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Preface

In the 1940s, two different views of the brain and the computer were equally important.
One was the analog technology and theory that had emerged before the war. The other was
the digital technology and theory that was to become the main paradigm of computation.1

The outcome of the contest between these two competing views derived from technological
and epistemological arguments. While digital technology was improving dramatically, the
technology of analog machines had already reached a significant level of development. In
particular, digital technology offered a more effective way to control the precision of cal-
culations. But the epistemological discussion was, at the time, equally relevant. For the
supporters of the analog computer, the digital model — which can only process informa-
tion transformed and coded in binary — wouldn’t be suitable to represent certain kinds
of continuous variation that help determine brain functions. With analog machines, on
the contrary, there would be few or no layers between natural objects and the work and
structure of computation (cf. [4, 1]). The 1942–52 Macy Conferences in cybernetics helped
to validate digital theory and logic as legitimate ways to think about the brain and the
machine [4]. In particular, those conferences helped made McCulloch-Pitts’ digital model
of the brain [3] a very influential paradigm. The descriptive strength of McCulloch-Pitts
model led von Neumann, among others, to seek identities between the brain and specific
kinds of electrical circuitry [1].

This was perhaps the first big event that brought together physicists and the (fathers
of) computation theory.

Physics and computation theory have interacted from the early days of computing.
After a joint start we witnessed the famous late 1950s divorce (fuelled by the hope of doing
machine-independent computation) only to realise in the 1980s that, ultimately, physics
laws permit computation. As a consequence the first important group of questions have
gravitated around the constraints (known) physical laws put on (realisable) computers and
computations. As a typical example we cite Lloyd’s paper [2].

Quantum computing, relativistic computing, and, more recently, wireless sensor net-
works (sensornets) are three examples of different types of computations which differ from
classical computation because of physical constraints. While the first two paradigms don’t
deserve any special introduction the third one does. Sensornets is a computing platform
that blends computation, sensing and communication with a physics environment (see [5]).
While classical complexity theory deals with time and space resources and their generalisa-
tions, sensornets have pointed to a new computational resource: energy. These ideas lead
to the urgent need of a theory of computational energy complexity, a subject some people
are already thinking about.

1For example, students at MIT could at that time learn about differential analysers and electronic
circuits for binary arithmetic [4].
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Secondly, but not less important, is the flow of ideas coming from computability the-
ory to physics. Looking at physics with a guided computation/information eye we can
ask: What, if anything, do the theories of computation and information can say about
physics, what physical laws can be deduced using Wheeler’s dictum “it from bit”? Com-
putational physics has emerged, along with experiment and theory, as the third, new and
complementary, approach to discovery in physics.

There is a long tradition of workshops on “Physics and Computation” inaugurated by
the famous 1982 meeting whose proceedings have been published in a special issue of the
Int. J. Theor. Phys. Volume 21, Numbers 3–4, April (1982) which starts with Toffoli’s
programatic article “Physics and computation” (pp. 165–175).

In a first organisational act of re-inaugurating the series of workshops on “Physics and
Computation”, we decided to invite twenty eight reputable researchers from the border-
lines between computation theory and physics, but also from those sciences that interact
strongly with physics, such like chemistry (reaction-diffusion model of computation), biol-
ogy (physical-chemical driven organisms), and economic theory (macro-economic models),
covering as much as possible all active fields on the subject. Nineteen researchers answer
yes to our call and the pre-proceedings of this workshop is the product of their work. Our
second act will be to organise next year a second workshop with invited lectures and con-
tributed talks, now moving towards a more standard workshop or even a small conference.

The main fields covered by this event are (a) analog computation, (b) experimental
computation, (c) Church-Turing thesis, (d) general dynamical systems computation, (e)
general relativistic computation, (f) optical computation, (g) physarum computation, (h)
quantum computation, (i) reaction-diffusion computation, (j) undecidability results for
physics and economic theory.

∇
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Górecki, Daniel Graça, Emmanuel Hainry, Andrew Hodges, Mark Hogarth, Bruno Loff,
Aono Masashi, Cris Moore, Jerzy Mycka, István Németi, James M. Nyce, Kerry Ojakian,
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The venue for the conference was the Parkhotel Schönbrunn in immediate vicinity of
Schönbrunn Palace, which, together with its ancillary buildings and extensive park, is by
virtue of its long and colourful history one of the most important cultural monuments in
Austria. Vienna, located in the heart of central Europe, is an old city whose historical
role as the capital of a great empire and the residence of the Habsburgs is reflected in
its architectural monuments, its famous art collections and its rich cultural life, in which
music has always played an important part.

The workshop was partially supported by the Institute of Computer Languages of the
Vienna University of Technology, the Centre for Discrete Mathematics and Theoretical
Computer Science of the University of Auckland, the Kurt Gödel Society, and the OCG
(Austrian Computer Society); we extend to all our gratitude.

C. S. Calude, J. F. Costa

Auckland, NZ, Swansea, UK
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From reaction-diffusion to Physarum

computing

Andrew Adamatzky

University of the West of England Bristol BS16 1QY United Kingdom
andrew.adamatzky@uwe.ac.uk

Abstract

We experimentally demonstrate that computation of spanning trees and implemen-
tation of general purpose storage-modification machines can be executed by a veg-
etative state of the slime mold Physarum polycephalum. We advance theory and
practice of reaction-diffusion computing by studying a biological model of reaction-
diffusion encapsulated in a membrane.

Key words: reaction-diffusion computing, biological computing, spanning trees,
computational universality
PACS: 87.17.Ee, 87.18.Hf, 87.18.Pj, 89.20.Ff, 89.75.-k, 05.45.-a,

1 Introduction: deficiencies of reaction-diffusion computers

In reaction-diffusion computers [2,6], data is presented by an initial concen-
tration profile or a configuration of disturbance (e.g., sites of stimulation of
excitable media). The information is transfered by spreading wave patterns,
computation is implemented in collisions of wave-fronts, and final concen-
tration profile represents results of the computation. Reaction-diffusion com-
puters have been proved theoretically and experimentally capable for quite
sophisticated computational tasks, including image processing and computa-
tional geometry, logics and arithmetics, and robot control (see [6] for detailed
references, and overview of theoretical and experimental results). There is a
particular feature of reaction-diffusion chemical computers: their classical, and
so far commonly accepted form, the media are ‘fully conductive’ for chemi-
cal or excitation waves. Every point of a two- or three-dimensional medium
can be involved in the propagation of chemical waves and reactions between
diffusing chemical species. Once a reaction is initiated in a point, it spreads
all over the computing space by target and spiral waves. Such phenomena
of wave-propagation, analogues to one-to-all broadcasting in massive-parallel

Preprint submitted to Elsevier 9 July 2008



systems, are employed to solve problems ranging from the Voronoi diagram
construction to robot navigation [2,6]. We could not, however, quantize infor-
mation (e.g., assign logical values to certain waves) or implement one-to-one
transmission in fully reactive media.

The field of reaction-diffusion computing was started by Kuhnert, Agladze
and Krinsky [40,41], who, over twenty years ago, published their pioneering re-
sults on memory implementation and basic image processing in light-sensitive
excitable chemical systems. Their ideas were further developed by Rambidi
and colleagues [57,58]; and in Showalter and Yoshikawa’s laboratories, who
designed a range of chemical logical gates [71,42]. The computation of the
shortest path, one of the classical optimization problems, has also been im-
plemented in these laboratories using Belousov-Zhabotinsky media [66,12,6].
Untill quite recently, the only way to direct and quantize information in a
chemical medium was to geometrically constrain the medium. Thus, only re-
active or excitable channels are made, along which waves can travel. The waves
collide with other waves at the junctions between the channels and implement
certain logical gates in result of the collision (see an overview in Chapter 1
of [6]). Designs based on the geometrical constraining of the reaction-diffusion
media are somewhat restricted by the conventionality of their architectures.
This is because they simply re-enact standard computing architectures in non-
standard ‘conductive’ materials.

Using sub-excitable media may be a successful way to quantize information.
In sub-excitable media a local disturbance leads to the generation of mobile lo-
calization, where wave-fragments travel for a reasonably long distance without
changing its shape [61]. The presence of a wave-fragment in a given domain
of space signifies logical truth, the absence of the fragment logical falsity [5].
Despite being really promising candidates for collision-based computers [5],
sub-excitable media are highly sensitive to experimental conditions and com-
pact traveling wave-fragments are unstable and difficult to control.

In terms of well-established computing architectures, the following character-
istics can be attributed to reaction-diffusion computers:

• massive-parallelism: there are thousands of elementary processing units, or
microvolumes, in a standard Petri dish [6];

• local connections: microvolumes of a non-stirred chemical medium change
their states (due to diffusion and reaction) depending on states of (concen-
tration of reactants in) their closest neighbours;

• parallel input and output: in chemical reactions with indicators concen-
tration profiles of the reagents, one can allow for parallel optical output.
There is also a range of light-sensitive chemical reactions where data can be
inputted via local disturbances of illumination [6].

• fault-tolerance: being in liquid phase, chemical reaction-diffusion computers
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do restore their architecture even after substantial part of the medium is
removed, however, the topology and the dynamics of diffusive and, particu-
larly, phase waves (e.g., excitation waves in Belousov-Zhabotinsky system)
may be affected.

Reaction-diffusion computers — when implemented in chemical medium — are
much slower than silicon-based massively-parallel processors. When nano-scale
materials are employed, e.g., networks of single-electron circuits [6], reaction-
diffusion computers can however outperform even the most advanced silicon
analogues.

There still remains a range of problems where chemical reaction-diffusion pro-
cessors could not cope with without the external support from conventional
silicon-based computing devices. The shortest path computation is one of such
problems.

One can use excitable media to outline a set of all collision-free paths in a space
with obstacles [4], but to select and visualize the shortest path amongst all
possible paths, one needs to use an external cellular-automaton processor, or
conceptually supply the excitable chemical media with some kind of field of the
local pointers [4]. Experimental setups [66,12], which claim to directly compute
a shortest path in chemical media, are indeed employing external computing
resources to store time-lapsed snapshots of propagating wave-fronts and to
anylise the dynamics of the wave-front propagation. Such usage of external
resources dramatically reduces the fundamental values of the computing with
propagating patterns.

Graph-theoretical computations pose even more difficulties for spatially-extended
non-linear computers. For example, one can compute the Voronoi diagram of
a planar set, but can not invert this diagram [6]. Let us consider a spanning
tree, most graph famous of classical proximity graphs. Given a set of planar
points one wants to connect the points with edges, such that the resultant
graph has no cycles and there is a path between any two points of the set.
So far, no algorithms of spanning tree construction were experimentally im-
plemented in spatially extended non-linear systems. This is caused mainly by
uniformity of spreading wave-fronts, their inability to sharply select directions
toward locations of data points, and also because excitable systems usually do
not form stationary structures.

Essentially, to compute a spanning tree over a given planar set, a system
must first explore the date space, then cover the data points and physically
representing edges of the tree by the system’s structure. This is not possible
in excitable chemical systems because they are essentially memoryless, and no
stationary structure can be formed. Precipitating reaction-diffusion systems
are also uncapable of constructing the trees because not only they operate
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with uniformly expanding diffusive fronts, but the systems are incapable of
altering concentration profile of the precipitate once precipitation occurred.

To overcome these difficulties, we should allow reaction-diffusion computers
to be geometrically self-constrained while still capable to operate in geometri-
cally unconstrained (architectureless or ‘free’) space. Encapsulating reaction-
diffusion processes in membranes would a possible solution. The idea is ex-
plored in the present paper. Based on our previous results [7–9], we speculate
that vegetative state, or plasmodium, of Physarum polycephalum is a reaction-
diffusion system constrained by a membrane that capable for solving graph-
theoretical problems (not solvable by ‘classical’ reaction-diffusion computers)
and which is also computationally universal.

A brief introduction to computing with Physarum polycephalum is presented
in Sect. 2. Section 3 introduces our experimental findings on constructing
spanning trees of finite planar sets by plasmodium of Physarum polycephalum.
In Sect. 4 we demonstrate that plasmodium of Physarum polycephalum is
an ideal biological substrate for the implementation of Kolmogorov-Uspensky
machines [9]. Directions of further studies are outlined in Sect. 5.

2 Physarum computing

There is a real-world system which strongly resembles encapsulated reaction-
diffusion system. Physarum polycephalum is a single cell with many nuclei
which behave like amoeba. In its vegetative phase, called plasmodium, slime
mold actively searches for nutrients. When another source of food is located,
plasmodium forms a vein of protoplasm between previous and current food-
sources.

Why the plasmodium of Physarum is an analog of an excitable reaction-
diffusion system enclosed in a membrane? Growing and feeding plasmodium
exhibits characteristic rhytmic contractions with articulated sources. The con-
traction waves are associated with waves of potential change, and the waves
observed in plasmodium [43,44,77] are similar to the waves found in excitable
chemical systems, like Belousov-Zhabotinsky medium. The following wave
phenomena were discovered experimentally [77]: undisturbed propagation of
contraction wave inside the cell body, collision and annihilation of contraction
waves, splitting of the waves by inhomogeneity, and the formation of spiral
waves of contraction (see Fig. 6c–f in [77]). These are closely matching dynam-
ics of pattern propagation in excitable reaction-diffusion chemical systems.

Yamada and colleagues [77] indicate a possibility for interaction between the
contraction force generating system with oscillating chemical reactions of cal-
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cium, ATP and associated pH [56,51,53]. Chemical oscillations can be seen as
primary oscillations — contraction waves are guided by chemical oscillation
waves — because chemical oscillations can be recorded in absence of contrac-
tions [46,52,54].

Nakagaki, Aono, Tsuda [15,16,73,49,50,74] and others have been exploring a
power of Physarum computing from 2000 [48]. They proved experimentally
that the plasmodium is a unique fruitful object to design various schemes
of non-classical computation [15,16,73], including Voronoi diagram [63] and
shortest path [49,50,63], and even design of robot controllers [74]. In present
we paper we focus on one specialized instance of Physarum computing —
approximation of spanning trees, and also implementation of a general purpose
storage-modification machine.

The scoping experiments were designed as follows. We either covered con-
tainer’s bottom with a piece of wet filter paper and placed a piece of living
plasmodium 1 on it, or we just planted plasmodium on a bottom of a bare con-
tainer and fixed wet paper on the container’s cover to keep the humidity high.
Oat flakes were distributed in the container to supply nutrients and represent
set of nodes to be spanned by a tree (Sect. 3) or to represent data-nodes of
Physarum machine (Sect. 4). The containers were stored in the dark except
during periods of observation. To color oat flakes, where required, we used
SuperCook Food Colorings: 2 blue (colors E133, E122), yellow (E102, E110,
E124), red (E110, E122), and green (E102, E142). The flakes were saturated
with the colorings, then dried.

3 Approximation of spanning trees

The spanning tree of a finite planar set is a connected, undirected, acyclic
planar graph, which vertices are points of the planar set; every point of the
given planar set is connected to the tree (but no cycles or loops are formed).
The tree is a minimal spanning tree where the sum of edges’ lengths is minimal.
Original algorithms for computing minimum spanning trees are described in
[39,55,26]. Hundreds if not thousands of papers were published in last 50 years,
mostly improving the original algorithms, or adapting them to multi-processor
computing systems [28,13,32].

Non-classical and nature-inspired computing models brought their own solu-
tions to the spanning tree problem. Spanning tree can be approximated by
random walks, electrical fields, and even social insects [72,23,2,3]. However

1 Thanks to Dr. Soichiro Tsuda for providing me with P. polycephalum culture.
2 www.supercook.co.uk
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(a) (b)

Fig. 1. Approximating spanning tree by plasmodium: (a) photograph of living plas-
modium in a container, where oat flakes represent the nodes of the tree, (b) scheme
of the tree computed by plasmodium.

neither of these non-classical algorithms offer an experimental realization.

In 1991 we proposed an algorithm of computing the spanning tree of a finite
planar set based on the formation of a neurite tree in a development of a single
neuron [1]. Our idea was to place a neuroblast somewhere on the plane amongst
drops of chemical attractants, positions of which represent points of a given
planar set. Then, the neurite tree starts to grow and spans the given planar set
of chemo-attractants with acyclic graph of axonal and dendritic branches. Due
to lateral circumstances experimental implementation of the algorithm was not
possible at the time of its theoretical investigation [1]. Recent experimental
developments in foraging behaviour of P. Polycephalum [49,50,74,15,16,73]
convinced us that our original algorithm for morphological growing of spanning
trees can be implemented by living plasmodium.

When computing the spanning tree, the plasmodium acts as follows: once
placed in the container, where oat flakes represent given planar set to be
spanned by a tree, and recovered, the plasmodium starts to explore the sur-
rounding space. Numerous pseudopodia emerge, frequently branch and pro-
ceed. The plasmodium grows from its initial position by protoplasmic pseu-
dopodia detecting, by chemotaxis, relative locations of closest sources of nu-
trients. When another source of nutrients, element of the given planar set,
is reached, the relevant part of the plasmodium reshapes and shrinks to a
protoplasmic strand, or a tube. This tube connects the initial and the newly
acquired sites. This protoplasmic strand represents an edge of the computed
spanning tree. Planar points distributed in a Petri dish are usually spanned
by a protoplasmic vein tree in 1-3 days, depending on the diameter of the
planar set, substrate and other conditions. An example of a spanning tree
approximated by plasmodium is shown in Fig. 1.

The tree computed by plasmodium in our experiments [8] satisfactory match
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(a)

(b)

(c)

(d)

Fig. 2. Two scenarios of computing the spanning tree from the same planar data–
points: (a) and (b) show photographs of the living plasmodium spanning oat flakes,
which represent data nodes; (c) and (d) are schemes of the trees approximated. At
the beginning of both experiments, plasmodium was placed at the Southmost oat
flake.

trees computed by classical techniques, e.g., by Jaromczyk-Supowit method [33,67],
see [8]. Even when represented in simulation, the algorithm works pretty well
on large data sets [8].

We would like to refer those eager for details to our previous papers [8,7],
where the advantages of computing the spanning tree by pladmodium are
discussed. In the present paper we will mention two speculative points of the
approximation.

Plasmodium almost never computes the same (including exact location of
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(a)

(b)

Fig. 3. Particular results of spanning planar data points by plasmodium (from the
left to the right): first incomplete spanning tree is formed, then planar graph with
cycles, then complete spanning tree; plasmodium continues its development after the
tree is computed by transforming the tree again to a cyclic planar graph; (a) pho-
tographs of living plasmodium; (b) schemes of the graphs constructed.

protoplasmic edges) trees from the same data planar points. Not only the lo-
cations and configurations of the edges can be different, but also the topologies
of the trees. An example is provided in Fig. 2. In one experiment plasmodium
spans eastern and western data points while spreading North (Fig. 2ac), while
in another experiment plasmodium relocates to the northern part of the data
set and then spreads back South (Fig. 2bd).

Experimental results shown in Fig. 3 demonstrate that (1) tree can be con-
structed via other kinds of proximity graphs, or k-skeletons, and (2) plas-
modium never stops ‘computing’, at some stage a tree is built, but then it is
transformed to a planar graph with cycles. This experimental finding amaz-
ingly similar to how are spanning trees constructed on conventional comput-
ers – first a relative neighbourhood graph is computed, then some edges are
deleted, and thus the graph is transformed to a minimum spanning tree [33,67].

4 Universal Physarum machines

In the late 1940s and early 1950s, while developing his ideas on recursive func-
tions and recursively enumerable sets (which are fundamentals of algorithm
theory) [76], Kolmogorov [37,38] established a formalism for algorithmic pro-
cess realizable in physical time and space. He proposed that each state of an
algorithm process is comprised of a finite number of elements and connections
amongst them. Elements and connections belong to some types, and total
number of types are bounded. Each connection has a fixed number of ele-
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Kolmogorov machines (1953)
������ �

�
���

Knuths linking automata (1968)

�

Schönhage storage modification machines (1970th)

�

Tarjans reference machines (1977)

���
Random access machines

Fig. 4. Development of storage modification machines.

ments, and every element has a restricted number of connections. A restricted
number of connections means locality in a sense that graphs connectivity is
several orders less then the size of the graph. The state has a local active
zone (i.e., specified elements) and connections amongst the elements can be
updated dynamically. In computer science, Kolmogorov machine is treated
as a computational device whose storage can change its topology. Later Kol-
mogorov’s formalism was enriched by Uspensky, thus the name of the final
abstract computational device.

A Kolmogorov-Uspensky machine (KUM) [37,38] is defined on a colored/labeled
undirected graph with bounded degrees of nodes and bounded number of col-
ors/labels. As Uspenski poetically said an algorithmic process “. . . can be re-
garded as a finite first-order structure of a finite signature, the signature being
fixed for every particular algorithm”[76].

KUM operates, and modifies its storage as following: select an active node in
the storage graph. Specify local active zone, the node’s neighborhood. Modify
the active zone, i.e. add a new node with the pair of edges, then connect the
new node with the active node; delete a node with the pair of incident edges;
add or delete edges between the nodes.

A program for KUM specifies how to replace the neighborhood of an ac-
tive node with new neighborhood, depending on labels of edges connected
to the active node and labels of the nodes in the proximity of the active
node [19]. All previous and modern models of real-world computation are heirs
of KUM: Knuth’s linking automata [36], Tarjan’s Reference Machines [68],
Schönhage’s storage modification machines [59,60] (Fig. 4. When the restric-
tions on bounded in- and out-degrees of the machine’s storage graph are lifted,
the machine becomes Random Access Machine.

Functions computable on Turing machines (TM) are also computed on KUM,
and any sequential device are simulated by KUM [31]. KUM can simulate TM
in real time, but not vice versa [30]. KUM’s topology is much more flexible
than that of TM, and KUM is also stronger than any ‘tree-machine’ [65].
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In 1988 Gurevich [31], suggested that an edge of KUM is not only an in-
formational but also a physical entity and reflects the physical proximity of
the nodes (thus e.g. even in three-dimensional space number of neighbors of
each node is polynomially bounded). A TM formalizes computation as per-
formed by humans[75], whereas KUM formalizes computation as performed
by physical process [19].

What would be the best natural implementation of KUM? A potential can-
didate should be capable for growing, unfolding, graph-like storage structure,
dynamically manipulating nodes and edges, and should have a wide range of
functioning parameters. Vegetative stage, i.e., plasmodium, of a true slime
mold Physarum polycephalum satisfies all these requirements.

Physarum machine has two types of nodes: stationary nodes, presented by
sources of nutrients (oat flakes), and dynamic nodes, sites where two or more
protoplasmic veins originate. At the beginning of the computation, the sta-
tionary nodes are distributed in the computational space, and the plasmodium
is placed at one point of the space. Starting in the initial conditions, the plas-
modium exhibits foraging behavior, and occupies stationary nodes.

An edge of Physarum machine is a strand, or vein, of a protoplasm connecting
stationary and/or dynamic nodes. KUM machine is an undirected graph, i.e.,
if nodes x and y are connected, then they are connected by two edges (xy)
and (yx). In Physarum machine this is implemented by a single edge but with
periodically reversing flow of protoplasm [34,47].

Program and data are represented by a spatial configuration of stationary
nodes. Result of the computation over stationary data-node is presented by a
configuration of dynamical nodes and edges. The initial state of a Physarum
machine, includes part of input string (the part which represents position of
plasmodium relatively to stationary nodes), an empty output string, a current
instruction in the program, and a storage structure consists of one isolated
node. That is, the whole graph structure developed by plasmodium is the result
of its computation, “if S is a terminal state, then the connected component of
the initial vertex is considered to be the ‘solution”’ [38]. Physarum machine
halts when all data-nodes are utilized.

In KUM, a storage graph must have at least one active node. This is an in-
herent feature of Physarum machines. When the plasmodium resides on a
substrate with poor or no nutrients, then just one or few nodes generate ac-
tively spreading protoplasmic waves. In these cases, the protoplasm spreads
as mobile localizations similar to wave-fragments in sub-excitable Belousov-
Zhabotinsky media [61]. An example of a single active node, which has just
started to develop its active zone, is shown in Fig. 5. At every step of compu-
tation there is an active node and an active zone, usually nodes neighboring to
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(a) (b)

(c) (d)

Fig. 5. Basic operations of Physarum machine: (a) a single active node generates
an active zone at the beginning of computation, (b) addressing of a green-coloured
data-node, (c) and (d) implementation of add node (nodes 3), add edge (edge
(5, 4)), remove edge (edge (route, 4)) operations.

active node. The active zone has limited complexity, in a sense that all elements
of the zone are connected by some chain of edges to the initial node. In general,
the size of an active zone may vary depending on the computational task. In
Physarum machine an active node is a trigger of contraction/excitation waves,
which spread all over the plasmodium tree and cause pseudopodia to propa-
gate, change their shape, and even protoplasmic veins to annihilate. An active
zone is comprised of stationary or dynamic nodes connected to an active node
with veins of protoplasm.

KUM, in its original form, have a single control device [31,19]. Plasmodium
acts as a unit in a long-term, i.e., it can change position, or retract some
processes in one place to form new ones in another place. However, periodic
contractions of the protoplasm are usually initiated from a single source of
contraction waves [47,69]. The source of the waves can be interpreted as a
single control unit. In some cases we experimentally observed (Fig. 6) presence
of a single active zone in the growing plasmodium. However, during foraging
behavior, several branches or processes of plasmodium can act independently
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(a)

(b)

Fig. 6. Serial approximation of spanning tree by plasmodium: (a) snapshots of the
living plasmodium, from the left to the right, made with 6 hours intervals; (b) scheme
of the graph. The active zone at each step of computation is encircled.

and almost autonomously.

In contrast to Schönhage machine, KUM has bounded in- and out-degree of
the storage graph. Graphs developed by Physarum are predominantly planar
graphs. Moreover, if we put a piece of vein of protoplasm on top of another vein
of protoplasm, the veins fuse [62]. Usually, not more than three protoplasmic
strands join each other in one given point of space. Therefore we can assume
that the average degree of the storage graph in Physarum machines is slightly
higher then the degree of a spanning tree (average degree of 1.9 as reported
in [22]) but smaller than the average degree of a random planar graph (degree
4 [14]).

Every node of KUM must be uniquely addressable and nodes and edges
must be labeled [38]. There is no direct implementation of such addressing
in Physarum machine. With stationary nodes this can be implemented, for
example, by coloring the oat flakes. An example of such experimental imple-
mentation of a unique node addressing is shown in Fig. 5b.

A possible set of instructions for Physarum machine could be as follows: com-
mon instructions would include input, output, go, halt, and internal in-
structions: new, set, if [25]. At the present state of the experimental im-
plementation, we assume that input is done via distribution of sources of
nutrients, while output is recorded optically. The instruction set causes
pointers redirection, and can be realized by a placing a fresh source of nutri-
ents in the experimental container, preferably on top of one of the old sources

20



of nutrients. When a new node is created, all pointers can be redirected from
the old node to the new node. Let us look at the experimental implementation
of the core instructions.

To add a stationary node b to node a’s neighborhood, the plasmodium must
propagate from a to b, and form a protoplasmic vein representing the edge (ab).
To form a dynamic node, propagating the pseudopodia must branch into two
or more pseudopodia, and the site of branching will represent the newly formed
node. We have also obtained experimental evidence that dynamic nodes can be
formed when a tip of growing pseudopodia collides with existing protoplasmic
strande. In some cases merging of protoplasmic veins occur.

To remove the stationary node from Physarum machine, the plasmodium
leaves the node. Annihilating protoplasmic strands, which form a dynamic
node at their intersection, remove the dynamic node from the storage struc-
ture of Physarum machine.

To add an edge to a neighborhood, an active node generates propagating
processes, which establish a protoplasm vein with one or more neighboring
nodes.

When a protoplasmic vein annihilates, e.g., depending on the global state
or when source of nutrients exhausted, the edge represented by the vein is
removed from Physarum machine (Fig. 5cd). The following sequence of opera-
tions is demonstrated in Fig. 5cd: node 3 is added to the structure by removing
edge (12) and forming two new edges (13) and (23).

Let us consider an example of a task solvable by Physarum machine. Given
nodes labeled Red, Green, Blue, Yellow, connect only Green, Blue
and Yellow nodes in a single chain. Physarum machine solves the task by
first exploring the whole data space, then connecting required nodes (Fig. 7).

A possible compromise between the original theoretical framework and the
partly parallel execution in experiments could be reached by proposing two
levels of ‘biological’ commands executed by Physarum machine’s elements.
There would have to be high-level commands, e.g. search for nutrients,
escape light, form sclerotium, fructify, and low-level commands, e.g.,
form process, propagate in direction of, occupy source of nutri-
ents, retract process, branch. Global commands are executed by plas-
modium as a whole at once, i.e., in a given time step the plasmodium executes
only one high-level command. Local commands are executed by local parts of
the plasmodium. Two spatially distant sites can execute different low-level
commands at the same time.

One of the referees questioned what would be the implementation of the halt
command. So far we do not have any. The plasmodium continues its developed
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(e) (f) (g)

(h) (i) (j) (k)

(�) (m) (n)

Fig. 7. Implementation of a simple task of connecting coloured nodes by Physarum
machine: (a)–(g) shows a sequence of photographs of plasmodium (magnification
×10) placed in a small container in the centre of a rectangle, which corners repre-
sented by oat flakes that are coloured in yellow, green, red, and blue; the scheme of
the computation is shown in (h)–(n).

and colonizes spaces even when e.g. a spanning tree is completed. We can
however ’froze’ the computation by depriving plasmodium from water. In a low
humidity conditions the plasmodiums stops its foraging behaviour and forms a
sclerotium, a compact mass of hardened protoplasmic mass, see Fig. 8. Results
of the computation are not destroyed and remain detectable as ’empty/dead’
protoplasmic tubes. In the state of sclerotium the Physarum machine is ready
for further deployment.
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Fig. 8. Computation in Physarum is canceled by lowering humidity. Dark-brown
coloured sclerotium is formed. You can also see empty and dead protoplasmic tubes,
which formed previously active proximity graph spanning food sources.

5 Discussions

Up to date, there were three types of reaction-diffusion computers with respect
to the geometry of reactor space and reaction wave propagation.

First, unconstrained reaction-diffusion computers: once locally perturbed tar-
get and spiral waves initiated, and they propagate everywhere. Computation
can be performed at any point of the space, where travelling waves interact
with each other. Such systems are massive parallel and successfully solve NP-
complete problems of computational geometry, e.g., plane tessellation (Voronoi
diagram), as well as robot guidance and navigation. The designs were also
implemented in large-scale integrated circuits and possible nano-scale imple-
mentation in networks of single-electron oscillators were studied, see overview
in [6]. The drawback of unconstrained reaction-diffusion computers is that
they can not complete graph optimization tasks, such as spanning tree or
shortest path, without help of external computing devices.

Second, geometrically constrained reaction-diffusion computers: the chemical
medium resides only in channels and logical circuits are made of the chan-
nels, where computation happens at junctions between two or more channels,
see e.g. [71,64,29,45]. The geometrically constrained systems can implement
Boolean and multiple-valued logical operations, as well as count and process
sequences of signals. There are two deficiencies: (1) geometrically constrained
reaction-diffusion computers are essentially only implementations of conven-
tional computing architectures with wires and logical switches in novel chem-
ical materials; and, (2) the intrinsic parallelism of the medium is not utilized
properly.
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Third, reaction constrained reaction-diffusion computers: travelling waves can
be initiated and then propagate anywhere in the reaction space. However due
to low reactivity of the system, no classical (e.g., target) waves are formed. This
is typical for sub-excitable Belousov-Zhabotinsky systems. Local perturbation
leads to formation of compact wave-fragments which can travel for reasonable
distance preserving its shape, see e.g. [61]. The system is an ideal implemen-
tation of collision-based computing schemes [5]. The deficiency of the system
is that travelling compact wave-fragment are very sensitive to conditions of
the medium, and therefore are cumbersome to control.

To overcome all these deficiencies of reaction-diffusion computers, we sug-
gested to encapsulate the reaction-diffusion systems in a membrane because
this seems to be a good combination of unconstrained physical space and
membrane-constrained geometry of propagating patterns 3 . Also, a system
encapsulated in an elastic or contractable membrane would be capable of
reversible shape changing, a feature unavailable in reaction-diffusion chemi-
cal systems. We demonstrated that the vegetative state, the plasmodium, of
slime mold Physarum polycephalum, is an ideal biological medium for sug-
gested implementation. We have provided first experimental evidences that
plasmodium can compute spanning trees of finite planar sets and implement
Kolmogorov-Uspensky machines. Thus, Physarum computers can solve graph-
theoretic problems and are capable for universal computation.

Physarum computers will be particularly efficient in solving large-scale graph
and network (including telecommunication and road traffic networks) opti-
mization tasks, and can also be used as embedded controllers for non-silicon
(e.g., gel-based) reconfigurable robots and manipulators. They are reasonably
robust (they live on almost any non-aggressive substrate including plastic,
glass and metal foil, in a wide range of temperatures, they do not require
special substrates or sophisticated equipment for maintenance) and are pro-
grammable (plasmodium exhibits negative phototaxis, and can follow gradi-
ents of humidity and some chemo-attractants) spatially extended and, dis-
tributed, computing devices.

In contrast to ‘classical’ chemical reaction-diffusion computers [6], Physarym
machines can function on virtually any biologically non-agressive substrate,
include metal and glass. Moreover, the substrate does not have to be static.
For example, to implement Physarum machines with mobile data nodes, one
can use a container with water, place the plasmodium of Physarum on one
floating object, and the oat flakes (data) on several other floating objects.

3 Recently we have demonstrated in chemical and biological laboratory experi-
ments that plasmodoium of Physarun polycephalum behaves almost exactly the
same, apart of leaving a ’trace’, as excitation patterns in sub-excitable Belousov-
Zhabotinsky medium, see details in [10]. Thus plasmodium is also proved to be
capable for collision-based universal computation [5].
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(a) (b)

Fig. 9. A floating Physarum machine: (a) an active zone of Physarum machine
travelling on water surface, (b) a connection is formed between the active zone and
one of the data points.

Plasmodium will then explore the physical space, travelling on the surface of
the water, and eventually set up connections between data points (Fig. 9).
First steps towards Physarum robots are reported at [11].

Future research will concentrate on expanding the domain of graph-theoretic
tasks solvable by Physarum computers, developing programming language for
Physarum machines, design and experimental implementation of plasmodium-
based intelligent manipulators, and general purpose logical and arithmetical
circuits.
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Abstract

We are developing a rigorous methodology to analyse experimental computation,
by which we mean the idea of computing a set or function by experimenting with
some physical equipment. Here we consider experimental computation by kinematic
systems under both Newtonian and relativisitic kinematics. An experimental pro-
cedure, expressed in a language similar to imperative programming languages, is
applied to equipment having a common form, that of a bagatelle, and is interpreted
using the two theories. We prove that for any set A of natural numbers there ex-
ists a 2-dimensional kinematic system BA with a single particle P whose observable
behaviour decides n ∈ A for all n ∈ N. The procedure can operate under (a) Newto-
nian mechanics or (b) relativistic mechanics. The proofs show how any information
(coded by some A) can be embedded in the structure of a simple kinematic system
and retrieved by simple observations of its behaviour. We reflect on the methodol-
ogy, which seeks a formal theory for performing experiments that can put physical
restrictions on the construction of systems. We conclude with some open problems.

Keywords: foundations of computation; computable functions and sets;
Newtonian kinematic systems; Relativistic kinematic systems; foundations of
mechanics; theory of Gedanken experiments; non-computable physical systems.

1 Introduction

Consider the idea of computing functions by means of physical systems. Suppose each
computation by a physical system is based on running an experiment with three stages:

(i) input data x are used to determine initial conditions of the physical system;
(ii) the system operates or evolves for a finite or infinite time; and
(iii) output data y are obtained by measuring the observable behaviour of a system.

The function f computed by a series of such experiments is simply the relation y =
f(x). The function may be partial or multivalued, and the data may be continuous or
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discrete. We call the idea of using experiments with physical systems to define functions
experimental computation. This concept of experimental computation is both old and
general. It can be found in ideas about (a) technologies for making calculating instruments
and machines and (b) modelling physical and biological systems. The concept is also
complicated and in need of systematic theoretical investigation.

In contrast, the concept of algorithmic computation is well understood. Computability
theory, founded by Church, Turing and Kleene in 1936, is a deep theory for the functions
computable by algorithms on discrete and continuous data. The obvious questions arise:

What are the functions computable by experiments with a class of physical systems?
How do they compare with the functions computable by algorithms?

Related questions arise, about novel technologies for computing and about the computabil-
ity of physical systems.

There is no shortage of results, discussion and debate on particular types of experi-
mental computation. Many examples of non-computable systems are difficult to interpret
physically [26, 27, 28, 18, 38]. Some are technically incomplete, and, strictly speaking,
have the status of conjectures (e.g., [20]). Some theorems encode non-computability in
general classes of mathematical systems (e.g., ODEs in [25]) rather than models of specific
physical systems (e.g., wave machines, bagatelles, pendula). Different approaches have
led to a diverse literature but the questions are, we believe, open for essentially all classes
of system.

We are developing a methodology that aims to answer such basic questions in a defini-
tive way [3, 4, 6]. Based on five general principles (summarised later in Section 2), a
particular feature of our methodology is the detailed analysis of particular examples,
in which we seek the precise physical concepts and laws that permit or prevent non-
computable functions and behaviours. To do this we choose a precisely defined fragment
T of a physical theory to specify, rather formally, the experimental procedure, equipment
and reason about its behaviour.

We have illustrated and refined our methodology largely by analysing examples of
experimental computations with idealised kinematic systems. Here we will show that
there exist simple kinematic procedures and equipment, whose computational behaviour,
according to both Newtonian and Relativistic mechanics, can decide the membership of
any subset A of the set N = {0, 1, 2, . . .} of natural numbers. The systems are infinite
bagatelles that are based on simple energy and momentum conservation principles. They
each require unbounded space, time and energy to decide n ∈ N for all n. The Newtonian
case is simple. The relativistic case might be considered to be more realistic and it also has
a useful theoretical property, a maximum propagation speed for objects or information, the
speed of light c. Instead of unbounded velocity in the Newtonian case, in the relativistic
case we exploit the fact that the mass of a particle is unbounded as its speed approaches
c.

Theorem 1.1. Let A ⊆ N. There exists a 2-dimensional kinematic system with a single
particle P whose observable behaviour decides A. More specifically, the system is an
infinite bagatelle for which the following are equivalent: given any n ∈ N

(i) n ∈ A.
(ii) In an experiment, given initial velocity Vn the particle P leaves and returns to the

origin within a known time Tn.
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The system can be set up to operate under a class of kinematic theories, including
(a) Newtonian kinematics or
(b) Relativistic kinematics.

The velocity Vn and the time Tn are calculated from n and so by simply projecting
the particle and watching the clock while waiting for its return, we can decide A. The
fact that any conceivable discrete information can be represented in the discrete observ-
able behaviour of a ball rolling along a line suggests that these elementary theories of
kinematics are undesirably strong. What should be done with these examples?

The bagatelle uncovers an interesting uniformity or generality. The experimental pro-
cedure is essentially the same for any bagatelle and is physically sound. The observation
and operation of the bagatelles require rather general assumptions that hold of several
kinematic theories. However, it is through the specification or description of the system
that the computation of any A is possible. If the analysis of the experiment concerned not
just the observation of an existing system but the process of assembly or construction of
the bagatelle then further conditions on the system would be needed that would restrict
the subsets of N. Thus, the bagatelles also reveal that something is missing: they show
that a formal account of experimentation must include the specification and construction
of mechanical equipment to answer the questions above. A critique of the examples is the
subject of Section 6.

In the case of the bagatelle there are certain natural assumptions on experiments that
would allow them to compute only the semicomputable and computable subsets of N.
Indeed, by choosing A ⊆ N to be a complete semicomputable set then the construction
yields a new universal computer:

Corollary 1.2. There exists a 2-dimensional kinematic system with a single particle P
that is a universal machine for the computable partial functions on N, i.e. the bagatelle
computes by experiment all and only the computable partial functions on N.

The structure of the paper is this. In Section 2 we summarise our methodology. In
Section 3 we describe the construction of a general type of infinite bagatelle. In Section 4
we apply the description to make a bagatelle that decides the membership relation for A
under Newtonian mechanics, and in Section 5 we apply it to make a bagatelle to decide
the membership relation for A under Relativistic mechanics. In Section 6 we reflect on
the examples and argue for formal theory of experimentation to answer the questions.
Finally, in Section 7 some open problems are discussed.

The reader should be familiar with theory for the functions computable by algo-
rithms on discrete data (Rogers [29], Odifreddi [22], Griffor [16], Stoltenberg-Hansen and
Tucker [32]) and continuous data (Pour-El and Richards [28], Tucker and Zucker [35, 36],
Weihrauch [37]).

2 Methodological principles

With the idea of experimental computation, we can unify a disparate set of physical models
of computation and seek properties they have in common. In particular, we can attempt
to analyse physical models of computation independently of the theory of algorithms.
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Physical theories play a fundamental role in understanding experimental computation;
this we have discussed at length elsewhere [3, 4]. To seek conceptual clarity, and math-
ematical precision and detail, we have proposed, in [3, 4, 6], the following five principles
for an investigation of any class of experimental computations:

Principle 1. Defining a physical subtheory: Define precisely a subtheory T of
a physical theory and examine experimental computation by the systems that are valid
models of the subtheory T .

Principle 2. Classifying computers in a physical theory: Find systems that are
models of T that can through experimental computation implement specific algorithms,
calculators, computers, universal computers and hyper-computers.

Principle 3. Mapping the border between computer and hyper-computer in
physical theory: Analyse what properties of the subtheory T are the source of computable
and non-computable behaviour and seek necessary and sufficient conditions for the systems
to implement precisely the algorithmically computable functions.

Principle 4. Reviewing and refining the physical theory: Determine the physical
relevance of the systems of interest by reviewing the truth or valid scope of the subtheory.
Criticism of the system might require strengthening the subtheory T in different ways,
leading to a portfolio of theories and examples.

Principle 5. Combining experiments and algorithms: Use a physical system as
an oracle in a model of algorithmic computation, such as Turing machines. Determine
whether the subtheory T , the experimental computation, and the protocol extends the power
and efficiency of the algorithmic model.

Principles 1-4 were introduced in [3] and Principle 5 was introduced in [6].
To study experimental computation and seek answers to basic questions, the key idea

is to lay bare all the concepts and technicalities of examples by putting them under a
mathematical microscope using the theory T and, furthermore, to look at the computa-
tional behaviour of classes of systems that obey the laws of T . Our methodology requires
a careful formulation of a physical theory T , which can best be done by axiomatisations
a fragment of the physical theory.

3 Experiments with an infinite bagatelle

We describe the structure of our bagatelle, and the steps involved in using the bagatelle
to compute. An important point is that the structural form of the bagatelle, and the
experimental procedure to operate it, is common to both the Newtonian and relativistic
machines.
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3.1 Experiment procedure for the bagatelle

We consider a bagatelle game. A ball is fired into the bagatelle machine with a specified
velocity, and the ball may or may not return in a given time period. Nothing else about
the bagatelle is externally observable.

Each bagatelle machine is designed to define a subset A of the natural numbers N as
follows:

“Given some number n ∈ N the operator of BA chooses a point particle P , positions
it at an origin 0 and projects the particle with a velocity Vn. Then the operator waits
for a time Tn and if the particle returns before this time then declares that n ∈ A and
otherwise that n /∈ A.”

We can express the experimental procedure in the following experimental pseudocode:

exp-pseudocode Bagatelle;
place particle P mass ? radius 0 at point 0;
start clock t;
project particle at 0 with velocity Vn;
wait Tn units and do nothing;
if particle in tray at 0 then return “n ∈ A” else return “n /∈ A”
end Bagatelle.

In the pseudocode, the particle P is a point particle, with radius 0, but may be of any
mass.

Procedures of this kind are an example of “design pattern” called project and wait.
They can be applied to a number of kinematic systems, since the equipment is not speci-
fied; see the bagatelle machines, marble runs, etc. in Beggs and Tucker [2, 3, 4, 5].

To analyse such a procedure further, we can
(a) express the experimental procedure precisely, turning the pseudocode into code;
(b) calculate parameters for the mass and size of particles, and velocities and times;
(c) determine the accuracy of measurements.

Methods for performing (a) are given in [8], where project and wait programs can be
found.

The instructions for operating the bagatelle are independent of the mass and size of the
particles but are base upon velocities and times. We must calculate a table of velocities

V1, V2, V3, . . .

and a table of times

T1, T2, T3, . . .

We will see that these tables of numbers are precisely the same for all the Newtonian
bagatelle machines BA. Similarly, the lists of velocities and times are the same for all
relativistic machines.

The gap between Tn and Tn + 1 ensures that we only have to ensure measurement of
time to a certain accuracy.
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To prove that the experimental procedure works we have to show that each machine
can define a subset A of the natural numbers N as follows: Given n ∈ N, if a ball is fired
into the machine at initial velocity Vn, and the ball returns in a time Return(Vn). Then

n ∈ A if and only if Return(Vn) ≤ Tn ,
n /∈ A if and only if Return(Vn) ≥ Tn + 1 . (1)

Note that the result can be determined in a finite time Tn +1, even though the ball might
never return.

