind and Pattern, chapter 13, pages
260–296. Basic Books, New York, NY, 1985.

[11] D. Ruderman and B. Bialek. Statistics of natural images: scaling in the
woods. Physical Review Letters, (73):814–817, 1994.

[12] A. Skodras, C. Christopoulos, and T. Ebrahimi. The JPEG 2000 still im-
age compression standard. IEEE Signal Processing Magazine, 18(5):36–58,
2001.

[13] L. Staiger. The Kolmogorov complexity of real numbers. Theor. Comput.
Sci., 284(2):455–466, 2002.

19