We will do this in a rather generic way that enables us to prove theorems for a class
of kinematic theories. Later we apply our analysis to calculating the lists of numbers for
the Newtonian and relativistic models.

3.2 Equipment

Structure of the bagatelle If we were to lift the lid on the bagatelle, we would see
something like this:
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Fig. 1

The machine continues indefinitely off the right hand side. At time t = 0 the ball starts
from position x = 0 with initial velocity v0. It then crosses, or fails to cross, potential
barriers placed in the way along the x-axis. For integer n ≥ 0 the barrier #n has
height n+ 1 and width 2. For simplicity we assume that it is has the shape of an isoceles
triangle. The reader who is anxious about the sharp corners should compute the arbitarily
small corrections in the formulae given by introducing arbitrarily small smoothings of the
corners. There is a flat gap (at height 0) between #n and #n+ 1 of length xn+1. We will
give the value of the numbers xn later.

To specify the internal workings of a bagatelle we need a subset A of N. The bagatelle
has a potential barrier of height n+ 1 at position #n if n ∈ A, and a flat track if n /∈ A.
For example, the subset of even natural numbers would correspond to a machine looking
like figure 2:
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The reader should note that we suppose that there is no friction or external force
acting on the ball. We also assume that the ball is not spinning (or at least that, if it is
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spinning, that its moment of inertia is zero).

Operation of the bagatelle When a ball hits a potential barrier of height H at velocity
v0, there are three possibilities:

1) It has sufficient energy to cross the barrier, and crosses it in time C(v0, H) from
one base to the other. We assume that C(v0, H) ≥ 2/v0, i.e. that it takes the ball at least
as much time to cross the barrier as to travel on a flat track if there is no barrier.

2) It has insufficient energy to cross the barrier, and rolls up and back down in time
B(v0, H) from base to base.

3) It has exactly the right amount of energy to reach the top. We shall take care to
avoid this case, as it gives rise to discontinuities in the return time, and the behaviour is
critically dependent on the shape of the top of the barrier.

Take Vn to be an initial velocity which ensures that the ball has enough energy to
cross all barriers #j for j < n, but that the ball will not cross, but roll back down from
#n. Suppose the ball is fired at this velocity on the bagatelle specified by the subset A.

If n ∈ A, then the time of return to the initial point would be

Return(Vn, A) =
2

Vn

(∑
j≤n

xj +
∑

j<n, j /∈A

2
)

+ 2
∑

j<n, j∈A

C(Vn, j + 1) + B(Vn, n+ 1) . (2)

The first term is given by the ball traversing the flat track at height zero, and the second
by the ball crossing over the barriers of height less than n. Remember that both these
are done twice, once in either direction. The last term is the time taken for the ball to be
reflected from the barrier #n.

However if n /∈ A, the time of return would be

Return(Vn, A) ≥ 2

Vn

(∑
j≤n

xj +
∑

j<n, j /∈A

2
)

+ 2
∑

j<n, j∈A

C(Vn, j + 1) +
2xn+1

Vn

. (3)

This time is based on the fact that if the ball did return, it would have to travel twice
over a flat track of length xn+1. Of course the ball might never return, as there might be
no more barriers for it to cross, but this case is included in the inequality.

Choice of the displacements xn We want an experiment to determine if n ∈ A,
and do not want the result confused by other elements of A. However our results (2) and
(3) depend on elements in A which are less than n. We deal with this by considering the
values taken as we vary A, and choose xn and Tn to be independent of A: First we choose
the sequence xn ≥ 0 satisfying the inequalities

xn+1 ≥
∑
j<n

(
VnC(Vn, j + 1)− 2

)
+
Vn(B(Vn, n+ 1) + 1)

2
. (4)

Definition of the time bounds Tn Then we set Tn by

Tn =
2

Vn

∑
j≤n

xj + 2
∑
j<n

C(Vn, j + 1) + B(Vn, n+ 1) . (5)
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If n ∈ A, remembering that C(v0, H) ≥ 2/v0 we have from (2):

Return(Vn, A) ≤ 2

Vn

∑
j≤n

xj + 2
∑
j<n

C(Vn, j + 1) + B(Vn, n+ 1) = Tn. (6)

Correspondingly for n /∈ A, from (3) we have

Return(Vn, A) ≥ 2

Vn

(∑
j≤n

xj +
∑
j<n

2
)

+
2xn+1

Vn

≥ Tn + 1 . (7)

Let us summarise these general calculations.

Theorem 3.1. For any set A of numbers, let BA be a bagatelle machine specified above.
Let P the experimental procedure for its operation. Let T be a kinematic theory in which

1. particles follow deterministic paths, traversing, or else being reflected by, the barriers
of the bagatelle;

2. conservation of energy ensures the velocity before and after meeting each barrier is
the same;

3. formulae can be given for the time of crossing and rolling back barriers, and for
initial velocities

C(v0, H) ≥ 2/v0, B(v0, H) and Vn.

Then one can prove in the kinematic theory T that the procedure P decides membership
of the set A.

Condition 1 is not true of quantum kinematics where particles may tunnel through
the barrier. the effects of friction are forbidden by Condition 2; the calculations would
need to be altered to allow for friction.

It remains to find formulae for C, B and Vn in the Newtonian and relativistic theories,
which satisfy the conditions.

3.3 Corollaries

Corollary 3.2. Any function f : N→ N can be computed by a Newtonian or Relativistic
bagatelle

Proof. Let Gf be the graph of f . Choose an injective function c : N2 → N such as
(x, y) 7→ 2x.3y and code the graph Gf as the set c(Gf ). A bagatelle BA based on A = c(Gf )
would enable f to be computed experimentally by the mechanical system.

Corollary 3.3. There exist Newtonian and Relativistic bagatelles that are universal ma-
chines for the computable partial functions on N, i.e. the bagatelles compute by experiment
all and only the computable partial functions on N.

Proof. Choose a bagatelle BA based on A = c(GU), the coded graph of a universal par-
tial recursive function U . This would enable U to be computed experimentally by the
mechanical system.
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4 Newtonian kinematics with constant gravitational

field

The initial kinetic energy of the ball of mass m with any initial velocity v0 is 1
2
mv2

0. The
potential energy of the ball at height h above the initial point is mgh, where g is the
acceleration due to gravity (on the Earth’s surface, this is about 9 ·8 meters/second2).
The principle of conservation of energy then gives the velocity v of the ball at a height h
using 1

2
mv2

0 = 1
2
mv2 + mgh. It follows that the maximum height H that the ball can

attain is given by 1
2
mv2

0 = mgH, i.e. H = 1
2
v2

0/g. We set Vn to be the initial velocity for
which the maximum attainable height is n+ 1

2
, i.e.

Vn =
√
g(2n+ 1) . (8)

Proposition 4.1. The time taken for a ball with initial velocity v0 to climb a slope of
gradient n to a height h (less than the maximum height 1

2
v2

0/g) is

v0 −
√
v2

0 − 2gh

g

√
1 +

1

n2
.

Proof. We start the slope at the point (x, y) = (0, 0), so the equation of the slope is
y = nx. On rearranging the conservation of energy equation, we see that at height y
the particle has velocity v =

√
v2

0 − 2gy. The length of slope from height y to y + dy

is given by Pythagoras’ theorem as
√

(dx)2 + (dy)2, or using the equation y = nx, as

dy
√

1 + n2/n. The time taken to move from height y to y + dy is the distance divided
by the velocity, or dy

√
1 + n2/(nv). This gives the total time to climb to height h as the

integral ∫ h

y=0

dy
√

1 + n2

n
√
v2

0 − 2gy
=

v0 −
√
v2

0 − 2gh

g

√
1 +

1

n2
. �

Corollary 4.2. The time taken for a ball with initial velocity v0 to climb a slope of
gradient n to its maximum attainable height is

v0

g

√
1 +

1

n2
.

Corollary 4.3. Using the definition of Vn in (8), we have, for j ≤ n,

C(Vn, j) = 2

√
2n+ 1−

√
2n− 2j + 1

√
g

√
1 +

1

j2
,

B(Vn, n+ 1) = 2

√
2n+ 1
√
g

√
1 +

1

(n+ 1)2
.

Proof. We use the formulae given in 4.1 and 4.2, remembering that it takes the same time
to roll down as to climb up. �

Remark 4.4. Here we calculate asymptotic bounds on the time taken by the Newtonian
bagatelle to decide if n ∈ A or not. From (8) and 4.3 we see that Vn, C(Vn, j) and
B(Vn, n + 1) are all O(

√
n). From (4) we can choose xn to be O(n2), and from (5) we

have Tn to be O(n5/2).
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5 Relativistic kinematics with constant gravitational

field

The relativistic mass of a ball of rest massm travelling at velocity v isM = m/
√

1− v2/c2,
where c is the speed of light. The momentum of the ball is Mv, and we use the usual
formula that force is the rate of change of momentum. On a slope inclined at an angle
α to the horizontal, we have d

dt
(Mv) = −Mg sin(α). On rearranging and differentiating

this yields dv
dt

= −g(c2 − v2) sin(α)/c2. On integrating we get

v = c tanh(g(b− t) sin(α)/c) , (9)

where b is a constant. The initial velocity is

v0 = c tanh(gb sin(α)/c) , (10)

which, using a hyperbolic trig identity, becomes the useful formula

cosh(gb sin(α)/c) = 1/
√

1− v2
0/c

2 . (11)

The distance travelled along the slope as a function of time is given by integrating (9)

d =
c2

g sin(α)
log
( cosh(bg sin(α)/c)

cosh((b− t)g sin(α)/c)

)
,

so the height as a function of time is

h =
c2

g
log
( cosh(bg sin(α)/c)

cosh((b− t)g sin(α)/c)

)
. (12)

The maximum height achieveable occurs when t = b, and is

hmax =
c2

g
log
(

cosh(bg sin(α)/c)
)
. (13)

If the maximum height is set to n+ 1
2
, then using (11) and (13) the corresponding initial

velocity Vn is given by

Vn = c
√

1− e−(2n+1)g/c2 . (14)

Proposition 5.1. The time taken for a ball with initial velocity v0 to climb a slope of
gradient sinα to a height h (less than the maximum height) is

c

g sinα

(
tanh−1

(v0

c

)
− cosh−1

( e−gh/c2√
1− v2

0/c
2

))
.

Proof. If we rearrange (12) we get

cosh((b− t)g sin(α)/c) = cosh(bg sin(α)/c) e−gh/c2 ,

so we get t as

t = b− c

g sinα
cosh−1

(
cosh(bg sin(α)/c) e−gh/c2

)
. �
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Corollary 5.2. The time taken for a ball with initial velocity v0 to climb a slope of
gradient sinα to its maximum attainable height is

c

g sinα
tanh−1

(v0

c

)
.

Corollary 5.3. Using the definition of Vn in (14), we have, for j ≤ n,

C(Vn, j) =
2 c
√

1 + j2

g j

(
cosh−1

(
e(2n+1)g/(2c2)

)
− cosh−1

(
e(2n+1−2j)g/(2c2)

))
,

B(Vn, n+ 1) =
2 c
√

1 + (n+ 1)2

g (n+ 1)
cosh−1

(
e(2n+1)g/(2c2)

)
.

Proof. We use 5.1 and 5.2, with (11) and (14) supplying the formula

cosh(bg sin(α)/c) = e(2n+1)g/(2c2) . �

Remark 5.4. Here we calculate asymptotic bounds on the time taken by the relativistic
bagatelle to decide if n ∈ A or not. From 5.3 we see that C(Vn, j) and B(Vn, n + 1) are
both O(n). For n large, Vn

∼= c. From (4) we can choose xn to be O(n2), and from (5) we
have Tn to be O(n3).

6 Commentary on the Bagatelle

6.1 Genericity and extensions

Operationally, the experiments on a bagatelle BA, needed to decide n ∈ A, can be carried
out using the following primitive experimental actions :

(i) project a particle with arbitrary large energy (for arbitrary large natural numbers);
(ii) observe a fixed point in space;
(iii) measure arbitrarily large times on a clock; and
(iv) calculate with simple algebraic formulae.

Indeed, these actions are the starting point of almost any kinematic theory. In specifying
the forms of both the experimental procedure and the equipment, we find we do not have
to choose a particular kinematic theory. Indeed, the computation can be verified in a
generic form for a class of theories, as in Theorem 3.1. Later, we choose Newtonian and
relativistic theories.

From the point of view of formal languages to express experimental procedures, as in
[8], one may liken the situation to formulating classes and reasoning about possible late
bindings of semantics to syntax at runtime.

Technically, the experimental computations by bagatelles can be extended to further
theories:

Friction. To include friction, we would have to have a particular equation for the force
due to friction (probably as a function of velocity). Then we would have to alter the
formulae given, possibly including the height of the barriers, increasing the the initial
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energy to compensate for the energy lost due to friction. The procedure would remain
the same though we would need different tables of velocities and times.

Gravitational field. Varying the gravitational field as a function of height would alter
the potential energy, and again would require altering the formulae. Also the poten-
tial should not decrease with height, otherwise the inequality C(v0, H) ≥ 2/v0 might be
compromised.

6.2 Constructible equipment

The computations by the bagatelles are valid in several kinematic theories. Clearly, the
structure of the bagatelle BA is based on the set A but there is nothing in mechanics that
prevents, or even cautions, us from defining and reasoning about such systems for any set
A: according to the theories, the bagatelle BA is a legal kinematic system, a model of the
theories.

However, suppose the account of the experiment is required to explain how the me-
chanical system is constructed, as well as what primitive experimental actions are needed
to set initial states and observe behaviour. Then we find we have an interesting question:

What precise assumptions underly our idea of equipment?
Obviously, the sequence of primitive steps in the construction of the system BA will

involve knowledge of the set A. This knowledge is (probably) precisely the knowledge the
system BA is being designed to reveal, making the purpose of the experiment redundant.
But since we are interested in the nature experimental computation, this point about
redundancy is not relevant; the important point is:

What conditions will be required on A to allow experiments on BA that are valid in a
kinematic theory containing principles of constructible equipment?

Suppose we re-consider running the experiment, seeking to restrict A and narrow the
class of models.

Suppose A is given by some increasing enumeration A0, A1, A2, . . . of finite subsets
with for each i ∈ N, Ai ⊂ Ai+1 and A =

⋃
i∈NAi. Suppose that Ai has i elements of A.

Then to make an experiment to decide if n ∈ A then we need an experimental procedure
with a process to construct a finite part of the bagatelle. This finite part will have the
form BAk

for some Ak ⊂ A. It will have k potential barriers located by the k elements of
Ak.

An independent laboratory clock will schedule the construction of the approximating
bagatelle BAk

and the experimental procedure to decide n ∈ Ak. If the experiment
confirms that n ∈ Ak then we know that n ∈ A.

However, if the experiment confirms that n /∈ Ak then we do not know that n /∈ A.
This result can change as k increases and more and more elements of A appear and the
bagatelle grows. Each negative result must be repeated and so the experiment becomes
a search for a positive result, secure in the knowledge that if n ∈ A then an experiment
with some part BAk

of the bagatelle BA will find it.
Thus, when we include the construction of the bagatelle in the primitive steps we have

an outline proof that
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A is decidable by experiment with constructible equipment if, and only if, the finite subsets
of the enumeration of A can be generated by experiment.

How close are we to a proof that A is decidable by experiment with constructible equip-
ment if, and only if, A is recursively enumerable subset of N?

Allowing computability theory to be added to the physical theory would resolve
the matter. Experimental computation by the bagatelles in kinetic theories with con-
structible equipment, where the equipment is specified by algorithms, does not lead to
non-computable sets and functions.

6.3 General principles

The bagatelle, and several of our earlier examples [3, 4], show that the notion of equipment
needs to be analysed. We have proposed

Experimental computation = Experimental procedure + Equipment.

A formal theory is needed that constrains the architecture and construction of mechan-
ical systems and formally defines notions of constructible equipment. We have outlined
in [4] the problems of designing formal languages for the specification of constructible
equipment, and of combining them with languages for experimental procedures to make
complete languages for experimental computation. In [8], we have proposed a set of
constructs for a programming language for experimental procedures for Newtonian kine-
matics. The bagatelle adds gives us further insight into this approach using languages.

First, consider the role of languages in digital computation. We need the equation:

Digital computation language = Programming language + Hardware description
language.

This is unfamiliar in programming language theory because the primary aim of pro-
gramming is to formulate algorithms that are independent of machines and devices. Both
languages have a syntax and a semantics. Theories of syntax are very general, and are
widely understood and used. Semantic methods for programming languages are also well
developed, though the semantics of hardware description languages is less so. This view
of digital computation is complemented by this equation:

Experimental computation language = Experimental procedure language + Equipment
description language.

Consider the distinction between syntax and semantics for experimental computation.
The syntax of the languages can be handled by general methods. The bagatelle example
shows how semantics is more complicated. Somewhat abstractly, we have a Gedanken
experiment, in which we imagine an operator following the procedure in working with
the equipment. What happens and, in particular, what is computed? To answer this we
make some meta-assumptions and only later choose a theory - Newton’s or Einstein’s.
The physical theories are used to define the semantics of the experimental procedure and
equipment in order to reason about, predict etc., the behaviour of the system for the
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benefit of the operator. The bagatelle shows that various semantics are possible for the
class of experimental procedures. Indeed, one is reminded of late binding and runtimes.

The importance of the theory cannot be underestimated. If the theories used for
semantics can be axiomatically specified then we have sounder and sharper reasoning.
We also have the phenomenon of unexpected models. It is just as important that we can
reason about the bagatelle as we can satisfy ourselves that we can plausibly implement
it. Clearly, both kinematic theories apply to experimental computations that we suspect
are impossible. It is a problem to prove they are impossible.

One thinks of the first order theory of Peano arithmetic. It is a truly fundamental
and useful theory for reasoning about natural numbers. It has infinitely many different
(=non-isomorphic) models but only those isomorhic to the standard model (N|0, n+1, n+
m,n.m,=) are algorithmically computable (Tennenbaum’s Theorem).

We expect that research on languages for experimental computation will lead to new
ideas and techniques in programming language theory.

7 Concluding remarks on kinematic systems

Experimental computation is not well understood and many basic questions are open.
There is a paucity of examples that can be formulated and studied in complete detail,
though plenty of informal ideas and speculations have been aired. The purpose of our
methodology is explore experimental computation systematically and precisely. We are in
no rush to make physically plausible pronouncements or critiques, rather we propose to
study examples in forensic detail. Examples based on kinematics, possibly the simplest
physical theory, offer insights into experimental computation, and pose interesting and
difficult theoretical problems.

Our bagatelles are systems that each require unbounded space, time and energy to
decide n ∈ A for all n ∈ N. Consider energy. In each of our Newtonian bagatelles mass
is bounded (indeed, it can be an arbitrary constant) and velocity is unbounded. In each
of our relativistic bagatelles velocity is bounded and mass is unbounded. One can ask if
there are examples of kinematic systems that are bounded in space, time and energy?

In Newtonian mechanics we are allowed to shrink space and accelerate time. For
example, the natural numbers n = 0, 1, 2, . . . that mark points in space or steps in time
can be embedded into the interval [0, 1] by n 7→ 1/2n. Shrinking space leads to mechanical
systems that use arbitrarily small components. Of course, a mechanical system that
exploits the infinite divisibility of space, with no lower bounds on units of space and
time, violates any form of atomic theory. But such examples can be precision tools to
investigate the theoretical foundations of computability and mechanics. For instance, it
is possible to prove that for each set A ⊂ N there exists a valid Newtonian kinematic
system SA, which is embedded within a bounded 3-dimensional box, operates entirely
within a fixed finite time interval using a fixed finite amount of energy, and can decide
the membership of the subset A ([4]). The fact that any subset of the natural numbers
can be recognised by a simple kinematic system raises an alarm because the theory of the
subsets of natural numbers is so vastly complicated it depends on the foundations of set
theory for its exploration.
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An open problem is this:

Problem 7.1. For all reasonable kinematic theories T , and all T -valid kinematic systems
that possess both lower and upper bounds on space, time, mass, velocity and energy, are
the sets and functions computable by experiment also computable by algorithms?

We conjecture that the answer is “Yes”. To attempt to prove this, one needs formal
descriptions of equipment as mentioned in Section 6. Our bagatelle examples show that
the notion of mechanical system - i.e., what qualifies as a valid or legal system in theoretical
mechanics - must be sharpened. To the standard parameters of mass, velocity, distance,
time we need to add formal theory that constrains the structure and construction of the
equipment and explains how experiments are performed.

Theoretical intuitions about making experiments turn out to be strikingly similar to
intuitions about algorithms and computers, although the primitive actions are different
and are implicit in the physical theory. Indeed, we conjecture that a theory of Gedanken
experiments for mechanics, if formalised, could be capable of underpinning the theory of
the computable as follows:

Problem 7.2. Extend theoretical kinematics by a mathematical theory of construction and
the operation of mechanical equipment, and show that the sets and functions computable
by experiment are precisely those computable by algorithms.

This is a difficult problem which we have discussed in detail in [4]. More recent work,
in [5], shows that a kinematic device called a scatter machine can compute any real
number. The construction of the device is bounded in all respects however the theorem
demonstrates that the existence of sharp corners in objects is fatal to computablity!
One goal of this direction of research, from physical theory to computablity, is, roughly
speaking, To derive forms of Church-Turing Thesis as physical laws. However, we can
still ask the question:

Problem 7.3. Does experimental computation in theories with constructible equipment,
where the equipment is specified algorithmically, lead to algorithmically computable sets
and functions?

We conjecture yes. Finally, we should raise the special case of efficient computation
by mechanical systems. New theory is needed to pose and answer a question such as:

Problem 7.4. Are there sets that can be decided in polynomially bounded space and time
by experimental computation with kinematic systems but cannot be decided by algorithms
in polynomial space and time?

We thank Brendan Larvor, David Miller, and J I Zucker for discussions on some of
the areas mentioned in this paper.
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Abstract

Computational models are usually defined over specific domains. For example, Turing machines are defined over
strings, and the recursive functions over the natural numbers. Nevertheless, one often uses one computational model
to compute functions over another domain, in which case, one is obliged to employ a representation, mapping elements
of one domain into the other. For instance, Turing machines (or modern computers) are understood as computing
numerical functions, by interpreting strings as numbers, via a binary or decimal representation, say.

We ask: Is the choice of the domain interpretation important? Clearly, complexity is influenced, but does the
representation also affect computability? Can it be that the same model computes strictly more functions via one
representation than another? We show that the answer is “yes”, and further analyze the influence of domain inter-
pretation on the extensionality of computational models (that is, on the set of functions computed by the model).

We introduce the notion of interpretation-completeness for computational models that are basically unaffected by
the choice of domain interpretation, and prove that Turing machines and the recursive functions are interpretation-
complete, while two-counter machines are incomplete. We continue by examining issues based on model extensionality
that are influenced by the domain interpretation. We suggest a notion for comparing computational power of models
operating over arbitrary domains, as well as an interpretation of the Church-Turing Thesis over arbitrary domains.

Key words: domain interpretation, domain representation, hypercomputation, Turing machine, computability, computational
power, computational models, computational comparison

1. Introduction

We explore the problem of the sensitivity of models to domain interpretation, and the way we propose to
handle it. This introductory section parallels the structure of the paper, as illustrated in Figure 1.

Sensitivity to domain interpretation. A computational model is defined over a specific domain. However,
we may often use it to compute functions over a different domain. For example, using Turing machines (or
modern computers) to compute functions over natural numbers requires a string representation by numbers.
Another example becomes apparent when comparing the computational power of two models that operate
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Identifying the sensitivity to domain interpretations

Section 2.1

Trying to eliminate the problem Learning to live with it

Restricting representations

Sections 2.2, 2.3

Restricting models

Section 2.4

This direction is shown to end up with
overly restricted representations or models

· Investigating the variety of interpretations

· Seeking maximal interpretations

· Identifying “immune” models Section 3

Power comparison notion

Section 4

Effective computation

Section 5

Fig. 1. Structure of this paper

over different domains – we are obliged to represent the domain of one model by the domain of the other.
Accordingly, the elements of the original domain are interpreted as elements of the target domain (see
illustration in Figure 3). A “representation” is usually allowed to be any mapping from one domain into
another, as long as it is injective. That is, every original domain element is mapped to a unique element of
the second domain. 1

It turns out that interpreting the domain allows for the possibility that a model be identified with one
of its (strict) supermodels. The interpretation might allow one to “enlarge” the extensionality of a model,
adding some “new” functions to it. A study of the sensitivity of models to interpretations via injective
representations is undertaken in Section 2.1.

A reasonable response might be to restrict representations to bijections between domains. However, it turns
out that there are models that can be identified with a supermodel even with bijective representations. That
is, their extensionality is isomorphic to the extensionality of some of their strict supermodels. The case of
bijective representations is explored in Section 2.2.

If bijective representations are not stringent enough, which representations are guaranteed not to influence
the extensionality of computational models? It turns out that only very limited representations are, namely,
“narrow permutations” (Definition 7). A sufficient and necessary criterion for these “harmless representa-
tions” is given in Section 2.3. Not only are narrow permutations a very limited family of representations,

1 A representation may also be a relation (rather than a function), as long as two entities representing the same element behave
the same in the relevant context (see, for example, [26]). The generalization of representations to relations does not eliminate
the sensitivity of models to the domain interpretation.
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Almost Identity (Section 2.3.1)

Narrow Permutations (Section 2.3)

Bijections (Section 2.2)

Injections (Section 2.1)

Fig. 2. The hierarchy of mappings involved in seeking harmless representations.

they are also not closed under composition. Thus, seeking harmless representations for comparative pur-
poses would lead to an even more limited family of permutations that are almost the identity (Definition 10).
Hence, sticking to harmless representations is not a viable option, as it almost completely evaporates the
concept of interpretations. A scheme of the families of representations involved is given in Figure 2.

Another direction for avoiding the influence of representations could be narrowing down the definition
of a computational model, insisting – for example – that the set of computed functions is closed under
functional composition. It turns out that these standard computational properties are insufficient, as shown
in Section 2.4.

The implications. This sensitivity to the domain interpretation places a question mark on some of the
main issues that concern model extensionality: How can we compare models over different domains? How
should one define effective computation over arbitrary domains? How should one properly represent the
natural numbers? Is there always an optimal representation? Are some models immune to the influence of
the domain interpretation? These problems are briefly answered below, and more comprehensively addressed
in Sections 3, 4 and 5.

Organizing model interpretations. Generally, the various interpretations of a model may be highly varied:
they may be larger or smaller than the original; for some models there are maximal interpretations, while
for others there are none; and there are models that are already maximal. This variety of possibilities is
explored in Section 3.1.

The last property, that a model is already maximally interpreted, is the one that interests us most. We call
such a model “interpretation-complete”. We also define a weaker property, denoted “interpretation-stable”,
saying that a model is maximal with respect to bijective representations. When allowing only bijective repre-
sentations, there are exactly two ways in which the interpretation may influence the model’s extensionality:
stable models are totally immune, in the sense that they have no better or worse interpretations via bijec-
tive representations, while unstable models have no maximum, nor minimum, interpretation via bijective
representations (see the illustration in Figure 7). When allowing non-bijective representations, the picture
is different – there might be a complete model with interpretations that are strictly contained in its original
extensionality (see Figure 8). Interpretation-completeness and interpretation-stability, as well as some means
for getting maximal interpretations, are investigated in Section 3.2.

In Section 3.3, we check for the completeness of some standard models. Turing machines and the recursive
functions are shown to be complete, while two-counter machines and the untyped lambda calculus (over all
lambda terms) are incomplete. As for hypercomputational models, they might be incomplete, though those
preserving the closure properties of the recursive functions are ensured to be interpretation-complete.

Comparing computational power. It is common practice to compare the computational power of different
models of computation. For example, the recursive functions are considered to be strictly more powerful
than the primitive recursive functions, because the latter are a proper subset of the former, which includes
Ackermann’s function (see, for example, [22, p. 92]). Side-by-side with this “containment” method of mea-
suring power, it is also standard to base comparisons on interpretations over different domains [7,18,21].
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For example, one says that the (untyped) lambda calculus is as powerful—computationally speaking—as
the partial recursive functions, because the lambda calculus can compute all partial recursive functions by
encoding the natural numbers as Church numerals.

The problem is that unbridled use of these two distinct ways of comparing power allows one to show that
some computational models are strictly stronger than themselves!

We define a comparison notion over arbitrary domains based on model interpretations. With this notion,
model B is strictly stronger than A if B has an interpretation that contains A, whereas A cannot contain B
under any interpretation. We provide, in Section 4.1, three variants of the comparison notion, depending on
the allowed interpretations. In Sections 4.1.1 we extend the notion to non-deterministic models. We continue,
in Section 4.2, with some results on the relations between power comparison, isomorphism and completeness.
In Section 4.3, we use the notion to compare some standard models.

We deal here only with the mathematical aspects of power comparison. Some conceptual discussions and
justifications can be found in [2,4].

Effective computation. Let f be some decision function (a Boolean-valued function) over an arbitrary
countable domain D. What does one mean by saying that “f is computable”? One most likely means that
there is a Turing machineM , such thatM computes f , using some string representation of the domain D. But
what are the allowed string representations? Obviously, allowing an arbitrary representation (any injection
from D to Σ∗) is problematic – it will make any decision function “computable”. For example, by permuting
the domain of machine codes, the halting function can morph into the simple parity function, which returns
true when the input number is even, representing a halting machine, and false otherwise. Thus, under a
“strange” representation the function becomes eminently “computable” (see Section 5.1). Another approach
is to allow only “natural” or “effective” representations. However, in the context of defining computability,
one is obliged to resort to a vague and undefined notion of “naturalness” or of “effectiveness”, thereby
defeating the very purpose of characterizing computability.

Our approach to overcoming the representation problem is to ask about effectiveness of a set of functions
over the domain of interest, rather than of a single function (Section 5.1). As Myhill observed [15], undecid-
ability is a property of classes of problems, not of individual problems. In this sense, the halting function
is undecidable in conjunction with an interpreter (universal machine) for Turing machine programs that
uses the same representation. The Church-Turing Thesis, interpreted accordingly, asserts that there is no
effective computational model that is more inclusive than Turing machines.

Nonetheless, there might have been a serious problem due the sensitivity of models to the domain inter-
pretation (see Section 2). Fortunately, this cannot be the case with Turing machines (nor with the recursive
functions), as they are interpretation-complete (Theorem 24). Hence, the Church-Turing Thesis is well-
defined for arbitrary computational models.

Due to this completeness of Turing machines, we can also sensibly define what it means for a string
representation of a constructible domain to be “effective” (Section 5.2). Such a representation ρ is effective
when the domain’s constructing functions are Turing computable via ρ (Definition 48). Hence, one may
ask about the effectiveness of a single function over a constructible domain, provided that the means of
construction of the domain are defined and are computable.

Equipped with a plausible interpretation of the Church-Turing Thesis over arbitrary domains, one may
investigate the general class of “effective computational models”. This is done in [5].

Previous work. Usually, the handling of multiple domains in the literature is done by choosing specific
representations, like Gödel numbering, Church numerals, unary representation of numbers, etc. This is also
true of the usual handling of representations in the context of the Church-Turing Thesis.

A more general approach for comparing the power of different computational models is to allow any
representation based on an injective mapping between their domains. This is done, for example, by Rogers
[18, p. 27], Sommerhalder [21, p. 30], and Cutland [7, p. 24]. A similar approach is used for defining the
effectiveness of an algebraic structure by Froehlich and Shepherdson [8], Rabin [16], and Mal’cev [11]. Our
notion of comparing computational power is very similar to this.
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Richard Montague [13] raises the problem of representation when applying Turing’s notion of computabil-
ity to other domains, as well as the circularity in choosing a “computable representation”.

Stewart Shapiro [20] raises the very same problem of representation when applying computability to
number-theoretic functions. He suggests a definition of an “acceptable notation” (string representation of
natural numbers), based on some intuitive concepts. We discuss his notion in Section 5.1 and 5.2.

Klaus Weihrauch [25,26] deals heavily with the representation of arbitrary domains by numbers and strings.
He defines computability with respect to a representation, and provides justifications for the effectiveness of
the standard representations. We elaborate on his justifications in Section 5.2.

Our definition of an “effective representation” resembles Shapiro’s notion of “acceptable notation” and
goes along the lines of Weihrauch’s justifications for the effectiveness of the standard representations.

To the best of our knowledge, our work in [2–4] was the first to point out and handle the possible influence
of the representation on the extensionality of computational models. Sections 2, 3, and 4 organize the main
results of these papers, while adding some new ones, particularly Proposition 14, Proposition 17, Theorem 21,
Theorem 25, Theorem 27, and Theorem 46. Section 5 summarizes the first part of our paper [5].

Terminology. We refer to the natural numbers, denoted N, as including zero, and denote by N+ the
natural numbers excluding zero. When we speak of the recursive functions, denoted REC, we mean the
partial recursive functions. Similarly, the set of Turing machines, denoted TM, includes both halting and
non-halting machines. We use the term “domain” of a computational model and of a (partial) function to
denote the set of elements over which it operates, not only those for which it is defined. By “image”, we
mean the values that a function actually takes: Im f := {f(x) | x ∈ dom f}.

Proofs are omitted for conciseness reasons.

2. The Sensitivity of Models to the Domain Interpretation

Computational models. Our research concerns computational models. Obviously, a computational model
should perform some computation; however demarcating a clear border between what is a computational
model and what is not is problematic. Accordingly, for achieving maximum generality, we do not want to
limit computational models to any specific mechanism; hence, we allow a model to be any object, as long
as it is associated with a set of functions that it computes.

As models may have non-terminating computations, we deal with sets of partial functions. For convenience,
we assume that the domain and range (co-domain) of functions are identical. For simplicity, we mainly deal
with deterministic computational models. Most of our definitions and theorems can be directly extended to
non-determinism, while the more involved ones are handled in Section 4.1.1.
Definition 1 (Computational Model)
– A domain D is any set of atomic elements.
– A computational model A over domain D is any object associated with a set of partial functions f : Di →
D, i ∈ N+. This set of functions is called the extensionality of the computational model, denoted [[A]].

– We write dom A for the domain over which model A operates.
In what follows, we often speak of a “submodel” or a “supermodel” of a model, referring to the containment

relation between their extensionalities. That is, model A is a submodel of B, and B is a supermodel of A, if
[[A]] ⊆ [[B]]. By a “strict submodel” we mean that the containment is proper.

In the following subsections, we explore the sensitivity of models to domain interpretations, ending up
with a sufficient and necessary condition for a “harmless representation” (see Figure 2).

2.1. Injective representations

Injective representations are the most frequently used ones. The standard decimal and binary notations
of the natural numbers are injective (they are not bijective since leading zeros are ignored). Comparisons
between computational models are usually done by injective encodings; for example: Church numerals and
Gödel numbering are used for comparing the recursive functions and λ-calculus.
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ρ(5) =“101”

5 is represented by “101” via ρ

[[“101”]]ρ = 5

“101” is interpreted as 5 via ρ

“0011” �∈ Im ρ

“0011” has no interpretation via ρ

N

{0, 1}∗

5 6

“101” “110”

ρ

“0011”

Fig. 3. Domain interpretation. Strings are interpreted as natural numbers via the representation ρ.

We begin by defining “representation” to be an injective mapping.
Definition 2 (Representation)
Domain. Let DA and DB be two domains (arbitrary sets of atomic elements). A representation of DA over
DB is an injection ρ : DA → DB (i.e. ρ is total and one-one).

Function and Relation. Representations ρ naturally extend to functions and relations f , which are sets
of tuples of domain elements: ρ(f) := {〈ρ(x1), . . . , ρ(xn)〉 | 〈x1, . . . , xn〉 ∈ f}.

Model. Representations also naturally extend to (the extensionalities of) computational models, which are
sets of functions: ρ([[B]]) := {ρ(f) | f ∈ [[B]]}.
An almost dual concept to representation is “interpretation” (see Figures 3 and 4):

Definition 3 (Interpretation) Assume a representation ρ : DA → DB. Then:
(i) The interpretation of a domain element b ∈ DB via the representation ρ, denoted [[b]]ρ, is the element

ρ−1(b) of DA. If b �∈ Im ρ then its interpretation via ρ is undefined.
(ii) The interpretation of a function g over DB via the representation ρ, denoted [[g]]ρ, is the function

ρ−1(g) over DA, which is ρ−1◦g◦ρ. If g◦ρ(a) �∈ Im ρ for some element a ∈ DA then [[g]]ρ is a partial
function, where [[g]]ρ(a) is undefined.

(iii) The interpretation of a computational model B via the representation ρ, denoted [[B]]ρ, is the set of
functions ρ−1([[B]]), which is {[[g]]ρ | g ∈ [[B]]}.

(iv) When considering only total functions, the interpretation of a total computational model B via the
representation ρ, denoted [[B]]ρ, is the set of functions {[[g]]ρ | g ∈ [[B]] and [[g]]ρ is total}.

“Interpretation via ρ” is the reverse of “representation via ρ”, up to the image of ρ. When the represen-
tation ρ is bijective we have that “interpretation via ρ” is exactly as “representation via ρ−1.”

Interpretation and extensionality share the same notation. Indeed, the interpretation of some model B via
a representation ρ : DA → DB is its extensionality over the domainDA, which results from the representation
ρ. Note that the extensionality [[A]] of a model A is its interpretation [[A]]ι via the identity representation ι.

Sensitivity. Injective representations, however, are prone to hide some computational power. Below is a
simple example of such a case.
Example 4 The set of “even” recursive functions (R2) can be interpreted as the set of all the recursive
functions (REC), by mapping the original natural numbers into the even numbers

R2 :=


λn.




2f(n/2) n is even

n otherwise


 | f ∈ REC


 ρ := λn.2n

We have that [[R2]]ρ = REC � R2.
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The function g

is interpreted as [[g]]ρ

[[g]]ρ = ρ−1◦g◦ρ

[[g]]ρ(5) = 6

The behavior of g outside of Im ρ

does not influence

its interpretation via ρ

N

{0, 1}∗

5 6

“101” “110”

ρ

“01” “00”

[[g]]ρ

g

g

Fig. 4. Function interpretation. The string functions are interpreted as numeral functions via the representation ρ.

The above anomaly does not appear only with “synthetic” models, but also with some standard ones. An
example of such a model is the standard two-counter machines model (see Section 3.3.3).

2.2. Bijective representations

The previous subsection demonstrated the sensitivity of models to injective representations. One may ask
whether the restriction of representations to bijective mappings might solve the problem. We show that the
answer is “no”, obtaining that a model might be isomorphic to some of its strict supermodels.
Definition 5 (Isomorphism) Models A and B (or their extensionalities) are isomorphic, denoted A ∼= B
(or [[A]] ∼= [[B]]), if there is a bijection π such that [[A]]π = [[B]].
Theorem 6 ([3]) There are models isomorphic to a strict supermodel of themselves. That is, there are
models A and B, such that A ∼= B and [[A]] � [[B]].

A concrete example of such models is given in Example 11 and in [3].
It will be shown, in Section 3, that this process is infinite and symmetric (Theorem 12) – once the model

is sensitive to bijective representations, we can always choose a different representation via which we get
more, or fewer, functions.

2.3. Harmless representations

Are there “harmless representations”, via which all models are “protected” from having better and worse
interpretations? The answer is “yes”, however this family of representations is too limited for being really
useful. It is exactly the family of what we call “narrow” permutations:
Definition 7 (Narrow Permutation) A permutation π : D → D is narrow if all its orbits (cycles) are
bounded in length by some constant. More precisely, if ∃k ∈ N. ∀x ∈ D. |{πn(x) : n ∈ N}| ≤ k.
Proposition 8 A permutation π : D → D is narrow iff there is a positive constant k ∈ N+, such that for
all x ∈ D we have πk(x) = x. In other words, if πk = ι.
Theorem 9 ([3]) For every representation ρ : D → D, there are models A and B such that [[A]]ρ = [[B]] �
[[A]], if and only if ρ is not a narrow permutation.

The family of narrow permutations is very limited and cannot be used as the only mean of interpreting
models over different domains. Moreover, this family is not closed under composition. That is, there are
narrow permutations π and η such that π◦η is not narrow! This situation is very problematic, since interpre-
tations are often used in the context of order relations, for example when saying that two models have the
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0 1 2 3 4 5 6 7 8 9 . . .

Fig. 5. The permutation π of Example 11.

same extensionality up to the domain interpretation. Any equivalence or order relation should be transitive,
which is not the case if representations are limited to narrow permutations.

2.3.1. Purely harmless representations
Proceeding in the above direction of seeking a family of representations that would be harmless and closed

under functional composition leads us to look for some strict subset of the narrow permutations. However,
considering that there are many such (maximal) subsets, which is a reasonable choice?

It turns out that there is a clear distinction between two types of narrow permutations – the “problematic”
and the “non-problematic” ones. For every problematic narrow permutation ρ there is a narrow permutation
η, such that ρ◦η is not narrow. On the other hand, a non-problematic narrow permutation π guarantees that
for every narrow permutation ξ we have that ξ◦π and π◦ξ are narrow.

The family of non-problematic narrow permutations is the “almost identity” permutations (defined bel-
low), while the rest are problematic.
Definition 10 (Almost Identity) A permutation π : D → D is almost identity if |{x ∈ D | π(x) �= x}| <
∞.

The above results suggest that sticking to harmless representations is not a viable direction, as the concept
of interpreting models of different domains almost completely evaporates.

2.4. Models with standard computational properties

It was shown above that restricting the family of applicable representations cannot solve the sensitivity
problem. A different approach is to restrict the definition of a computational model. Nonetheless, in order to
allow a variety of internal mechanisms, we seek a restriction on the model’s extensionality. We consider four
restrictions: (i) closure under functional composition; (ii) inclusion of the identity function; (iii) inclusion of
all constant functions; and (iv) the successor function for models operating over N.

In this section we show that the sensitivity problem remains, even when considering only models with all
the above properties and allowing only bijective representations.

Closure under functional composition. Denote by cl(F) the set F of functions closed under functional
composition. Considering only models closed under functional composition does not change the sufficient
and necessary condition for a harmless representation (Theorem 9), as all models involved in the proof are
closed under functional composition.

The identity and constant functions. Adding, or removing, the identity function ι from a model has no
influence on its sensitivity to any representation, as ρ−1◦(f◦ι)◦ρ = ρ−1◦(ι◦f)◦ρ = ρ−1◦f◦ρ, for every injection
ρ and function f .

Let K be the set of all constant functions over a domain D. Adding, or removing, K from a model A over
D, such that A ∩ K ∈ {K, ∅}, has no influence on the sensitivity of A, as [[A◦K]]ρ = [[K◦A]]ρ = K, with
respect to total functions, for every injection ρ and model A.

The successor function. It turns out that a model including the successor function and closed under
functional composition can still be isomorphic to a strict supermodel of itself:
Example 11 Define the permutation π over N (illustrated in Figure 5):

π(n) := 1 if n = 0; n+ 2 if n is odd; and n− 2 if n is even

Let s be the successor function over N, and let A be a computational model with the extensionality [[A]] :=
{πi(s) | i ∈ N}. Let B be the computational model obtained from A by closure under functional composition.
That is, [[B]] := cl([[A]]). It can be shown that B is isomorphic to a strict supermodel of itself.
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Fig. 6. An illustration of the partially ordered set of interpretations of a model A

3. Organizing Model Interpretations

For examining the influence of the domain interpretation on a model we should compare its different
interpretations. Accordingly, we are interested only in the model’s interpretations over its original domain.
Its interpretations over other domains are isomorphic to those over its original domain, as long as it is not a
domain of a lower cardinality. For example, a model has two interpretations with strict containment between
them if and only if it has such two interpretations over its original domain.

We are interested in the containment relation between interpretations. That is, examining when some in-
terpretations are better than others in the sense of strictly containing them. Accordingly, the interpretations
of a model A form a partially ordered set with respect to containment (illustrated in Figure 6).

Viewing interpretations as a partially ordered set, raises a few natural questions:
– How varied can these partially ordered sets be?
– Are there always maximal interpretations?
– Are there models already in their maximal interpretation (termed “interpretation-complete”)?
– How does one choose a proper interpretation?

In what follows we shall shed some light on the subject, considering the above questions and others.
In Section 3.1 we answer the first two questions, showing how varied the set of interpretations can be. In
Section 3.2 we answer the second pair of questions, dealing with the interpretation-completeness of models.

3.1. The variety of interpretations

In general, the set of interpretations may be very varied:
– Some interpretations may be better than the original extensionality while others are worse.
– There might be infinitely many interpretations each contained in the next.
– There might be models with no maximal interpretation!
– Non-bijective interpretations might sometimes add to bijective ones, while in other cases only spoil.
– There are models already having their maximal interpretation (“interpretation-complete”) or at least so

with respect to bijective representations (“interpretation-stable”).
A simple example of how different interpretations may enlarge or decrease the original extensionality is

given in Example 4. Interpreting the model via the representation λn.2n enlarges the original extensionality,
providing all the recursive functions. On the other hand, interpreting the model via the representation
λn.2n+ 1 decreases the original extensionality, leaving only the identity function.

We saw, in Section 2.2, that a model can be isomorphic to a strict supermodel of itself. In such a case,
there are infinitely many interpretations enlarging the original extensionality, as well as infinitely many
decreasing it, while each is contained in the next. Note that this is true for bijective representations, but
not necessarily for injective representations.
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Fig. 7. An illustration of interpretation-stable and unstable models

Theorem 12 If A is a model and π a bijection such that [[A]] � [[A]]π, then for every i ∈ N we have that
[[A]]πi � [[A]]πi+1 and [[A]]π−i � [[A]]π−(i+1) .
Corollary 13 If A is a model for which there is no bijection π such that [[A]] � [[A]]π, then there is also no
bijection η such that [[A]] � [[A]]η.

We see that once a model has a better interpretation via a bijective representation it cannot have a
maximal interpretation via a bijective representation. Nevertheless, it might have a maximal interpretation
via an injective representation. There are, however, models with no maximal interpretation at all.
Proposition 14 There are computational models with no maximal interpretation that extends their original
extensionality. That is, there is a computational model A, such that for every representation ρ for which
[[A]]ρ ⊇ [[A]] there is a representation η such that [[A]]η � [[A]]ρ.

We can show that model A of Example 11 is such a model. We also get that interpretations via non-
bijective representations might sometimes only decrease the model’s extensionality, while we saw that in
other cases they can further enlarge it on top of bijective ones.

3.2. Interpretation-completeness and interpretation-stability

We saw that the extensionality of computational models is sensitive to the domain interpretation. There
are, however, models that are already in their maximal interpretation (called “interpretation-complete” or
in short “complete”), or at least so with respect to bijective representations (called “interpretation-stable”
or in short “stable”).
Definition 15 A model A is interpretation-complete if there is no representation ρ : dom A → dom A
such that [[A]]ρ � [[A]].

Note that when considering only total functions, the interpretation of a model is also defined to contain
only total functions. In such a case a model is considered complete even if some interpretations can extend
it with partial functions.

Though we generally consider all injective representations, there are also good justifications to stick to
bijective representations, as briefly seen in Section 2, and elaborated on in Section 5 and in [2,4]. Accordingly,
we also define completeness with respect to bijective representations, called “interpretation-stability”:
Definition 16 A model A is interpretation-stable if there is no bijective representation π : dom A→ dom A
such that [[A]]π � [[A]].

Sticking to bijective representations, there are exactly two options for the representation influence:
– Stable model – totally immune to the influence of bijective representations. No better or worse interpre-

tations are possible via bijective representations.
– Unstable model – there is no maximum, nor minimum, interpretation via bijective representations.
The above is illustrated in Figure 7, and proved in Theorem 12 and Corollary 13.

The general case, allowing non-bijective representations, is much more varied (see Figure 8):
– There are stable models that are incomplete.
– There might be a complete model with worse interpretations.
– Bijective representations preserve completeness.

Completeness obviously implies stability, but the opposite is not true. A simple example is the set of all
constant functions except for a single one. A model having this extensionality is stable but incomplete.
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Fig. 8. An illustration of an interpretation-complete model

Completeness assures us that the model cannot have an interpretation better than its original extension-
ality. However, it might have an interpretation that decreases its original extensionality.
Proposition 17 An interpretation-complete model might have an interpretation decreasing its extension-
ality. That is, there is an interpretation-complete model A and a representation ρ such that [[A]]ρ � [[A]].

Using only bijective representations, we cannot harm the extensionality of a complete model. This follows
directly from Corollary 13, as a complete model is also stable.
Corollary 18 Let A be a model and ρ a representation such that [[A]]ρ is complete and [[A]]ρ � [[A]]. Then
there is no bijective representation π such that [[A]]π = [[A]]ρ.
Corollary 19 Isomorphism preserves stability and completeness. That is, let A and B be isomorphic models,
then A is interpretation-stable iff B is, and A is interpretation-complete iff B is.
Proposition 20 A model with a finite extensionality (implementing finitely many functions) is complete.

Complete models have interesting properties and are generally more convenient to work with. We elaborate
on some of the properties concerning power comparison and isomorphism in Section 4.

3.2.1. Getting maximal interpretations
A natural question is how to choose a proper representation for getting a maximal interpretation. We

should consider two cases, depending on whether the relevant model is complete or not.
For an interpretation-complete model A, we can get a maximal interpretation by one of the following

means:
– Its original extensionality.
– Via any bijective representation.
– If A is closed under functional composition: via a representation ρ for which there exists a total injective

function f ∈ [[A]], such that Im f = Im ρ and f−1 ∈ [[A]].
For an incomplete model:

– There is no general known criterion.
– A bijective representation cannot help.
– If one finds a representation via which there is a maximal interpretation, then he can get additional

maximal interpretations with the above techniques for complete models.
The special case of proper representations with respect to effectiveness is considered in Section 5.2.
The claims above follow directly from results of previous sections and the following theorem:

Theorem 21 Let A be a model closed under functional composition, and let ρ : D → dom A be some
representation. Then [[A]]ρ is isomorphic to [[A]] if there is a total injective function h ∈ [[A]] such that
Im h = Im ρ and h−1�Im h ∈ [[A]]�Im h.

3.3. Specific models

We turn now to investigate the influence of the domain interpretation on some well known computational
models, as well as on hypercomputational models.
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3.3.1. The recursive functions
The recursive functions (both total and partial) are interpretation-complete! Their completeness is of

special importance due to their rôle in the notion of effectiveness. This is elaborated on in Section 5. The
completeness is of both the unary recursive functions and of the functions of any arity.

In Section 3.3.2, it will be shown that the recursive functions are isomorphic to the functions computed
by Turing machines. They are also isomorphic to 3-counter machines, while being a maximal interpretation
of the incomplete 2-counter machines model.
Theorem 22 ([3]) The unary recursive functions are interpretation-complete.
Theorem 23 The partial recursive functions and the total recursive functions are interpretation-complete.

3.3.2. Turing machines
Turing machines are interpretation-complete. As with the recursive functions, this completeness is of

special importance due to the rôle of Turing machines in the notion of effectiveness (see Section 5).
Theorem 24 ([3]) Turing machines are interpretation-complete.

When seeking a maximal interpretation for Turing machines or for the recursive functions, the criteria of
Section 3.2.1 may be extended:
Theorem 25 An interpretation [[TM]]ρ of Turing machines via some injection ρ is maximal if |Im ρ| is
infinite and there is a function h ∈ [[TM]] such that Im h = Im ρ.
Note that the function h above needs not be total nor injective.

3.3.3. Counter machines
The model of two counter machines is very interesting. It was shown independently by Janis Barzdins

[1], Rich Schroeppel [19], and Frances Yao that two-counter machines cannot compute the function λx.2x.
On the other hand, since two-counter machines can compute all the recursive functions via an injective
representation (viz. n �→ 2n; see, for example, [12]), it follows that two-counter machines are interpretation-
incomplete.

It turns out that the models of one-counter machines as well as of three-or-more counter machines are
interpretation-complete.

3.3.4. Hypercomputational models
A computational model is generally said to be “hypercomputational” if it computes more than Turing

machines or more than the recursive functions (see Definition 47 in Section 5). Due to the completeness of
Turing machines and the recursive functions, such a model may indeed be regarded as more powerful. Power
comparison is treated in detail in Section 4, and the issue of effective computation over arbitrary domains
is treated in detail in Section 5.

Can we conclude from the interpretation-completeness of the recursive functions that every hypercomputa-
tional model is interpretation-complete? The answer is, in general, “no”. However, if the hypercomputational
model preserves the basic closure properties of the recursive functions, then the answer is “yes”.

The following example is an incomplete hypercomputational model:
Example 26 Let h be the (incomputable) halting function. Define:

hi := λn.




2ih(n/2i) 2i divides n

0 otherwise
ρ := λn.2n

Let A be a computational model with the extensionality [[A]] := REC∪{hi | i ∈ N+}. That is, [[A]] includes
all the recursive functions and all functions hi for i ≥ 1. We have that [[A]]ρ = REC ∪ {hi | i ∈ N} � [[A]].

Yet, the completeness proof of the recursive functions (Theorem 23) may be extended to hypercompu-
tational models, as long as they have the relevant closure properties. It also means that their domain is
denumerable, as with higher cardinalities there is no meaning to primitive recursion or minimalization:
Theorem 27 Let A be a computational model over N computing all the recursive function and closed under
functional composition, primitive recursion and minimalization. Then A is interpretation-complete.
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A special case of such an interpretation-complete hypercomputational model is an oracle Turing machine.
Corollary 28 An oracle Turing machine is interpretation-complete.

4. Comparing Computational Power

It is standard in the literature to compare the power of computational models. However, neglecting the
possibility of interpretation-incomplete models, it is common to say that model B is strictly stronger than
model A when it computes strictly more functions. This might allow one to show that some computational
models are strictly stronger than themselves (see Section 2).

We define a comparison notion over arbitrary domains based on model interpretations. With this notion,
model B is strictly stronger than A if B has an interpretation that contains A, whereas A cannot contain
B under any interpretation.

We start, in Section 4.1, by providing the mathematical definition of the comparison notion. We give a
basic definition, allowing all interpretations, and two additional definitions with some restrictions on the
allowed interpretations. In Section 4.1.1 we extend the notion no non-deterministic models.

In Section 4.2 we provide several results with respect to power comparison, isomorphism and completeness.
In Section 4.3, we compare between some standard models, as Turing machines, stack machines, etc..

4.1. The comparison notions

Since we are only interested here in the extensional quality of a computational model (the set of functions
or relations that it computes), not complexity-based comparison or step-by-step simulation, we use model
interpretations as the basis for comparison.

We generally say that model B is at least as powerful as model A if it can compute whatever A can. When
both models operate over the same domain it simply means containment: B is at least as powerful as A if
[[B]] ⊇ [[A]]. However, when the models operate over different domains we ought to interpret one model over
the domain of the other. Hence, the general comparison notion would say that B is at least as powerful as
A if it has an interpretation that contains A.

As one textbook states [21, p. 30]:
Computability relative to a coding is the basic concept in comparing the power of computation models.. . .
The computational power of the model is represented by the extension of the set of all functions computable
according to the model. Thus, we can compare the power of computation models using the concept
‘incorporation relative to some suitable coding’.
We provide three notions of comparison, depending on the allowed representations. The basic, most per-

missive, comparison notion allows any injection, while the firmest notion allows only bijections. In between,
we define a notion that allows injections for which the “as-powerful” model can fix their image.
Definition 29 (Power Comparison)
– Model B is at least as powerful as model A, denoted B � A, if it has an interpretation that contains the

extensionality of A. That is, B � A iff exists an injection ρ : dom A→ dom B, such that [[B]]ρ ⊇ [[A]].
– Model B is decently at least as powerful as model A, denoted B � A, if it has an interpretation that

contains the extensionality of A via a representation for which it can fix its image. That is, B � A iff
exists an injection ρ : dom A → dom B, such that [[B]]ρ ⊇ [[A]] and there is a total function g ∈ [[B]] for
which Im g = Im ρ and such that for every y ∈ Im ρ we have that g(y) = y.

– Model B is bijectively at least as powerful as model A, denoted B � A, if it has a bijective interpretation
that contains the extensionality of A. That is, B � A iff exists a bijection π : dom A→ dom B, such that
[[B]]π ⊇ [[A]].

Proposition 30 The computational power relations �,�,� are quasi-orders.
Obviously, the two latter comparison notions imply the former one. For the third notion to imply the

second one, it is sufficient that the as-powerful model has some surjective function, even the identity function.
Additionally, when assuming a little more about the representation and the model, the second notion also
implies the third one (see Theorem 21).
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Note 31 When comparing the computational power of models, it should be noted that one function cannot
be “better” than another; only a model can be better than another. There is only an equivalence relation
between functions, where two partial functions, f and g, over the same domain D are deemed equal, denoted
f = g, if they are defined for exactly the same elements of the domain and have the same value whenever
they are defined. For example, a total function f is not better than nor equal to a partial function g that has
the same values as f when it converges. This is clearly demonstrated by taking g to be a ‘halting function’,
which returns 1 when the input encodes a halting machine and diverges otherwise.

Our comparison notions go along with some standard approaches, for instance in [7, p. 24], [18, p. 27] and
[21, p. 30]. Our decent-comparison notion follows Rabin’s definition of a computable group [16, p. 343]:“
DEFINITION 3. An indexing of a set S is a one to one mapping i : S → I such that i(S) is a recursive
subset of I.”
Example 32 Turing machines are at least as powerful as the recursive functions via a unary representation
of the natural numbers. See, for example, [9, p. 147]. Indeed, it is so by all three notions (see Theorem 45).

One may wonder why we do not require the representation to be Turing-computable. A detailed answer
to that is given in Section 5. The main points are:
– When comparing models in the scope of defining effectiveness, the requirement of a Turing-computable

representation leads to a circular definition.
– One may wish to compare sub-recursive models or hypercomputational models, for which Turing-

computability is not necessarily the proper constraint.

Power equivalence. The power equivalence relation between models follows directly from the power com-
parison notion. Models A and B are of equivalent power if A � B and B � A.
Definition 33 (Power Equivalence)
– Models A and B are power equivalent, denoted A ∼ B, if A � B and B � A.
– Models A and B are decently power equivalent, denoted A � B, if A � B and B � A.
– Models A and B are bijectively power equivalent, denoted A ≈ B, if A � B and B � A.
Example 34 The (untyped) λ-calculus is power equivalent to the recursive functions, via Church numer-
als, on the one hand, and via Gödelization, on the other. However, it is not interpretation-complete, as it
cannot even compute the identity function over an arbitrary lambda-term. Hence, it is not bijectively-power
equivalent to the recursive functions (otherwise contradicting the completeness of the recursive functions).

Strictly stronger. We generally think of model B as stronger than model A if it can compute more.
However, because of the sensitivity to the domain interpretation (Section 2), proper containment does not
imply more computational power. That is, [[B]] � [[A]] �⇒ B � A. This is so for all three comparison notions.

The proper definition of model B being strictly stronger than model A is that B � A while A �� B.
Definition 35 (Stronger)
– Model B is stronger than model A, denoted B � A, if B � A while A �� B.
– Model B is decently stronger than model A, denoted B � A, if B � A while A �� B.
– Model B is bijectively stronger than model A, denoted B � A, if B � A while A �� B.

Note that for model B to be stronger than model A there should be no injection ρ via which A �ρ B.
In contradistinction to the “as powerful” case, some model B may be bijectively stronger than a model A,
but not stronger than A. However, if A is interpretation-complete, we do have that B � A implies B � A
(Theorem 42).
Example 36 Real recursive functions [14], operating over R2, are decently stronger than Turing machines.
The comparison is done via an injective representation ψ : {0, 1}∗ → R2, defined by [[x]]ψ := (0, [[x]]ρ), where
[[x]]ρ is the standard binary interpretation over the natural numbers [14, p. 849]. Since the model computes
the floor function (λx. �x�) [14, p. 843], it follows that it also has a function which fixes the representation
image. On the other hand, the real recursive functions are obviously not bijectively stronger than the recursive
functions, as their domain is of a higher cardinality.
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Universal machines. Computation is often performed via universal machines, also referred to as “inter-
preters”. That is, a single machine (or computer program) gets as input both the machine to interpret and
the latter’s input. One may wonder how to compare the computational power of universal machines. From
our point of view, computational power is extensionality, meaning the set of computed functions. Hence,
when comparing universal machines we compare the sets of functions that they interpret. Accordingly, it is
exactly like comparing computational models.

4.1.1. Non-deterministic models
The extension of most of the definitions and theorems given so far (in this section and the previous ones)

to non-deterministic models is quite straightforward. There are, however, some specific issues concerning the
power comparison of non-deterministic models, which will be discussed below.

We begin by defining what we mean by a non-deterministic computational model and its extensionality:
Definition 37 (Non-deterministic Computational Model) A non-deterministic computational
model A over domain D is any object associated with a set of (non-unary) relations over D ∪ ⊥. This set
of relations is called the extensionality of the non-deterministic computational model, denoted [[A]].

Note that we use the special symbol ⊥ in the above definition for denoting a non-halting computation,
while we did not need it in the definition of a deterministic model (Definition 1). The reason is that a
non-deterministic computation might sometimes diverge on a domain element e and sometimes converge to
some value v. In such a case, the value of the computation will be both ⊥ and v, denoted by 〈e,⊥〉, 〈e, v〉 in
the (multivalued) function’s description. On the other hand, the divergence of a deterministic function on a
domain element e, may be simply denoted by not having a tuple with e in the function’s description.

As a result of using ⊥ to denote divergence, we may assume that all functions have at least one value for
every domain element.

When investigating the influence of the domain interpretation, we are concerned with the containment
relation between the different interpretations of a computational model. Hence, the definitions given in this
section and the previous ones apply to both deterministic and non-deterministic models, as in both types of
models the interpretations are sets of relations.

When we compare the power of computational models, two functions are considered equal if and only
if they are described by the same relation, while a model is as powerful as another if it contains all the
functions of the former (see Note 31). This is also the case when we compare between non-deterministic
models. There might be cases in which a different approach is required, assuming a different equality notion
between functions. For example, two non-deterministic functions might be considered equal if they may
always produce the same value. That is, a function that sometimes diverges and sometimes converges with
the value v is considered equal to a function that always converges with the value v. In such cases, the
comparison notions should be adjusted to take into account the special equality notion between functions.

By this comparison approach, a non-deterministic model B may be as powerful as a deterministic model
A (if it deterministically computes all the functions of A, in addition to its non-deterministic computations),
while the opposite is impossible (when B actually has some non-deterministic computations).

4.2. Power comparison, isomorphism, and interpretation-completeness

The general approach for showing that model B is stronger than model A is tedious – we should negate
the possibility that A �ρ B for all injections ρ. The situation is much simpler with interpretation-complete
models, for which proper containment does imply more power:
Theorem 38 ([3]) For an interpretation-complete model A and some model B, we have that B � A iff
there exists an injection ρ such that [[B]]ρ � [[A]].

Isomorphism and bijective power equivalence are very similar notions, though not the same. However,
when sticking to interpretation-stable models they do coincide:
Theorem 39

(i) Isomorphism implies bijective power equivalence.
(ii) Bijective power equivalence does not imply isomorphism.

63



(iii) For stable models, bijective power equivalence implies isomorphism. That is, if model A is stable, then
for every model B, B is isomorphic to A if and only if it is bijectively power equivalent to A.

Isomorphism preserves stability and completeness (Corollary 19). This is also the case, by the above
theorem, with bijective power equivalence.
Corollary 40 Bijective power equivalence preserves stability and completeness. That is, let A and B be
bijectively power equivalent models, then A is stable iff B is, and A is complete iff B is.

The formulation of the previous theorem can be strengthened for complete models:
Lemma 41 ([3]) If model A is complete and A � B � A for some model B, then A and B are isomorphic.

Interpretation-completeness also helps with showing that some model is stronger than another.
Theorem 42 If model A is complete, then B � A implies B � A
Theorem 43 ([3]) If model A is complete, A ≈ B and [[B]] � [[C]], for models B and C, then C � A.

4.3. Comparison of some Standard Models

As discussed in the beginning of this section, the proper containment between the recursive functions
and the primitive recursive functions does not imply that the former are strictly more powerful than the
latter. Nonetheless, the recursive functions are indeed strictly more powerful, even by the general comparison
notion, allowing all possible interpretations of the primitive recursive functions.
Theorem 44 ([3]) The primitive recursive functions are strictly weaker than the recursive functions.

We do not know if the primitive recursive functions are interpretation-complete, Theorem 44 notwith-
standing.

It is common to show that Turing machines and the recursive functions are of equivalent computational
power. Actually, they are isomorphic. We base the proof on known results, given in [10].
Theorem 45 ([3]) Turing machines, over a binary alphabet, and the recursive functions are isomorphic.

From [10,3] we also have that random access machines and counter machines with unlimited number of
counters have exactly the same extensionality as the recursive functions.

This is not the case with two-counter machines. They are of equivalent power to the recursive functions,
however not isomorphic to them. Indeed, they are bijectively-weaker than them (otherwise contradicting the
stability of the recursive functions).

By known results, two-stack machines have the same extensionality as Turing machines.
Due to the closure properties of Turing machines and the recursive functions, they are bijectively at least

as powerful as some model A if and only if they are decently at least as powerful as A.
Theorem 46 Let A be a computational model operating over a denumerable domain. Then Turing machines
and the recursive functions are decently at least as powerful as A if and only if they are bijectively at least
as powerful as A. That is, TM � A iff TM � A iff REC � A iff REC � A.

5. Effective Computation

In 1936, Alonzo Church and Alan Turing each formulated a claim that a particular model of computa-
tion completely captures the conceptual notion of “effective” computability. Church [6, p. 356] proposed
that effective computability of numeric functions be identified with Gödel and Herbrand’s general recursive
functions, or – equivalently, as it turned out [6] – with Church and Kleene’s lambda-definable functions of
positive integers.

Turing, on the other hand, explicitly extends the notion of “effective” beyond the natural numbers [23,
fn. p. 166] (emphasis added):

We shall use the expression “computable function” to mean a function calculable by a machine, and we
let “effectively calculable” refer to the intuitive idea without particular identification with one of these
definitions. We do not restrict the values taken by a computable function to be natural numbers ; we may
for instance have computable propositional functions.
Our purpose, in Section 5.1, is to formalize and analyze the Church-Turing Thesis, referring to functions

over arbitrary domains.
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Equipped with this definition, and due to the interpretation-completeness of Turing machines, we define,
in Section 5.2, effective representations of constructible domains.

5.1. The Church-Turing Thesis over arbitrary domains

Simply put, the Church-Turing Thesis is not well defined for arbitrary domains: the choice of domain
interpretation might have a significant influence on the outcome. We explore below the importance of the
domain interpretation and suggest how to overcome this problem.

Computational model versus single function. A single function over an arbitrary domain cannot be clas-
sified as computable or not. Its computability depends on the representation of the domain. 2 For example,
the (uncomputable) halting function over the natural numbers (sans the standard order) is isomorphic to
the simple parity function, under a permutation of the natural numbers that maps the usual codes of halting
Turing machines to strings ending in “0”, and the rest of the numbers to strings ending with “1”. The result
is a computable standalone “halting” function.

An analysis of the classes of number-theoretic functions that are computable relative to different notations
(representations) is provided by Shapiro [20, p. 15]:

It is shown, in particular, that the class of number-theoretic functions which are computable relative
to every notation is too narrow, containing only rather trivial functions, and that the class of number-
theoretic functions which are computable relative to some notation is too broad containing, for example,
every characteristic function.
An intuitive approach is to restrict the representation only to “natural” mappings between the domains.

However, when doing so in the scope of defining “effectiveness”, one must use a vague and undefined notion.
This problem was already pointed out by Richard Montague on 1960 [13, pp. 430–431]:
Now Turing’s notion of computability applies directly only to functions on and to the set of natural
numbers. Even its extension to functions defined on (and with values in) another denumerable set S
cannot be accomplished in a completely unobjectionable way. One would be inclined to choose a one-to-
one correspondence between S and the set of natural numbers, and to call a function f on S computable if
the function of natural numbers induced by f under this correspondence is computable in Turing’s sense.
But the notion so obtained depends on what correspondence between S and the set of natural numbers
is chosen; the sets of computable functions on S correlated with two such correspondences will in general
differ. The natural procedure is to restrict consideration to those correspondences which are in some sense
‘effective’, and hence to characterize a computable function on S as a function f such that, for some
effective correspondence between S and the set of natural numbers, the function induced by f under this
correspondence is computable in Turing’s sense. But the notion of effectiveness remains to be analyzed,
and would indeed seem to coincide with computability.
Stewart Shapiro suggests a definition of “acceptable notation”, based on intuitive concepts [20, p. 18]:
This suggests two informal criteria on notations employed by algorithms:
(1) The computist should be able to write numbers in the notation. If he has a particular number in

mind, he should (in principle) be able to write and identify tokens for the corresponding numeral.
(2) The computist should be able to read the notation. If he is given a token for a numeral, he should

(in principle) be able to determine what number it denotes.
It is admitted that these conditions are, at best, vague and perhaps obscure.
Michael Rescorla argues that the circularity is inherent in the Church-Turing Thesis [17].
A possible solution is to allow any representation (injection between domains), while checking for the

effectiveness of an entire computational model. That is, to check for the computability of a function together
with the other functions that are computable by that computational model. The purpose lying behind
this idea is to view the domain elements as arbitrary objects, deriving all their meaning from the model’s

2 There are functions that are inherently uncomputable, via all domain representations. For example, a permutation of some
countable domain, in which the lengths of the orbits are exactly the standard encodings of the non-halting Turing machines.
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functions. For example, it is obvious that the halting function has a meaning only if one knows the order of
the elements of its domain. In that case, the successor function provides the meaning for the elements.

Two variants of this solution, corresponding to the variants of our comparison notion (Definition 29),
are to either allow only bijective representations, or else allow injections provided that their images are
computable.

Adopting the above approach of checking for computability of an entire computational model, we interpret
the Church-Turing Thesis as follows:

Thesis A. All “effective” computational models are of equivalent power to, or weaker than, Turing ma-
chines.

By “effective”, in quotes, we mean effective in its intuitive sense.
By a “computational model” we refer to any object that is associated with a set of partial functions

(Definition 1). By “equivalent to, or weaker than” we refer to the comparison notions of Definition 29.
A strict supermodel of the recursive functions (or Turing machines) is a “hypercomputational” model.

Definition 47 (Hypercomputational Model) A computational model H is hypercomputational if it is
stronger than Turing machines. That is, if H � TM. (The corresponding variations, using bijective power
comparison or decent power comparison, are H � TM or H � TM.)

Our interpretation of the Church-Turing Thesis (Thesis A) agrees with Rabin’s definition of a computable
group [16, p. 343], as well as with its generalization, by Lambert [24, p. 594], to any algebraic structure.
Similar notions were also presented by Froehlich and Shepherdson [8] and Mal’cev [11].

Influence of representations. The Church-Turing Thesis, as stated above (Thesis A), matches the intuitive
understanding only due to the interpretation-completeness of Turing machines (Theorem 24). Were the thesis
defined in terms of two-counter machines (2CM), for example, it would make no sense: a computational model
is not necessarily stronger than 2CM even if it computes strictly more functions.

5.2. Effective representations

What is an effective representation? We argued above that a “natural representation” must be a vague
notion when used in the context of defining effectiveness. We avoided the need of restricting the representation
by checking the effectiveness of entire computational models. But what if we adopt the Church-Turing Thesis;
can we then define what is an effective string representation?

Simply put, there is a problem here. Turing machines operate only over strings. Thus a string represen-
tation, which is an injection from some domain D to Σ∗, is not itself computable by a Turing machine. All
the same, when we consider, for example, string representations of natural numbers, we can obviously say
regarding some of them that they are effective. How is that possible? The point is that we look at the nat-
ural numbers as having some structure, usually assuming their standard order. A function over the natural
numbers without their order is not really well-defined. As we saw, the halting function and the simple parity
function are exactly the same (isomorphic) function when numbers are unordered.

Hence, even when adopting the Church-Turing Thesis, a domain without any structure cannot have an
effective representation. It is just a set of arbitrary elements. However, if the domain comes with a generating
mechanism (as the natural numbers come with the successor) we can consider effective representations.

Due to the interpretation-completeness of the recursive functions and Turing machines, we can define
what is an effective string representation of the natural numbers (with their standard structure). A similar
definition can be given for other domains, provided that they come with some finite means of generating
them all, akin to successor for the naturals.
Definition 48 An effective representation of the natural numbers by strings is an injection ρ : N → Σ∗,
such that ρ(s) is Turing-computable (ρ(s) ∈ [[TM]]), where s is the successor function over N.
That is, a representation of the natural numbers is effective if the successor function is Turing-computable
via this representation.
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Note 49 One may also require that the image of the representation ρ is Turing computable, along the decent
power comparison notion. In such a case, there would also be a corresponding bijective representation (see
Theorem 21 and 25).

We justify the above definition of an effective representation by showing that: (a) every recursive func-
tion is Turing-computable via any effective representation; (b) every non-recursive function is not Turing-
computable via any effective representation; and (c) for every non-effective representation there is a recursive
function that is not Turing-computable via it.
Theorem 50 ([5])
(a) Let f be a recursive function and ρ : N → Σ∗ an effective representation. Then ρ(f) ∈ [[TM]].
(b) Let g be a non-recursive function and ρ : N → Σ∗ an effective representation. Then ρ(g) /∈ [[TM]].
(c) Let η : N → Σ∗ be a non-effective representation. Then there is a recursive function f , such that

η(f) /∈ [[TM]].
To see the importance of the interpretation-completeness for the definition of an effective representation,

one can check that an analogous definition cannot be provided with two-counter machines as the yardstick.
Our definition of an effective representation resembles Shapiro’s notion of an “acceptable notation” [20,

p. 19] and goes along with Weihrauch’s justifications for the effectiveness of the “standard numberings”
(representations by natural numbers) [25, p. 80–81]. A description of the correlation between our notion and
Shapiro’s and Weihrauch’s notions can be found in [5].

6. Discussion

Key points. In this paper, we have explored various aspects of the influence of domain interpretations on
the extensionality of computational models, and suggested how we believe they should be handled. Some of
the key points are:
– The extensionality of computational models is a very interesting set (of functions) – it varies from “fluid”

sets for which containment does not mean more power, as with ordinary sets, to explicit, complete, sets
for which nothing can be added without additional power.

– Get to know your model: Is it interpretation-stable or interpretation-complete?
– Compare computational power properly.
– Turing machines and the recursive functions are shown to be robust, this time from the representa-

tion/interpretation point of view.
– Effectiveness does not apply to a single function; it is a set of functions, or a function together with its

domain constructors, that may be deemed effective.

Domain Representation. One might think that our study is a part of the “domain representation” research
area. This is not the case. Indeed, the basic concept of “representation” is the same: one set of elements is
represented by a subset of another set. Nevertheless, the issues studied are very different. Domain repre-
sentation concerns mapping of some (possibly topological/metric) sets into domains (partially ordered sets
with some properties), and studies the (topological/metric) properties preserved via the mappings.

Further research. A central issue, yet to be understood, is the relation between the internal mechanism
of a computational model and its extensional properties of interpretation-completeness and interpretation-
stability. With the recursive functions, this relation is apparent, shown in the proof of their interpretation-
completeness. However, we do not know how to relate, in general, the completeness or stability of a compu-
tational model to its internal mechanism. A more specific open question is whether there is some standard,
well known, computational model that is unstable.
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Abstract

Population protocols have been introduced as a model of sensor networks consisting
of very limited mobile agents with no control over their own movement. A popu-
lation protocol corresponds to a collection of anonymous agents, modeled by finite
automata, that interact with one another to carry out computations, by updating
their states, using some rules.

Their computational power has been investigated under several hypotheses but
always when restricted to finite size populations. In particular, predicates stably
computable in the original model have been characterized as those definable in
Presburger arithmetic.

In this paper, we study mathematically a particular population protocol that we
show to compute in some natural sense some algebraic irrational number, whenever
the population goes to infinity. Hence we show that these protocols seem to have a
rather different computational power when considered as computing functions, and
when a huge population hypothesis is considered.

1 Motivation

The computational power of networks of finitely many anonymous resource-
limited mobile agents has been investigated in several recent papers. In partic-
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ular, the population protocol model, introduced in [1], consists of a population
of finite-state agents that interact in pairs, where each interaction updates the
state of both participants according to a transition based on the previous
states of the participants. When all agents converge after some finite time to
a common value, this value represents the result of the computation.

Several variants of the original model have been considered but with com-
mon features. Following survey [3]: anonymous finite-state agents (the system
consists of a large population of indistinguishable finite-state agents), compu-
tation by direct interaction (an interaction between two agents updates their
states according to a joint transition table), unpredictable interaction patterns
(the choice of interactions is made by an adversary, possibly limited to pairing
only agents in an interaction graph), distributed input and outputs (the input
to a population protocol is distributed across the initial state of the entire pop-
ulation, similarly the output is distributed to all agents), convergence rather
than termination (the agents’ output are required to converge after some time
to a common correct value).

Typically, in the spirit of [1] and following papers (see again [3] for a survey),
population protocols are assumed to (stably) compute predicates: a population
protocols stably computes a predicate φ, if for any possible input x of φ,
whenever φ(x) is true all agents of the population eventually stabilize to a state
corresponding to 1, and whenever φ(x) is false, all agents of the population
eventually stabilize to a state corresponding to 0.

Predicates stably computable by population protocols in this sense have been
characterized as being precisely the semi-linear predicates, that is to say those
predicates on counts of input agents definable in first-order Presburger arith-
metic [9]. Semilinearity was shown to be sufficient in [1] and necessary in [2].

In this paper, we want to study a new variant: we assume a population close
to infinity (we call this a huge population hypothesis), and we don’t want to
focus on protocols as predicate recognizers, but as computing functions. We
assume outputs to correspond to proportions, which are clearly the analog of
counts whenever the population is infinite or close to infinity.

Indeed, we consider a particular population protocol, that we prove to con-
verge, whatever its initial state is, to a fraction of

√
2

2
agents in a given state.

We hence show that some algebraic irrational values can be computed in this
sense. We also give an asymptotic development of the convergence.

Our motivation is to show that protocols, considered with these two hypothe-
ses (huge population, computing functions and not only predicates), have a
rather different power.

We consider this paper as a first step towards understanding which numbers
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can be computed by such protocols. Whereas we prove in this paper that
√

2
2

can be computed, and whereas this is easy to see that computable numbers
in this sense must be algebraic numbers of [0, 1], we didn’t succeed yet to
characterize precisely computable numbers.

In this more long term objective, the aim of this current paper is first to
discuss in which sense one can say that these protocols compute an irrational
algebraic value such as

√
2

2
, and second to study mathematically formally the

convergence.

Our discussion is organized as follows. In Section 2, we present classical finite-
size population protocols and related work. In Section 3, we present the con-
sidered system. In Section 4, as a preliminary discussion, we discuss what
can be said when population is assumed to be finite. The rest of the paper
is devoted to consider the case of an infinite population. To do so, we first
do some mathematical computations in Section 5, in order to use a general
theorem presented in Section 6 from [10] about approximation of diffusions.
This theorem yields the proof of convergence in Section 7. We prove in Sec-
tion 8 that this is even possible to use the same theorem to go further and
get an asymptotic development of the convergence. Section 9 is devoted to a
conclusion and a discussion.

2 Related Work

Population protocols have been introduced in [1]. In the paper, the authors
proved that all semi-linear predicates can be computed but left open the ques-
tion of their exact power. This was solved in [2], where it has been proved that
no-more predicates can be computed.

The population protocol model was inspired in part by the work by Diamadi
and Fischer on trust propagation in social networks [5]. The model proposed
in [1] was motivated by the study of sensor networks in which passive agents
were carried along by other entities. The canonical example given in this latter
paper was sensors attached to a flock of birds.

Much of the work so far on population protocols has concentrated on charac-
terizing what predicates on the input configurations can be stably computed
in different variants of the models and under various assumptions, such as
bounded-degree interaction graphs and random scheduling [3].

Variants considered includes restriction to one-way communications, restric-
tion to particular interaction graphs, random interactions, self-stabilizing so-
lutions through population protocols to classical problems in distributed algo-
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rithmic, the taking into account of various kind of failures of agents, etc. See
survey [3]. As far as we know, a huge population hypothesis in the sense of
this paper, has not been considered yet.

Notice that we assume that interactions happen in probabilistic way, according
to some uniform law. In the original population protocol model, only specific
fairness hypotheses were assumed on possible adversaries [1]. Somehow our no-
tion of adversary is stronger: for finite state systems, this satisfies the fairness
hypotheses of the original model, but for infinite state systems, we think that
this becomes more natural to expect such a notion, since fairness hypotheses
in the sense [1] become problematic to generalize. Notice that this notion of
adversary has already be considered for finite state systems [3], in order to
study speed of convergence of specific algorithms.

The result proved in this paper can be considered as a macroscopic abstraction
of a system given by microscopic rules of evolutions. See survey [7] for general
discussions about extraction of macroscopic dynamics.

Whereas the ordinary differential equation (9) can be immediately abstracted
in a physicist approach from the dynamic (1), the formal mathematical equiv-
alence of the two is not so immediate, and is somehow a strong motivation of
this paper.

Actually, these problems seem to arise in many macroscopic justification of
models from their microscopic description in experimental science: See for
example the very instructive discussion in [8] about assumptions required for
the justification of the Lotka-Volterra (predator-prey) model of population
dynamics. In particular, observe that the fact that microscopic correlations
must be neglected (i.e. E[XY ] = E[X]E[Y ] is needed, where E is expectation).
With a rather similar hypothesis (here assuming E[p2] = E[p]2), dynamic (9)
is clear from rules (1). Somehow, we prove here that this hypothesis is not
necessary for our system.

The techniques used in this paper are based on weak convergence techniques,
introduced in [10], relating a stochastic differential equation (whose solutions
are called diffusions) to approximations by a family of Markov processes. Refer
also to [6] for an introduction to these techniques. The theorem used here is
actually based on the presentation of [4] of a theorem from [10].

3 The Considered System

We now present our system, in a self-contained manner, to avoid to rede-
fine formally population protocols. However, the reader can check that this is
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indeed a (non-stably-converging in the sense of [1]) population protocol.

We consider a set of n anonymous agents. Each agent can be in state + or
in state −. A configuration hence corresponds to an element of S = {+,−}n.
There are 2n such configurations.

Suppose that time is discrete.

At each discrete round, two agents are paired. These two agents are chosen
according to a uniform law (without choosing twice the same). The effect of
a pairing is given by the following rules:



++ → +−

+− → ++

−+ → ++

−− → +−

(1)

These rules must be interpreted as follows: if an agent in state + is paired with
an agent in state +, then the second becomes −. If an agent in state + is paired
with an agent in state −, then the second becomes +, and symmetrically. If
an agent in state − is paired with an agent in state −, then the first becomes
in state +.

We want to discuss the limit of the proportion p(k) of agents in state + in the
population at discrete time k. If n+(k) denotes the number of agents in state
+, and n−(k) = n− n+(k) the number of agents in state −,

p(k) =
n+(k)

n
.

The object of the rest of this paper is to show the convergence of p to
√

2
2

whenever k goes to infinity, and n goes to infinity.

4 A Preliminary Discussion: The Case of Finite Size Populations

Let us first restate what we are considering by discussing the case of a fixed n.
Clearly, the previous rules of interactions can be considered as a description of
a discrete time homogeneous Markov chain. This Markov chain has 2n states
corresponding to all configurations. Special configuration s− = (−,−, · · · ,−)
where all agents are in state − is immediately left with probability 1 to a
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configuration of S∗ = S − {s−}. Now, any configuration s′ ∈ S∗ is clearly
reachable from any configuration s ∈ S∗ with positive probability.

Hence, the sequence p(k)k≥1 is an irreducible Markov chain on S∗.

Let us discuss the basic transition probabilities of this irreducible Markov
chain.

At any time step, when selecting an agent in the soup uniformly, it will be in
state + with probability p(k), and in state − with probability 1− p(k).

The other agent with whom it will be paired is selected in the rest of the
population:

• if the first agent was in state +, then the other will be in state + with
probability n+(k)−1

n−1
= p(k) n

n−1
− 1

n−1
, and in state − with probability n−(k)

n−1
=

n
n−1
− p(k) n

n−1
.

Hence the probability that two agents in state + are paired, and that an
agent in state + is paired to an agent in state − are given respectively by

π++ = p(k)2 n

n− 1
− p(k)

1

n− 1

and

π+− = p(k)
n

n− 1
− p(k)2 n

n− 1
.

• Otherwise, the first agent is in state −. In this case, the other will be in
state + with probability n+(k)

n−1
= p(k) n

n−1
, and in state − with probability

n−(k)−1
n−1

= 1− p(k) n
n−1

.
Hence the probability that an agent in state − is paired with an agent in

state +, and that an agent in state − is paired with an agent in state − are
given respectively by

π−+ = p(k)
n

n− 1
− p(k)2 n

n− 1

and

π−− = 1 + p(k)
1− 2n

n− 1
+ p(k)2 n

n− 1
.

To any state s ∈ S∗ of the Markov chain is associated some proportion p(k) =
n+

n
of agents in state +, that takes value in V = { 1

n
, 2
n
, n−1

n
, · · · , 1}. Clearly,

from above discussions, the Markov chain on S∗ can be abstracted on an
irreducible Markov chain on this latter set V . As it evolves on finite set V , it
is positive recurrent.

The number of agents in state + is increased by one by the second, third and
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fourth rule, hence with probability

π+1 = π+− + π−+ + π−− = 1− π++,

and is decreased by one by the first rule, hence with probability

π−1 = π++.

By ergodic theorem whatever the initial distribution of probability on states
is, the sequence p(k) will ultimately converge in law to the unique stationary
distribution π of the Markov chain on V . Distribution π is given by the unique
solution with

∑n
i=1 π( i

n
) = 1 to the global balance equations

π(
i

n
) = π(

i− 1

n
)π+1 + π(

i+ 1

n
)π−1,

for i = 1, 2, · · · , n (interpreting π(0) and π(n+1
n

) as 0).

As the unique solution to a rational system of equations is rational, the prob-
abilities π( i

n
) are rational, and hence expectation E[p] on the stationary dis-

tribution, that can be computed from this stationary distribution by

E[p] =
n∑
i=1

i

n
π(
i

n
)

is rational.

Hence, when the population is finite, this is clear that the proportion of agents
in state + converges in law to some rational value, that can be computed as
above.

The purpose of the rest of the discussion, is to see that when n goes to infinity,
the mean value of p(k) converges to some irrational algebraic value, i.e. to

√
2

2
.

Notice also that it follows from the fact that the chain restricted to S∗ is
irreducible that all configurations of S∗ are visited with some positive proba-
bility. Hence, in the classical model of [1] this protocol cannot stably compute
any non-trivial predicate. Our notion of convergence is different, and based
on convergence towards limit distributions on proportions, which is a natural
notion when considering huge populations.

5 Computing Expectation and Variance of Increments

As all rules increase or decrease by 1 the number of agents in state +, given
n+(k), one knows that the increment ∆n = n+(k + 1)− n+(k) takes its value
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in {−1, 1}.

From previous discussions, we have:

π+1 = 1− p(k)2 n

n− 1
+ p(k)

1

n− 1

and

π−1 = p(k)2 n

n− 1
− p(k)

1

n− 1
.

We get

E[∆n|n+(k)] = 1× π+1 − 1× π−1,

from which we get the fundamental equation at the source of the following
discussion:

E[n+(k + 1)− n+(k)|n+(k)] = 1− 2p(k)2 n

n− 1
+ p(k)

2

n− 1
(2)

Remark 1 When n goes to infinity, this converges to 1− 2p(k)2.

Assuming that limit commutes, and that the limit p∗ of p(k) when k goes to
infinity exists, it must cancel this quantity. Indeed, the system must converge
to configuration(s) when one doesn’t create nor destroy + in mean.

We get clearly that the limit can only be p∗ =
√

2
2

.

The remaining problem is hence to justify and discuss mathematically the con-
vergence.

We will first compute

E[∆2
n|n+(k)] = 1× π+1 + 1× π−1

= 1.
(3)

It follows, from Equations (2) and (3), that we have

E[p(k + 1)− p(k)|p(k)] =
1

n
(1− 2p(k)2 n

n− 1
+ p(k)

2

n− 1
), (4)

which yields the equivalent

nE[p(k + 1)− p(k)|p(k)] ≈ 1− 2p(k)2 (5)

when n goes to infinity, and

E[(p(k + 1)− p(k))2|p(k)] =
1

n2
, (6)
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which yields the equivalent

nE[(p(k + 1)− p(k))2|p(k)] ≈ 1

n
, (7)

when n goes to infinity.

6 A General Theorem about Approximation of Diffusions

We will use the following theorem from [10]. We use here the formulation of
it in [4] (Theorem 5.8 page 96).

Suppose that we have for all integer n ≥ 1, an homogeneous Markov chain
(Y

(n)
k ) in Rd of transition π(n)(x, dy), that is to say so that the law of Y

(n)
k+1 con-

ditioned by Y
(n)
0 , · · · , Y (n)

k depends only on Y
(n)
k and is given, for all Borelian

B, by

P (Y
(n)
k+1 ∈ B|Y

(n)
k ) = π(n)(Y

(n)
k , B).

almost surely.

Define for x ∈ Rd,

b(n)(x) = n
∫

(y − x)π(n)(x, dy),

a(n)(x) = n
∫

(y − x)(y − x)∗π(n)(x, dy),

K(n)(x) = n
∫

(y − x)3π(n)(x, dy),

∆(n)
ε (x) = nπ(n)(x,B(x, ε)c),

where B(x, ε)c is the complement of the ball centered in x of radius ε.

Define

X(n)(t) = Y
(n)
bntc + (nt− bntc)(Y (n)

bnt+1c − Y
(n)
bntc).

The coefficients b(n) and a(n) can be interpreted as the instantaneous drift and
variance (or matrix of covariance) of X(n).

Theorem 1 (Theorem 5.8, page 96 of [4]) Suppose that there exist some
continuous functions a, b, such that for all R < +∞,

lim
n→∞

sup|x|≤R|a(n)(x)− a(x)| = 0

lim
n→∞

sup|x|≤R|b(n)(x)− b(x)| = 0

lim
n→∞

sup|x|≤R∆(n)
ε = 0,∀ε > 0
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sup
|x|≤R

K(n)(x) <∞.

With σ a matrix such that σ(x)σ∗(x) = a(x), x ∈ Rd, we suppose that the
stochastic differential equation

dX(t) = b(X(t))dt+ σ(X(t))dB(t), X(0) = x, (8)

has a unique weak solution for all x. This is in particular the case, if it admits
a unique strong solution.

Then for all sequence of initial conditions Y
(n)
0 → x, the sequence of random

processes X(n) converges in law to the diffusion given by (8).

In other words, for all function F : C(R+,R) → R bounded and continuous,
one has

lim
n→∞

E[F (X(n))] = E[F (X)].

7 Proving Convergence

Consider Y
(n)
i as the homogeneous Markov chain corresponding to p(k), when

n is fixed. From previous discussions, π(n)(x, .) is a weighted sum of two Dirac
that weight x− 1

n
and x+ 1

n
, with respective probabilities π−1 and π+1, whenever

x is of type i
n

for some i.

Set a(x) = 1 − 2x2, and b(x) = 0. From the equivalent (5) and (7), we have
clearly

lim
n→∞

sup|x|≤R|a(n)(x)− a(x)| = 0

lim
n→∞

sup|x|≤R|b(n)(x)− b(x)| = 0

for all R < +∞.

Since the jumps of Y (n) are bounded in absolute value by 1
n
, ∆(n)

ε is null, as
soon as 1

n
is smaller than ε, and so

lim
n→∞

sup|x|≤R∆(n)
ε = 0, ∀ε > 0

sup
|x|≤R

K(n)(x) <∞

is easy to establish.

Now, (ordinary and deterministic) differential equation

dX(t) = (1− 2X2)dt (9)
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has an unique solution for any initial condition.

It follows from above theorem that the sequence of random processes X(n)

defined by
X(n)(t) = Y

(n)
bntc + (nt− bntc)(Y (n)

bnt+1c − Y
(n)
bntc)

converges in law to the unique solution of differential equation (9).

Clearly, all solutions of ordinary differential equation (9) converge to
√

2
2

. Doing

the change of variable Z(t) = X(t)−
√

2
2

, we get

dZ(t) = (−2Z2 + 2
√

2Z)dt, (10)

that converges to 0.

Coming back to p(k) using definition of X(n)(t), we hence get

Theorem 2 We have for all t,

p(bntc) =

√
2

2
+ Zn(t),

where Zn(t) converges in law when n goes to infinity to the (deterministic)
solution of ordinary differential (10). Solutions of this ordinary differential
equation go to 0 at infinity.

This implies that p(k) must converge to
√

2
2

when k and n go to infinity.

8 An Asymptotic Development of the Dynamic

This is actually possible to go further and prove the equivalent of a central limit
theorem, or if one prefers, to do an asymptotic development of the convergence,
in terms of stochastic processes.

As p(k) is expected to converge to
√

2
2

, consider the following change of variable:

Y (n)(k) =
√
n(p(k)−

√
2

2
).

The subtraction of
√

2
2

is here to get something centered, and the
√
n factor is

here in analogy with classical central limit theorem.

Clearly, Y (n)(.), that we will also note Y (.) in what follows when n is fixed, is
still an homogeneous Markov Chain.
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We have

E[Y (k + 1)− Y (k)|Y (k)] =
√
n(E[p(k + 1)− p(k)|p(k)]),

hence, from (4),

E[Y (k + 1)− Y (k)|Y (k)] =
1√
n

(1− 2p(k)2 n

n− 1
+ p(k)

2

n− 1
).

Using p(k) =
√

2
2

+ Y (k)√
n

, we get

E[Y (k + 1)− Y (k)|Y (k)] =
√

2−1√
n(n−1)

+ Y (k)(− 2
√

2
n−1

+ 2
n(n−1)

) + Y (k)2(− 2√
n(n−1)

)

which yields the equivalent

nE[Y (k + 1)− Y (k)|Y (k)] ≈ −2
√

2Y (k)

when n goes to infinity.

We have

E[(Y (k + 1)− Y (k))2|Y (k)] = n(E[(p(k + 1)− p(k))2|p(k)]),

hence, from equation (6),

nE[(Y (k + 1)− Y (k))2|Y (k)] = 1.

Set a(x) = −2
√

2x, b(x) = 1.

From the above calculations we have clearly

lim
n→∞

sup|x|≤R|a(n)(x)− a(x)| = 0

lim
n→∞

sup|x|≤R|b(n)(x)− b(x)| = 0

for all R < +∞.

Since the jumps of Y (n) are bounded in absolute value by 1√
n
, ∆(n)

ε is null, as

soon as 1√
n

is smaller than ε, and so

lim
n→∞

sup|x|≤R∆(n)
ε = 0, ∀ε > 0

sup
|x|≤R

K(n)(x) <∞
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is still easy to establish.

Now stochastic differential equation

dX(t) = −2
√

2X(t)dt+ dB(t) (11)

is of a well-known type. This is an Orstein-Uhlenbeck process, i.e. a stochastic
differential equation of type

dX(t) = −bX(t)dt+ σdB(t).

Such an equation is known to have a unique solution for all initial condition
X(0) = x. This solution is given by (see e.g. [4])

X(t) = e−btX(0) +
∫ t

0
e−b(t−s)σdB(s).

It is known for these processes, that for all initial condition X(0), X(t) con-
verges in law when t goes to infinity to the Gaussian N (0, σ

2

2b
). This latter

Gaussian is invariant. See for e.g. [4].

We have all the ingredients to apply Theorem 1 again, and get:

Theorem 3 We have for all t,

p(bntc) =

√
2

2
+

1√
n
An(t),

where An(t) converges in law to the unique solution of stochastic differential

equation (11), and hence to the Gaussian N (0,
√

2
8

) when t goes to infinity.

9 Conclusion

In this paper we considered a particular system of rules. This system describes
a particular population protocol. These protocols have been introduced in [1]
as a sensor network model. Whereas for original definitions of the latter paper
it is not considered as (stably) convergent, we proved that it actually computes
in some natural sense some irrational algebraic value: indeed, the proportion
of agents in state + converges to

√
2

2
, whatever the initial state of the system

is.

One aim of this paper was to formalize the proof of convergence. We did it
using a diffusion approximation technique, using a theorem due to [10]. We
detailed fully the proof in order to convince our reader that our reasoning can
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be easily generalized to other kinds of rules of the same type. In particular,
this is easy to derive from the protocol considered here another protocol that

would compute

√√
1
2
, by working with an alphabet made of pairs of states.

Clearly, the arguments here would prove its convergence.

We consider this paper as a first step towards understanding which numbers
can be computed by such protocols. Whereas we prove in this paper that

√
2

2

can be computed, and whereas this is easy to see that computable numbers
in this sense must be algebraic numbers of [0, 1], we didn’t succeed yet to
characterize precisely computable numbers.
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Emergence as a Computability-Theoretic

Phenomenon
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Abstract

In dealing with emergent phenomena, a common task is to identify useful descrip-
tions of them in terms of the underlying atomic processes, and to extract enough
computational content from these descriptions to enable predictions to be made.
Generally, the underlying atomic processes are quite well understood, and (with
important exceptions) captured by mathematics from which it is relatively easy to
extract algorithmic content.

A widespread view is that the difficulty in describing transitions from algorithmic
activity to the emergence associated with chaotic situations is a simple case of com-
plexity outstripping computational resources and human ingenuity. Or, on the other
hand, that phenomena transcending the standard Turing model of computation, if
they exist, must necessarily lie outside the domain of classical computability theory.

In this article we suggest that much of the current confusion arises from con-
ceptual gaps and the lack of a suitably fundamental model within which to situate
emergence. We examine the potential for placing emergent relations in a familiar
context based on Turing’s 1939 model for interactive computation over structures
described in terms of reals. The explanatory power of this model is explored, for-
malising informal descriptions in terms of mathematical definability and invariance,
and relating a range of basic scientific puzzles to results and intractable problems
in computability theory.

Key words: Computability, emergence, definability, Turing invariance.

1 Computability and Emergence

Since the time of Turing, computability as a concept has hardened, become
hedged around by its impressive technical development and its history, until
its role from almost any viewpoint has become tangential to the very real
mysteries of how one models the real universe. This turn of events has had
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an air of inevitability, in that even Turing, with his remarkable ability for
clarifying concepts and basic questions, was unable to fully import his concerns
about the nature of computability into the burgeoning formal framework of
recursion theory. And many of those who took up the technical development
of the subject not only lacked Turing’s vision, but became diverted by the
pure excitement and mathematical beauty of the new academic field. Thomas
Kuhn’s ‘normal science’ contains its own excitements and its minor paradigm
shifts, as well as delivering safe research careers.

From the point of view of the logician, recursion theory concerns on the
one hand a computable universe whose theory derives its significance from
computer-scientific concerns, with a technical content owing only a very basic
and vestigial debt to its logical origins. And on the other hand, exhibits an
arcane preoccupation with the development of a theory of incomputability, for
which its practitioners have no explanation or evidence for its existence in
the material world. One may be uneasy about the public criticisms by Mar-
tin Davis, Stephen Simpson, and others (see [12]), but their views are widely
respected.

This leaves many, with eyes wide enough open to see the accumulated evidence
of real-world misbehaviour, looking elsewhere for models. Presented with phe-
nomena with seemingly no hope of ever being reduced to a simple classi-
cal computational model, the natural alternative has been to develop models
with direct links to quite particular instances of apparent incomputability in
a physical setting. Much of this work, giving rise to a wide range of so-called
‘new computational paradigms’, has taken on a distinctly ad hoc aspect. Even
though the theoretical underpinnings of this newness are absent — even the
standard model of quantum computation is not free from continued scrutiny —
the delivery of computational outcomes sufficiently separated from the model’s
real-world template is taken as a pointer to useful applications.

One can highlight three key challenges to a reductionist view of the compu-
tational content of the universe, and to the explanational potentialities of the
computability framework. All three are familiar to the informed non-specialist,
are strikingly hard for the specialist to deal with, and are associated with con-
troversies, speculations, and a missing clarity which suggests a corresponding
missing conceptual ingredient. Quantum phenomena, and the human brain,
present the two most unavoidable challenges to the reductionist agenda. There
are other relatively specific examples, such as the puzzle of the origins of life.
But these are less dramatic, and less in the public domain. The third challenge
— emergence — is at first sight less obviously disturbing, but is more preva-
lent, more protean in its manifestations, more theoretically deconstructable,
and — ultimately — more likely to give rise to a basic theoretical model of
wide application. And potentially of wide enough relevance to throw light on
the two first and more immediate challenges to our understanding of the world.
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Emergence lies at the core of a number of controversies in science, often used
in a descriptive and speculative way to challenge more mechanistic and re-
ductive attempts to interpret the universe. Out of this dichotomy arises a
less-than-illuminating polarisation into a relative faithfulness to the simpler
Laplacian constructs of the scientific age, and a contemporary counter-culture
insistent on the essential mystery and predominance of emergent phenomena.
The purpose of this article is to point to some sort of reconciliation, mediated
by classical computability concepts going back to Turing — the unifying per-
sonality both in his overall concerns with computability, and in his breadth of
interests, taking in his seminal work on emergence, in the form of his work on
morphogenesis, and specifically phyllotaxis.

2 What is Emergence?

The term emergence is increasingly used in all sorts of contexts, often to
describe any situation in which there appears to be a breakdown in reductionist
explanation, or where there appears to be a global rather than purely local
causal dynamic at work. This is how Stuart Kauffman [26] argues in his recent
book on Reinventing the Sacred: A New View of Science, Reason and Religion
(p.281):

We are beyond reductionism: life, agency, meaning, value, and even con-
sciousness and morality almost certainly arose naturally, and the evolution
of the biosphere, economy, and human culture are stunningly creative often
in ways that cannot be foretold, indeed in ways that appear to be partially
lawless. The latter challenge to current science is radical. It runs starkly
counter to almost four hundred years of belief that natural laws will be
sufficient to explain what is real anywhere in the universe, a view I have
called the Galilean spell. The new view of emergence and ceaseless creativ-
ity partially beyond natural law is a truly new scientific worldview in which
science itself has limits. [My emphasis.]

If one is going to give emergence such a key role in restructuring the Laplacian
model of science, and to come up with a suitably basic explanatory model,
one needs to be more clear about what are the defining characteristics of
emergent phenomena. Ronald, Sipper and Capcarrère [37] draw a parallel with
the development of the Turing Test for intelligent machines, and use Turing’s
observer-based approach to formulate an emergence test. They comment that
“overly facile use of the term emergence has made it controversial”, and quote
Arkin [2, p.105]:

Emergence is often invoked in an almost mystical sense regarding the ca-
pabilities of behavior-based systems. Emergent behavior implies a holistic
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capability where the sum is considerably greater than its parts. It is true
that what occurs in a behavior-based system is often a surprise to the sys-
tem’s designer, but does the surprise come because of a shortcoming of the
analysis of the constituent behavioral building blocks and their coordina-
tion, or because of something else?

Ronald, Sipper and Capcarrère’s emergence test “centers on an observer’s
avowed incapacity (amazement) to reconcile his perception of an experiment
in terms of a global world view with his awareness of the atomic nature of the
elementary interactions”. As well as an observer, there is a ‘designer’ in the
picture, whose existence is used to assist the description of certain qualifying
features of the atomic interactions of the system to be tested. The test is
comprised of three criteria:

(1) Design: The system has been constructed by the designer, by describing
local elementary interactions between components (e.g., artificial crea-
tures and elements of the environment) in a language L1.

(2) Observation: The observer is fully aware of the design, but describes global
behaviors and properties of the running system, over a period of time,
using a language L2.

(3) Surprise: The language of design L1 and the language of observation
L2 are distinct, and the causal link between the elementary interactions
programmed in L1 and the behaviors observed in L2 is non-obvious to the
observer — who therefore experiences surprise. In other words, there is a
cognitive dissonance between the observer’s mental image of the system’s
design stated in L1 and his contemporaneous observation of the system’s
behavior stated in L2.

Ronald, Sipper and Capcarrère elaborate on this third condition to eliminate
evanescent instances of surprise. Notice that one can apply versions of these
criteria to a wide range of situations in which one is effectively capable of
‘looking over the shoulder’ of a putative designer — say one in which the local
science is handed down to us by Nature, and is though to be well-understood,
e.g., self-contained systems implementing Newtonian laws. The early history
of chaos theory is replete with examples exhibiting the right quality of sur-
prisingness, nicely communicated by the term ‘strange attractor’ coined [38]
by David Ruelle and Floris Takens in 1971.

Of course, there is now quite a long history (see for example [1]) aimed at
describing and improving our understanding of emergence, and as time goes
on the observer ‘surprise’ criterion may not be as robust as the corresponding
element of the Turing test. Turing himself played an innovative role in develop-
ing demystifying mathematics related to morphogenesis, and more particularly
phyllotaxis, both in his seminal published paper [44] on the mathematical the-
ory of biological pattern formation, and in his more opaque and incomplete
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writings contained in the posthumous collected works [45].

What is important though is not just the demystifying role of descriptions of
emergent phenomena, but the representational functionality they point to. It
is this latter aspect that takes us beyond emergence to a view of complexity in
Nature in which emergence plays a key inductive role. And it is the first two of
Ronald, Sipper and Capcarrère’s conditions which make us look for something
else within particular highly complex situations in which emergence clearly
plays a role, though not a definitive one. These first two conditions also point
to the a route to isolating the computational content of aspects of the physical
universe which appear on the one hand to transcend standard computability-
theoretic frameworks, and on the other entice reductionist explanations of
increasing implausibility.

3 Representations, Recursions, Memetic Transmission

In [9] we considered the computational content of features of the real world,
and more particularly, of developing computational practice. We looked at in-
stances in which there appeared to be a fairly basic transgression of the ‘Turing
barrier’ (defined by the limit of what is computable by an ideal computer as
captured theoretically by a universal Turing machine), and more complex ex-
amples such as human intelligence and quantum uncertainty. In the former
case one finds the emergence test broadly applicable, and in so doing can get
a more informative theoretical grasp of what emergence is as a computational
process.

For instance, going back to the influential 1988 paper of Paul Smolensky in
Behavioral and Brain Sciences , we find [39, p.3] him examining a model quali-
fying under criteria one and two of the emergence test, along with an indication
of an outcome which is surprising, judged according to computability-theoretic
expectations:

There is a reasonable chance that connectionist models will lead to the
development of new somewhat-general-purpose self-programming, massively
parallel analog computers, and a new theory of analog parallel computation:
they may possibly even challenge the strong construal of Church’s Thesis as
the claim that the class of well-defined computations is exhausted by those
of Turing machines.

Computational parallelism is an obviously important aspect of connectionist
models and many others, but one needs to be careful about claiming that
this is not simulated by a Turing machine. As is well-known (see, for example,
David Deutsch [19, p.210]), the parallelism delivered by the standard model of
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quantum computation can be explained within the classical sequential model.
A key ingredient, the addition of which does seem to stretch the classical
Turing model, is that of internal connectivity. Goldin and Wegner [23] quote
from Robin Milner’s 1991 Turing Award lecture [30, p.80]:

Through the seventies, I became convinced that a theory of concurrency
and interaction requires a new conceptual framework, not just a refinement
of what we find natural for sequential computing.

At the same time, parallelism and interactivity do seem to be basic features
of situations exhibiting emergence.

Another idea which runs through a number of hypercomputational proposals,
including Copeland’s [15] rediscovery of oracle Turing machines, is that of
adding contextual interactions. But as Davis has argued effectively, there is
plenty of scope to widen the definition of what is ‘internal’ to a given system to
bring a proposed new computational paradigm based on inadequately sourced
oracles back into the classical fold.

But in [24], for instance, Goldin and Wegner are not just talking about paral-
lelism and internal interactivity. And the inherent vagueness of examples they
quote both stretch the mathematical analysis, and the reductionist agenda
which feeds on that, to its limits:

One example of a problem that is not algorithmic is the following instruction
from a recipe [31]: ‘toss lightly until the mixture is crumbly.’ This problem
is not algorithmic because it is impossible for a computer to know how long
to mix: this may depend on conditions such as humidity that cannot be
predicted with certainty ahead of time. In the function-based mathematical
worldview, all inputs must be specified at the start of the computation,
preventing the kind of feedback that would be necessary to determine when
it’s time to stop mixing.

But such interactions, such as those involving physical oracles as in [3], appear
to take us beyond an analysis directly relevant to the computational ingredi-
ents of emergence as a basic computational phenomenon, and towards the
more hybrid computational environments presaged at the end of the previous
section.

A computational context which is both widely suspected of transcending the
standard Turing model, and of whose inner workings we have a high level of
detailed knowledge, is the human brain. And although we do know a great
deal about the way the human brain works, it clearly fails to satisfy the first
two conditions of the emergence test.

Part of the brain’s potential for enrichment of our modelling of the compu-

88



tationally complex lies in the way it seems to successfully deal with the sort
of imaging of the real world we would dearly like our computing machines
to perform. More important, the brain shows the capacity to perform re-
presentations of mental imaging to enable recursive development of complex
conceptual structures. At the same time, new techniques for relating structural
and functional features of the brain, for example, using positron emission scan
(PET) or a functional magnetic resonance imaging scan (fMRI), bring us much
closer to obtaining useful models.

As we noted in [9], connectionist models of computation based on the workings
of the human brain have developed in sophistication since Turing’s [43] dis-
cussion of ‘unorganised machines’ (cf. Jack Copeland and Diane Proudfoot’s
article [16] On Alan Turing’s Anticipation of Connectionism), and McCul-
loch and Pitts’ initial paper [32] on neural nets. But despite the growth of
computational neuroscience as an active research area, putting together in-
gredients from both artificial neural networks and neurophysiology, something
does seem to be missing. As Rodney Brooks [5] says “neither AI nor Alife has
produced artifacts that could be confused with a living organism for more than
an instant.” Or as Steven Pinker puts it: “. . . neural networks alone cannot do
the job”, going on to describe [34, p.124] “a kind of mental fecundity called
recursion”:

We humans can take an entire proposition and give it a role in some larger
proposition. Then we can take the larger proposition and embed it in a
still-larger one. Not only did the baby eat the slug, but the father saw the
baby eat the slug, and I wonder whether the father saw the baby eat the
slug, the father knows that I wonder whether he saw the baby eat the slug,
and I can guess that the father knows that I wonder whether he saw the
baby eat the slug, and so on.

We are good at devising computational models capable of imaging, and of
going some way to emulate how the brain comes up with neural patterns
representing quite complex formations. But the mechanisms the brain uses to
represent such patterns and relate them in complex ways is more elusive. What
makes the sort of recursion Stephen Pinker has in mind so difficult to get to
grips with at the structural level, is that it seems wound up with the puzzle of
consciousness and its relationship to emotions and feelings. Antonio Damasio
[17, p.169] describes the hierarchical development of a particular instance of
consciousness within the brain (or, rather, ‘organism’), interacting with some
external object:

. . . both organism and object are mapped as neural patterns, in first-order
maps; all of these neural patterns can become images. . . . The sensorimotor
maps pertaining to the object cause changes in the maps pertaining to the
organism. . . . [These] changes . . . can be re-represented in yet other maps
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(second-order maps) which thus represent the relationship of object and
organism. . . . The neural patterns transiently formed in second-order maps
can become mental images, no less so than the neural patterns in first-order
maps.

What is important here is the re-representation of neural patterns formed
across some region of the brain, in such a way that they can have a computa-
tional relevance in forming new patterns. This is where the clear demarcation
between computation and computational effect becomes blurred. The key con-
ception is of computational loops incorporating these ‘second-order’ aspects of
the computation itself. Building on this one can derive a plausible schematic
picture of of the global workings of the brain.

Considering how complex a structure the human brain is, it is surprising one
does not find more features needing reflecting in any basic computational
model based on it. However, a thorough trawl through the literature, and
one’s own experiences, fails to bring to light anything that might be held up
as computational principle transcending in a fundamental way what we have
already identified. The key ingredients we expect in a model are imaging,
parallelism, interconnectivity, and a counterpart to the second-order recursions
pointed to above.

Mathematically, the imaging appears to be dependent on the parallelism and
interconnectivity. This is what connectionist models are strong on. The re-
cursions are not so easy to model, though. Looked at logically, one has rep-
resentations of complex patternings of neural events underlying which there
is no clear local mechanism, but for which one would expect a description
in terms of the structures pertaining. Looked at physically, such descriptions
appear to emerge, and be associated with (but not exclusively) the sort of
non-linear mathematics governing the emergence of new relations from chaotic
environments. This leads us to turn the picture of re-representations of men-
tal imaging as a describable mapping on its head, and think (see [8]) in terms
of descriptions in terms of a structure defining, and hence determining, the
mental re-representations.

Looking at this more closely, what seems to be happening is that the brain
stores away not just the image, but a route to accessing that image as a whole.
This is what people who specialise in memorising very long numbers seem to
display — rather than attempting to go directly into the detailed memory
of a given number, they use simple representational tricks to call the entire
number up. Here is how Damasio summarises the process (and the quotation
from [17, p.170] is worth giving in full):

As the brain forms images of an object — such as a face, a melody, a
toothache, the memory of an event — and as the images of the object af-
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fect the state of the organism, yet another level of brain structure creates
a swift nonverbal account of the events that are taking place in the varied
brain regions activated as a consequence of the object-organism interaction.
The mapping of the object-related consequences occurs in first-order neural
maps representing the proto-self and object; the account of the causal rela-
tionship between object and organism can only be captured in second-order
neural maps. . . . one might say that the swift, second-order nonverbal ac-
count narrates a story: that of the organism caught in the act of representing
its own changing state as it goes about representing something else.

So what is going on here, and how can one make sense of this in a fundamental
enough way to apply to it computability-theoretic analysis? Let us describe
what seems to be the key idea in abstract terms, and then reinforce this
powerful conceptual lever via something more familiar, but with new eyes.

What we first looked at, in a fairly schematic way, is a particular physical sys-
tem whose constituents are governed by perfectly well-understood basic rules.
These rules are usually algorithmic, in that they can be described in terms
of functions simulatable on a computer, and their simplest consequences are
mathematically predictable. But although the global behaviour of the system
is determined by this algorithmic content, it may not itself be recognisably
algorithmic. We certainly encounter this in the mathematics, which may be
nonlinear and not yield the exact solutions needed to retain predictive control
of the system. We may be able to come up with a perfectly precise descrip-
tion of the system’s development which does not have the predictive — or
algorithmic — ramifications the atomic rules would lead us to expect.

If one is just looking for a broad understanding of the system, or for a predic-
tion of selected characteristics, the description may be sufficient. Otherwise,
one is faced with the practical problem of extracting some hidden algorithmic
content, perhaps via useful approximations, special cases, or computer simu-
lations. Geroch and Hartle [22] discuss this problem in their 1986 paper, in
which they suggest that “quantum gravity does seem to be a serious candidate
for a physical theory for whose application there is no algorithm.”

For the logician, this is a familiar scenario, for whom something describable in
a structure is said to be definable. The difference between computability and
definability is well-known. For example, if you go to any basic computabil-
ity text (e.g., Cooper [7]) you will find in the arithmetical hierarchy a usable
metaphor for what is happening here. What the arithmetical hierarchy encap-
sulates is the smallness of the computable world in relation to what we can
describe. And Post’s Theorem [35] shows us how language can be used to pro-
gressively describe increasingly incomputable objects and phenomena within
computable structures. An analysis of lower levels of the hierarchy even gives
us a clue to the formal role of computable approximations in constraining
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objects computably beyond our reach.

Now, the important thing to notice is that a description in some language can
be viewed as being essentially a code for an algorithm for reconstruction mean-
ing from the real world within the human brain. More precisely, a description
conveys an epistemological algorithm which enables us to emulate emergent
aspects, non-algorithmic, aspects of the world within the architecture of the
brain. Key to this is the logical structure of the relevant word, sentence, or
more extensive module of language. This, of course, is why certain ideas or
human creations have memetic content. They come with a representation of, a
recipe for, their mental recreation and simulation. The simulated phenomenon
may be far from being algorithmic in its full manifestation, but the brain may
be able to by-pass the computational barriers via an algorithmic device for
activating and directing the brain’s capacity for reproducing its own emergent
features.

Of course, this process depends on humanly constructed language. But the uni-
verse has the capacity to handle descriptions, memetic content, and codings
for algorithms which perform hugely sophisticated tasks, in a wide spectrum of
situations, even though this may be via ad hoc emergent language of its own.
Probably the most familiar example of this is the reproduction of various life
forms via chromosomes and other genetic materials. A chromosome is a struc-
tured package of DNA and DNA-bound protein, involving genes, regulatory
elements and other nucleotide sequences. Its coding functionality has algorith-
mic content, enabling the reproduction of complex aspects of the world — but
this only within a context which is not obviously algorithmic, and which seems
to ride upon undeniably emergent processes. Another example, involving the
human brain, but not a particular language, is the process whereby experts
in such tasks remember long seemingly random numbers. This is commonly
achieved by algorithmically coding the details of the numbers into images sim-
ulable in the brain, the simulation itself being dependent upon higher order
mental processes.

In order to associate a sufficiently basic model with such situations, which
replaces the simple Laplacian determinism captured via Turing computability,
one needs to look more closely at how science describes the world, and at the
scientist’s historic agenda. In particular, we will need to look at Turing’s 1939
extension of his basic machine model of computation. The aim will be to go
beyond an analysis of the computability-theoretic content of emergence, to
that leading to a better understanding of the computational role of emergence
in the wider context.
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4 The Turing Model

Turing’s extended [42] 1939 model, able to capture the algorithmic content of
those structures which are presented in terms of real numbers can be seen in
implicit form in Newton’s Principia, published some 272 years earlier. New-
ton’s work established a more intimate relationship between mathematics and
science, and one which held the attention of Turing, in various guises, through-
out his short life (see Hodges [25]). Just as the history of arithmetically-based
algorithms, underlying many human activities, eventually gave rise to mod-
els of computation such as the Turing machine, so the oracle Turing machine
schematically addresses the scientific focus on the extraction of predictions
governing the form of computable relations over the reals. Whereas the in-
putting of data presents only time problems for the first model, the second
model is designed to deal with possibly incomputable inputs, or at least inputs
for which we do not have available an algorithmic presentation. One might rea-
sonably assume that data originating from observation of the real world carries
with it some level of computability, but we are yet to agree a mathematical
model of physical computation which dispenses with the relativism of the
oracle Turing machine. In fact, even as the derivation of recognisable incom-
putability in mathematics arises from quantification over algorithmic objects,
so definability may play an essential role in fragmenting and structuring the
computational content of the real world. The Turing model of computability
over the natural numbers appears to many people to be a poor indicator of
what to expect in science.

Typically, specialist computability theorists are loath to speculate about real-
world significance for their work. Since the time of Turing, the theory of com-
putability has taken on a Laputa-like 1 aspect in the eyes of many people, an
arcane world disconnected from naturally arising information. Below, we look
at Post’s legacy of relating computability-theoretic concepts to intuitively im-
mediate information content, and examine how that can be further extended
to an informative relationship with the mathematics of contemporary science.

The oracle Turing machine, which made its first appearance in Turing [42],
should be familiar enough. The details are not important, but can be found
in most reasonable introductions to computability (see for instance [7]). One
just needs to add to the usual picture of a Turing machine the capacity for
questioning an oracle set about the membership status of individual natural
numbers.

The basic form of the questioning permitted is modelled on that of everyday
scientific practice. This is seen most clearly in today’s digital data gathering,

1 Swift even has a Laputan professor introduce Gulliver to The Engine, an (appro-
priately useless) early anticipation of today’s computing machines, and more.
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whereby one is limited to receiving data which can be expressed, and trans-
mitted to others, as information essentially finite in form. But with the model
comes the capacity to collate data in such a way as enable us to deal with
arbitrarily close approximations to infinitary inputs and hence outputs, giving
us an exact counterpart to the computing scientist working with real-world
observations. If the different number inputs to the oracle machine result in
0-1 outputs from the corresponding Turing computations, one can collate the
outputs to get a binary real computed from the oracle real, the latter now
viewed as an input. This gives a partial computable functional Φ, say, from
reals to reals, which may sometimes be described as a Turing reduction.

As usual, one cannot computably know when the machine for Φ computes on
a given natural number input, so Φ may not always give a fully defined real
output. So Φ may be partial. One can computably list all oracle machines,
and so index the infinite list of all such Φ, but one cannot computably sift out
the partial Φ’s from the list.

Anyway, put R together with this list, and we get the Turing Universe. That
is, we obtain a structure involving information in the form of real numbers,
algorithmically related by all possible Turing reductions. Depending on one’s
viewpoint, this is either a rather reduced scientific universe (if you are a poet,
a philosopher, or a string-theorist), or (if one is vainly looking for the richness
of algorithmic content contained on our list in the physical context, being
familiar with the richness of emergent structure in the Turing universe) a much
expanded one. But we will defer difficult comparisons between the information
content of the Turing universe and that of the physical universe until later.
For the moment we will follow Emil Post in his search for the informational
underpinnings of computational structure in a safer mathematical context.

Post’s first step was to gather together binary reals which are computationally
indistinguishable from each other, in the sense that they are mutually Turing
computable from each other. Mathematically, this delivered a more standard
mathematical structure to investigate — the familiar upper semi-lattice of
the degrees of unsolvability, or Turing degrees. There is no simple scientific
counterpart of the mathematical model, or any straightforward justification
for what Post did with the Turing universe for perfectly good mathematical
reasons — if one wants to get a material avatar of the Turing landscape one
needs both a closer and a more comprehensive view of the physical context.

5 Definability in Science

Schematically, any causal context framed in terms of everyday computable
mathematics can be modelled in terms of Turing reductions. Then emergence
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can be formalised as definability over the appropriate substructure of the Tur-
ing universe; or more generally, as invariance under automorphisms of the
Turing universe. Simple and fundamental as the notion of definability is, and
basic as it is to everyday thought and discourse, as a concept it is not well
understood outside of logic. This is seen most strikingly in the physicists’
apparent lack of awareness of the concept in interpreting the collapse of the
wave function. Quantum decoherence and the many-worlds hypothesis com-
prise a far more outlandish interpretive option than does speculating that
measurements, in enriching an environment, merely lead to an assertion of
definability. It appears a sign of desperation to protect consistent histories by
inventing new universes, when the mathematics of our observable universes
already contains a straightforward explanation. We have argued (see for in-
stance [13]) that many scientific puzzles can be explained in terms of failures
of definability in different contexts, and that the key task is to identify useful
theoretical models within which to investigate the nature of definability more
fully. One of the most relevant of these models has to be that of Turing, based
as it is on a careful analysis of the characteristics of algorithmic computation.

This brings us to a well-known and challenging research programme, initiated
by Hartley Rogers in his 1967 paper [36], in which he drew attention to the
fundamental problem of characterising the Turing invariant relations. Again,
the intuition is that these are key to pinning down how basic laws and entities
emerge as mathematical constraints on causal structure. It is important to
notice how the richness of Turing structure discovered so far becomes the raw
material for a multitude of non-trivially definable relations, matching in its
complexity what we attempt to model.

Unfortunately, the current state of Rogers’ programme is not good. For a
number of years research in this area was dominated by a proposal originating
with the Berkeley mathematician Leo Harrington, which can be (very) roughly
stated:

Bi-interpretability Conjecture: The Turing definable relations are exactly
those with information content describable in second-order arithmetic.

Most importantly, bi-interpretability is not consistent with the existence of
non-trivial Turing automorphisms. Despite decades of work by a number of
leaders in the field, the exact status of the conjecture is still a matter of
controversy.

For those of us who have grown up with Thomas Kuhn’s 1962 book [29] on the
structure of scientific revolutions, such difficulties and disagreements are not
seen as primarily professional failures, or triggers to collective shame (although
they may be that too), but rather signs that something scientifically impor-
tant is at stake. A far more public controversy currently shapes developments
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around important issues affecting theoretical physics — see, for example the
recent books of Lee Smolin [40] and Peter Woit [47].

This turns out to be very relevant to our theme of the importance of funda-
mental notions, such as that of mathematical definability, to the formation of
basic scientific theories. In this context, the specific focus on string theory of
the above-mentioned books of Smolin and Woit is important, given that string
theory was initially intended to remedy a number of inadequacies in current
scientific thinking, without really getting to grips with fundamental issues.
Our argument is that string theory does very validly point towards a substitu-
tion of abstract mathematics for inaccessible observational data. And that it
has produced some very beautiful and useful mathematics, and widened our
conceptual horizons in relation to models of the universe. But — that it has
failed to enlist notions of global definability to pin down important elements
of the real world.

As Peter Woit [47, p.1] describes, according to purely pragmatic criteria par-
ticle physics has produced a standard model which is remarkably successful,
and has great predictive power:

By 1973, physicists had in place what was to become a fantastically suc-
cessful theory of fundamental particles and their interactions, a theory that
was soon to acquire the name of the standard model. Since that time, the
overwhelming triumph of the standard model has been matched by a sim-
ilarly overwhelming failure to find any way to make further progress on
fundamental questions.

The reasons why people are dissatisfied echo misgivings going back to Einstein
himself [20, p.63]:

. . . I would like to state a theorem which at present can not be based upon
anything more than upon a faith in the simplicity, i.e. intelligibility, of nature
. . . nature is so constituted that it is possible logically to lay down such
strongly determined laws that within these laws only rationally completely
determined constants occur (not constants, therefore, whose numerical value
could be changed without destroying the theory) . . .

If one really does have a satisfying description of how the universe is, it should
not contain arbitrary elements with no plausible explanation. In particular, a
theory containing arbitrary constants, which one adjusts to fit the intended
interpretation of the theory, is not complete. And as Woit observes:

One way of thinking about what is unsatisfactory about the standard model
is that it leaves seventeen non-trivial numbers still to be explained, . . .

At one time, it had been hoped that string theory would supply a sufficiently
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fundamental framework to provide a much more coherent and comprehensive
description, in which such arbitrary ingredients were properly pinned down.
But despite its mathematical attractions, there are growing misgivings about
its claimed status as “the only game in town” as a unifying explanatory theory.
Here is how one time string theorist Daniel Friedan [21] combatively puts it:

The longstanding crisis of string theory is its complete failure to explain or
predict any large distance physics. . . . String theory is incapable of deter-
mining the dimension, geometry, particle spectrum and coupling constants
of macroscopic spacetime. . . . The reliability of string theory cannot be eval-
uated, much less established. String theory has no credibility as a candidate
theory of physics.

Smolin starts his book [40]:

From the beginning of physics, there have been those who imagined they
would be the last generation to face the unknown. Physics has always seemed
to its practitioners to be almost complete. This complacency is shattered
only during revolutions, when honest people are forced to admit that they
don’t know the basics.

He goes on to list what he calls the “five great [unsolved] problems in theo-
retical physics”. Gathering these together, and slightly editing, they are [40,
pp.5-16]:

1. Combine general relativity and quantum theory into a single theory that
can claim to be the complete theory of nature.

2. Resolve the problems in the foundations of quantum mechanics.
3. The unification of particles and forces problem: Determine whether or not

the various particles and forces can be unified in a theory that explains
them all as manifestations of a single, fundamental entity.

4. Explain how the values of the free constants in the standard model of
physics are chosen in nature.

5. Explain dark matter and dark energy. Or, if they do not exist, determine
how and why gravity is modified on large scales.

That each of these questions can be framed in terms of definability is not
so surprising, since that is exactly how, essentially, they are approached by
researchers. The question is the extent to which progress is impeded by a lack
of consciousness of this fact, and an imperfect grip of what is fundamental.
Quoting Einstein again (from a letter to Robert Thornton, dated 7 December
1944, Einstein Archive 61-754), this time on the relevance of a philosophical
approach to physics:

So many people today – and even professional scientists – seem to me like
someone has seen thousands of trees but has never seen a forest. A knowl-
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edge of the historical and philosophical background gives that kind of in-
dependence from prejudices of his generation from which most scientists
are suffering. This independence created by philosophical insight is – in my
opinion – the mark of distinction between a mere artisan or specialist and
a real seeker after truth.

Smolin’s comment [40, p.263] is in the same direction, though more specifically
directed at the string theorists:

The style of the string theory community . . . is a continuation of the culture
of elementary-particle theory. This has always been a more brash, aggres-
sive, and competitive atmosphere, in which theorists vie to respond quickly
to new developments . . . and are distrustful of philosophical issues. This
style supplanted the more reflective, philosophical style that characterized
Einstein and the inventors of quantum theory, and it triumphed as the cen-
ter of science moved to America and the intellectual focus moved from the
exploration of fundamental new theories to their application.

So what is it that is fundamental that is being missed? For Smolin [40, p.241],
it is causality :

It is not only the case that the spacetime geometry determines what the
causal relations are. This can be turned around: Causal relations can deter-
mine determine the spacetime geometry . . . Its easy to talk about space or
spacetime emerging from something more fundamental, but those who have
tried to develop the idea have found it difficult to realize in practice. . . . We
now believe they failed because they ignored the role that causality plays
in spacetime. These days, many of us working on quantum gravity believe
that causality itself is fundamental – and is thus meaningful even at a level
where the notion of space has disappeared.

Citing Penrose as an early champion of the role of causality, he also mentions
Rafael Sorkin, Fay Dowker, and Fotini Markopoulou, known in this context for
their interesting work on causal sets (see [4]), which abstract from causality
relevant aspects of its underlying ordering relation. Essentially, causal sets
are partial orderings which are locally finite, providing a model of spacetime
with built-in discreteness. Despite the apparent simplicity of the mathematical
model, it has had striking success in approximating the known characteristics
of spacetime. An early prediction, in tune with observation, concerned the
value of Einstein’s cosmological constant.

Of course, this preoccupation with causality might suggest to a logician a need
to also look at its computational content. Smolin’s comment that “Causal re-
lations can determine the spacetime geometry” touches on one of the biggest
disappointments with string theory, which turns out to be a ‘background de-
pendant’ theory with a vengeance — one has literally thousands of candidate
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Calabi-Yau spaces for shaping the extra dimensions of superstring theory. In
current superstring models, Calabi-Yau manifolds are those qualifying as pos-
sible space formations for the six hidden spatial dimensions, their undetected
status explained by the assumption of their being smaller than currently ob-
servable lengths.

Ideally, a truly fundamental mathematical model should be background inde-
pendent, bringing with it a spacetime geometry arising from within.

6 The Emergence-Definability Symbiosis

There are obvious parallels between the Turing universe and the material
world. Each of which in isolation, to those working with specific complexities,
may seem superficial and unduly schematic. But the lessons of the history
of mathematics and its applications is that the simplest of abstractions can
yield unexpectedly far-reaching and deep insights into the nature of the real
world. The main achievement of the Turing model, and its definable content,
is to illuminate and structure the role of computability theoretic expressions
of emergence.

At the most basic level, science describes the world in terms of real numbers.
This is not always immediately apparent, any more that the computer on
ones desk is obviously an avatar of a universal Turing machine. Nevertheless,
scientific theories consist, in their essentials, of postulated relations upon reals.
These reals are abstractions, and do not come necessarily with any recognisable
metric. They are used because they are the most advanced presentational
device we can practically work with. There is no faith that reality itself consists
of information presented in terms of reals. In fact, those of us who believe that
mathematics is indivisible, no less in its relevance to the material world, have
a due humility about the capacity for our science to capture more than a
surface description of reality.

Some scientists would take us in the other direction, and claim that the uni-
verse is actually finite, or at least countably discrete. We have argued elsewhere
(see for example [14]) that to most of us a universe without algorithmic content
is inconceivable. And that once one has swallowed that bitter pill, infinitary
objects are not just a mathematical convenience (or inconvenience, depending
on one’s viewpoint), but become part of the mathematical mold on which the
world depends for its shape. As it is, we well know how essential algorithmic
content is to our understanding of the world. The universe comes with recipes
for doing things. It is these recipes which generate the rich information content
we observe, and it is reals which are the most capacious receptacles we can
humanly carry our information in, and practically unpack.
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Globally, there are still many questions concerning the extent to which one
can extend the scientific perspective to a comprehensive presentation of the
universe in terms of reals — the latter being just what we need to do in order
to model the immanent emergence of constants and natural laws from an
entire universe. Of course, there are many examples of presentations entailed
by scientific models of particular aspects of the real world. But given the
fragmentation of science, is fairly clear that less natural presentations may well
have an explanatory role, despite their lack of a role in practical computation.

The natural laws we observe are largely based on algorithmic relations be-
tween reals. For instance, Newtonian laws of motion will computably predict,
under reasonable assumptions, the state of two particles moving under gravity
over different moments in time. And the character of the computation involved
can be represented as a Turing functional over the reals representing different
time-related two-particle states. One can point to physical transitions which
are not obviously algorithmic, but these will usually be composite processes,
in which the underlying physical principles are understood, but the mathe-
matics of their workings outstrip available analytical techniques. Over forty
years ago, Georg Kreisel [27] distinguished between classical systems and co-
operative phenomena not known to have Turing computable behaviour, and
proposed [28, p.143, Note 2] a collision problem related to the 3-body problem,
which might result in “an analog computation of a non-recursive function (by
repeating collision experiments sufficiently often)”. However, there is a qual-
itatively different apparent breakdown in computability of natural laws at
the quantum level — the measurement problem challenges us to explain how
certain quantum mechanical probabilities are converted into a well-defined
outcome following a measurement. In the absence of a plausible explanation,
one is denied a computable prediction. The physical significance of the Turing
model depends upon its capacity for explaining what is happening here. If the
phenomenon is not composite, it does need to be related in a clear way to a
Turing universe designed to model computable causal structure. We will need
to talk more about definability and invariance.

For the moment, let us think in terms of what an analysis of the automor-
phisms of any sufficiently comprehensive, sufficiently fundamental, mathemat-
ical model of the material universe might deliver.

Let us first look at the relationship between automorphisms and many-worlds.
When one says “I tossed a coin and it came down heads, maybe that means
there is a parallel universe where I tossed the coin and it came down tails”,
one is actually predicating a large degree of correspondence between the two
parallel universes. The assumption that you exist in the two universes puts a
huge degree of constraint on the possible differences — but nevertheless, some
relatively minor aspect of our universe has been rearranged in the parallel one.
There are then different ways of relating this to the mathematical concept of
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an automorphism. One could say that the two parallel worlds are actually
isomorphic, but that the structure was not able to define the outcome of the
coin toss. So it and its consequences appear differently in the two worlds. Or
one could say that what has happened is that the worlds are not isomorphic,
that actually we were able to change quite a lot, without the parallel universe
looking very different, and that it was these fundamental but hidden differ-
ences which forces the worlds to be separate and not superimposed, quantum
fashion. The second view is more consistent with the view of quantum ambi-
guity displaying a failure of definability. The suggestion here being that the
observed existence of a particle (or cat!) in two different states at the same
time merely exhibits an automorphism of our universe under which the clas-
sical level is rigid (just as the Turing universe displays rigidity above 0′′) but
under which the sparseness of defining structure at the more basic quantum
level enables the automorphism to re-represent our universe, with everything
at our level intact, but with the particle in simultaneously different states
down at the quantum level. And since our classical world has no need to de-
cohere these different possibilities into parallel universes, we live in a world
with the automorphic versions superimposed. But when we make an observa-
tion, we establish a link between the undefined state of the particle and the
classical level of reality, which destroys the relevance of the automorphism.
To believe that we now get parallel universes in which the alternative states
are preserved, one now needs to decide how much else one is going to change
about our universe to enable the state of the particle destroyed as a possiblity
to survive in the parallel universe — and what weird and wonderful things
one must accommodate in order to make that feasible. It is hard at this point
to discard the benefits brought by a little mathematical sophistication. Quan-
tum ambiguity as a failure of definability is a far more palatable alternative
than the invention of new worlds of which we have no evidence or scientific
understanding.

Another key conceptual element in the drawing together of a global picture of
our universe with a basic mathematical model is the correspondence between
emergent phenomena and definable relations. This gives us a framework within
which to explain the particular forms of the physical constants and natural
laws familiar to us from the standard model science currently provides. It
goes some way towards substantiating Penrose’s [33, pp1̇06-107] ‘strong de-
terminism’, according to which “all the complication, variety and apparent
randomness that we see all about us, as well as the precise physical laws, are
all exact and unambiguous consequences of one single coherent mathematical
structure” — and repairs the serious failure of the standard model pointed to
by researchers such as Smolin and Woit. It also provides a hierarchical model
of the fragmentation of the scientific enterprise. This means that despite the
causal connections between say particle physics and the study of living organ-
isms, the corresponding disciplines are based on quite different basic entities
and natural laws, and there is no feasible and informative reduction of one
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to another. The entities in one field may emerge through phase transitions
characterised in terms of definable relations in the other, along with their dis-
tinct causal structures. In this context, it may be that the answer to Smolin’s
first ‘great unsolved problem in theoretical physics’ consists of an explanation
of why there is no single theory (of the kind that makes useful predictions)
combining general relativity and quantum theory.

For further discussion of such issues, see [6], [9], [10], [11], [13] and [14].
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Abstract

We claim that the theoretical hypercomputation problem has already
been solved, and that what remains is an engineering problem. We
review our construction of the Halting Function (the function that
settles the Halting Problem) and then sketch possible blueprints for
an actual hypercomputer.

1 Prologue

The authors have degrees in engineering. Engineers build things. So, the
goal of this paper is to sketch a series of steps at whose conclusion we would
have an actual, working hypercomputer.

Will it work? We leave that question unanswered. But, as we insist, we
are cautiously optimistic that its answer may turn out to be a “yes.”

We take our cue from the following remark by Scarpellini [15] :
∗The authors are partially funded by CNPq–Brazil, Philosophy Section. They also

acknowledge support from the Brazilian Academy of Philosophy.
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In this connection one may ask whether it is possible to con-
struct an analog–computer which is in a position to generate
functions f(x) for which the predicate

∫
f(x) cos(nx) dx > 0 is

not decidable while the machine itself decides by direct mea-
surement whether

∫
f(x) cos(nx) dx is greater than zero or not.

Such a machine is naturally only of theoretical interest, since
faultless measuring is assumed, which requires the (absolute)
validity of classical electrodynamics and probably such technical
possibilities as the existence of innitely thin perfectly conduct-
ing wires. All the same, the (theoretical) construction of such a
machine would illustrate the possibility of non-recursive natural
processes.

(Scarpellini’s paper discusses among other results the decidability of such
predicates.)

The hypercomputation problem

The hypercomputation problem splits into two questions:

1. The theoretical hypercomputation problem. Can we conceive a hyper-
computer, given ideal operating conditions?

2. The practical hypercomputation problem. Given a positive answer to
the preceding question, can we build a concrete, working, hypercom-
puter?

We argue here that the answer to the first question is a definite “yes,”
if we accept that ideal analog machines fit into the requirements (“ideal
operating conditions” — just take a look at Scarpellini’s papers [15, 16]).
The second question boils down according to our viewpoint to an engineering
problem; we may answer it with a “maybe,” or “we have to see.” Or, if we
follow the classical injunction: build a prototype!

Then we will see how it performs; which engineering problems must be
overcome in order to have a decently working hypercomputer.

Structure of the paper

The paper is divided into two major sections. The first major section ex-
plicitly constructs the Halting Function, that is, the function that settles
Turing’s Halting Problem. Of course that cannot be done within Peano
Arithmetic, or with the help of partial recursive functions. But we can do
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it if we extend the language of arithmetic in adequate ways, for there are
infinitely many explicit expressions for the Halting Function. (No extraor-
dinary tools are required.)

The second major section sketches the construction of a hypercomputer
in a series of steps. We discuss pros and cons; our conclusion is cautiously
optimistic — we believe that the gizmo can be made, and that something
like it will eventually be built in the near future.

Motivation

The ideas presented here were originally published in [3]. We were interested
in the decision problem for chaotic systems, which appeared to us as a
possible example of an undecidable question with practical implications.

A suggestion by P. Suppes [18] led us to Richardson’s transforms [13],
and out of those we obtained an explicit expression for the Halting Function
(see the references; see also [4, 6] for a survey). It came as a surprise to
us; we had long had the incorrect idea that none of the usual mathematical
languages could explicitly contain an expression for the Halting Function,
as it seemed to be something so deeply fundamental.

Then it was clear from start that we were dealing with a construction
that had something to do with super–Turing machines [17]. However a more
explicit presentation of our ideas on the matter of hypercomputation was
only published in 1996 [5].

Style of the paper

Since most results in the present paper have already been discussed else-
where, we have decided to argue in an informal, almost näıve way. We have
also added some redundancy to our presentation.

Informed readers will notice that we avoid a detailed characterization of
analog computers. (We simply supposed that the functions we use in the
construction of an expression for the Halting Function are computable.) We
are aware of the main theoretical contributions to the field, from Shannon to
Pour–El. However our starting point is Scarpellini’s remark quoted above:
analog computers are usually seen as poor relatives of digital machines, as
they can only compute — in the sense of analog computation — a relatively
small family of functions. Yet Scarpellini surprised everybody by showing
that ideal analog computers can decide undecidable predicates (with respect
to some theory with a recursively enumerable set of theorems). So, they are
definitely very powerful in an unique way, even if in an idealized domain.
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2 Hypercomputation theory

(We stress that this is just an informal sketch.) If we define a hypercomputer
to be a machine that can generate, or decide, all arithmetical truths, then
very little is required to build a theory that fits the requirement, namely,
Peano Arithmetic (PA) plus Shoenfield’s version of the ω–rule is enough (for
a nice presentation of Shoenfield’s rule see [10]).

PA plus Shoenfield’s rule proves all true arithmetic sentences, that is,
those that hold of the standard model. The hypercomputation theory we
sketched in [5] does so. The idea is: we start from Turing machine theory.
We then add to it an expression for the function that settles the Halting
Problem, and postulate it to be (hyper)computable. The jump [14] allows us
to decide arithmetic degrees beyond 0 [4, 5]. Given a solution for the Halting
Problem, and given the jump, we can decide any arithmetical sentence in a
finite number of steps.

We have also mentioned that a “geometrical principle” implies hyper-
computation [5]:

We can always decide whether two smooth curves in the interior
of a rectangle in the plane intersect.

That “geometrical principle” has an advantage and a disadvantage. The
advantage: it is easy to understand — actually a stricter version of it is
enough, but the general version stated above is more synthetic. The dis-
advantage: we must show how to translate that principle, which deals with
smooth, continuous geometrical objects, into the discrete objects that are
in the domain of arithmetic. The trick is done through Richardson’s trans-
forms, soon to be introduced.

So we take:

Definition 2.1 A hypercomputer is a theoretical device that settles at least
the Halting Problem.

Follows by our constructions (see the references) that such a device can
be extended to another device that settles all arithmetical truths along the
standard model.

3 From Richardson’s transforms to the Halting
Function

The present section is based on [1]; for the proofs see [13]. Our presentation
splits into several topics:
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• Formalized arithmetic and Turing machines.

• Richardson’s maps.

• The Halting Function in formal languages that extend arithmetic.

We refer to [12] for notation and requirements from logic. We use: ¬,
“not,” ∨, “or,” ∧, “and,” →, “if... then...,” ↔, “if and only if,” ∃x, “there
is a x,” ∀x, “for every x.” P (x) is a formula with x free; it roughly means
“x has property P .” Finally T ` ξ means T proves ξ, or ξ is a theorem of
T . ω is the set of natural numbers, ω = {0, 1, 2, . . .}.

Algorithmic functions are given by their programs coded in Gödel num-
bers e [14]. We will sometimes use Turing machines (noted by sans–serif
letters with the Gödel number as index Me) or partial recursive functions,
noted {e}.

We start from a very simple theory of arithmetic, noted A1. Its language
includes variables x, y, . . ., two constants, 0 and 1, the equality sign =, and
two operation signs, +,×. Basically A1 has axioms for the operations +
and ×, the behavior of constants 0 and 1, and the trichotomy axiom, that
is, given two natural numbers x and y, either x < y or x = y or x > y. A1
contains no induction axiom.

The standard interpretation for A1 is: the variables x, y, . . . range over
the natural numbers, and 0 and 1 are seen as, respectively, zero and one.
The only requirement we impose on A1 is: that theory should be strong
enough to formally include all of Turing machine theory. Recall that a
Turing machine is given by its Gödel number, which recursively codes the
machine’s program. Rigorously, for A1, we must have:

Definition 3.1 A Turing machine of Gödel number e operating on x with
output y, {e}(x) = y is representable in theory A1 if there is a formula
Fe(x, y) in the language of A1 so that:

1. A1 ` {Fe(x, y) ∧ Fe(x, z)→ [y = z]}, and

2. For natural numbers a, b, if {e}(a) = b, then A1 ` Fe(a, b).

Then we have the representation theorem for partial recursive functions in
A1:

Proposition 3.2 Every Turing machine is representable in A1. Moreover
there is an effective procedure that allows us to obtain Fe from the Gödel
number e.
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We restrict here our interest to theories that are arithmetically sound,
that is, which have a model with standard arithmetic for its arithmetical
segment.

Richardson’s map

We now describe the Richardson transforms [6, 13]. We start from a strength-
ening of Proposition 3.2:

Proposition 3.3 If {e}(a) = b, for natural numbers a, b, then we can al-
gorithmically construct a polynomial pe over the natural numbers so that
[{e}(a) = b]↔ [∃x1, x2, . . . , xk ∈ ω pe(a, b, x1, x2, . . . , xk) = 0].

Follows:

Proposition 3.4 a ∈ Re, where Re is a recursively enumerable set, if and
only if there are e and p so that ∃x1, x2, . . . , xk ∈ ω [pe(a, x1, x2, . . . , xk) = 0].

Richardson’s map [6, 13] allows us to obtain in an algorithmic way, given
any such pe(a, . . .), a real–defined and real–valued function fe(a, . . .) that has
roots if and only if pe(a, . . .) has roots as a Diophantine equation.

Richardson’s map: multidimensional version

We can be more specific: let A be the algebra of subelementary functions
(polynomials over the reals, sines, cosines; everything closed under +,−,
products by real numbers and by the functions that generate the algebra,
to which we add function composition). Let R denote the real line.

(We do not require the exponential function in our constructions.)
We now state the first of Richardson’s main results: given that A1 ⊂

ZFC, and if P is the set of all finite–lenght polynomials over ω:

Proposition 3.5 (Richardson’s Map, I) There is an injection κP : P →
A, where P denotes the algebra of ω–valued polynomials in a finite number
of variables, and A is the algebra of subelementary functions described above,
such that:

1. κP is constructive, that is, given the expression for p in A1, there is an
effective procedure so that we can obtain the corresponding expression
for F = κP(p) in ZFC.
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2. κP is 1–1.

3. For x = (x1, . . . , xn), ∃x ∈ ωn p(m,x) = 0 if and only if ∃x ∈
Rn F (m,x) = 0 if and only if ∃x ∈ Rn F (m,x) ≤ 1, for p ∈ P
and F ∈ A.

4. The injection κP is proper.

The crucial property is given in step 3.: it allows us to translate the
existence of roots for Diophantine equations into roots of the corresponding
transformed real–defined and real–valued function, with some extras.

Next step gives us a 1–dimensional version of Richardson’s map.

Richardson’s map: one–dimensional version

Corollary 3.6 (Richardson’s Map, II) Let A1 be the algebra of subele-
mentary functions over a single real variable x. Then there is a map κ′ :
P → A1 such that:

1. κ′ is constructive.

2. κ′ is 1–1.

3. The inclusion κ′(P) ⊂ A1 is proper.

4. ∃x ∈ ωn p(m,x) = 0 if and only if ∃x ∈ R L(m,x) = 0 if and only
if ∃x ∈ R G(m,x) ≤ 1, for adequate L,G, whose expressions can be
explicitly exhibited.

The Halting Function

The main result in Alan Turing’s remarkable 1937 paper, “On computable
numbers, with an application to the Entscheidungsproblem” [19], is a proof
of the algorithmic unsolvability of a version of the halting problem: given
an arbitrary Turing machine of Gödel number e, for input x, there is no al-
gorithm that decides whether {e}(x) stops and outputs something, or enters
an infinite loop.

Remark 3.7 Let Mm(a) ↓ mean: “Turing machine of Gödel number m
stops over input a and gives some output.” Similarly Mm(a) ↑ means, “Tur-
ing machine of Gödel number m enters an infinite loop over input a.” Then
we can define the halting function θ:
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• θ(m, a) = 1 if and only if Mm(a) ↓.

• θ(m, a) = 0 if and only if Mm(a) ↑.

θ(m, a) is the halting function for Mm over input a.

θ isn’t algorithmic, of course [14, 19], that is, there is no Turing machine
that computes it.

Remark 3.8 As we now show, we can explicitly write an expression for a
function in the language of classical analysis that settles the halting problem.
We proceed as follows:

• Given Turing machine Mm(a) = b, for natural numbers a, b, we can
algorithmically obtain a polynomial pm(〈a, b〉, x1, . . . , xk) so that:

Mm(a) = b↔ ∃x1, . . . , x2 ∈ ω [pm(〈a, b〉, x1, . . . , xk) = 0].

• Given Fm, real–defined and real–valued, we have that:

∃x1, . . . , x2 ∈ ω [pm(〈a, b〉, x1, . . . , xk) = 0]↔

↔ ∃x1, . . . , xk ∈ RFm(〈a, b〉, x1, . . . , xk) ≤ 1.

and
∀x1, . . . , x2 ∈ ω [pm(〈a, b〉, x1, . . . , xk) 6= 0]↔

↔ ∀x1, . . . , xk ∈ RFm(〈a, b〉, x1, . . . , xk) > 1.

• That is to say: Mm(a) ↓ if and only if Fm(a, . . .) goes below 1, and
Mm(a) ↑ if and only if Fm(a, . . .) stays above 1.

This is the property we use in order to construct the halting function
θm.

We now need the concept of an universal Diophantine polynomial. Martin
Davis [7] describes an algorithmic procedure out of which, given a Turing
machine with input a Mm(a), we obtain a polynomial pm(a, x1, . . .) so that
it has roots if and only if Mm(a) converges (outputs some result). Now, if
U(m, a) is an universal Turing machine [14, 19], we can similarly obtain a
polynomial p(〈m, a〉, . . .) which stands for pm(a, . . .).
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More precisely, if [∃x1, . . . , xk pm(〈a, b〉, x1, . . . , xk) = 0] ↔ [Mm(a) = b],
then, for the universal polynomial p(〈m, a, b〉, . . .):

[∃x1, . . . , xr p(〈m, a, b〉, x1, . . . , xr) = 0]↔

↔ [∃x1, . . . , xk pm(〈a, b〉, x1, . . . , xk) = 0].

From the preceding considerations, if σ is the sign function, σ(±x) = ±1
and σ(0) = 0:

Proposition 3.9 (The Halting Function.) The Halting Function θ(n, q)
is explicitly given by:

θ(n, q) = σ(Gn,q),

Gn,q =
∫ +∞

−∞
Cn,q(x)e−x

2
dx,

Cm,q(x) = |Fm,q(x)− 1| − (Fm,q(x)− 1).

Fn,q(x) = κP pn,q.

Here pn,q is the two–parameter universal Diophantine polynomial

p(〈n, q〉, x1, x2, . . . , xr)

and κP is as in Proposition 3.5.
There are infinitely many alternative explicit expressions for the halting

function θ [6].

Remark 3.10 We do not require Richardson’s transform to obtain an ex-
pression for the Halting Function. There is also an expression for the Halting
Function even within a simple extension of A1. Let p(n,x) be a 1–parameter
universal polynomial; x abbreviates x1, . . . , xp. Then either p2(n,x) ≥ 1,
for all x ∈ ωp, or there are x in ωp such that p2(n,x) = 0 sometimes. As
σ(x) when restricted to ω is primitive recursive, we may define a function
ψ(n,x) = 1− σp2(n,x) such that:

• Either for all x ∈ ωp, ψ(n,x) = 0;

• Or there are x ∈ ωp so that ψ(n,x) = 1 sometimes.

Thus the halting function can be represented as:

θ(n) = σ[
∑
τq(x)

ψ(n,x)
τ q(x)!

],

where τ q(x) denotes the positive integer given out of x by the pairing func-
tion τ : if τ q maps q–tuples of positive integers onto single positive integers,
τ q+1 = τ(x, τ q(x)). Recall that the infinite sum can be given by a simple
iterative definition.
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4 How to build a hypercomputer

There are two ways we can attack the question. The first one is based on
the previous construction of the Halting Function. The second one is based
on an alternative, well established technique.

First notice the following:

The Halting Problem is: given an arbitrary Turing machine {e}
and an arbitrary input n, can we check whether {e}(n) stops?

Now pick up some e, n and keep it fixed. As it will turn out, there is
an algorithmic procedure (sketched below) that allows us to check whether
{e}(n) stops or not. (There is a price to pay; it may be of high complexity,
but we can leave that difficulty aside for the moment). Difficulties appear
when we go from this particular instance to a construction that encompasses
all instances, that is, when we add the universal quantifier.

We will now consider two possibilities for a hypercomputer.

Our proposal for a hypercomputer

The present construction is based on the following result by Richardson
[2, 13, 15, 16]:

Remark 4.1

• Given Turing machine Mm(a) = b, for natural numbers a, b, we can
algorithmically obtain a polynomial pm(〈a, b〉, x1, . . . , xk) so that:

Mm(a) = b↔ ∃x1, . . . , x2 ∈ ω [pm(〈a, b〉, x1, . . . , xk) = 0].

• Recall that we can construct an expression for a Fm, real–defined and
real–valued, so that:

∃x1, . . . , x2 ∈ ω [pm(〈a, b〉, x1, . . . , xk) = 0]↔

↔ ∃x1, . . . , xk ∈ RFm(〈a, b〉, x1, . . . , xk) ≤ 1.

and
∀x1, . . . , x2 ∈ ω [pm(〈a, b〉, x1, . . . , xk) 6= 0]↔

↔ ∀x1, . . . , xk ∈ RFm(〈a, b〉, x1, . . . , xk) > 1.

• In a more figurative way: Mm(a) ↓ (converges) if and only if Fm(a, . . .)
dives below 1, and Mm(a) ↑ (diverges, enters an infinite loop) if and
only if Fm(a, . . .) stays above 1.
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(See Remark 3.8.) So, machine e stops over input n if Richardson’s
transform F(e,n) of the corresponding Diophantine polynomial p(〈e, n〉, . . .)
dives below 0; otherwise it stays above 1. Of course we can modify the
corresponding Richardson transform in such a way that the “signaling gap”
from 0 to 1 is widened to an arbitrary k.

Now consider the following analog machine:

• First compactify F by some simple elementary–function map, over the
semi–open interval [0,K), that is to say, map [0,∞) over [0,K) and
carry F over. We will note F ′ the compactified version of function F .

• Given each pair (e, n), F ′(e,n) is built out of elementary functions plus
π.

• So there is an ideal analog computer that computes it.

• Notice that the values (e, n) can be easily coded as parameters in our
analog machine.

• So, build it.

By the preceding considerations, it is our belief that the theoretical hy-
percomputation problem has already been settled. The realistic hypercom-
putation problem is another matter, but is a problem that belongs to the
realm of engineering.

We see three main difficulties (there may be others) in the actual con-
struction of a hypercomputer if we follow the preceding steps:

• The construction of π. How are we going to insert π as a parameter
in our machine? We have considered the possibility that π should be
derived out of a geometrical, graphical construction.

• Overshoot problems. This is another difficulty to be considered. The
compactification procedure may lead to irregular, out–of–control be-
havior when one goes to the (compactified) infinite point.

• The size of e and n. For actual computers e and n may be very large,
and coding them into an analog computer may be quite difficult.

We do not consider the usual objection that says, the world is ruled
by quantum mechanics, and is therefore discrete, so any analog, continuous
construction will end up by being impossible. We suggest reading on that
a brilliant, half–forgotten text, Havemann’s essay of the discrete and the
continuous [11].
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Turing–Fefermann hypercomputer

The main reason why the authors have always believed that someday some-
one will build a hypercomputer stems from the following fact: given one
instance, or a finite but arbitrary number of instances of the Halting Prob-
lem, we can always algorithmically decide them. Here it goes why it is
so.

• Each instance of the Halting Problem (if it fails to stop over an input)
is arithmetically equivalent to a Π1 sentence,

∀x1, x2, . . . , p(〈m,n〉x1, x2, . . .) 6= 0.

(Here {m} is the machine, and n is the input we wish to test.)

• Then we know [9, 10, 20] that there will be some theory Tk in the
Turing–Fefermann hierarchy, T0 = PA, T1 = PA + Consis PA, . . . ,
that will prove such a Π1 sentence, if it is true. On the other hand, we
can recursively test for its negation, ∃x1, x2, . . . , p(. . .) = 0. Therefore
we can build a recursive procedure in order to decide whether {m}(n)
stops or not.

• We thus generate two listings of results.

• List A: we test p(〈m,n〉, x1, x2, . . .) for each n–tuple x1, x2, . . . in order
to check whether some n–tuple is such that p(〈m,n〉, . . .) = 0.

If it does, the procedure stops, and we learn that {m}(n) stops.

• List B: we go by dovetailing, and generate all theorems for T0, T1, T2,
in the Turing–Fefermann hierarchy.

If ∀x1, . . . p(〈m,n〉, x1, . . .) 6= 0 appears among the theorems in that
listing, we stop the procedure.

There is a catch: procedure B is extremely costly in computational terms
(procedure A may also be very costly). However we may use — we expect
— our analog machine to speed it up. Anyway, the point is: finite arbi-
trary instances of the Halting Problem are always algorithmically decidable.
(Franzen’s objections [10] do not apply precisely because of that: we only
have to check a finite number of instances of the Halting Problem, in actual
situations.)

Remark 4.2 An important point: we cannot formally “put together” all
such procedures that settle particular instances of the Halting Problem and
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obtain a theory with a recursively enumerable set of theorems that settles
all instances of the Halting Problem, as that theory would then violate the
Gödel incompleteness theorems. In fact, it can be shown that such a theory
implies Shoenfield’s ω–rule, and PA plus Shoenfield’s rule is a theory with
a nonrecursively enumerable set of theorems.

More precisely: no extension of arithmetic with a recursively enumerable
set of theorems can prove that the algorithm sketched above delivers what it
promises.

5 Conclusion

We rest our case. To stress the point:

• We believe that the theoretical hypercomputation problem is solved.
We can — ideally — build an analog machine that settles arbitrary
instances of the Halting Problem.

• The actual construction of such a machine isn’t a mathematical prob-
lem anymore; it is an engineering problem. One has to build a proto-
type and see which problems will eventually come up.

If one settles arbitrary instances of the Halting Problem, we may now
conceive a machine that decides sentences along the arithmetical hierarchy
[4, 6]. The implications are obvious, and we will not comment on them.

The proof of the pudding is on the eating: next step is to build a proto-
type.

We thus rest our case.
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What is a universal computing machine?
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Abstract

A computer is classically formalised as a universal Turing machine or a similar de-
vice. However over the years a lot of research has focused on the computational prop-
erties of dynamical systems other than Turing machines, such cellular automata,
artificial neural networks, mirrors systems, etc.

In this paper we propose a unifying formalism derived from a generalisation of
Turing’s arguments. Then we review some of universal systems proposed in the lit-
erature and show that are particular case of this formalism. Finally, we review some
of the attempts to understand the relation between dynamical and computational
properties of a system.

Key words: Turing universality, dynamical systems

1 Introduction

We are interested in computing machines, which we informally define as ma-
chines able to solve decision problems on integers (or finite objects that can be
encoded as integers), such as, for instance, primality. We are especially inter-
ested in universal computing machines, i.e., those who have the same power
as a universal Turing machine.

Note that in this article we are only interested in solving decision problems
on integers, while computable analysis deals with computable functions and
decision problems on the reals (e.g., checking invertibility of a real-valued
matrix). See for instance [29,3,25,22] on computable analysis.
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Also, we do not consider hypercomputation and systems with super-Turing
capabilities, as can be found for instance in [27,4,9].

Note that here we do not define universality as the ability to ‘simulate any
other system’. See for instance [24] for such a notion of universality in the case
of cellular automata.

We start by a quick review of computing machines, such as Turing machines,
counter machines, cellular automata. We then observe, with Davis’s definition
of universality, that a computing machine is always a dynamical system to-
gether with an r.e.-complete halting problem. We then ask which problems can
be considered as reasonable halting problems for a given dynamical system.

We then generalise Turing’s famous argument to the case where a dynamical
system, instead of pencil and paper, is available to a human operator. This
leads to a general definition of universal computing machine. Then several
definitions of universal systems are reviewed and found to be particular cases
of this framework.

We finally review some results about the interaction between the computa-
tional and dynamical properties of a computing machine.

2 Turing machines

In the beginning of the twentieth century, the question arose, as a consequence
of the search for foundations for mathematics, of a mechanical procedure to
solve a mathematical problem, or algorithm. Several answers, later proved
mathematically equivalent, were provided in the thirties and forties, by Post,
Church, Kleene, Turing. For the original papers, see [5].

Among those answers, Turing’s is perhaps the most thoroughly argued as a
model for computation. Here we sketch Turing’s argument to construct his
machine, as it will be a basis to our definition of computing machine.

In this article, we only consider decision problems, which was not the point of
view originally taken by Turing. This is not a loss of generality as computing
an integer can reduced to a sequence of decision problems.

The algorithm is performed by a human operator, who applies a series of
instructions on the initial data. Intermediate results are written on paper.

Turing essentially argues that the mind of the operator can only be in finitely
many states, can distinguish only finitely many symbols on paper, and can
write only finitely many different symbols. Hence the operator is essentially a
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finite-state automaton (as far as the execution of the algorithm is concerned).
The sheet of paper can be similarly considered as an unlimited linear tape
divided into cells. Every cell contains a symbol out of a finite alphabet. The
operator can read or write the symbol in a cell, and translate the tape one cell
to the left or right. The initial data is written on finitely many cells on the
tape, while the rest of the tape filled with the blank symbol. The computation
ends when the operator enters the state of mind ‘The computation is finished’,
which we call the halting state. As a result, a human operator executing an
algorithm is modeled by a one-tape Turing machine as we know them. For a
decision problem, we can also assume that the halting state of mind contains
the answer to the problem, e.g., ‘The computation is finished and the answer
is Yes.’ In this case there are two halting states. Note that a computation on
a Turing machine can result in three outcomes: ‘Yes’, ‘No’ or no answer at all
(i.e., the machine does not halt).

Turing confirms that his definition is sensible by showing that slightly different
models, such as two-tape Turing machines, have the same power as Turing ma-
chines. That means that for every two-tape Turing machine one can construct
in an effective way a one-tape Turing machine the solves the same problem,
and conversely. Here by ‘effective’ we mean ‘intuitively computable’.

He then finds that there exists a universal Turing machine, i.e., a Turing
machine such that every pair (Turing machine, initial data) can be converted
in an effective way into an initial data for the universal machine so as to
preserve the outcome ‘Yes’, ‘No’ or ‘Does not halt’.

He then proceeds to show that the halting problem is undecidable, more pre-
cisely r.e.-complete, as will be said later. The halting problem is the following:
Given an initial data for a fixed universal Turing machine, does the universal
Turing machine reach a halting state? Equivalently: Given a Turing machine
and an initial data for this Turing machine, does the Turing machine reach a
halting state?

3 Other universal machines

Other kinds of machines were subsequently devised to formalise computation,
such as, for instance, counter machines (or register machines, or Minsky ma-
chines); see, e.g., [19]. A k-counter machine is made of k cells, each of which
contains a natural integer. At every step, a finite automaton can test if the con-
tent of a counter is zero, increment a counter or decrement a counter. Again,
the initial data is encoded in the content of the counters, and the computation
is considered as finished when we reach a ‘halting state’.
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It has been proved that there exists a universal counter machine U .

‘Universal’ can be defined in terms of a reduction from the problem solved
by a universal Turing machine. This means there is an effective way to en-
code any initial data for a fixed universal Turing machine into an initial data
for the universal counter machine so as to preserve the outcome of the com-
putation (‘Yes’, ‘No’, ‘Does not halt’). Note once again that we avoid here
talking about universality as ‘dynamical simulation’ of other dynamical sys-
tems, which avoids the need to introduce definitions of simulation.

Hence the halting problem for a universal counter machine (i.e., determining
if a given initial content of the counters and an initial state of the head will
reach a halting state of the head) is r.e.-complete as well.

Other similar machines were defined: Post machines, tag machines (also in-
vented by Post) for instance; see [18]. For those again, a way to use it for
computation is defined, and a universal machine is found.

All the machines above are machines with countably many states: the state of
a Turing machine, for instance, is a finite sequence of symbols plus the state
of the head for a Turing machine. All those machines are dynamical systems.
For the moment, we loosely define a dynamical system as an object evolving
in time, and completely characterised at any time by its state.

But most dynamical systems studied in mathematics and physics have an un-
countable state space, e.g., cellular automata, differential equations, piecewise
linear maps, etc. Examples of those systems have been proved universal. Their
halting problem is imitated from the Turing machine in the following way. We
choose a particular countable family of initial states, and countable family of
final states, or final sets of states. Then the halting problem is given an initial
state and a final state/set of states, whether the trajectory starting from the
initial state will reach the final state/set of states. More specific examples are
given in Section 7.

In that case, finding the relevant halting problem becomes not obvious at
all, since there are many ways to select a countable family of initial states
out of uncountably many. For instance, the cellular automaton of rule 110 is
universal for the eventually periodic states (i.e., periodic sequences of symbols
up to finitely many) but not for periodic sequences or for finite states (i.e.,
where all but finitely many symbols are equal to zero).

As observed in [10], some trivial dynamical systems can be also considered
universal with an artificial halting problem. For instance, take the full shift
on {0, 1, 2}N is universal with the family of initial states 1n0ta∞, where t is
the halting time of a universal Turing machine on data n. If the machine
does not halt on n, then the initial state is 1n0∞. If the machine halts on
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‘Yes’, then a = 1, if it halts on ‘No’, then a = 2. Note that those states
are computable: we can compute the bit of any rank for any state. Then
the halting problem whether we reach the state 1∞ from the initial state
encodes the halting problem of the Turing machine. Therefore we are bound
to conclude that the full shift is a universal computing machine! But it is
only so with respect to a certain cooked up halting problem. It is also clear
that unreasonable choices of initial conditions (i.e., undecidable) will make
even simpler systems, such as the identity, even more powerful than Turing
machines and shows that choosing a relevant halting problem requires caution.

As a conclusion, to every universal computing machine, is associated a certain
r.e.-complete halting problem.

4 Davis universality

Davis [6], turning things around, proposed an astute definition of universality
for a counter machine, Turing machine or any similar kind of object. A machine
is said to be universal if and only if its halting problem is r.e.-complete. This
definition essentially coincides with the former, but it bypasses the the mention
of a universal Turing machine and the need for an effective encoding. Instead,
the coding is implicit in the r.e.-completeness of the halting problem. Indeed,
an r.e.-complete problem is one to which the halting problem of a universal
Turing machine, and any other r.e. problem, can be reduced.

Hence a particular dynamical system is said to be universal with respect to
a certain problem, called the halting problem, when this problem is r.e.-
complete. In other terms, a computing machine is composed of a dynamical
system together with a halting problem. As seen above, the choice of the natu-
ral halting problem for a dynamical system is sometimes obvious, by imitation
from known examples, and sometimes more delicate.

Davis’s definition makes the quest for universal computing machines a partic-
ular case of the quest for undecidable mathematical problems. It happens in
mathematics that a problem occurs, that one would like to solve, but turns out
to be undecidable. For instance, whether a given polynomial in several vari-
ables with integral coefficients has an integral zero is r.e.-complete (Hilbert’s
tenth problem, solved by Matyasevitch in 1970 [17]); whether a finitely pre-
sented group is the trivial group is r.e.-complete as well [26]. Those problems
have been raised for their mathematical interest, not in order to define a new
kind of computing machine. It seems difficult indeed to interpret them as the
halting problem of some dynamical system.

As a conclusion, we have to solve the double question:
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• Given a dynamical system, what is a relevant halting problem for it?
• What r.e.-complete problems can be considered as the halting problem of

some computing machine?

5 Turing’s argument revisited

In this section, we propose a recipe to address the two questions just above.
We adapt Turing’s argument to get a fine understanding of the interaction
between dynamics and computation, and select a relevant halting problem.

Like in Turing’s original argument, a human wants to solve decision prob-
lem. However, this time she has no paper or pencil, but a physical system.
She doesn’t necessarily know about the initial state of the system. During the
process of computation, she can observe and act on the system. Like Turing,
we assume that the human operator’s mind can be in finitely many differ-
ent states. Hence, we assume that the human can be modelled by a finite
automaton, with finitely many actions on the system and finitely many pos-
sible observations from the system. This finite automaton acts as a controller
on the system, in a feedback loop. Finite automaton accepting inputs (here,
observations) and producing outputs (here, actuation) are also called Mealy
automata, or transducers. See Fig. 1. We use the term ‘state’ for both the
dynamical system and the controller, which models the mind. This justified as
the controller is itself a dynamical system. By connecting the controller with
the dynamical system, we get a new closed-loop dynamical system.

Hence a computing machine is defined in the following way.

Metadefinition 1 A computing machine is defined by a dynamical system
along with a countable family of controllers. Every controller is a finite state
automaton with initial states and final states.

We define the halting problem as the following. Given a controller, the dynam-
ical system is initialised to an arbitrary state and the controller is initialised
to one of the initial states; is there a trajectory of the closed-loop system where
the controller starts from an initial state and eventually reaches a final state?

Some remarks must be made at this point.

The name ‘halting problem’ does not imply that the dynamical system stops
after we have reached a final (or ‘halting’) state of the automaton. It just
stops to be interesting, since we have answered the instance of the problem
we wanted to solve.
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Contrarily to most examples of universal systems found in the literature, there
is no explicit reference to an ‘initial state’. This is because a particular initial
state x can be encoded in the set of actions: ‘Set the state to x’. Or it can be
encoded in the set of observations, in which case the computation starts with
the following instruction: ‘Observe the state; if it is not x then enter an infinite
loop (i.e., never reach a final state)’, which ensures that only computations
starting by x will be processed.

We therefore see that the need for specifying an initial state is not as funda-
mental as it appears.

Since the controllers are finite state automata, it means that for a given con-
troller, finitely many observations can be made on the system, and finitely
many actions can be performed on it. As there are countably many controllers,
only countably many possible observations and actions are to be considered
for the system.

We speak of metadefinition rather than definition, because we still have to
specify what is a dynamical system, what kind of observations and actuations
are allowed on them, and how to interconnect the dynamical system with
the controller. The answer to all these questions depends on our ‘model of the
world’. For instance, if we want to model physics by deterministic discrete-time
systems, we’ll consider a system of this kind. If we believe physical quantities
cannot be observed with infinite precision, then we cannot allow the controller
to observe if the system is a state x. And so on. Let us review some possibilities.

6 Dynamical systems

A dynamical system is intuitively anything that evolves in time. Many classes
of dynamical systems exist, some of which we quickly describe in this section.

The most typical class is deterministic, discrete-time systems, given by an
evolution map f : X → X, where X is the state space. A state x is transformed
into f(x), then f(f(x)), and so on.

Examples include Turing machines, cellular automata, subshifts, piecewise
affine maps, piecewise polynomial maps and neural networks.

Open dynamical systems (or input/output dynamical systems) allow for ac-
tuation. For instance, x is sent to f(x, u), where u is the input (or actuation).

An observation on a dynamical system is most often a map y = g(x), where x is
the state of the system. As we want finitely many values for y, an observation
is a partition of the state space of the system into finitely many sets. In
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principle, we could also consider a nondeterministic relation between x and
y (for instance, to model an uncertain observation), but this seems to be
unexplored in the literature of computational universality.

We may also consider a nondeterministic system; for instance the state x is
sent into a ball of radius ε around f(x). This is used to model perturbations
that we know are bounded by ε.

Continuous-time systems are usually defined by a differential equation ẋ =
f(x) on (a part of) Rn, or ẋ = f(x, u), where u(t) is the input function. In
that case, the closed-loop system is a hybrid system: a mix of continuous and
discrete dynamics.

Here we do not consider quantum universal systems; see for instance [8].

7 Reachability problems

Most definitions of universality rely on a reachability problem. The reachability
problem for a discrete-time deterministic system f : X → X goes as follows:
we are given two points x and y (‘point-to-point reachability’) or a point x
and a set Y (‘point-to-set’), and the question is whether there is a t such that
f t(x) = y or f t(x) ∈ Y .

A reachability problem is modelled according to Metadefinition 1 as follows.
The controller first stets the inital condition to x; then it lets the system
evolves according to f ; when the state of the system is y or belongs to Y , the
controller jumps to its final state.

Of course, the halting problem for a universal Turing machine, counter ma-
chines and many others is a (point-to-set) reachability problem.

In cellular automata, point-to-point reachability with almost periodic configu-
rations (made of a same pattern indefinitely repeated except for finitely many
cells) is usually considered. For instance the automaton 110 and the Game of
Life are universal according to this definition. Why almost periodic configura-
tions and not a wider, or smaller, countable family of points? This is discussed
in [28].

For systems in Rn, points with rational coordinates and sets defined by polyno-
mial inequalities with rational coefficients (e.g., polyhedra or euclidian balls)
are usually considered. The choice of rational numbers seems to be guided by
simplicity only.

Let us give some examples of universal systems according to this definition.
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• A piecewise-affine continuous map in dimension 2 [13]. This map is defined
by a finite set of affine maps of rational coefficients, on domains delimited
by lines with rational coefficients.

• Artificial neural networks for several kinds of saturation functions [27].
• A closed-form analytic map in dimension 1 [14].

We can define in a very similar way universal systems in continuous time.
Examples of such systems are:

• A piecewise-constant derivative system in dimension 3 [2]. The state space
is partitioned on finitely domains delimited by hyperplanes with rational
coefficients, and the vector field is constant with a rational value on every
domain.

• A ray of light between a set of mirrors [21].
• Black hole computation, which is the interaction of signals in space-time

[11].

Despite its popularity and apparent simplicity, we believe that the reachability
problems as a basis to define universality suffer from several drawbacks.

First, it is possible to reach unpleasant conclusions, such as the full shift being
universal, by choosing artificial initial conditions for the system, as already
highlighted in Section 3.

Second, the possibility offered to the controller to set up or observe a state of
the system with infinite precision seems unphysical. The least uncertainty on
the initial condition can a priori completely destroy the computation; ensur-
ing that a physical system is, e.g., in a rational state is obviously an impossible
task in practice. It has been shown that many reachability problems become
decidable when perturbation is added to the dynamics, thus killing universal-
ity; see for instance [1,16,12].

Lastly, it is difficult to prove find interesting necessary or sufficient conditions
of universality base on the dynamical properties of the system, as emphasized
below in Section 10.

In next sections, we see two other halting problems that generalise the halting
problem of Turing machine, and avoid some of the pitfalls mentioned above.

8 Digital computing machines

Suppose we have an arbitrary symbolic dynamical system. A symbolic dynam-
ical system is one whose state is a sequence of symbols from a finite alphabet.
In other terms, the state space is AN or AZ, for a finite alphabet A, or a closed
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subset of it. Remember that such a set can be endowed with the product
topology. The dynamical system is given by a continuous map on the state
space.

Of course, the state space could also be AZd
, for instance, which can be recoded

into AN by reading content of the cells in arbitrary order.

Symbolic dynamical systems include Turing machines, cellular automata and
subshifts. No actuation is needed, the same map is applied at every step, the
controller here is only an observer.

What is the most natural halting problem for such a dynamical systems? In
other words, what is a universal digital computing machine?

A cylinder is a set of AN of the form wAN, for any word w ∈ A∗, or a set
of the form NAwAN in AZ. Boolean combinations of cylinders are exactly the
clopen (closed open sets) of the space.

We choose clopen sets as observation sets. This is a natural choice because it
means that finitely many symbols are observed at every steps, and it means
that a finite precision measurement is required. The only initial set is the full
space; in other terms, nothing is known about the initial state of the dynamical
system. Any deterministic finite automaton can be chosen as controller. This
halting problem was proposed in [7]. We therefore say that a symbolic system is
a universal digital computing machine if this halting problem is r.e.-complete.

It was shown [7] that a universal Turing machine is also universal for this defi-
nition, with some mild modifications. It also has the advantage to lead to non
trivial conditions on the dynamical properties of the system for universality
to emerge; see Section 10.

The digital computing machines show some robustness to perturbation, be-
cause a small enough perturbation on the initial condition of a successful
trajectory (i.e., leading the controller to a final state) will keep the trajectory
successful.

9 Actuation of dynamical systems

Turing machines are interpreted very simply as closed loop systems. Given
a finite set A of symbols (including a blank symbol), we consider the set
AZ (or its restriction to finite configurations if we want a countable state
space; finite configurations are those that are entirely blank except for finitely
many symbols). On this set we have the following possible actuations: shift
to the left, shift to the right or change the symbol in position zero to another
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Fig. 1. Turing’s argument revisited: How to compute with a dynamical system.

symbol. The only possible observation is the symbol in position zero. This is
a simple open (input/output) dynamical system. If we now control it with
an arbitrary finite automaton, what we get is exactly a Turing machine. This
open dynamical system is therefore universal.

Despite this fundamental example, most set-ups proposed in the literature
make no use of the actuation we let the dynamical system evolve by itself,
without influence, except possibly at the very step to set up the initial con-
dition. A slightly more elaborate system is proposed in [23], in which we can
act on the system with three maps: f0, f1, f . The dynamical system starts at
the origin (or any point fixed once for all), then we apply a sequence of f0 and
f1 to introduce a binary word encoding the data; for instance, the number
100111 is encoded by the state f1f1f1f0f0f1(0). Then we apply f repeatedly.
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10 Dynamical properties of universal systems

What is the link between the dynamics of a system and its computational
capabilities?

Wolfram proposed a loose classification of 1-D cellular automata based on
the patterns present in the space-time diagram of the automaton; see [30].
He then conjectured that the universal automata are in the so-called ‘fourth
class’, associated to the most complex patterns.

Langton [15] advocated the idea of the ‘edge of chaos’, according to which a
universal cellular automaton is likely to be neither globally stable (all points
converging to one single configuration) nor chaotic. See also [20] for a discus-
sion. Other authors argue that a universal system may be chaotic; see [27].

However it seems difficult to prove any non-trivial result of this kind with the
point-to-point or point-to-set reachability definition of universality. Moreover
a countable set of points can be ‘hidden’ in a very small part of the state space
(nowhere dense, with zero measure for instance), so the link between this set
and the global dynamics is unclear in general.

Digital computing machines are analysed in [7], where it is shown that a
universal system according to this definition has at least one proper closed
subsystem, must have a sensitive point and can be Devaney-chaotic.

11 Conclusions

A framework has been proposed to unify many of the definitions of computing
machines found in the literature. A universal computing machine is defined
as a dynamical system together with a suitable r.e.-complete problem; this
definition is flexible with respect to the kind of dynamical systems we consider.

In particular it appears that reachability problems, despite their mathemat-
ical interest, are not the only generalisation of the Turing machine’s halting
problem, and perhaps not the most natural.

In particular, it appears to us that universality for open dynamical systems is
an almost blank field waiting to be explored.
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Black hole computation: implementations with signal
machines
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1. Introduction

No position is taken on the theoretical and practical feasibility of using any
potentially existing particular black hole for hyper-computing. The reader
is referred to other contributions in this issue as well as Etesi and Németi
(2002); Németi and Dávid (2006); Németi and Andréka (2006) for clear
introductions and surveys on this topic. All the work presented here in done
the context of so-called “Malament-Hogarth” space-times and not slowly
rotating Kerr black hole. The main differences are that, one, the observer
remains out of the black hole and second, nested black holes are considered.

A black hole computation works in the following way. At some location �

one observer starts a computing device which he sends on a different world-
line such that: at some point, after a finite time on his own world-line the
observer has the whole future of the device infinite world-line in its causal
past and the device can send some limited information to the observer.
The device has an infinite time for computing ahead of it and can send
a single piece of information to the observer. Not only can the observer
perceive this piece of information, but after a finite duration which he is
aware of, the observer knows for certain that if he has not received anything
then the machine never sends anything during its whole, possibly infinite,
computation. So that, for example, if the piece of information is sent only

� Throughout the article location is to be understood as a position in space and time and position as
only spatial.
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when the computation stops, at some point, the observer knows for certain
whether the computation ever stops.

From the computer scientist point of view, this allows to have some piece
of information on a whole, potentially infinite, computation. This way the
Halting problem or the consistency of many first order logic theory (e.g.
Set theory or Arithmetic theory) can be decided. This clearly falls out of
the classical recursion/computability theory since it allows to decide semi-
decidable subsets (Σ0

1 in the arithmetic hierarchy).
Malament-Hogarth space-times allow to have nested black holes and so-

called arithmetical sentence deciding (SAD) space-times (Hogarth, 1994,
2004). With each infinite level of nested black-holes, the computing power
climbs up a level of the arithmetic hierarchy (and even the hyper-arithmetic
hierarchy in second order number theory (Welch, 2006)). The arithmetic hi-
erarchy is formed by recursive predicates preceded by alternating quantifiers
on natural numbers. The level in the hierarchy is defined by the first quan-
tifier and the number of alternations.

In computer science, considering and continuing a computation after its
potential infinite span exist in various form. Infinite time Turing machines
(Copeland, 2002; Hamkins and Lewis, 2000; Hamkins, 2002, 2007) consider
ordinal times (and values); the main difference is that the limit of the tape
is available, whilst with black holes only a finite and bounded piece of infor-
mation is available. Infinite computations also provide limits, for example
computable analysis (Weihrauch, 2000) (type-2 Turing machines) manipu-
lates infinite inputs and generates infinite outputs, each one representing a
real number. In analog computations, limit operators (as limits of sequences
of real numbers) are also considered (Chadzelek and Hotz, 1999; Kawamura,
2005; Mycka, 2003b,a, 2006; Mycka and Costa, 2007; Bournez and Hainry,
2007).

The setting in which the black hole effect is simulated here is not the so-
lution to any relativity equations. It is rather something that is constructed
inside a Newtonian space-time and provide the desired effect whereas black
holes involves non-Euclidean geometry (like the Schwarzschild one). Any
initially spatially bounded computation can be embedded in a shrinking
structure resulting in the same computation happening in a spatially and
temporally bounded room, even if it was not the case before. This structure
provide the black hole, outside of it, some information may be received to
gain some insight on what happen inside.

Abstract geometrical computation (AGC) deals with dimensionless signals
with rectilinear and uniform movement in a (finite dimension) Euclidean
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space. It is both a continuous and an analog model. The way it is analog is
quite unusual because there are finitely many values but continuum many
variables. Time is evolving equally everywhere. What brings forth the ac-
celerating power is that space and time are continuous so that Zeno effect
can happen and indeed, everything heavily relies on it. Throughout the ar-
ticle, only dimension 1 spaces are considered, thus space-time diagrams are
2 dimensional.

Signals are defined as instances of meta-signals which are of finite num-
ber. They move with constant speeds uniquely defined by their meta-signals.
When two or more signals meet, a collision happen and they are replaced
other signals according to collision rules. A signal machine defines the avail-
able meta-signals, their speeds and the collisions rules.

A configuration at a given time is a mapping from R to a finite set (con-
taining the meta-signals) defining signals and their positions. Signals are
supposed to be away one from another. The void positions (i.e. position with
nothing) are supposed to form an open set. The rest of the configuration
contains only singularities. They are many ways to continue a space-time
diagram after an isolated singularity, the ones used here are: let it disappear
or turn it into signals.

This model originates in discrete signals in Cellular Automata (Durand-
Lose, 2008b). This explains the choice of finitely many meta-signals and
constant speeds. There are other models of computation dealing with Eu-
clidean spaces.

Huckenbeck (1989, 1991) developed a model based on finite automata
able to draw lines and circles and to compute intersections. Not only are
the primitives different, but also it is sequential and depends on an external
operator to perform the construction whereas in signals in AGC operate on
their own.

Jacopini and Sontacchi (1990) developed an approach where a computa-
tion results in a polyhedron. They only encompass finite polyhedron (i.e.
bounded with finitely many vertices) and allow surfaces and volumes of any
dimensions while AGC has only lines.

Another model worth mentioning is the Piecewise Constant Derivative
(PCD) system (Bournez, 1999b). There is only one signal, but its speed
changes each time it enters a different polygonal region. Not only is AGC
parallel but also there is no such things as boundaries. Nevertheless, PCD
are able to hyper-compute and climb up the hyper-arithmetic hierarchy
(Bournez, 1999a) while the other two cannot.

In AGC, since signals dwell in a continuous space (R) and time (R+) and

138



there is no absolute scale, it is possible to rescale a configuration. Rescaling
a configuration rescales the rest of the space-time. An automatic procedure
to freeze the computation, scale it down and unfreeze it, is provided. When
this construction is made to restart it-self forever, a singularity is reached.
Any AGC-computation starting with only finitely many signals can be em-
bedded in this structure so that the corresponding computation is cut in
countably many bounded pieces geometrically shrunk and inserted. This
brings a general scheme to transform any AGC-computation into one that
can do the same computation but in a piece of the space-time diagram
bounded in both space and time. This is the desired black hole effect. An-
other shrinking scheme is presented in Durand-Lose (2006a), but it works
only for spatially bounded AGC-computations while the one presented here
does not impose this condition. The construction is detailed since AGC is
not so well-known and it is the cornerstone of the results in the article.

Simulating a Turing machine (TM) is easy using one signal to encode each
cell of the tape and an extra signal for the location of head and the state of
the finite automaton. Any Turing machine simulation can be embedded in
the shrinking structure making it possible to decide semi-recursive problems
in finite time.

As long as speeds and initial positions are rational and there is no singu-
larity, the location of each collision is rational (as the intersection of lines
with rational coefficients). This can be computed in classical discrete com-
putability (and have been implemented to generate figures). The model is
also perfectly defined with irrational speeds and positions and can thus be
also considered as an analog model. It has recently been connected to the
Blum, Shub and Smale model of computation (which can perform algebraic
operations as well as test the sign on real numbers with exact precision)
(Durand-Lose, 2007, 2008a). In the present paper, it is only recalled how
real numbers are encoded and how a singularity is used to provide the mul-
tiplication. Our shrinking scheme can be used in this analog context to
answer analog decision problems.

The way a signal machine is transformed to have shrinking capability
can be iterated so that singularities/accumulations of any order can be
generated. This allows to decide a formula formed by a total (resp. BSS)
recursive predicate preceded by a finite alternation of quantifiers on N (i.e.
to climb the corresponding arithmetical hierarchies). For the analog case,
this remains a quantification over a countable set �� .

��This is why we do not talk about an analytic hierarchy.
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In Section 2, the model and the shrinking structure are presented. In Sec-
tion 3, the way discrete computation can be done and shrunk is presented.
In Section 4, analog computation is considered. Section 5 explains how to
have nested black holes so as to climb the arithmetic hierarchies. Section 6
gathers some concluding remarks.

2. Model and Mechanics

The underlying time is R+; there is no such thing as a next configuration.
The underlying space is R. A configuration is a mapping from R to a finite
set (yet to be defined). A space-time diagram is a function from R ×R+ to
the same finite set.

What lies on R are signals, collisions between signals or singularities (cre-
ated by accumulations). Signals are moving with constant speed depending
only on their nature. When they meet, an instantaneous collision happens
and the signals are replaced by others according to some collision rules.
A singularity happens when and where infinitely many collisions, signals
and/or singularities accumulate. Ways to continue a space-time diagram
beyond an isolated singularity are proposed at the end of this section.

2.1. Signal machines and space-time diagrams

Definition 1 A signal machine (SM) is defined by (M, S, R) where M
(meta-signals) is a finite set, S (speeds) a function from M to R, and R
(collision rules) a partial function from the subsets of M of cardinality at
least two into subsets of M (all these sets are composed of signals of distinct
speeds).

Each signal is an instance of a meta-signal. Its speed is constant and only
depends on its meta-signal (given by S). When two or more signals meet,
R indicates the signals to replace them. Meeting signals must have distinct
speeds otherwise they are parallel and never meet. Signals are not allowed
to be superposed, so that all signals emitted by a collision must also have
distinct speeds.

Definition 2 The extended value set, V , is the union of M and R plus
two special values: one for void, �, and one for singularity ❊. An (valid)
configuration is a total function from R to V such that all the accumulation
points of its support (the set of non void location, supp(c) = { x ∈ R | c(x) �=
�}) have the value ❊. A configuration is finite if its support is finite. It is
simple if it is finite and ❊ is not reached. It is rational if it is simple and
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its support is included in Q. A SM is rational if all the speeds are rational
numbers and only rational configurations are used.

As long as there is no singularity, a finite configuration is only followed
by finite ones.

To be rational is robust. Signals at rational positions with rational speeds
can only meet at rational location. All collisions happen at rational dates
and at these dates the positions of signals are all rational. Since rational
numbers can be encoded and manipulated exactly with any computer, ra-
tional SM can be handled inside classical computability theory.

Two results limit the interest and extend of rational SM. First, predicting
whether a singularity ever happens is Σ0

2-complete (in the arithmetical hi-
erarchy, which means not even semi-decidable) (Durand-Lose, 2006b) and
second, a singularity can happen at an irrational position (Durand-Lose,
2008a). On the other hand, as long as Turing-computability is involved, ra-
tional SM are enough (as shown in Sect. 3). But if analog computations are
to be considered, then it is not the case anymore as in Sect. 4.

Let Smin and Smax be the minimal and maximal speeds. The causal past,
or backward light-cone, arriving at position x and time t, I−(x, t), is defined
by all the positions that might influence the information at (x, t) through
signals, formally:

I−(x, t) = { (x′, t′) | x − Smax(t−t′) ≤ x′ ≤ x − Smin(t−t′) } .

Definition 3 The space-time diagram issued from an initial configuration
c0 and lasting for T , is a function c from [0, T ] to configurations (i.e. a
function from R × [0, T ] to V ) such that, ∀(x, t) ∈ R × [0, T ] :
(i) ∀t∈[0, T ], ct(.) is valid, and c0(.) = c0;
(ii) if ct(x)=µ ∈ M then ∃ti, tf∈[0, T ] with ti<t<tf or 0=ti=t<tf or ti<t=tf=T

s.t.:
(a) ∀t′ ∈ (ti, tf), ct′(x + S(µ)(t′ − t)) = µ ,
(b) ( ti=0 and c0(xi) = µ ) or ( cti(xi) = ρ−→ρ+∈R and µ ∈ ρ+ )

where xi=x + S(µ)(ti − t) ,
(c) ( tf=T and ctf (T ) = µ ) or ( ctf (xf ) = ρ−→ρ+∈R and µ ∈ ρ− ) or

ctf (xf )=❊ where xf=x + S(µ)(tf − t) ;
(iii) if ct(x)=ρ−→ρ+ ∈ R then ∃ε, 0<ε, ∀t′∈[t−ε, t+ε] ∩ [0, T ], ∀x′∈[x −

ε, x + ε],
(a) (x′, t′) �= (x, t) ⇒ ct′(x

′) ∈ ρ−∪ρ+ ∪ {�},

(b) ∀µ∈M , ct′(x
′)=µ ⇔ ∨




µ ∈ ρ− and t′ < t and x′ = x + S(µ)(t′ − t)

µ ∈ ρ+ and t < t′ and x′ = x + S(µ)(t′ − t)
;

and
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(iv) if ct(x) = ❊ then ∀ε>0, there are infinitely many collisions in I−(x, t)∩
R × [t−ε, t) or infinitely many signals in [x − ε, x + ε] × [t−ε, t) .

The definition naturally extends to the case T = +∞. A space-time di-
agram is rational if it is correspond to the one of a rational SM. As long
as no singularity is reached, the evolution is deterministic; the space-time
diagram only depends on c0 and the SM.

2.1.1. Encompassing singularities.
When a singularity is reached isolated (i.e. there is nothing round it),

there are various ways to continue the space-time diagram beyond it.

Definition 4 (Schemes to handle isolated singularities) A singular-
ity at (x, t) is isolated if there is nothing but void around it in the configu-
ration (i.e. ∃ε, ∀x′ ∈ [x − ε, x + ε], x′ �= x ⇒ ct(x

′) = �). There are various
schemes to continue a space-time diagram at an isolated singularity.
(i) Wall. It remains there forever;
(ii) Vanish. It disappears as if it where on another dimension;
(iii) Simple trace. It disappears but sends a µs signal; or
(iv) Conditional traces. It disappears but sends signals according to which

signals join in (i.e. signals that are not interrupted by any collision –not
an infinite succession of signals).

In the two last schemes, µs or the singularity rules have to be added to
the definition of the SM. In such a case, one talks about an extended SM
(ESM). Next sections consider ESM and the schemes used are indicated.

The first scheme is not considered here; although it makes sense since sin-
gularities generally do not just disappear, in dimension one, it unfortunately
produces an unbreakable frontier definitively splitting the configuration in
two. The second one is considered in the section on discrete computation
while the third is considered in the section on analog computation. The
reason in the analog case is that its position is an important piece of in-
formation. The last case is also used to consider the case of a singularity
happening exactly on a higher level structure (as the one presented below)
with nested structures in Sect. 5.

The last two schemes impose a modification of the rules of space-time
diagrams. One is to allow a signal to start from a singularity to add to
b “or ( cti(xi)=❊ ∧ µ = µs )” and to iv something amounting for signals
emitted like the rules for collisions (iii) which is not given since it depends
on the scheme and for the last scheme of the singularity rules.
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In case of non-isolated singularities, the fist two schemes remain possible
while the two last ones would make it necessary to define signals with a
dimension (which might be not an integer since the accumulation set can
be a Cantor set).

Accumulations of second (or more) order can be considered, as long as
all the singularities are isolated. In the last case, more distinction could be
made according to the level of singularity. As long as finitely many levels
are considered or distinguished, the description remains finite.

2.2. Shrinking and space and time bounding

All the constructions work in the following way: starting from a SM, new
meta-signals and rules are added in order to generate another SM that
works identically with original meta-signals but the new ones provide an
extra layer with some kind of meta instructions. For a computation to be
altered, extra signals have to be added to the initial configuration.

2.2.1. Freezing and unfreezing.
A new meta-signal, toggle, with a speed strictly greater than any present

speed, say s0 is added. If one instance of toggle is set on the left, and is
re-generated by every collision, then a succession of toggle (signals) crosses
the entire computation. It is the freezing signal. Freezing is done in the
following way: each time it meet some signal µ, it replaces it by some frozen
counterpart Fµ. All these new frozen meta-signals have the same speed, say
f0 (which should be less that s0 to ensure that they are above the freezing
line on the space-time diagram). It might happen that the freezing signal
passes exactly on a collision, say ρ. Then the collision is frozen too, i.e. it is
replaced by a frozen signal amounting for it, Fρ. The signals resulting from
the collision are generated when the collision is unfrozen.

The unfreezing scheme is the same, in reverse: signals and collisions replace
their frozen counterparts at the passing of another toggle signal.

This scheme is illustrated on Fig. 1. In all the figures, time is elapsing
upwards. On the left, one computation is showed unaltered but the intended
trace of toggle is indicated with dotted lines. On the right, the computation
is frozen, the frozen signals (the F.) are left to move for some time and then
they are unfrozen by a second toggle. Signal are shifted on one side, they
could be shifted on the other side by symmetry, or shifted anywhere (as
long as it is in the future) by moving the toggling signals and changing the
inner slope.
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Fig. 1. Freezing principle.

The algorithm to modify a SM is given on Fig. 2 where object oriented
notations are used. Each time new identities are created, renaming is used
if necessary. There is nothing particular about it and every modification
works on the same pattern.

Input:
M : signal machine
β: real number { speed of the toggle }
θ: real number { speed of frozen signals }

Assert: ( Smax < β) ∧ ( θ < β)
Do:

{ Create the toggle }
1: toggle ← M .add new meta-signal of speed( β )

{ For the meta-signals }
2: for each µ original meta-signal from M do
3: Fµ ← M .add new meta-signal of speed( θ )
4: M .add rule( { toggle, µ } → { toggle, Fµ } )
5: M .add rule( { toggle, Fµ } → { toggle, µ } )

6: end for
{ For the rules }

7: for each ρ =ρ− → ρ+ original rule from M do
8: Fρ ← M .add new meta-signal of speed( θ )
9: M .add rule( { toggle } ∪ ρ− → { toggle, Fρ } )

10: M .add rule( { toggle, Fρ } → { toggle } ∪ ρ+ )
11: end for
Output: toggle: meta-signal { the freezing/unfreezing one }
Side effect: New signals and rules added to M

Fig. 2. Algorithm to add the freezing capability.

2.2.2. Scaling parallel signals and any computation.
When signals are parallel, they remain so and do not interact, their struc-

ture is quite loose. So that a group of parallel signals can be manipulated
quite easily as long as they remain parallel they remain synchronized. They
just have to be unfrozen with the same slope.
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Using a Thales based construction, or prismatic if thought of as light
beams, it is easy to scale parallel signals as depicted on Fig. 3(a). The idea is
to change the direction twice to be scaled and recover the original direction.
The speed of the signals crossing the triangle is carefully selected in order
to insure the wanted ratio.

(a) Scaling parallel signals.

start of the
computation

Contraction

rest of the
computation

(b) Freeze, Scale and unfreeze.

Fig. 3. Scaling.

This construction can be set inside the freezing/unfreezing construction.
This leads to the scheme of Fig. 3(b). The specially added signal for the
structure are only a part of the ones in the next subsection. The algorithms
to modify SM are so plain that they are not presented anymore.

2.2.3. Iterating forever.
The idea is to iterate ad infinitum above construction. More signals have

to be added in order to restart the freeze, scale down and unfreeze process
on and on. The structure and some basic properties are presented before
the embedding of computations.

The structure is presented on Fig. 4. The collision rules are not given
because they can be read directly from the figure; for example

{toggleUnfr, axis} → {boundRi, axis, toggle} .
The dashed axis signals are part of the construction, while the dotted lines
do not correspond to any signal and are only there to delimit some regions.
Signal axis is dashed because it does not delimit any region.

The toggleUnfr and toggleFree signals are used to start the freezing and
unfreezing toggle. The scale signals are used both to change the direction of
parallel signals (and achieve scaling down the embedded configuration) and
also to start boundRi. The signals boundLe and boundRi are used to bound
the potential room used by the embedded computation when active. The
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Meta-signal Speed

boundLe −ν0
boundRi ν0

scale 8
9ν0

toggle 4ν0

toggleUnfr 1
2ν0

toggleFree 1
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axis 0

Fig. 4. iterated scaling.

initial position of axis is at one third of the distance between the four on
the left and boundRi.

The construction works because the speed parameter ν0 used to compute
the various speeds is equal to the maximum absolute value of the speeds in
the original SM. The speeds given on Fig. 4 are computed such that:
– at each iteration, the structure is scaled by half; and
– the length of the unfreezing toggle signal is one fourth of the preceding

freezing one.
The structure is twice as small and twice as fast each time but the initial
computation is scaled by one fourth. Relatively to the structure the com-
putation is two times faster each time. This is wanted because not only
should the structure collapse in finite time, but meanwhile the embedded
computation should have infinite time ahead of it. This is to be understood
considering the regions.

The Ai regions (on Fig. 4) are the ones where the embedded computation
is active. The first one is triangular while all the other ones are trapezoidal.
The other two regions are triangular. The Fi regions are the ones where
the embedded computation is frozen and signals follow the direction of the
dotted line. The F′

i regions are the ones where the embedded computation
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is also frozen but signals follow the direction of toggleUnfr. The frontiers
between Ai and Fi (as well as F′

i and Ai+1) are toggle signals thus the
correct freeze (and unfreeze). The frontiers between Fi and F′

i are scale
signals which correspond to a change of direction of frozen signals.

On the frozen regions Fi, all frozen signals have to be parallel to the
dotted line in order that the lower toggle is “mapped bijectively” onto scale.
So that their speed is −8

5
ν0. On F′

i all frozen signals have to be parallel to
the scaleLo signal in order that scale is “mapped bijectively” onto the upper
toggle. So that their speed is 1

2
ν0 (toggleUnfr).

The embedded configuration is scaled by one fourth but the piece is only
one half in size of the previous one. Each time the duration, relatively to the
original computation, is halved by 2 (for the structure size) but multiplied
by 4 for the scale. Altogether, the ratio is 2. So that each time, the elapsing
time for the original computation is doubled. This ensures that the original
computation is entirely embedded, i.e. has infinite time ahead of it.

Figure 5 shows a simple space-time diagram that is growing on both side
on the left and its embedded version on the right. The active part is where
the lattice is visible, otherwise it is frozen, shift and scaled.

The location of the singularity can be computed easily as the intersection
of two lines (but also as a geometrical sum) and is rational as long as it is
stated with rational positions.

(a) Unaltered (b) Shrunk

Fig. 5. Iterated scaling example.

The shrinking structure serves as a black hole. The configuration em-
bedded inside is trapped. In the following sections, small modifications of
already modified SM show how to let some information leave.
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3. Discrete computations

Definition 5 A Turing machine (TM) is defined by (Q, qi, Γ, ^, #, δ) where
Q is a finite set of states, qi is the initial state, Γ is a finite set of symbols,
^, tape head, and #, blank, are two distinguished symbols, and δ : Q × Γ →
Q × Γ × {←,→} is the transition function.

A TM-configuration is defined by (q, w, i) such that q is a state, w is a
finite sequence of symbols –or word over Γ– and i is a natural number. The
automaton is in state q, w (completed by #’s) is written on the tape and
the head is over the ith cell of the tape. The TM is self-delimiting when
there is only one ^ on the tape which is written on the first cell, and there
is nothing but # right of the first #. If it is not the case, the TM is in an
illegal configuration.

The next configuration is defined by the transition function as follows. If
δ(q, wi) = (r, a,→) then the next configuration is defined by (r, w′, i + 1)
where w′ is obtained from w by replacing the ith symbol by a. If δ(q, wi) =
(r, a,←) then, if i = 0 then the TM stops otherwise the next configuration
is defined by (r, w′, i − 1).

The TM computes in the following way: some input (without ^ and #)
is written on the tape preceded by ^ and followed by potentially infinitely
many #. The result of the computation, if any, is what is written on the
tape (^ and all # are discarded) when the TM stops.

The TM halts normally when the head tries to leave the tape. For example,
the machine defined on Fig. 6(b), computes on Fig. 6(a) with the entry ab.
The output is bbab. If the computation does not halt or enters an illegal
configuration, the output is undefined.

When a TM is used for a decision (yes/no output), the states are par-
titioned into accepting and refusing one. The answer is then given by the
state in which it halts.

3.1. Turing-machine simulation

The simulation goes as follows: there are finitely many parallel signals en-
coding the content of the tape in-between which zigzags a signal mimicking
the movement of the head and encoding the state. This is depicted with an
example on Fig. 6(d).

The simulating SM is defined by the following meta-signals:
– one symbol signals for each value in Γ, with null speed, to encode the cells

of the tape;
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(a) Transitions of

the TM.

δ ^ a b #

qi qi,^,→ qi,a,→ q1,a,← -

q1 - q1,b,→ - q2,a,→
q2 - - - qf ,b,←
qf qf ,^,← qf ,a,← qf ,b,← -

(b) Transition table of the TM.

General case

δ(q, c) = (r,d,→)

d

c

−→r
−→q

d

c

−→r
←−q

δ(q, c) = (r,d,←)

d

c

←−r
−→q

d

c

←−r
←−q

Special rules

δ(q, #)= (r, d,→)δ(q, #)= (r, d,←)

d

#

−→r
−→q

←−
# d

#

←−r
−→q
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d
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# −→q

←−r←−
# −→

#

e ∈ Γ

e

e

−→
#

←−
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#

(c) Generation of Rules.
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b

−→qi
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−→
#

←−qf
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−→
#

←−qf

←−
#

−→
# −→

#

#←−qf

←−qf

←−qf

(d) Simulating space-time
diagram.

Fig. 6. Example of a TM computation and its simulation by a SM.

– −→q (of speed 1) and ←−q (of speed −1) head signals for each state q, to
encode the state and the location and movement of the head;

– # (of null speed),
←−
# (of speed −3),

−→
# (of speed 3), and

−→
# (of speed 1)

which are used to denote the end of the tape and manage the enlargement
of the tape.
The initial SM-configuration for a TM-computation on the entry w =

w1w2 . . . wk is generated by putting one −→qi -signal at position −1, one ^-
signal at position 0, one wi-signal at position i (1 ≤ i ≤ k), and one #-signal
at position k + 1,

A SM-configuration encodes a TM configuration if it corresponds to the
same sequence of symbols (up to extra #’s at the end) closed by a # with an
extra signal encoding the state and moving to meet the signal corresponding
to the position of the head.
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The collisions rules ensure that the evolution of the SM corresponds to
the computation of the TM. When the head encounters a symbol signal, it
performs the update and move to its next position on the tape. When it
meets the right special signal, the configuration is automatically enlarge.

The generated collision rules are given on Fig. 6(c). When a rule is not
defined, the signal just cross unaffected. From top to bottom, they corre-
spond to the following cases. For each TM-transition, two collision rules are
generated, they correspond to the cases where the head would come from
the left or from the right. The special rules are made in order to ensure a
correct enlargement of the configuration in the case a head signal meet #,
the signal marking the last cell. In such a case, two things have to be done:
normally do the TM-transition (as if it were a # signal) and enlarge the con-
figuration. The latter means generate one # one position on the right if the
head goes left (left side rules). If the head goes right (right side rules), then
it should be taken care that the head meets something on the right (lower
row rules). This is illustrated in the middle of Fig. 6(d). In each first case, a←−
# is sent on the left. It bounces on the symbol signal on the left (bottom

rule of Fig. 6(c)) and is replaced by
−→
# , cross whatever signal present to get

where would be the head if it would have gone right. If indeed the head
went right, it is met and the TM-transition is done and the configuration
enlargement starts again. If it is not the case (left rules of Fig. 6(c)), then−→
# is sent in order to meet

−→
# and place the new #. Signals

←−
# and

−→
# are

three time faster in order to ensure that the meeting happens exactly where
the next symbol signal should have been.

At the end of the TM-computation simulation, the signal encoding the
state goes out on the left. The process is robust, the positions does not
have to be exact as long as the order of the signals is preserved. It can be
implemented with a rational SM.

3.2. Infinite Turing computation in bounded time

The construction described in Sect. 2 rightfully apply to the above con-
struction. It is considered that the singularity vanishes leaving no signal
(scheme ii of Def. 4). The infinite acceleration is granted. But the infor-
mation leaving the black hole is missing. The ESM has to undergo some
modifications. The first one is to generate the escaping signal, the second
to retrieve it.

The result of a deciding TM is given by the new state whenever it performs
a transition on ^ and sends the head on the left. These transitions are
clearly identified in the transition table of the TM. So there are also clearly
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identified in the rules of the simulating ESM.
Once the shrinking mechanics have been added, the rules can be changed

so that to generate new signals amounting for accept and refuse. These
signals are unaffected by other signals including the structure ones. Their
speed is −1 so that they exit on the left.

The last thing is to add two signals orizonLe and orizonRi of speed (1
5
ν0

and −16
15

ν0) on the left and right of the shrinking structure. Their speeds
ensure that they remain at constant distance from the structure. The way
these signals are intended to work is displayed on Fig. 7
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Fig. 7. Encapsulating the shrinking structure to retrieve any leaving signal.

The desired effect is achieved. Recursively enumerable problems (Σ0
1) can

be decided and computation can carry on after the answer is known.

4. Analog computations

In this section, analog computations in the understanding of the Blum,
Shub and Smale model (Blum et al., 1989, 1998) (BSS for short) are consid-
ered. After briefly presenting the BSS model on R and its linear restriction,
results on its simulation in AGC are recalled before the shrinking construc-
tion is applied.

4.1. BSS Model

BSS machines (BM) operate like TM on unbounded arrays/tapes. Each
cell of the array hold a real number and all the computations are made
with exact precision. The BM has a head allowing to access a finite portion
of the tape called a window. It has finitely many states and to each one
corresponds an instruction among the following:
(i) compute a polynomial function of the window and place the result in

it;
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(ii) test for the sign of a given cell in the window and branch accordingly;
(iii) shift the window one cell on the left or on the right; and
(iv) halt.

The window is shifted by one cell so that consecutive windows overlaps.
This is used to carry information around, since the BM has no real value
storage on its own.

A BSS machine is linear if instruction i is replaced by “compute a linear
function [. . . ]”. Thus multiplication is allowed only if it is by a constant.

Like for TM, the input (resp. output) is the content of the array when
the BM is started (resp. halts). Comparing to TM, trying to leave the array
on the left is an error but halting states are provided. If BM are used for
decision, then there are distinct halting states for acceptance and refusal.

The simulation is not presented since details are not relevant to the fol-
lowing. Only the encoding of real values and two main results are given.

A real number is encoded as the distance between two signals. But as it
has already been guessed by the reader, time and distance are very relative
concepts. The distance between two scale signals is thus used as a scale. The
same scale is used for all the real numbers so that each one can be encoded
by a just pair base and value (or just nul for 0 since superposition of signals
is not allowed). This is illustrated for various values on Fig. 8.

scale scale

1

value base

−π
nul(0) base value

√
2

Fig. 8. Encoding: scale and values −π, 0 and
√

2.

Theorem 6 ((Durand-Lose, 2007)) AGC with finitely many signals and
no singularity is equivalent to the linear BSS model.

Simulations have been established in both directions. In the constructions
for SM simulation, the encoding pairs are manipulated so that they are
clearly identified and everything is scaled down whenever they might mess
up.

Theorem 7 ((Durand-Lose, 2008a)) With the Simple trace scheme (iii
of Def. 4) for singularities, AGC is able to carry out any multiplication
achieving the simulation of the whole BSS.

In this case AGC is strictly more powerful than classical BSS since square
root can be computed.
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4.2. Infinite analog computations

The meaning of the shrinking structure on a BM simulation is considered
before entering into technical issues.

4.2.1. Interpretation.
Assuming that everything works well as expected, the ESM can be made

so that if the computation stops then some information leaves the singular-
ity. But what kind of information? Usually it is considered that only finitely
many values can be used � � � , not countably many, not continuum many!
Mechanisms as in Subsect. 3.2 can be used to send a few bits, but it is not
clear how to send four signals (to encode a real number) ensuring that they
are all at the same scale (i.e. are emitted from the same active region).

With the same construction as previously, using a universal BM, the BSS
halting problem, can be decided.
Instance HaltBSS

-
−→
X ,

−→
Y : vectors of real numbers

Question

Does the BM represented by
−→
X stop on entry

−→
Y ?

Let us consider another example. BSS machines can simulate any TM
and any recursive function. There is a BM with one entry that tries all
the rational numbers sequentially and stops if it is equal to the entry. Since
halting can be decided, the characteristic function of Q is computable (which
is not usually the case).

The general form of decision problems that can be solved is of the form

∃n ∈ N, φ(n,
−→
X ) where φ is decision BM that stops for all entries. This

definition is the same as the one for classical recursion except that total
recursive predicate is replaced by total BSS predicate. The quantification is
on N (that can encode Q or many other countable sets) but not on R. This
does not correspond to the first and second level of an analytical hierarchy
but an arithmetical one. It corresponds to BCSS-Σ1 in Ziegler (2007). Please
note that this is only a lower bound on the computing capability.

If one wants the analog output if the computation stops and just the infor-
mation that is does not stop otherwise, it uses a singularity to know whether
the computation stops and if it is the case, then it starts the computation
normally to get the result in finite time.

� � �For example think about the so-called blue-shift effect and how it might be countered (Németi and
Dávid, 2006, Sub. 5.3.1).
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If one would like to have the limit of say first cell of the array if any,
not only does the shrinking might turn the scale and the distance between
encoding signals to zero but moreover, if the BM-computation uses bigger
and bigger real numbers, its accumulated re-scaling also turns them to zero.
So that one would have to find how to generate the value in a way that does
not lead to zero divided by zero and neither prevents the shrinking.

This has been achieved to get internal multiplication out of linear BSS:
three of the four real numbers encoding signals are constant outside of the
singularity and the singularity happens at the correct position for the last
signal. A general scheme still have to be found.

4.2.2. Technical issues.
In each active region, the configuration only undergoes a regular scaling.

Up to scaling, the active regions perfectly assemble. The computation is
exact and the real values are preserved even though the encoding can be
split between various active regions (retrieving the value is not obvious).

The difference from the discrete case is that singularities are already used
for multiplication. These are handled with the simple trace scheme (iii of
Def. 4).

With the structure, both type of singularity should be distinguished par-
ticularly because the singularity for multiplication could happen exactly on
toggle so that with the simple trace scheme, the structure would be dam-
aged. In this case, one extra frozen meta-signal must exist to encode the
singularity as well as a toggle for the structure. The case iv –which is more
general– is used. Since the speed of toggle is greater than the any of the
other signal present for the multiplication, it gets straight into the singular-
ity without getting involved in any collision and thus distinguishes between
the singularities.

If there are infinitely many multiplications, then the singularity is of sec-
ond order. This is not a problem for the structure nor the definition of
space-time diagrams. Rule iv of Def. 3 only asks for infinitely many colli-
sions or signals which is also ensured by the accumulating multiplications.

5. Nested singularities

Previous Section ends with a second order singularity. It is possible to
built higher order singularities.

Section 2.2 explains how to shrink any space-time diagram that has no
singularity. It is quite easy to set signals to automatically start a singularity
(in the spirit of what is done in Durand-Lose (2006b)) and according to the
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result to start another. There can be finitely or countably many isolated
singularities (there is a rational location in each open).

The interesting part is when singularities are nested inside another one.
In Sect. 4.2.2, it is explained how, with the conditional traces scheme (iv
of Def. 4), to handle sub-singularities. The second order structure works
because it is built on top of the previous one (after renaming the meta-
signals to avoid any conflict). So that the outer one can handle the inner
ones while the latter proceed on their own.

It is thus natural to reiterate the construction. This can be done safely
a finite number of times (more would yield an infinite number of signals).
Inside any structure, it is only possible to start a lesser level structure so
that the first one is the topmost and that the number of nested levels inside
is bounded by construction of the ESM.

For discrete computations, in the setting presented in Subsect. 3.2, singu-
larities are only used to decide and leave no trace (ii of Def. 4). But since a
singularity could happen on a toggle of a higher level structure, for the same
reason as before, the conditional traces scheme has to be used. For analog
computations, this scheme is already used. It is thus the natural scheme to
use in both cases.

In the discrete case, like for the SAD computers of Hogarth (1994, 2004),
each order brings the capability to decide an extra level of the arithmetical
hierarchy by deciding an extra alternating quantifier (on N). As shown, first
order decides Σ0

1. If nth order singularity allow to decided Σ0
n, then it can

be used as oracles inside the top level of a n + 1th order singularity.
In the analog case, each level of singularity identically allows to decide an

extra alternation of quantifiers (on N) and to climb the BSS arithmetical
hierarchy. This is not a quantification on R, this is not an algebraic hierarchy.

6. Conclusion

Abstract geometrical computation provides a setting where Black hole-like
computation can be implemented: a finite portion is infinitely accelerated
while a computation can continue outside and get a finite insight on what
happens inside. For SAD computers, the (nested) black holes have to be
found while in AGC the computation construct them (signals are the “fab-
ric” of space and time) but the maximum level of nesting is limited by the
construction of the ESM.

In our constructions, there are two levels of space-time: one absolute of the
SM and one due to the embedding inside a shrinking structure; singularities
are created by the fabric of signals. The following have been proved.
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Theorem 8 With proper handling of accumulation, for any level of the
arithmetic hierarchy, a rational ESM can be built to decide it and for any
level of the BSS arithmetic hierarchy, an ESM can be built to decide it.

These are just decisions, but they can be used as sub-computations in any
computation.

In the discrete case, the ESM and space-time-diagrams remain rational
(irrational coordinate can only be generated as singularity location, but, by
construction, the singularities built happen only at rational position).

A general construction that would allow all orders with the same ESM
is still lacking. One important achievement would be to provide a system
for transfinite order singularity together with the possibility to nest inside
recursive computations. Considering spaces with more dimensions, could
help getting hyper-arithmetic (Bournez, 1999a,b). But our scheme is only
in one dimension, signals with dimension 1 or more could be used to shrunk
in such spaces.

Comparing to infinite time Turing machine (Hamkins and Lewis, 2000;
Hamkins, 2002, 2007), the content of the tape is lost since it all accumulates
in one point. So a way to preserve the resulting tape and a limit mechanism
still have to be found to relate to infinite time Turing machines and recur-
sive analysis (Weihrauch, 2000). The same problem arise with the analog
counterpart; providing limits would link to the hierarchy of Chadzelek and
Hotz (1999).
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Jérôme Durand-Lose. Abstract geometrical computation and the linear
Blum, Shub and Smale model. In S.B. Cooper, B. Löwe, and A. Sorbi,
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Abstract

There are many ways in which a nonlinear chemical medium can
be used for information processing. Here we are concerned with an ex-
citable medium and the straightforward method of information coding:
a single excitation pulse represents a bit of information and a group
of excitations forms a message. On the basis of such assumptions in-
formation can be coded or in the number of pulses or in the times
between subsequent excitations.

The properties of excitable medium provide us with a pleasant
environment for information processing. Pulses of excitation appear
as the result of external stimuli and they propagate in a homogeneous
medium with a constant velocity and a stationary shape. This is
achieved by dissipating medium energy.

Our attention is focused on a quite specific type of nonhomoge-
neous medium that has an intentionally introduced geometrical struc-
ture of regions characterized by different excitability levels. In infor-
mation processing applications the geometry plays equally important

∗Paper still under refereeing due to late submission.
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role as the dynamics of the medium and allows one to construct de-
vices that perform complex signal processing operations even for a rel-
atively simple kinetics of reactions involved. The ideas of information
processing with structured excitable medium are tested in numerical
simulations based on simple reaction-diffusion models and in experi-
ments with Bielousov-Zhabotinsky reaction. Considering a chemical
signal diode as an example we demonstrate a kind of balance between
the geometry and the chemical kinetics. A diode action can be ob-
served for a wide class of reactions if a complex geometry of excitable
and non-excitable areas is fixed. On the other hand, the geometrical
construction of the diode can be much simplified, but at the cost of
restricted class of reaction parameters allowed.

We present chemical realizations of simple information processing
devices like logical gates, signal comparers or memory cells and we
show that by combining these devices as building blocks the medium
can perform complex signal processing operations like for example
counting of arriving excitations. We also discuss a few ideas for pro-
gramming a structured information processing medium with excita-
tion pulses.

Keywords: excitability, information processing, Oregonator, BZ-
reaaction

1 Introduction

The history of human civilization can be divided into a number of periods
when a given type of material like stone, bronze or iron played a dominant
role in technology. During such periods a large proportion of tools, weapons
or other goods were manufactured using the dominating material. Nowadays,
thanks to the progress in material science and engineering, the materials used
are optimized for the final product application. The authors think that the
domination similar to that mentioned above can be observed today in the
field of information processing. The silicon technology and the conventional
von Neumann computer architecture [1], based on the clock controlling the
sequence of executed instructions and the data flow, has undisputable leader-
ship in the field. However, the situation can change in the future, because we
discover more and more examples of unconventional information processing
devices, frequently inspired by biology [2]. These examples play an impor-
tant, inspiring role suggesting new solutions, realizations or algorithms [3]
going beyond the conventional computer science. It may be expected that
the new, unconventional strategies of information processing will be very im-
portant for the future applications especially in the fields of sensing, visual
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recognition and orientation in space, high density data storage or artificial
intelligence. These applications match well with the common expectations
on the development of nanorobotics, where the proper miniaturizations of
tracks responsible for sensing the environment and communication are the
crucial factors for potential applications.

Among many branches of unconventional computation one can recognize
the field called reaction-diffusion computing [4]. The name comes after the
mathematical description of time evolution of the computing medium. In
the most standard case we consider information processing with a spatially
distributed chemical reactor. Its state at a given point is defined by local
concentrations of reagents involved. The interactions between reactions pro-
ceeding in different places occur via diffusion of molecules, so the evolution
equations include both reaction and diffusive terms. The practical applicabil-
ity of a uniform medium resting in its stable state for information processing
seems to be null. In order to do something useful we should consider a
nonequilibrium medium with the right balance between the characteristic
time scales for chemical reactions and spatial relaxation. It has been found
that the medium with Bielousov-Zhabotynsky (BZ) reaction [5] is one of in-
teresting candidates for the investigation, because its state is characterized
by color and so it can be easily observed and recorded. The first successful
applications of reaction-diffusion computing were image processing with an
oscillatory chemical reaction [6] and methods of finding the shortest path in
a maze using propagating spikes [7]. In both cases a membrane filled with
reagents of Bielousov-Zhabotynsky reaction was used a computing medium.

Uniform medium was used for image processing operations and the im-
age was introduced as the space dependent phase of chemical oscillations,
fixed by the initial illumination level generated by the projected image. Il-
lumination level transforms directly into the state of reagents or, from the
mathematical point of view, into the chemical oscillator phase. The effects of
image processing can be observed because the phase of BZ- reaction is related
to the color of the solution. The fact that in BZ reaction rapid changes of
color are separated by long periods when colors slowly evolve are especially
useful for image processing. Chemical systems can perform such operations
as contour smoothing, contrast enhancement or detail removing as illustrated
in Fig. 1. Of course the medium processes an image in a highly parallel way,
transforming all points of the image at the same real time [8].

Excitability is a wide spread type of nonequilibrium behavior [5, 9] ob-
served in numerous chemical systems including BZ reaction [10], CO oxida-
tion on Pt [11], or combustion of gases [12]. The excitable systems share
common properties. They have a stable stationary state (the rest state)
they remain in when they are not perturbed. The rest state is stable so
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its small perturbation uniformly decays in time. However, if a perturbation
is sufficiently large then system response is strongly nonlinear and it is ac-
companied by large changes in variables that characterize the system. The
response corresponds to an excitation peak. After an excitation the system is
refractory, which means that it takes a certain recovery time before another
excitation can take place. If an excitable medium is spatially distributed
then an excitation can propagate in space in a form of a pulse. Unlike me-
chanical waves that dissipate the initial energy and finally decay, traveling
pulses use the energy of medium to propagate and finally dissipate it. In a
typical homogeneous excitable medium an excitation pulse converges to this
stationary shape after some time and the shape is independent of the initial
condition. The interests in applications of excitable medium for information
processing is motivated by similarities with signaling in neural systems based
on excitable biochemical reactions [13]. In particular, spatially distributed
excitable medium if not perturbed resides in its rest state and shows no activ-
ity. When activated, pulses of excitation appear, move and interact. Stronger
excitations bring more pulses or generate signals with higher frequencies.

In the following we focus our attention on a quite specific type of nonho-
mogeneous excitable medium that has an intentionally introduced geomet-
rical structure of regions characterized by different excitability levels. Here
yet again one can see analogy with the structure of nerve system composed
of cells linked by nerve channels. Historically, one of the first applications
of structured chemical medium for information processing was the solution
of the problem of finding the shortest path in a labyrinth [7]. The idea is
illustrated in Fig. 2. The labyrinth is build of excitable channels (dark)
separated by non-excitable medium (light - illuminated) that does not al-
low for interactions between pulses propagating in different channels. Using
an excitable system it is easy to verify if the distance between two selected
points (A and B) in a labyrinth is shorter than an assumed value d. In order
to do it one can excite the medium at the point A and observe if excitation
appears at the point B before time tAB. The excitation spreads out through
the labyrinth, separates at the junctions and pulses enter all possible paths.
During the time evolution pulses of excitation can collide and annihilate,
but the one that propagates along the shortest path has always unexcited
medium in front. The speed s of a pulse propagating through medium in the
stationary state can be regarded as constant if the labyrinth is large enough
and if the influence of corners can be neglected when compared with the time
of propagation in the straight channels. If the length of the shortest path
linking two points A,B in a labyrinth is shorter than d then the time between
the pulse initialization at A and its arrival at B should be shorter than d/s.
The algorithm described above is called the ”prairie fire” algorithm and it
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A B C D
Figure 1: Image transformations during the time evolution of oscillating
medium with Ru-catalyzed BZ reaction. (A) - initially projected image, (B-
D) three snapshots showing image processing during a typical time evolution
[14].

is automatically executed by an excitable medium. It finds the length of
the shortest path in a highly parallel manner scanning all possible routes at
the same time. It is quite remarkable that the time required for verification
if there is a path shorter than d does not depend on the the complexity of
labyrinth structure, but only on the distance between the considered points.

In the following we present a few examples illustrating that in information
processing applications the medium geometry plays equally important role as
its dynamics. As the result one can construct devices that perform complex
signal processing operations even for a relatively simple kinetics of reactions
involved. We discuss chemical realizations of simple information processing
systems like signal diodes, logical gates or memory cells and we show that by
combining these devices as building blocks the medium can perform complex
signal processing operations like for example counting of excitations arriving
to a selected point.

2 The principles of information processing

with structured excitable medium

In this section we discuss a number of properties of excitable chemical sys-
tems that seem to be useful for processing information coded in excitation
pulses. The most straightforward method of information coding is related to
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Figure 2: Pulses of excitation propagating in a labyrinth observed in an
experiment with Ru-catalyzed BZ-reaction. The excitable areas are dark,
the non-excitable light. The source of a train of pulses (a tip of a silver wire)
is placed at the point A

the presence of pulses: a single excitation pulse represents a bit of informa-
tion and a group of excitations forms a message. Information coded in the
presence of pulses can be processed via interaction of pulses with the medium
of via pulse-to-pulse interaction. Our discussion is mainly based on results
of numerical simulations of medium time evolution. Numerical simulations
of excitable chemical systems play an important role, because the models are
relatively simple and easy to compute, but still accurate enough to give a
correct qualitative agreement with experimental results. In the case of Ru-
catalyzed BZ reaction simulations can be done with different variants of the
Oregonator model [15, 16, 17, 18]. For example, for three variable model,
used to obtain most of the results quoted below, the evolution equations are:

ε1
∂u

∂t
= u(1 − u) − w(u − q) + Du∇2u

∂v

∂t
= u − v

ε2
∂w

∂t
= φ + fv − w(u + q) + Dw∇2w

Here u, v and w denote dimensionless concentrations of the following

reagents: HBrO2, Ru(4,4′-dm-bpy)3+
3 and Br-, respectively. In the con-

sidered system of equations u is an activator and v is an inhibitor. In the
equations given above the units of space and time are dimensionless and they
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have been chosen to scale the reaction rates to a simple, rate constant free
form. The diffusion of ruthenium catalytic complex is neglected because it
is much smaller than those of the other reagents. Reaction dynamics is de-
scribed by a set of parameters: q, f , q, ε1, ε2 and φ. Among them φ represents
the rate of bromide production caused by illumination and it is proportional
to the applied light intensity. Illumination is an inhibiting factor of photo-
sensitive BZ reactions so, by adjusting the proper φ as a function of space
variables, we can easily define regions with the required excitability level, like
for example excitable stripes surrounded by non-excitable neighborhood.

Let us consider a medium composed of excitable areas, where pulse propa-
gation is stable at the cost of medium energy dissipation and non-excitable re-
gions where, due to different reaction regime, activations are rapidly dumped.
We assume unperturbed diffusion of mobile reagents between areas of both
types, so a pulse propagating in the excitable region can penetrate into a
non-excitable part and disappears after some distance. The properties of
excitable medium offer a number of generic properties that seem to be useful
for information processing.

One of them is angle dependent penetration of non-excitable barriers. Let
us consider two pieces of the active medium separated by a non-excitable
stripe. It can be easily shown that the maximum width of non-excitable
stripe for which a pulse propagating on one side of a stripe generates an
excitation on the other side depends on the angle between the wave vector of
the pulse and the normal to the stripe. As it is expected a pulse with wave
vector perpendicular to the stripe can excite a medium separated by a wider
stripe than a pulse that propagates along the stripe [19]. Thus the width of
a gap separating excitable regions can be adjusted such that it is transparent
to perpendicular pulses, but not to those that propagate along the gap. This
property is frequently used in chemical realizations of information process-
ing devices. For example, such gaps appear in a junction of two excitable
channels that automatically excludes interactions of pulses arriving from one
input channel on the second one. If we just join to input channels I1 and
I2 into one output O (see Fig. 3A) then a pulse arriving form one of input
channels would separate at the junction and resulting excitations enter both
the output channel and the other input channel perturbing arriving signals.
However, if we consider input channels separated by non-excitable gaps as
illustrated in Fig. 3B then the propagation of pulses from the inputs to the
output is not perturbed, but there is no interference between inputs because
a signal arriving from one input channel always propagate parallel to the gap
separating it from the other input channel.

A typical excitable dynamics is characterized by a refractory period - an
interval of time after excitation when the system evolves towards the stable
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(A) (B)

Figure 3: The junction of two input channels I1, I2 into a single output
O (a logical OR gate). The black regions are excitable, the white space is
non-excitable. (A) - simple junction, (B) - a junction in which interactions
between inputs are excluded.

state and its repeated excitation is difficult due to a large concentration of
inhibitor. For propagating pulses it means that the region behind a pulse is
in the refractory regime characterized by a large amplitude of inhibitor and
it cannot be re-excited. One of the consequences of a long refractory period
is annihilation of colliding counterpropagating pulses. Another interesting
example of behavior resulting from refractory region behind a pulse can be
observed in a cross-shaped structure build of excitable channels, separated
by gaps penetrable for perpendicular pulses [20, 21] shown in Fig. 4. The
answer of cross-shaped junction to a pair pulses arriving from two perpendic-
ular directions has been studied as a function of the time difference between
pulses. Of course if the time difference is large pulses propagate indepen-
dently along one line. If the time difference is small then the cross-junction
acts like the AND gate and the output excitation appears in one of the cor-
ner areas. However, for a certain time difference the first arriving pulse is
able to redirect the second and force it to follow. The effect is related with
uncompleted relaxation of the central area of the junction at the moment
when the second pulse arrives. Pulse redirection seems to be an interesting
effect from the point of programming with excitation pulses, but in practice
it requites a high precision in selecting the right time difference.
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Figure 4: The distribution of excitable and non-excitable regions in a cross-
shaped junction. Here the excitable regions are gray and the non-excitable
black. Consecutive figures illustrate an interesting type of time evolution
caused by interaction of pulses. Two central figures are enlarged in order to
show how uncompleted relaxation influences the shape of the second arriving
pulse [20].
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Another interesting and useful property of structured excitable medium
is related to its answer to combined excitations. The perturbations intro-
duced by multiple excitations combine and generate a stronger perturbation
than this resulting from a single spike. For example we can consider two
parallel channels separated by a gap nonpenetrable for a single propagating
excitation. It can be shown [22] that the width of such gap can be selected
to allow for cross excitation of one channel by two counterpropagating spikes
in the other one. This feature of structured excitable medium allows for
easy realization of the AND gate. This result can be generalized to multiple
excitations. It can be shown that for properly adjusted strengths of input
signals one can get excitation of the output channel only when the required
number of excitations arrive from inputs at the same time [23]. The geometry
of such chemical artificial neuron is inspired by a the structure of biological
neuron [24]. Topologically in both structures we find a number of narrow
input channels (dendrites) that transmit excitations to the larger cell body
connected with output channels. One of the studied realizations is illustrated
on Fig. 5. Here the output channel is perpendicular to figure plane. Another
geometry of an artificial chemical neuron with input and output channels on
the same plane has been discussed in [23]. In the artificial chemical neuron,
like in real neurons, dendrites (input channels 1-4) transmit weak signals
which are added together through the processes of spatial and temporal in-
tegration inside the cell body. If the aggregate excitation is larger than the
threshold value the cell body gets excited. The results illustrated on Fig 5B
come from numerical simulations based on the Oregonator model where the
illumination of the surrounding non-excitable region was considered as the
control parameter. It can be seen that by applying the proper illumination
level the structure shown in Fig. 5 can work as a four input McCulloch-Pitts
neuron with any required integral threshold.

The amplitude of a pulse propagating in an excitable channel (and thus
the strength of excitation) depends on channel width. In the case of wide
channels this amplitude is defined by the dynamics of chemical processes
only and it is close to that for plane pulses. In narrow channels the diffusion
of activator towards non-excitable neighborhood plays the dominant role. If
the channel is very narrow then the amplitude of activator may drop below
the critical value and the propagating pulse dies. In the studied neuron the
amplitudes of spikes in input channels have been adjusted by channel width
and by the illumination of surrounding non-excitable medium.

Non-excitable barriers in structured medium can play more complex role
in information processing then that described above. The problem of barrier
crossing by a periodic train of pulses can be seen as an excitation via a pe-
riodic perturbation of the medium [25]. The answer of the medium is quite
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Figure 5: Artificial chemical neuron constructed with structured excitable
medium. (A) - the geometry of excitable (dark) and non-excitable areas
(gray); (B) - the response of the neuron to different types of combined exci-
tations as the function of illumination of non-excitable regions. The numbers
given on the left list the excited channels. The illuminations for which the
neuron body gets excited are marked by a thick line.

characteristic. The firing number as a function of perturbation strength has a
devil-staircase-like form. In the case of barrier crossing the strength of excita-
tion behind a barrier generated by an arriving pulse depends on the character
of non-excitable medium, on barrier width and on the frequency of the in-
coming signal ( usually, due to uncompleted relaxation of the medium the
amplitude of spikes decreases with frequency ). A typical, complex frequency
transformation after barrier crossing is illustrated in Fig. 6. Experimental
and numerical studies on firing number of a transmitted signal have been
published [26, 27, 28, 29]. It is interesting that the shape of regions charac-
terized by the same firing number in the space of two parameters: barrier
width and signal frequency is not generic and depends on type of excitable
medium. For example in the case of FitzHugh - Nagumo dynamics trains of
pulses with small periods can cross wider barriers than trains characterized
by low frequency, for the Rovinsky - Zhabotinsky model the dependence is
reversed.

High sensitivity of transmitted signal frequency with respect to the pa-
rameters of input perturbation can be used to construct a sensor estimating
the distance separating the source of periodic excitations from the observer.
The idea is illustrated in Fig. 7 [30]. The sensor is build with a number of
similar excitable signal channels (in Fig.7A they are numbered 1-4) that are
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Figure 6: A typical dependence of firing number as a function of frequency
of arriving pulses. The ratio between frequency of output signal (fo) after
crossing a non-excitable gap separating excitable channel and the input one
(fp). Results obtained for the FitzHugh - Nagumo model.

wide enough to ensure a stable propagation of pulses. These sensor chan-
nels are separated one from another by parallel non-excitable gaps that do
not allow for the interference between pulses propagating in the neighboring
channels. They are also separated from the active medium M by a non ex-
citable sensor gap G. The width of this gap is crucial for sensor sensitivity.
If the gap is too wide then no excitation of the medium M can generate a
pulse in the sensor channels. If the gap is narrow then any excitation in front
of a sensor channel can pass G and create a pulse in the channel so signals
in every sensor channel are identical. The width of the gap should be se-
lected such that the firing number (defined as the ratio between the number
of pulses that crossed the gap G to the number of pulses of excitation that
were created in the medium M) depends on the wave vector characterizing
a pulse at the gap in front of channel. If the source of periodic excitations S
is close to the array of sensor channels then the wave vectors characterizing
excitations in front of various channels are different. Thus, different frequen-
cies of excitations in various channels are expected. On the other hand, if
the source of excitations is far away from the gap G then the wave vectors in
front of different channels should be almost identical and so the frequencies of
excitations in sensor channels would not differ. Therefore, the system shown
in Fig. 7A can sense the distance separating it from the source of excitations.
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Figure 7: Schematic illustration of a device sensing the distance separating
it from a source of periodic excitations S. (A) - the geometry of excitable
(dark) and non-excitable (light) regions. (B) - the signals in sensor channels
for the source close to the sensor. (C) - the firing numbers as function of
distance separating sensor and the source [30].

If this distance is small the firing numbers in neighboring sensor channels are
different and these differences decrease when the source of excitations moves
away. The results of simulations (Figs. 7B,C) and experiments [30] confirm
it.

The sensitivity to temporal changes in medium properties is another fea-
ture of an excitable system that can have important potential applications
in information processing. It has been recently observed [31] that survival
of a propagating excitation pulse in a medium with decreasing excitability
level depends on the rate of changes. For example let us assume that the
illumination of the system described by Oregonator model increases linearly
in time from φ1 to φ2. Moreover, for both values φ1 and φ2 stable pulses of
excitation can propagate in the system. It has been shown [31] that there is
a range of values of (φ1, φ2) for which pulse propagation is sensitive to the
rate of illumination changes. If illumination slowly increases in time from φ1

to φ2 than a pulse initiated in the system characterized by φ1 is continuously
propagating with a gradual adjustment of its shape to time dependent illu-
mination. However, when the changes are rapid then excitation disappears.
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3 The chemical signal diode

A chemical signal diode is a device that forces unidirectional pulse propaga-
tion. The recent studies on the diode nicely illustrate an interplay between
the geometrical complexity of the medium and chemical dynamics. The
same function can be achieved for relatively wide class of chemical dynam-
ics parameters and a complex geometry or for much simpler geometry, but
within a narrow margin for system dynamics where the diode operates. The
classical construction of a chemical signal diode is shown in Fig. 8A [32].
The black areas are excitable and the white parts are non-excitable. The
asymmetry required for unidirectional signal transmission is introduced by a
non-symmetrical junction formed by a rectangular excitable channel on one
side (Y) and a triangular excitable channel on the other (X). The distance
between the top of the triangle and the side of the rectangle is selected such
that a pulse of excitation propagating in the rectangular channel and ter-
minating at its left end gives sufficiently strong perturbation to excite the
triangle tip and thus the excitation is transmitted from Y to X. For the same
distance the excitation of rectangular channel by a pulse moving towards the
top of X channel is too small to excite the channel Y because the amplitude
of the pulse moving in the triangular part decreases as the result of diffu-
sion to the neighboring non-excitable areas. Therefore, the propagation of a
pulse moving right is terminated. The construction of such chemical diode
is generic (it can be adopted for any excitable chemical system), but the ex-
citability of the medium is described by a non-trivial function of two spatial
variables.

An alternative construction of a chemical signal diode has been suggested
in [33]. Using numerical simulations based on the Oregonator model it has
been shown that the parameters of illumination described by a triangular
function (cf. Fig. 8B) can be adjusted such that a pulse of excitation is
transmitted in one direction only. If the catalyst is immobilized then excita-
tion pulses that enter illuminated area from the highly illuminated end (right
end in Fig. 8B) are not transmitted, so the triangular illumination profile
makes a signal diode. Quite recently [34] this result has been simplified and it
has been shown that an illumination profile, composed of two regions charac-
terized by different, but uniform illumination levels ( Fig. 8C) can also work
as a signal diode. Finally it has been also shown that if the excitable input
channels are not symmetrical then a single, non-excitable barrier ( Fig. 8D)
with precisely adjusted parameters also works as a diode. Various designs
illustrated on Fig. 8 have different features. The diode shown in Fig. 8A is
very robust and in order to reverse the direction of signal transmission one
should change the positions of channels. The other designs allow for easier
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Figure 8: Different chemical realizations of a signal diode with BZ- reaction
inhibited by light: (A) - the classical design based on nonsymmetrical junc-
tion [32], (B) - a triangular profile of illumination [33], (C) - the illumination
profile in a diode composed of two non-excitable barriers [34], (D) - the il-
lumination profile in a single barrier diode with nonsymmetrical excitable
inputs.

control. Fig. 9 shows the functional diagram of the device illustrated in
Fig. 8D as the function of illumination of the left input channel and illu-
mination of the gap. The illumination of the right output channel is fixed
(φright = 0.007) and the width of the gap is constant (3.75). The open circles
indicate transmission in both directions and the closed ones show the pairs of
( φleft, φgap) for which the gap is stops all arriving pulses. The triangles mark
unidirectional transmission in the direction indicated by the triangle tip. It is
interesting that both possible directions of diode transmission are present on
the functional diagram and quite small changes in illuminations (for example
from ( φleft = 0.0098, φgap = 0.04494) to ( φleft = 0.01, φgap = 0.04490) can
change the transmission direction.
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Figure 9: The functional diagram of the device illustrated in Fig. 8D as
the function of illumination of the left input channel and the illumination
of the gap. Open and closed circles mark bi-directional transmission and
nonpenetrable gaps. Triangles show the conditions where the gap works as
a signal diode with transmission direction indicated by the tip.

4 Chemical memory and its applications

The devices discussed in the previous section can be classified as instant ma-
chines [8] capable of performing just the task they have been designed for.
A memory where information coded in excitation pulses can be written-in,
kept, read-out and, if necessary, erased significantly increases information
processing potential of structured excitable medium. Moreover, due to the
fact that the state of memory can be changed by a spike, the memory al-
lows for programming with excitation pulses. One possible realization of a
chemical memory is based on observation that a pulse of excitation can can
rotate on a ring-shaped excitable area as long as the reactants are supplied
and the products removed [35, 36, 37]. Therefore, a ring with a number of
spikes rotating on it can be regarded as a loaded memory cell. Such mem-
ory can be erased by counterpropagating pulses. The idea of memory with
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loading pulses rotating in one direction and erasing pulses in another has
been discussed in [38]. Our later studies [39] were oriented on increase of
reliability of ring shaped memory. A large ring can be used to memorize
a large amount of information because it has many states corresponding to
different numbers of rotating pulses. However, in such case loading the mem-
ory with subsequent pulses may fail because the input can be blocked by the
refractory tail left by one of already rotating pulses. Therefore, a memory
capable of storing just a single bit seems to be more reliable. Such memory
has two states: loaded when there is a rotating pulse the ring and erased
when the ring is in the rest state. An example of ring memory is shown in
Fig. 10. The red areas define the memory ring composed of two L-shaped
excitable areas and Z-shaped erasing channel in the mid of the ring. The
blue regions are non-excitable. The excitable areas are separated by gaps
selected such that a pulse of excitation propagating perpendicularly to the
gap excites the active area on the other site of the gap, but the gap is im-
penetrable for pulses propagating parallel to the gap. Such choice breaks the
symmetry and only excitations rotating counterclockwise are stable. The ro-
tating pulse does not affect the erasing channel because it always propagates
parallel to it. The erasing excitation is generated in the center of Z-shaped
area and it splits into two erasing pulses (Fig. 10B). These pulses can cross
the gaps separating the erasing channel from the memory ring and create a
pair of pulses rotating clockwise (Figs. 10 C/D). A spike that propagates
clockwise on the memory ring is not stable because it is not able to cross
any of the gaps and dies. Therefore, if the memory has not been loaded then
an erasing excitation does not load it. On the other hand, if the memory is
loaded then pulses rotating clockwise resulting from excitation of the erasing
channel annihilate with the loading pulse and the memory is erased (Fig.
10D). The idea of using two places where erasing pulses can enter memory
ring is used to ensure that at least one of those places is fully relaxed and so
one of erasing pulses can always enter the ring. We have confirmed reliable
work of the ring memory in a number of computer experiments with random
positions of rotating and erasing pulses. A few experiments gave qualitative
agreement with simulations: the loaded memory ring preserved information
for few minutes and it was erased after excitation of the erasing channel.

Using the structured excitable medium and simple circiuits described
above one can construct devices, that perform more complex signal pro-
cessing operations. As an example we present a simple chemical realization
of excitation counter. The system returns their number in any chosen posi-
tional representation [22]. Such counter can be assembled from single digit
counters. The construction of a single digit counter depends on the represen-
tation used. Here, as an example, we consider the positional representation
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Figure 10: Four snapshots illustrating simulations of memory erasing by an
excitation coming from erasing channel. The memory ring is formed by two
L-shaped excitable channels, the Z-shaped erasing channel is inside the ring.
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with the base 3. The geometry of a single digit counter is schematically
shown in Fig. 11. Its main elements are two memory cells M1 and M2 and
two coincidence detectors C1 and C2. At the beginning let us assume that
none of the memory cells is loaded. When the first pulse arrives through the
input channel I0, it splits at all junctions and excitations enter segments B0,
B1 and B2. The pulse that has propagated through B0 loads the memory cell
M1. The pulses that have propagated through B1 and B2 die at the bottom
diodes of segments C1 and C2 respectively. Thus, the first input pulse loads
the memory M1 and does not change the state of M2. When M1 is loaded
then pulses of excitation are periodically sent to segments B0 and C1 via the
bottom channel. Now let us consider what happen when the second pulse
arrives. It does not pass through B0 because it annihilates with the pulses
arriving from the memory M1. The excitations generated by the second pulse
can enter B1 and B2. The excitation that propagated through B2 dies at the
bottom diode of the segment C2. The pulse that has propagated through
B1 enters C1, annihilates with a pulse from memory M1 and activates the
coincidence detector. The output pulse from the coincidence detector loads
the memory M2. Therefore, after the second input pulse both memories M1

and M2 are loaded. If the third pulse arrives the segments B0 and B1 are
blocked by spikes sent from the memory rings. The generated excitation can
enter channel B2 and its collision with a pulse coming from the memory cell
M2 activates the output channel of C2. The output signal is directed to the
counter of responsible for the digit at next position (I1) and it is also used
to erase all memory cells. Thus after the third pulse both memory cells M1
and M2 are erased. The counter shown in Fig. 11 returns a digit in a rep-
resentation with the base 3 : here 0 is represented by the (M1, M2) = (0, 0),
1 by (1, 0) , 2 by (1, 1) and the next pulse changes the state of memory cell
into (M1, M2) = (0, 0). Of course, using n − 1 memory cells in a single digit
counters we can represent digits of the system with base n. A cascade of sin-
gle digit counters gives a positional representation of the number of arriving
pulses.

Discussion
We have presented a number of examples that should convince the reader

that structured excitable medium can be successfully used for processing in-
formation coded in excitation pulses. All the considered systems transform
information in an unconventional (non-von Neumann) way, i.e. without an
external clock or synchronizing signal that controls the sequence of oper-
ations. On the other hand, in many cases the right timing of performed
operations is hidden in the geometrical distribution and sizes of excitable
regions. The described devices can be used as building blocks for more com-
plex systems that process signals formed of excitation pulses. Some of them
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Figure 11: The counter of excitation pulses that arrive at the input I0. Figure
shows the geometry of excitable channels (black) in a single digit counter for
the positional representation with the base 3.

like the memory cell or pulse counter can be controlled with spikes. There-
fore, there is a room for programming and learning. However, for the further
development of information processing with structured excitable medium we
have to solve two basic problems.

First is the problem of creating a structure that performs required func-
tions. It seems that the answer to this problem is suggested by a biologi-
cal analog of structured signal processing medium - a brain. The structure
should appear as a thermodynamically stable phase under carefully selected
nonequilibrium conditions. We know that much simpler but yet interest-
ing structures come as metastable phases in multicomponent systems. For
example, the diamond structure in oil-water-surfactant system, that sponta-
neously appears at certain thermodynamic conditions has a form of centers
linked with the four nearest neighbors. If the reactants corresponding for
excitability are soluble in water, but not in oil then the water rich phase
forms the structure of excitable channels and processing elements just as the
result of thermodynamic conditions. Within a certain range of parameters,
such structure is thermodynamically stable. This means that the network has
auto-repair ability and robustness against unexpected destruction. Moreover,
the structure is three dimensional, what allows for higher density of process-
ing elements than that obtained with classical two-dimensional techniques
like for example lithography.

The second is the problem of continuous operation. The energy needed
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for pulse propagation is comes from the energy of reactants in the medium.
The reagents should be continuously delivered in order to ensure unperturbed
operation. In the case of very simple systems reagents can be delivered by
hydrodynamic flows caused by pressure gradients. We doubt if such simple
transport is sufficient for complex operations. And yet again the living or-
ganisms have solved this problem by creating a parallel structure that keeps
the signal processing components at steady nonequilibrium conditions.
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In this paper we study from a computational perspective some properties of the
solutions of polynomial ordinary differential equations.

We consider elementary (in the sense of Analysis) discrete-time dynamical sys-
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whether the maximal interval of definition of an initial-value problem defined with
polynomial ODEs is bounded or not is in general undecidable, even if the parameters
of the system are computable and comparable and if the degree of the corresponding
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Combined with earlier results on the computability of solutions of polynomial
ODEs, one can conclude that there is from a computational point of view a close
connection between these systems and Turing machines.

Email addresses: dgraca@ualg.pt (Daniel S. Graça), jbuescu@ptmat.fc.ul.pt
(Jorge Buescu), mlc@math.isa.utl.pt (Manuel L. Campagnolo).

Preprint submitted to Elsevier 22 July 2008



1 Introduction

Differential equations are a powerful tool to model a diversity of phenomena
in fields ranging from basic natural sciences like physics, chemistry or biology
to social sciences or economics. Among these, initial value problems (IVPs)
of the form x′ = f(t, x), with x(t0) = x0, where f is a vector field and t is
the independent variable, play a predominant role. In this paper we consider
the large class of polynomial IVPs (PIVPs for short) in which f is a vector of
polynomials. Many well known models, like the Lorenz equations in meteorol-
ogy, the Lotka-Volterra equations for predator-prey systems, or Van der Pol’s
equation in electronics [1] fall into this category. In Section 2 we show that in
fact all the elementary functions of Analysis are solutions of PIVPs. This is a
stronger version of the well established fact that all elementary functions are
differentially algebraic [2]. It is also worth noticing that the solutions of PIVPs
are precisely the set of functions definable with Shannon’s General Purpose
Analog Computer (GPAC) [3] as proved in [4].

While the qualitative behavior of linear systems (i. e. where f is linear) and
planar systems (where f : R3 → R2) is completely understood [5], it is not
known for all but a few cases how to predict the behavior of the solutions
of general PIVPs from the expression of f , which is the reason why many
fundamental questions about PIVPs (e.g. Hilbert’s 16th problem) are still
open.

Since most nonlinear differential equations cannot be solved exactly, one has
to resort to numerical methods to obtain approximate solutions. This leads to
a range of questions about computational properties of PIVPs. In particular,
one can ask if PIVPs have computable approximations, if the domain of the
solution is computable, or even if deciding whether the maximal interval of
existence is bounded is computable. Such questions have been answered for
analytic IVPs (where f is analytic) in [6]. In Section 2 we point out that the
results in [6] imply that the domain of existence of PIVP functions (i.e. so-
lutions of PIVPs) is in general recursively enumerable and that the solution
is computable on its domain. This last result sets an upper bound on the
computability of PIVP functions since it ensures that as long as f is polyno-
mial and computable they can be arbitrarily approximated wherever they are
defined.

To obtain computational lower bounds for PIVPs, one can show that any
computable function can be approximated by some PIVP function. In [7] it
was proved that under a simple (and unbounded) encoding in N3, the evolution
of Turing machines can be simulated with PIVPs. In this paper, we extend
that result and show that any computable discrete dynamical system on Nm

which admits a robust extension (to be defined) can be simulated with a PIVP.

184



The iteration of maps with IVPs is not new and can be found, for instance, in
[8], [9]. However, those constructions are in some sense not satisfactory since
they involve functions with some degree of discreteness (e.g. functions which
are not analytic or even have discontinuous derivatives) which can be used to
build “exact clocks” that simulate the discrete steps of the iteration.

In Sections 3 and 4 we state and prove the main result of the paper. We show
that given a map ω on Nm, one can construct a PIVP with coefficients in Q[π]
that simulates the iteration of ω as long as ω is extendable to a “robust” map Ω
on Rm, in a sense to be defined in Section 3, and Ω is composition of polynomial
and PIVP functions with parameters in Q[π] . The simulation is robust, which
is a necessity for our construction, but is also a natural requirement for a
continuous-time physical system described by an IVP. The constructions in
Section 4 will also provide the necessary tools to address the issues discussed
in the remainder of the paper.

Finally, in Section 5, we review and extend some undecidability results on
PIVPs. Our results in [7] imply that reachability for PIVPs is undecidable,
i.e., given a PIVP and some open set in phase space, there is no algorithm to
decide if the solution of the PIVP crosses the open set. This contrasts with the
decidability of the reachability for linear differential equations [10]. In [11] we
showed that the boundedness of the domain of existence for PVIPs is undecid-
able as long as f is polynomial of sufficiently high degree and computable. At
first sight, this result might seem trivial, since one can easily construct simple
PIVPs which, upon varying one parameter, exhibit a critical value where the
solution is bounded on the left of this parameter value and unbounded on the
right. For instance, the PIVP x′ = α(x2−1)t, x(0) = 3 has a maximal interval
which is bounded for α > 0 and unbounded if α ≤ 0. Since we cannot compare
exactly two arbitrary computable reals [12] the boundedness problem for the
PIVP above is undecidable. However, in Section 5 we show that if we con-
sider that all input parameters are “comparable”, the boundedness problem
remains undecidable. We also prove the claim in [11] that those undecidability
results hold for PIVPs where the degree of the polynomial is less or equal to
56.

2 The GPAC, Polynomial Differential Equations, and Computable
Analysis

In this section we introduce some useful definitions and results that will later
be used in this paper.

Definition 1 Let I ⊆ R be a non-empty open interval and let t0 ∈ I. We say
that g : I → R is a PIVP function on I if it is a component of the solution of
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the initial-value problem

x′ = p(t, x), x(t0) = x0 (1)

where p is a vector of polynomials and t0 ∈ I. We say that g is a PIVP
function with parameters in S ⊆ R if the coefficients of p in (1), t0, and the
components of x0 belong to S.

Similarly we say that a function g : I ⊆ R→ Rk is a vector PIVP function if
each component of g is a PIVP function.

Example 2 The following are examples of PIVP functions with parameters
in Z: the exponential function ex, the trigonometric functions cos, sin [7], the
inverse function x 7→ 1/x (solution of y′ = −y2; on (0,+∞) it can be obtained
by setting the initial condition y(1) = 1).

The PIVP functions are also closed under the following operations (as far as
we know, these properties have only been reported in the literature for the
broader case of differentially algebraic functions):

(1) Field operations +,−,×, /. For instance, if f, g : I → R, where I ⊆ R is
an open interval, are PIVP functions, then so is f + g in I. In fact, if f, g
are the first components of the solutions of the (vector) PIVPs

x
′ = p(t, x)

x(t0) = x0

and

 y
′ = q(t, y)

y(t0) = y0

respectively then, since f ′(t) + g′(t) = p1(t, x) + q1(t, x), where p1(t, x)
and q1(t, x) are the first components of p(t, x) and q(t, x) respectively,
f + g is the last component of the solution of the PIVP


x′ = p(t, x)

y′ = q(t, y)

z′ = p1(t, x) + q1(t, y)


x(t0) = x0

y(t0) = y0

z(t0) = x0,1 + y0,1

where x0,1 and y0,1 are the first components of vectors x0 and y0, respec-
tively. Similar proofs apply for the operations −,×, /. It should be noted
that the quotient f/g is a PIVP function in intervals which do not contain
zeros of g, and that the PIVP which generates f/g is well-defined in such
intervals. For instance tan(= sin

cos
) is a PIVP function on (−π/2, π/2).

(2) Composition. If f : I → R, g : J → R, where I, J ⊆ R are open intervals
and f(I) ⊆ J , are PIVP functions, then so is g ◦ f on I. To see this,
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suppose that f, g are the first components of the solutions of the PIVPsx
′ = p(t, x)

x(t0) = x0

and

 y
′ = q(t, y)

y(t1) = y0

(2)

respectively, where t0 ∈ I and t1 ∈ J (no connection is assumed between
these values). Then, since (g ◦ f)′(t) = g′(f(t)).f ′(t), we construct a
system that computes f ′(t) (just copy the left system of (2) and note
that f ′(t) = p1(t, x)), and another that computes g′(f(t)) (now pick the
right system of (2); the first component will give g′(t), so we have to
substitute the variable t by f(t) = x1 so that this component yields
g′(f(t))), obtaining the following PIVP, where g ◦ f is the component z1:

x′ = p(t, x)

z′1 = q1(x1, z)p1(t, x)
...

z′n = qn(x1, z)p1(t, x)

x(t0) = x0

z(t0) = f(x0).

(3) Differentiation. If f : I → R, where I ⊆ R is an open interval, is a PIVP
function, then so is f ′ : I → R. To see this, suppose that f is the first
component of the solution of the PIVPx

′ = p(t, x)

x(t0) = x0.

Then

f ′(t) = x′′1(t) =
d

dt
p1(t, x) =

∂p1

∂t
+

n∑
i=1

∂p1

∂xi
x′i =

∂p1

∂t
+

n∑
i=1

∂p1

∂xi
pi(t, x)

which implies that f ′ is the last component of the solution of the PIVPx
′ = p(t, x)

z′ = ∂p1
∂t

+
∑n
i=1

∂p1
∂xi
pi(t, x)

x(t0) = x0

z(t0) = f ′(t0).

(4) Compositional inverses. If f : I → R, where I ⊆ R is an open interval,
is a bijective PIVP function, then so is f−1. This case will be shown in
the end of this section. In particular, this result implies that log, arcsin,
arccos, and arctan are also PIVP functions.

From the preceding examples, we conclude that the following corollary, where
closed-form stands for the class of elementary functions in Analysis which,
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informally, correspond to the functions obtained from the rational functions,
sin, cos, exp through finitely many compositions and inversions.

Corollary 3 All closed-form functions are PIVP functions.

When proving that some function is PIVP, we will find it most convenient
to make use of ODEs not only defined with polynomials, but also with other
PIVP functions. For this purpose, we have to resort to the next theorem,
which can be viewed as a strengthening of the elimination theorem of Rubel
and Singer for differentially algebraic functions [13] to the case of PIVPs. Its
proof is given in [7] for S = R but applies to any subfield of R (a different
proof is given implicitly in [14]).

Theorem 4 Let S be a subfield of R. Consider the IVP

x′ = f(t, x), x(t0) = x0 (3)

where f : D ⊆ Rn+1 → Rn, D is the domain of f , and each component of
f is a composition of polynomials with coefficients in S and PIVP functions
with parameters in S and (t0, x0) ∈ D ∩ Sn+1. Then there exists m ≥ n, a
polynomial p : Rm+1 → Rm with coefficients in S and y0 ∈ Sm such that the
solution of (3) is given by the first n components of y = (y1, ..., ym), where y
is the solution of the PIVP

y′ = p(t, y), y(t0) = y0.

Let us now prove that the inverse function f−1 of a bijective PIVP function
f : I → R, where I ⊆ R is an open interval, is also a PIVP function. We
know that (f−1)′(x) = 1/f ′(f−1(x)). Then, between two consecutive (inverse
images of) zeros a, b of f ′, with a < b, f−1 will be the solution of the IVP

y′ =
1

f ′(y)
, y(f(d)) = d, (4)

where d ∈ I and f(d) ∈ (a, b). Since f is a PIVP function, so is f ′. Moreover
x 7→ 1/x is also a PIVP function, and since PIVP functions are closed under
composition, so is x 7→ 1/f ′(x). Then Equation (4) and Theorem 4 ensure
that f−1 : (a, b)→ R is a PIVP function.

The following result, extracted from [4], [14] shows that the General Purpose
Analog Computer (GPAC), a model introduced by Shannon in 1941 [3], and
later refined in [15, pp. 13-14], [4, p. 647], [14], is equivalent to PIVP functions.
This result applies formally to the refined version of the GPAC presented in
[4, p. 647], [14].

Proposition 5 A function is generated by a GPAC iff it is a PIVP function.
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Therefore, all results stated in this paper for PIVP functions are also valid for
the GPAC generable functions.

We now recall basic notions from computable analysis. See [16] for an up-to-
date monograph on computable analysis from the computability point of view,
[12] for a presentation from a complexity point of view, or [17] for a general
introduction to the subject.

Definition 6 A sequence {rn} of rational numbers is called a ρ-name of a
real number x if there exist three functions a, b, c from N to N, such that for
all n ∈ N, rn = b(n)

c(n)+1
(−1)a(n) and

|rn − x| ≤
1

2n
. (5)

In the conditions of the above definition, we say that the ρ-name {rn} is given
as an oracle to an oracle Turing machine, if the oracle to be used is (a, b, c). The
notion of the ρ-name can be extended to Rl: a sequence {(r1n, r2n, . . . , rln)}n∈N
of rational vectors is called a ρ-name of x = (x1, x2, . . . , xl) ∈ Rl if {rjn}n∈N is
a ρ-name of xj, 1 ≤ j ≤ l.

Definition 7 A real number x is called computable if a, b, and c in (5) are
computable (recursive) functions.

Definition 8 A function f : D ⊆ Rm → Rk is computable if there is an
oracle Turing machine such that for any input n ∈ N (accuracy) and any ρ-
name of x ∈ E given as an oracle, the machine will output a rational vector
r satisfying ‖r − f(x)‖∞ ≤ 2−n, where ‖(y1, . . . , yl)‖∞ = max1≤i≤l |yi| for all
(y1, . . . , yl) ∈ Rl.

In particular, every rational number must be computable and it is not diffi-
cult to show that polynomials having computable coefficients are computable
functions. The following is a corollary of Theorem 3.1 of [18].

Theorem 9 Let f : R → Rm be a vector PIVP function with computable
parameters defined on an interval (α, β). Then f is computable in (α, β).

3 Robust Simulations of Discrete Dynamical Systems

One of the purposes of the present paper is to show that a large class of discrete
systems can be simulated with vector PIVP functions. Let D be a discrete
dynamical system (both space and time are discrete). We can associate each
discrete part of the state space to an integer, so that the evolution of the
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system is modeled by the iteration of a map ω : Nm → Nm. In general, if f is a
function, we denote its kth iterate by f [k], i.e. f [0](x) = x and f [k+1] = f ◦ f [k]

for all k ∈ N. We now present some definitions.

Definition 10 The map Ω : Rm → Rm is a (real) robust extension of the
map ω : Nm → Nm if there exist δin, δev, δout ∈ (0, 1/2) such that for all
x0 ∈ Rm, n0 ∈ Nm, Ω : Rm → Rmone has

(1) Ω(n) = ω(n) and

(2) ‖n0 − x0‖∞ ≤ δin and
∥∥∥Ω− Ω

∥∥∥
∞
≤ δev implies

∥∥∥ω(n0)− Ω(x0)
∥∥∥
∞
≤ δout.

The following lemma follows easily from this definition by induction (we can
“contract” δout to δin using the function σ presented in Lemma 19). For sim-
plicity, we will usually refer to robust extensions of a map as the property
described by this lemma instead of Definition 10.

Lemma 11 If Ω : Rm → Rm is a robust extension of the map ω : Nm → Nm,
then there exist δin, δev, δout ∈ (0, 1/2) such that for all x0 ∈ Rm, n0 ∈ Nm,
Ω : Rm → Rmone has

(1) Ω(n) = ω(n) and

(2) ‖n0 − x0‖∞ ≤ δin and
∥∥∥Ω− Ω

∥∥∥
∞
≤ δev implies

∥∥∥∥ω[k](n0)− Ω
[k]

(x0)
∥∥∥∥
∞
≤

δout for all k ∈ N.

In the continuous-time setting dynamical systems are described by ODEs in-
stead of iteration of maps. Moreover, since time is continuous, we also allow
robustness in the time instant where we read the output. Again, we could con-
sider robustness for one time unit steps, and then generalize to give iterates
for all k ∈ N as we did for robust extension. Here, for simplicity, we omit this
two step procedure and present instead the following definition.

Definition 12 Let φ : R → R be the unique solution of the initial value
problem

x′ = f(t, x), x(0) = n0.

We say that φ is a robust suspension of the map ω : Nm → Nm if there exist
δin, δev, δout, δtime ∈ (0, 1/2), such that for all x0 ∈ Rm, n0 ∈ Nm, k ∈ N, and
f : Rm+1 → Rm one has that

‖n0 − x0‖∞ ≤ δin and
∥∥∥f − f∥∥∥

∞
≤ δev

implies that the solution φ of the initial-value problem

x′ = f(t, x), x(0) = x0

satisfies ∥∥∥ω[k](n0)− φ(t)
∥∥∥
∞
≤ δout
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for all t ∈ R+
0 such that |t− k| ≤ δtime.

These two definitions say that whenever we have a robust extension/suspension
of a map, we can perturb the system by some amount, and still obtain a result
close to the desired iterate ω[k](n0).

We shall use Q[π], the standard algebraic ring extension of Q by adjoining the
transcendent π, and which is the smallest ring containing Q ∪ {π}:

Q[π] := {anπn + . . .+ a1π + a0 ∈ R|a0, . . . , an ∈ Q}.

The following are the main results of this section, to be proved in Section
4. The next theorem shows that if the map is a composition of polynomials
and PIVP functions (with parameters in Q[π]), then one can constructively
obtain a robust suspension of the map which is itself a PIVP function (with
parameter in Q[π]).

Theorem 13 If the map ω : Nm → Nm admits a robust extension Ω : Rm →
Rm whose components are compositions of polynomials and PIVP functions
with parameters in Q[π], then ω admits a robust suspension φ which is a vector
PIVP function with parameters in Q[π].

The next proposition follows from the proof of Theorem 12 from [7]. There
the transition of a Turing machine is coded as a map over the integers in the
following manner: we code the state as an integer and, using a representation
of numbers in some adequate base, we code the right part of the tape as a
second integer, and the left part as a third integer. We denote that encoding
by η (see [7, p. 332] for more details).

Proposition 14 Under the encoding η, the transition function ω : N3 → N3

of a Turing machine admits a robust extension Ω : R3 → R3 . Moreover Ω
can be chosen to be a composition of polynomials with coefficients in Q[π] and
PIVP functions with parameters in Q[π] (in particular sin, cos and arctan).

Actually in [7] we required algebraic numbers as coefficients for the polynomi-
als. But non-rational coefficients are only needed to perform a trigonometric
interpolation, and may be well approximated by rationals for the purpose at
hand. This approximation will introduce some extra error to the computation
of the map, but this is a minor hinderance since the map is robust. From
Theorem 13 and Proposition 14, we obtain the following result.

Corollary 15 With the above encoding, the transition function ω of a given
Turing machine admits a robust suspension φ. Moreover φ is a vector PIVP
function with parameters in Q[π].
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4 Proof of Theorem 13

This proof is based on Branicky’s construction [8], and many steps are similar
to those presented in [7]. So, before presenting the proof of Theorem 13, we
will briefly sketch this technique, that constructively shows how a map from
integers to integers can be iterated with smooth ODEs. By a smooth ODE we
mean an ODE

y′ = f(t, y) (6)

where f is of class Ck, for some 1 ≤ k ≤ ∞ (but not necessarily analytic).
Instead of using the original approach of Branicky, we will use the one by
Campagnolo, Costa, and Moore in [9], [19], [20].

Suppose that ω : Zm → Zm is a map. For better readability, we break down
the procedure into two constructions.

Construction 16 Consider a point b ∈ R (the target), some γ > 0 (the
targeting error), and time instants t0 ( departure time) and t1 ( arrival time),
with t1 > t0. Then obtain an IVP (the targeting equation) defined with an
ODE (6), where f : R2 → R, such that the solution y satisfies

|y(t1)− b| < γ (7)

independent of the initial condition y(t0) ∈ R.

As pointed out in [7, p. 345] this can be done by an ODE

y′ = c(b− y)3φ(t), (8)

where φ : R→ R+
0 is some function satisfying

∫ t1
t0
φ(t)dt > 0 and c > 0 is any

constant which is bigger than a constant c0 depending on γ and φ. Note that
the only requirement for the construction to hold is that c is large enough. We
refer the reader to [7, p. 345] for details.

Construction 17 Iterate the map ω : Zm → Zm with a smooth ODE (6).

Let Ω : Rm → Rm be an arbitrary smooth extension of ω to R (not necessarily
robust). The iteration of ω may be performed [21, Proposition 3.4.2] by the
initial-value problem z

′
1 = c1(Ω(r(z2))− z1)3θj(sin 2πt)

z′2 = c2(r(z1)− z2)3θj(− sin 2πt)

 z1(0) = x0

z2(0) = x0,
(9)

where z1(t), z2(t) ∈ Rm, θj(x) = 0 if x ≤ 0 and θj(x) = xj if x > 0, and r(x) is
a function that is a solution of an ODE and that satisfies r(x) = i whenever
x ∈ [i − 1/4, i + 1/4] for all i ∈ Z (see the proof of Proposition 3.4.2 in [21]
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for the explicit definition of r(x)). Note that c1 and c2 depend on j and that
all coefficients in (9) are in Q[π] [21]. In the remainder of this section we will
show how to replace the non-analytic terms in (9) by PIVP functions with
parameters in Q[π]. As a result, by Theorem 4, it follows that the iteration
can be performed with vector PIVP functions with parameters in Q[π].

However, if our purpose is to prove Theorem 13, we have some problems with
the previous constructions:

(1) We have used the nonanalytic functions θj(x) and r(x) which are ob-
viously not PIVP functions. We will remove these functions using the
fact that ω admits a robust extension. Therefore we have to study what
happens when perturbations are allowed in (9) to prove Theorem 13.

(2) We would like to “read” the value of the iterated function not in time
intervals of the form [k, k + 1/2] for k ∈ N as before, but rather in time
intervals of the form [k− 1/4, k+ 1/4] so that we can use δtime = 1/4 for
Theorem 13. This may be easily achieved by using a translation that adds
1/4 units of time. Because this construction is simple, in what follows,
we will continue to stick to time intervals of the form [k, k+ 1/2] in order
to not overcomplicate our constructions.

In order to solve the previous problems, we need to recall the following two
functions, σ and l2, which were introduced and studied in [7].

Lemma 18 Let l2 : R2 → R be given by l2(x, y) = 1
π

arctan(4y(x− 1/2)) + 1
2
.

Suppose also that a ∈ {0, 1}. Then, for any a, y ∈ R satisfying |a− a| ≤ 1/4
and y > 0,

|a− l2(a, y)| < 1

y
.

Lemma 19 Let σ(x) = x− 0.2 sin(2πx) and ε ∈ [0, 1/2). Then there is some
contracting factor λε ∈ (0, 1) such that for all n ∈ Z, ∀δ ∈ [−ε, ε], |σ(n+ δ)−
n| < λεδ.

Studying the perturbed targeting equation. (cf. Construction 16) Be-
cause the iterating procedure relies on the basic ODE (8), we have to study
the following perturbed version of (8)

z′ = c(b(t)− z)3φ(t) + E(t), (10)

where
∣∣∣b(t)− b∣∣∣ ≤ ρ and |E(t)| ≤ δ. This was done in [7], where it is shown

that

|z(1/2)− b| < ρ+ γ +
δ

2
. (11)
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Removing the θj’s from (9). We must remove the θj’s in two places: in the
function r and in the terms θj(± sin 2πt). Since in (9) we are using a robust
extension Ω : Rm → Rm of ω : Nm → Nm, we no longer need the corrections
performed by r. There may be a problem when Ω is a robust extension of ω
with δout > 1/4, but this can easily be overcome by applying the function σ l
times to each component of Ω until one has that σ[l] ◦Ω is a robust extension
of ω with δσin ≤ 1/4, and use σ[l]◦Ω instead of Ω. So, without loss of generality,
we assume that δout ≤ 1/4 for Ω.

On the other hand we cannot use this technique to treat the terms θj(± sin 2πt).
We need to substitute φ(t) = θj(sin 2πt) with an analytic (PIVP) function
ζ : R→ R with the following ideal behavior:

(i) ζ is periodic with period 1;

(ii) ζ(t) = 0 for t ∈ [1/2, 1];

(iii) ζ(t) ≥ 0 for t ∈ [0, 1/2] and
∫ 1/2

0 ζ(t)dt > 0.

Of course, conditions (ii) and (iii) are incompatible for analytic functions.
Instead, we approximate ζ using a function ζε, where ε > 0. This function
must satisfy the following conditions:

(ii)′ |ζε(t)| ≤ ε for t ∈ [1/2, 1];

(iii)′ ζε(t) ≥ 0 for t ∈ [0, 1/2] and
∫ 1/2
0 ζε(t)dt > I > 0, where I is independent

of ε.

In [7] an example of a PIVP function satisfying both (ii)′ and (iii)′ is con-
structed (function W0(t, y) in p. 346 of that paper). Similarly, θj(− sin 2πt) will
be replaced by the PIVP function ζε(−t). This function is defined by means
of a PIVP where all coefficients are in Q[π].

Performing Construction 17 with vector PIVP functions. We are now
ready to perform a simulation of an integer map with a system similar to (9),
but using only PIVP (and hence analytic) functions. Choose δin, δev, and a
targeting error γ > 0 such that

2γ + δev/2 ≤ δin < 1/4. (12)

We take δtime = 1/4. We want to determine δout and present a system of ODEs
that satisfies the conditions of Theorem 13. Consider the system of ODEs z

′
1 = c1(Ω ◦ σ[m](z2)− z1)3 ζε1(t),

z′2 = c2(σ[n](z1)− z2)3 ζε2(−t)
(13)

194



with initial conditions z1(0) = z2(0) = x0, where c1, c2,m, n,ε1, and ε2 are still
to be defined, and σ is the error-contracting function defined in Lemma 19.

We would like (13) to satisfy the following property: on [0, 1/2],

|z′2(t)| ≤ γ. (14)

This can be achieved by taking ε2 = γ/K, where K is a bound for c2(σ[n](z1)−
z2)3 in the interval [0, 1]. Since |x|3 ≤ x4 + 1 for all x ∈ R, we can take
ε2 = γ

c2(σ[n](z1)−z2)4
+ γ
c2

. Now notice that z2(0) has an error bounded by δin. This

fact, together with (14) and the fact that z′2 might be subject to perturbations
of amplitude not exceeding δev imply that

|z2(t)− x0| ≤ δin + (δev + γ)/2 = δout < 1/2 for t ∈ [0, 1/2]. (15)

Therefore, for m satisfying σ[m](δout) < γ, we have
∣∣∣σ[m](z2(t))− x0

∣∣∣ < γ for

all t ∈ [0, 1/2]. Hence, from the study of the perturbed targeting equation
(10), where φ(t) = ζε1(t) and c1 is obtained accordingly, we have (take ρ = γ
and consider (12))

|z1(1/2)− ω(x0)| < 2γ +
δev
2
≤ δin. (16)

For the interval [1/2, 1] the roles of z1 and z2 are interchanged. Similarly to
the reasoning done for z2 on [0, 1/2], take ε1 = γ

c1(Ω◦σ[m](z2)−z1)4
+ γ

c1
so that on

[0, 1/2]
|z′1(t)| ≤ γ.

From this inequality, (16), and the fact that z′2 might be subject to perturba-
tions of amplitude not exceeding δev, we conclude that

|z1(t)− ω(x0)| ≤ δin + (δev + γ)/2 = δout < 1/2 for t ∈ [1/2, 1].

Therefore, for n = m, we have
∣∣∣σ[n](z1(t))− ω(x0)

∣∣∣ < γ for all t ∈ [1/2, 1].

Hence, from the study of the perturbed targeting equation (10), where φ(t) =
ζε2(t) and c2 is obtained accordingly, we have

|z2(1)− ω(x0)| < 2γ +
δev
2
≤ δin.

Now we can repeat the procedure for intervals [1, 2], [2, 3], etc. to conclude
that for all j ∈ N and for all t ∈ [j, j + 1/2],∣∣∣z1(t)− ω[j](x0)

∣∣∣ ≤ δout.

Moreover, z1 is defined as the solution of an ODE written in terms of PIVP
functions, and all coefficients of this ODE are in Q[π]. Then, by Theorem 4,
z1 is a vector PIVP function with parameters in Q[π].
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5 Application – Undecidability for PIVPs with Comparable Pa-
rameters

It is well known from the basic existence-uniqueness theory of ODEs [22], [23]
that if f is analytic, then the IVP

x′ = f(t, x), x(t0) = x0 (17)

has a unique solution x(t) defined on a maximal interval of existence I =
(α, β) ⊂ R that is analytic on I [24]. The interval is maximal in the sense
that either α = −∞ or x(t) is unbounded as t → α+ with similar conditions
applying to β (see Proposition 20 for details). Actually, f only needs to be
continuous and locally Lipschitz in the second argument for this maximal
interval to exist.

A question of interest is the following: is it possible to design an automated
method that, on input (f, t0, x0), gives as output the maximal interval of
existence for the solution of (17)? In computability theory, e.g. [25], [26], it is
well known that some problems cannot be answered by the use of an algorithm
(more precisely, by the use of a Turing machine). Such problems are labelled
undecidable and many examples are known. The most prominent undecidable
problem is the Halting Problem: given a universal Turing machine and some
input to it, decide whether the machine eventually halts or not. To address
this kind of questions for IVPs, we use the computable analysis approach [17],
[12], [16], which we presented in the end of Section 2. Using that approach, it
was shown in [18] that given an analytic IVP (17), defined with computable
data, its corresponding maximal interval may be non-computable.

Non-computability results related to initial-value problems of differential equa-
tions are not new. For example, Pour-El and Richards [27] showed that if we
relax the condition of analyticity in the IVP (17) defined with computable
data, it can have non-computable solutions. In [28], [29] it is shown that there
is a three-dimensional wave equation, defined with computable data, such that
the unique solution is nowhere computable. However, in these examples, non-
computability is not “genuine” in the sense that the problems under study
are ill-posed: either the solution is not unique or it is unstable [30]. In other
words, ill-posedness was at the origin of non-computability in those examples.
In contrast, an analytic IVP (17) is classically well-posed and, consequently,
the non-computability results do not seem to reflect computational and well-
posedness deficiencies inherited by the problems.

Motivated by the non-computability result obtained in [18], this latter paper
also addresses the following problem: while it is not possible to compute the
maximal interval of (17) is it possible to compute some partial information
about it? In particular, is it possible to decide if this maximal interval is
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bounded or not?

This question has interest on its own for the following reason. In many prob-
lems, we implicitly assume that t is defined for “all time”. For example, if one
wants to compute sinks or limit cycles associated with ODEs, this only makes
sense if the solution of the ODE is defined for all times t > t0. This is also im-
plicitly assumed in problems like reachability [31], [32], [33], [34], [35], etc. For
this reason, those problems only make sense when associated with ODEs for
which the maximal interval is unbounded. So, it would be interesting to know
which are the “maximal” classes of functions f for which the boundedness
problem is decidable.

In [18], it was shown that for the general class of analytic IVPs, the bound-
edness problem of the maximal interval is undecidable. Here we will deepen
this result: we will show that the boundedness problem is still undecidable for
PIVPs of degree greater or equal than 56 with parameters in Q[π]. Our result
is slightly different in form from the case of the general class of analytic IVPs.
Indeed, the coefficients of the polynomials are coded as finite sequences of in-
tegers and not as ρ-name satisfying (5), though from these finite sequences of
integers one can easily compute ρ-names for the coefficients of the polynomials.

The boundedness problem is decidable for linear differential equations thus
implying that the boundary between decidability/undecidability lies in the
class of polynomials of degree n, for some 2 ≤ n ≤ 56.

This result is shown using methods which differ from those employed in [18].
This result was already stated in [11], but we now present its proof.

The following result introduces the notion of maximal interval for ODEs and
follows as an immediate consequence of the fundamental existence-uniqueness
theory for the initial-value problem (17), where the analyticity condition is
dropped for f [22], [23], [36].

Proposition 20 Let E be an open subset of Rn+1 and assume that f : E →
Rn is continuous on E and locally Lipschitz in the second argument (i.e. in
the last n components). Then for each (t0, x0) ∈ E, the problem (17) has a
unique solution x(t) defined on a maximal interval (α, β), on which it is C1.
The maximal interval is open and has the property that, if β < +∞ (resp.
α > −∞), either (t, x(t)) approaches the boundary of E or x(t) is unbounded
as t→ β − (resp. t→ α+).

Note that, as a particular case, when E = Rn+1 and β <∞, x(t) is unbounded
as t→ β −. This will be the case under study in this section.

We now introduce a definition that allows us to compare real numbers of
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some given set, to avoid the trivial undecidability of the boundedness problem
sketched in Section 1.

Definition 21 We say that a set D ⊆ R is effectively comparable if D has a
naming system γ, if all elements of D are γ-computable, and if given γ-names
of x, y ∈ D, then x = y and x < y are decidable

In the previous definition, “naming system” is either a (finite) notation or
a (infinite) representation of the elements of D according to Weihrauch [16,
p. 33 and p. 52]. Next we show that Q[π] is effectively comparable. Indeed,
given a0, . . . , am ∈ Q (which can easily be coded as a finite sequence using a
finite alphabet A), we can take the notation f : A∗ → Q[π]

f(a0, . . . , am) =
m∑
i=0

aiπ
i.

Moreover, if α, β ∈ Q[π],

α =
m∑
i=0

aiπ
i and β =

n∑
i=0

biπ
i,

where a0, . . . , am, b0, . . . , bn ∈ Q. We can decide if α = β since α = β iff
ai = bi for all i and ai and bi are rationals. We can also compute arbitrarly
close approximations of α and β. Therefore, if α 6= β, we can compare these
values: we just need to start computing increasing approximations of α and
β until we decide whether α < β or α > β. The following result is similar to
Theorem 12 in [11], but here we restrict the parameters of the PIVP to an
effectively comparable set. This prevents the trivial undecidability discussed
in Section 1.

Theorem 22 Let D be an effectively comparable set such that Q[π] ⊆ D.
The following problem is undecidable: “Given p : Rn+1 → Rn with polynomial
components with coefficients in D (these coefficients are given by their names,
as described in Definition 21), and (t0, x0) ∈ Q × Qn, decide whether the
maximal interval of the IVP (1) is bounded or not”.

Actually, if we are given the description of a universal Turing machine, we can
constructively define a set of polynomial ODEs simulating it that encodes the
Halting Problem. If we use the small universal Turing machine presented in
[37], having 4 states and 6 symbols, we obtain the following theorem.

Theorem 23 Let D be an effectively comparable set such that Q[π] ⊆ D.
There is a vector p : Rn+1 → Rn, with n ≥ 1, defined by polynomials with
coefficients in D (these coefficients are given by their names, as described in
Definition 21), where each component has degree less than or equal to 56, such
that the following problem is undecidable: “Given (t0, x0) ∈ Q × Qn, decide
whether the maximal interval of the IVP (1) is bounded or not”.
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Proof. The idea to prove this theorem is to simulate with a set of polynomial
ODEs Rogozhin’s small universal Turing machine [37]. We can obtain a set of
PIVPs simulating this Turing machine as described by Theorem 13, Proposi-
tion 14, and Corollary 15. Then we expand this PIVP system as a polynomial
ODE using the techniques introduced in the proof of Theorem 4. Since the
entire procedure is constructive and bottom-up, it is possible to determine the
degrees of the polynomials appearing in the IVP. This will be done later in
the proof.

The important point is that we can obtain a PIVP (1), with solution x, that
satisfies for every k ∈ N

xq(t) ≤ m− 11
16

if M has not halted at step k and t ≤ k

xq(t) ≥ m− 5
16

if M has already halted at step k and t ≥ k
(18)

where the states of the Turing machine are encoded by numbers in {1, . . . ,m}
and m = 4 is the Halting state. Consider the IVP

 z
′
1 = xq − (m− 1/2)

z2 = 1
z1

⇐⇒

 z
′
1 = xq − (m− 1/2)

z′2 = ((m− 1/2)− xq)z2
2

(19)

where z1(0) = z2(0) = −1. Since xq appears as a component, we assume that
this IVP is coupled with the PIVP defined by Proposition 14 and Theorem 4.
It is easy to see that while M hasn’t halted, xq− (m− 1/2) ≤ −3/16. Thus z1

keeps decreasing and the IVP is defined in (0,+∞), i.e. the maximal interval
is unbounded, if M never halts.

On the other hand, if M eventually halts, z1 starts increasing at a rate of at
least 3/16 and will do that forever. So, at some time it will have to assume
the value 0. When this happens, a singularity appears for z2 and the maximal
interval is therefore (right-)bounded. For negative values of t just replace t by
(−t) in the PIVP (1) and assume t to be positive. It can be shown that the
behavior of the system will be similar, and we reach the same conclusions for
the left bound of the maximal interval. So M halts iff the maximal interval of
the PIVP (19) is bounded, i.e. boundedness is undecidable.

It remains to determine the degree of the polynomials appearing in the defini-
tion of (1) and (19). We will now sketch how this is done. In what follows we
assume that x and y are variables in an IVP, whose derivatives can be written
as a polynomial (possibly involving other variables of the IVP) of degrees k
and n, respectively (for short, we will simply say that x and y have degree
k and n). Then our task is to know what is the degree of the PIVP giving
functions like sin x, etc.
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(1) The case of sin and cos. We have (sinx)′ = x′ cosx

(cosx)′ = −x′ sinx
=⇒

 y
′
1 = x′y2

y′2 = −x′y1

where y1 and y2 substitute sin x and cos x, respectively. So, if x has degree
k, sin x and cos x can be replaced by variables having degree k + 1.

(2) The case of arctan. One has (arctanx)′ = x′

1+x2(
1

1+x2

)′
= − 2x́x

(1+x2)2

=⇒

 y
′
1 = x′y2

y′2 = −2x′xy2
2

where y1 replaces arctanx. So, arctan x can be replaced by a variable of
degree k + 1, but also introduces another variable of degree k + 3.

(3) There are other functions that we didn’t describe in detail previously,
and that are used in our simulation (the reader is referred to [7]). But
they are built from polynomials and the functions arctan and sin. So a
straightforward application of the proof of Theorem 4 and the cases 1
and 2 above are enough to understand what happens with the degree of
variables which derivative is described in terms of these functions.

Carrying out all the steps mentioned above, one can see that 56 is the highest
degree for a variable that appears in the polynomial expansion of the ODE
simulating Rogozhin’s small universal Turing machine.

Let us remark that, while the boundedness problem of the maximal interval
for unrestricted PIVPs is in general undecidable, this is not the case for some
subclasses of polynomials. For instance, the boundedness problem is decidable
for the class of linear differential equations (the maximal interval is always R
— see e.g. [36, p. 79]) or for the class of one-dimensional autonomous differ-
ential equations where f is a polynomial of any degree (the ODE is separable,
yielding an integral of a rational function that can be algorithmically solved).
It would be interesting to investigate maximal classes where the boundedness
problem is decidable.

6 Conclusion

In this paper we provide further results that establish a bridge between the
theory of ODEs and computation (see [38] for an up-to-date review). We
focus on polynomial initial value problems with computable and comparable
parameters.
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With respect to computation, our main result is that the boundness of the
maximal interval of definition is undecidable even for PIVPs with comparable
parameters and degree up to 56. We can view this result as a ODE analog to
the undecidability of the Halting problem for Turing machines.

With respect to polynomial ODEs, we show that they can simulate a large
class of dynamical systems – including Turing machines – in the presence of
noise.

Based on the previous results we argue that polynomial ODEs, which are a
well known model of physical phenomena, are also a powerful, yet realistic,
model of continuous time computation.
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                                        A New Problem for Rule Following 

Mark Hogarth 
Girton College, Cambridge 

1. Introduction 

This is part of an extended argument of mine about the Church-Turing thesis (CTT). 
In Hogarth 1994 I argued that the thesis is a thoroughly empirical claim. In Hogarth 
2004, 2008 I rejected that view, arguing instead that the thesis is really a pseudo-
proposition like ‘Australia is below England’, or , better, like ‘Euclidean geometry is 
the true geometry’. I say ‘better’ because my attitude towards this issue is shaped by 
an analogy with the concept of geometry. The key idea is that there is no 
fundamentally privileged computing device (e.g. Turing machine), in just the way that 
there is no privileged geometry (e.g. Euclidean). From a mathematical viewpoint 
there are lots of computers, lots of inequivalent ways to execute an algorithm (or 
procedure or rule). In my previous work I took it that the idea of losing CTT would 
have important consequences but consequences primarily for computability theory. 
Here I suggest the consequences extend further and may indeed touch on the nature of 
pure mathematics itself.  Simple counting provides a case study.  I also make some 
remarks about how the analogy with geometry might provide an answer to the 
stubborn problem of why pure mathematics is applicable to the natural sciences. 

2. The liquefaction of computability 

This line of enquiry began with the discovery of some non-Turing computers within 
the theory of general relativity (Hogarth 1992,1994, 2004, 2008; Earman and Norton 
1993; Etesi and Nemeti 2001; Nemeti and David 2006).  But what I have to say here, 
and indeed what is important, is not about those computers per se but rather about 
what their existence reveals about the concept of computability (written 
Computability). In that sense these non-Turing computers are like the first non-
Euclidean geometries: what matters, conceptually speaking, is not the real-world 
accuracy of the models but their existence.  

Let us remind ourselves how the concept of geometry came to change. Writing in 
1897, when the status of non-Euclidean geometries was still controversial, Bertrand 
Russell began his book, An Essay on the Foundations of Geometry, as follows:  

‘When a long established system is attacked, it usually happens 
that the attack begins at a single point, where the weakness of the 
doctrine is particularly evident. But criticism once invited, is apt 
to extend much further than the most daring, at first, would have 
wished.’ 

‘“First cut the liquefaction, what comes last, 
But Fichte’s clever cut at God himself?”’ 

‘So it has been with Geometry.’ 

The liquefaction of Euclidean geometry began at the end of the 18th century, when 
Gauss questioned one of the axioms of the Euclidean system, the so-called Axiom of 
Parallels or Euclid’s Postulate 5 (‘Axioms XI’ in some older manuscripts). Gauss 
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experimented with systems lacking that axiom, but he never published his results for 
he feared an ‘uproar of the Boeotians’1. The first publications to present a non-
Euclidean system were due Lobachevsky in 1829 and Bolyai in 1832; others 
followed.  

There are two strands of argument in Russell’s book. First, that these new geometries 
represent real possibilities for the geometry of our world and deciding between them 
is an empirical matter. Secondly, that any possible geometry must possess constant 
curvature. This idea Russell held for essentially Kantian reasons. With the arrival in 
1915 of Einstein’s general theory of relativity this second strand became untenable, a 
point Russell himself was quick to acknowledge (Torretti, Chapter 7). Space (and 
spacetime) could possess variable curvature.  

The process of liquefaction therefore advanced further than Russell had anticipated in 
1897. After Einstein the term ‘geometry’ became broad and vague. ‘Broad’ because it 
encompassed a myriad of systems suggested by the sciences; ‘vague’ because the 
lessons of the past were not to attempt to isolate some ‘essential’ features of geometry 
(like constant curvature); not, in short, to try to cauterize the concept of geometry. We 
are now not even tempted to ask what makes a system a ‘geometry’. The term, like 
the term ‘game’, gets applied because of family resemblances with accepted 
archetypes. We rightly tend to leave it at that. 

One way to phrase the conceptual shift taking us from Euclidean geometry to post-
Einstein geometry, is to say that the concept of geometry (written Geometry) became 
two-sided, with physical geometry on one side and pure geometry on the other. 
Physical geometry is concerned with modeling the geometry of the physical world; 
it’s part of physics. Pure geometry is concerned with the mathematical structure of 
each of the many geometrical models now in the offing; it’s part of pure mathematics.  

What I argued in Hogarth 2004, 2008 is that Computability now also looks two-sided, 
exactly because it has come to look so like Geometry.2  

In Table 1 I summarize the main points of contact of the two concepts. 

The ‘SADs’ referred to above are relativistic computers that can perform some non-
Turing computable tasks. In the Appendix I give a representation of the two simplest, 
the SAD1 and SAD2, alongside representations of a finite Turing machine (FTM) and 
an ordinary Turing machine (OTM). The reader is encouraged to consult the 
references for further details, but the key point here is that ‘running’ the same 
algorithm first on the Turing machine and then on the SAD1 will, in general, produce 
two different results. Hardware matters. 

 

                                                
1 Meaning ‘fools’. The ancient Athenians took a dim view of their neighbours in 
Boeotia. 
2 This is arguably more than just a metaphor / simile. Computers employ space and 
time = spacetime = spacetime geometry. Thus if Geometry is two-sided, then it is not 
unreasonable to expect Computability to be two-sided too. 
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Geometry Computability 
Euclidean Turing 
The various representations of Euclidean 
geometry by e.g. Euclid, Playfair, Wallis, 
Saccheri, Riemann. 

The various representations of Turing 
computability by e.g. Church, Kleene, 
Turing, and Post 

‘Euclidean geometry is the true 
geometry’—call this Euclid’s thesis; it 
has a dual role: as a statement of the 
‘truth’ of Euclidean geometry, and as an 
heuristic to complete ‘proofs’ 

Church-Turing thesis; it has dual role: as 
a statement of the ‘truth’ of  Turing 
computability, and as an heuristic to 
complete ‘proofs’. 

Geometries of Lobachevsky, Bolyai, 
Riemann, Einstein, etc. 

Quantum computers, relativistic 
computers (SADs), Davies’s machine 

Geometry is two-sided: pure and physical  Computability is two-sided: pure and 
physical 

From pure view point, there is no e.g. 
Euclidean v. Lobachevsky 

From a pure view point, there is no e.g. 
Turing machine v. SAD1 

Subjective terms e.g. ‘intuitive’, ‘natural’ 
fall out of use. 
 

Subjective/vague terms e.g. ‘intuitive’, 
‘natural’, ‘mechanical’ fall out of use. 
 

Without Euclid’s thesis, rigorous proofs 
can be advanced. 

Without CTT, rigorous proofs can be 
advanced. 

                                                                 Table 1 

3. Counting 

The idea that dispensing with CTT will have implications for only a sliver of 
mathematics, namely computability theory, is quickly dispelled when one is reminded 
that pure mathematics is shot through with algorithms (or rules or procedures – I take 
these to be synonyms).  

Take as simple an example as ordinary counting, of the kind a child performs. The 
procedure (it’s like the Frege successor function) is this:  

 

Begin with n=1 

Let n=n+1 

Reveal n 

Repeat the second step 

 

Suppose this algorithm is executed on some machine, and an observer consults it from 
time to time to see what is happening.  

One is inclined to say the observer will see something like:  

1,2,17,18,101,1201 
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(Note: the observer observers only from time to time, so some numbers will be 
missing. And of course the observer does not see the ‘numbers’ as such; rather she 
must interpret the machine’s output: perhaps 17 dots on a screen is taken to be ‘17’.) 

But this entirely depends upon which machine is executing the algorithm. A FTM  
(Appendix) will just stop at 101 (say), so our observer will see:  

1,2,17,18,101 

An OTM (Appendix) will never stop but our mortal observer must, at (say) 1739:  

1,2,17,18,101,1739 

With a SAD1 our observer sees: 

1,2,17,18,101,1201, 1739, ω 

This is like the OTM case, except now at some point the observer can witness the first 
ordinal ω (again as naturally interpreted from the machine’s output; see Appendix). 

SAD2 goes a step further. Now our observer sees: 

1,2,17,18,101,1201, 2015, ω, ω+1, 2ω, ω2 

One tends to think that an algorithm determines the ‘output’. Here we see the output 
depends, non-trivially, upon the machine too. The output is irreducibly a function of 
two variables: the algorithm and the machine. An algorithm is by itself indeterminate, 
and those parts of pure mathematics involving algorithms or procedures or rules really 
are nothing but squiggles until coupled to a machine. The formalists then were right to 
take the squiggles in mathematics textbooks to be merely squiggles, but they were 
wrong in thinking the squiggles are pure mathematics.  

This idea undermines a deeply held intuition. We find ourselves saying: but surely the 
algorithm above just is 1,2,3,…?  

All one can say is that executing the algorithm on an OTM yields 1,2,3,… 

The analogy with geometry may help here. Counting is like building a ladder with 
numbered rungs. The ladder is built in space (no space, no ladder), and the structure 
of the space, together with the building instructions (add another rung), determines 
the shape of the final ladder.  

The fixation with 1,2,3,… is akin to the fixation with the long Euclidean ladder (in 
Euclidean space). But – and this is the point – there are other possible ladder 
structures. 

This observation, that algorithm by itself lacks of determinacy, might seem redolent 
of Wittgenstein’s skeptism about rule following:  

‘… we get [a] pupil to continue a series (say + 2) beyond 1000 — and he 
writes 1000, 1004, 1008, 1012 (Wittgenstein 1953).’ 

Wittgenstein is drawing attention to how we use the ‘+’ sign, and consequently what 
we mean by that sign. The pupil’s answer, thinks Wittgenstein, does nothing to 
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conflict with past uses (e.g. 10+2=12) – and so there is nothing ‘wrong’ with the 
answer. 

But Wittgenstein’s problem is of course another problem. For even if the 
implementation of ‘+’ is unproblematic, transparent, the argument above shows that 
this mark by itself does no work. 

4. How is pure mathematics applicable to the natural sciences? 

A stubborn problem in the philosophy of mathematics is this: why is pure 
mathematics applicable to the natural sciences? Related to this is Benacerraf’s 
problem: how can we come to know the ‘inert’ objects of pure mathematics? 

On the view that CTT holds, or indeed that computation is a transparent process, this 
is a hard problem. Counting (say) clearly is applicable to the real world and yet is 
comprised of an algorithm (a pure object) and is driven by a Turing machine (a pure 
object). How can these two pure objects come together to represent part of the 
physical world? Put like that, it’s a hard problem. 

But when Computability is viewed as two-sided, like Geometry, this problem 
becomes tractable. Counting (say 1,2,3,…) can be treated as a pure system. But that 
system (algorithm + OTM) has, on the other side, a physics, the physics of Turing 
machines. 

This is only a very partial answer to the problem, but it shows where the answer lies 
(in the physics of machines) – and that was really the problem. 

 

Appendix 

Figure 1 below shows representations of four computing devices. The vertical 
dimension is time, the horizontal space. A filled dot represents an event; an unfilled 
dot represents spacetime at ‘infinity’. The unattached filled dot is a typical event on a 
computer user’s worldline (though the worldline itself is not shown). A line is a 
worldline of a computer. In (i) the computer stops computing after a finite number of 
operations. This is the finite Turing machine or FTM. In (ii) the computer never stops 
computing (but the user can access only a finite number of computational steps). This 
is the ordinary Turing machine or OTM. In (iii) the computer is underpinned by a so-
called Malament-Hogarth spacetime, which permits the user access to an infinite 
number of steps. This is called a SAD1 computer (because it can decide arbitrary 
sentences in arithmetic with one quantifier). In (iv) is a SAD2, that is a ‘string’ of 
SAD1s.  

The numbers to the left of each computer are the numbers observed from time to time 
by a computer user. Of course the ‘numbers’ must be interpreted from the signal data. 
This holds for 1, 2, etc but also, in (iii), for ω, which is the interpretation of the 
absence of a signal. Further details can be found in Hogarth (2004). 
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(i)  (ii)   (iii)         (iv)
    

 

Figure 1. Four different computers, as represented in spacetime. 
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Abstract. Looking at very recent developments in spacetime theory, we
can wonder whether these results exhibit features of hypercomputation
that traditionally seemed impossible or absurd. Namely, we describe a
physical device in relativistic spacetime which can compute a non-Turing
computable task, e.g. which can decide the halting problem of Turing ma-
chines or decide whether ZF set theory is consistent (more precisely, can
decide the theorems of ZF). Starting from this, we will discuss the impact
of recent breakthrough results of relativity theory, black hole physics and
cosmology to well established foundational issues of computability the-
ory as well as to logic. We find that the unexpected, revolutionary results
in the mentioned branches of science force us to reconsider the status of
the physical Church Thesis and to consider it as being seriously chal-
lenged. We will outline the consequences of all this for the foundation of
mathematics (e.g. to Hilbert’s programme).
Observational, empirical evidence will be quoted to show that the state-
ments above do not require any assumption of some physical universe
outside of our own one: in our specific physical universe there seem to ex-
ist regions of spacetime supporting potential non-Turing computations.
Additionally, new “engineering” ideas will be outlined for solving the
so-called blue-shift problem of GR-computing. Connections with related
talks at the Physics and Computation meeting, e.g. those of Jerome
Durand-Lose, Mark Hogarth and Martin Ziegler, will be indicated.

1 Introduction

We discuss here the impact of very recent developments in spacetime theory
and cosmology on well established foundational issues (and interpretations) of
logic and computability theory. The connections between computability theory,
logic and spacetime theory (general relativity theory, GR) cut both ways: logic
provides a tangible foundation for GR, cf. [1], while GR and its new developments
might profoundly influence our interpretation of basic results of computability
theory, as we will see in this paper. The new computability paradigms in turn
offer feedback to the foundation of mathematics and logic.

Because of the interdisciplinary character of this paper, the first two sections
are somewhat introductory, explaining the basic ideas for the nonspecialist. We
will start speeding up beginning with section 3.
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Two major new paradigms of computing arising from new physics are quan-
tum computing and general relativistic computing. Quantum computing chal-
lenges complexity barriers in computability, while general relativistic computing
challenges the physical Church-Turing Thesis itself. In this paper we concentrate
on relativistic computers and on the physical Church-Turing Thesis (PhCT).

The PhCT is the conjecture that whatever physical computing device (in the
broader sense) or physical thought-experiment will be designed by any future
civilization, it will always be simulateable by a Turing machine. The PhCT was
formulated and generally accepted in the 1930’s. At that time a general con-
sensus was reached declaring PhCT valid, and indeed in the succeeding decades
the PhCT was an extremely useful and valuable maxim in elaborating the foun-
dations of theoretical computer science, logic, foundation of mathematics and
related areas.1 But since PhCT is partly a physical conjecture, we emphasize
that this consensus of the 1930’s was based on the physical world-view of the
1930’s. Moreover, many thinkers considered PhCT as being based on mathemat-
ics + common sense. But “common sense of today” means “physics of 100 years
ago”. Therefore we claim that the consensus accepting PhCT in the 1930’s was
based on the world-view deriving from Newtonian mechanics. Einstein’s equa-
tions became known to a narrow circle of specialists around 1920, but about that
time the consequences of these equations were not even guessed at. The world-
view of modern black hole physics was very far from being generally known until
much later, until after 1980.

Our main point is that in the last few decades there has been a major
paradigm shift in our physical world-view. This started in 1970 by Hawking’s and
Penrose’s singularity theorem firmly establishing black hole physics and putting
general relativity into a new perspective. After that, discoveries and new results
have been accelerating. In the last 10 years astronomers have obtained firmer
and firmer evidence for the existence of ever larger, more and more exotic black
holes [38],[35] not to mention evidence supporting the assumption that the uni-
verse is not finite after all [40]. Nowadays the whole field is in a state of constant
revolution. If the background foundation on which PhCT was based has changed
so fundamentally, then it is desirable to re-examine the status and scope of appli-
cability of PhCT in view of the change of our general world-picture. A relevant
perspective is e.g. in Cooper [9]. Cf. also [19], [15], [30], [36].

Assumption of an absolute time scale is a characteristic feature of the Newto-
nian world-view. Indeed, this absolute time has its mark on the Turing machine
as a model for computer. As a contrast, in general relativity there is no abso-
lute time. Kurt Gödel was particularly interested in the exotic behavior of time
in general relativity. Gödel [16] was the first to prove that there are models of
GR to which one cannot add a partial order satisfying some natural properties
of a “global time”. In particular, in GR various observers at various points of

1 As a contrast, one of the founding fathers of PhCT, László Kalmár, always hoped
for a refutation of PhCT and to his students he emphasized that PhCT is meant
to be a challenge to future generations, it is aimed at “teasing” researchers to put
efforts into attacking PhCT. [21]
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spacetime in different states of motion might experience time radically differ-
ently. Therefore we might be able to speed up the time of one observer, say
C (Cecil, for “computer”), relatively to the other observer, say P (Peter, for
“programmer”). Thus P may observe C computing very fast. The difference
between general relativity and special relativity is (roughly) that in general rel-
ativity this speed-up effect can reach, in some sense, infinity assuming certain
conditions are satisfied. Of course, it is not easy to ensure that this speed-up
effect happens in such a way that we could utilize it for implementing some
non-Turing-computable functions.

In sections 2 and 3 we briefly recall from [30],[29] an intuitive idea of how
this infinite speed-up can be achieved and how one can implement a computer
based on this idea. More concrete technical details can be found in [15],[30] and
to some extent in the remaining parts of this paper. For brevity, we call such
thought-experiments relativistic computers. We will see that it is consistent with
Einstein’s equations, i.e. with general relativity, that by certain kinds of relativis-
tic experiments, future generations might find the answers to non-computable
questions like the halting problem of Turing machines or the consistency of Zer-
melo Fraenkel set theory (the foundation of mathematics, abbreviated as ZFC
set theory from now on). Moreover, the spacetime structure we assume to exist
in these experiments is based in [15],[30] on huge slowly rotating black holes the
existence of which is made more and more likely (practically certain) by recent
astronomical observations [38],[35].

We are careful to avoid basing the beyond-Turing power of our computer
on “side-effects” of the idealizations in our mathematical model of the physical
world. For example, we avoid relying on infinitely small objects (e.g. pointlike test
particles, or pointlike bodies), infinitely elastic balls, infinitely (or arbitrarily)
precise measurements, or anything like these. In other words, we make efforts to
avoid taking advantage of the idealizations which were made when GR was set
up. Actually, this kind of self-constraint is essential for the present endeavor as
can be illustrated by [41, pp.446-447].

In sections 4–6 we discuss some essential questions of principle as well as
some technical questions in connection with realizability of a relativistic com-
puter, such as e.g. the so-called blue-shift problem, assuming infinity of time and
space. Many of these questions come close to the limits of our present scientific
knowledge, provoking new research directions or adding new motivations to al-
ready existing ones. We show that, at least, the idea of relativistic computers is
not in conflict with presently accepted scientific principles. E.g. we recall that
the presently accepted standard cosmological model predicts availability of infi-
nite time and space. We also show that the principles of quantum mechanics are
not violated, no continuity of time or space is presupposed by a relativistic com-
puter. Discussing physical realizability and realism of our design for a computer
is one of the main issues in [30, §5].

A virtue of the present research direction is that it establishes connections
between central questions of computability theory and logic, foundation of math-
ematics, foundation of physics, relativity theory, cosmology, philosophy, particle
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physics, observational astronomy, computer science and Artificial Intelligence
[44]. E.g. it gives new kinds of motivation to investigating central questions of
these fields like “is the universe finite or infinite (both in space and time) and
in what sense”, “exactly how do huge Kerr black holes evaporate” (quantum
gravity), “how much matter is needed for coding one bit of information (is there
such a lower bound at all)”, questions concerning the statuses of the various
cosmic censor hypotheses, questions concerning the geometry of rotating black
holes [5], to mention only a few. The interdisciplinary character of this direction
was reflected already in the 1987 course given by the present authors [28] during
which the idea of relativistic hypercomputers emerged and which was devoted
to connections between the above mentioned areas.

Section 6 is also about the impact of general relativistic computing on the
foundation of mathematics.

Section 7 is devoted to the impact of the “new computability paradigm” on
spacetime theory. There, we discuss a different kind of motivation for studying
relativistic computers. Namely, such a study may have applications to theoretical
physics as follows. To GR, there is an infinite hierarchy of hypotheses called
causality constraints which can be added to GR as outlined in the monograph
[11, §6.3, pp.164-167]. Among these occur the various versions of the cosmic
censor hypothesis (CCH) of which the basic reference book of relativity theory
[42, p.303] writes “whether the cosmic censor conjecture is correct remains the
key unresolved issue in the theory of gravitational collapse”. On p.305 [42] writes
“... there is virtually no evidence for or against the validity of this second version
of CCH”. These causality hypotheses play a role in GR analogous with the role
formulas like GCH independent of ZF set theory play in set theory (or logic).
These causality hypotheses are independent of GR (they are not implied by
GR), and their status is the subject of intensive study as op. cit. illustrates
this. Now, the study of relativistic computers could, in principle, reveal how the
physical Church Thesis PhCT is situated in this hierarchy, in a sense which we
will discuss in section 7. If we could find out which one of these constraints imply
PhCT (or are implied by PhCT), that could be illuminating in why certain issues
are difficult to settle about these constraints, cf. e.g. Etesi [14] and [42, p.303].

Tangible data underlying the above interconnections and also more history,
references are available in [30]. The textbook Earman [11, p.119, section 4.9]
regards the same interdisciplinary perspective as described above to be one of
the main virtues of the present research direction. It is the unifying power of
logic which makes it viable to do serious work on such a diverse collection of
topics. One of the main aims of the research direction represented by [1]–[3],
[23]–[25] is to make relativity theory accessible for anyone familiar with logic.

2 Intuitive idea for non-Turing GR computing

In this section we briefly recall from [30, 29] the ideas of how relativistic com-
puters work, without going into technical details. The technical details are elab-
orated, among others, in [15], [19], [30]. To make our narrative more tangible,
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we use the example of huge slowly rotating black holes for our construction of
relativistic computers. These are called “slow-Kerr” black holes in the physics
literature. There are many more kinds of spacetimes suitable for carrying out
essentially the same construction for a relativistic computer. We chose rotating
black holes because they provide a tangible example for illustrating the kind
of reasoning underlying general relativistic approaches to breaking the “Tur-
ing barrier”. Mounting astronomical evidence for their existence makes them
an even more attractive choice for our didactic purposes. In passing we note
that some intuitively easy to read fine-structure investigations of slowly rotating
Kerr-Newman black holes are found in the recent [5].

We start out from the so-called Gravitational Time Dilation effect (GTD).
The GTD is a theorem of relativity theory, it says that gravity makes time run
slow. Clocks that are deep within gravitational fields run slower than ones that
are farther out. Roughly, GTD can be interpreted by the following thought-
experiment. Choose a high enough tower on the Earth, put precise enough (say,
atomic) clocks at the bottom of the tower and the top of the tower, then wait
enough time, and compare the readings of the two clocks. The clock on the
top will run faster (show more elapsed time) than the one in the basement. So,
gravity causes the clock on the top ticking faster. Therefore computers there also
compute faster. If the programmer in the basement would like to use this GTD
effect to speed up his computer, he can just send his computer to the top of
the tower and he gets some speed-up effect. We want to increase this speed-up
effect to the infinity. Therefore, instead of the Earth, we use a huge black hole.
A black hole is a region of spacetime with so big “gravitational pull” that even
light cannot escape from this region. There are several types of black holes, an
excellent source is Taylor and Wheeler [39]. For our demonstration of the main
ideas here, we will use a huge, slowly rotating black hole. These black holes have
two event horizons, these are bubble-like surfaces one inside the other, from
which even light cannot escape. See Figures 1–2.

As we approach the outer event horizon from far away outside the black hole,
the gravitational “pull” of the black hole approaches infinity as we get closer
and closer to the event horizon. This is rather different from the Newtonian
case, where the gravitational pull also increases but remains finite everywhere.
For a while from now on “event horizon” means “outer event horizon”. Imagine
observers suspended over the event horizon. Here, suspended means that the
distance between the observer and the event horizon does not change. Equiv-
alently, instead of suspended observers, we could speak about observers whose
spaceship is hovering over the event horizon, using their rockets for maintaining
altitude. Assume one suspended observer C is higher up and another one, P , is
suspended lower down. So, C sees P below her while P sees C above him. Now
the gravitational time dilation (GTD) will cause the clocks of C run faster than
the clocks of P . They both agree on this if they are watching each other e.g. via
photons. Let us keep the height of C fixed. Now, if we gently lower P towards
the event horizon, this ratio between the speeds of their clocks increases and, as
P approaches the event horizon, this ratio approaches infinity. This means that
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for any integer n, if we want C’s clocks to run n times as fast as P ’s clocks, then
this can be achieved by lowering P to the right position. If we could suspend the
lower observer P on the event horizon itself then from the point of view of C,
P ’s clocks would freeze, therefore from the point of view of P , C’s clocks (and
computers!) would run infinitely fast, hence we would have the desired infinite
speed-up upon which we could then start our plan for breaking the Turing bar-
rier. The problem with this plan is that it is impossible to suspend an observer
on the event horizon. As a consolation for this, we can suspend observers ar-
bitrarily close to the event horizon. To achieve an “infinite speed-up” we could
do the following. We could lower and lower again P towards the event horizon
such that P ’s clocks slow down (more and more, beyond limit) in such a way
that there is a certain finite time-bound, say b, such that, roughly, throughout
the whole history of the universe P ’s clocks show a time smaller than b. More
precisely, by this we mean that whenever C decides to send a photon to P , then
P will receive this photon before time b according to P ’s clocks. This is possible.
See Figure 2.

There is a remaining problem to solve. As P gets closer and closer to the event
horizon, the gravitational pull or gravitational acceleration tends to infinity. If
P falls into the black hole without using rockets to slow his fall, then he does
not have to withstand the gravitational pull of the black hole. (He would only
feel the so-called tidal forces which can be made negligibly small by choosing a
large enough black hole.) However, his falling through the event horizon would
be so fast that some photons sent after him by C would not reach him outside
the event horizon. Thus P has to approach the event horizon relatively slowly
in order that he be able to receive all possible photons sent to him by C. In
theory he could use rockets for this purpose, i.e. to slow his fall (assuming he
has unlimited access to fuel somehow). Because P approaches the event horizon
slowly, he has to withstand this enormous gravity (or equivalently acceleration).
The problem is that this increasing gravitational force (or acceleration) will kill
P before his clock shows time b, i.e. before the planned task is completed. At
the outer event horizon of our black hole we cannot compromise between these
two requirements by choosing a well-balanced route for P : no matter how he will
choose his route, either P will be crashed by the gravitational pull (acceleration),
or some photons sent by C would not reach him. (This is the reason why we
can not base our relativistic computer on the simplest kind of black holes, called
Schwarzschild ones, which have only one event horizon and that behaves as we
described above.) To solve this problem, we would like to achieve slowing down
the “fall” of P not by brute force (e.g. rockets), but by an effect coming from
the structure of spacetime itself. In our slowly rotating black hole, besides the
gravitational pull of the black hole (needed to achieve the time dilation effect)
there is a counteractive repelling effect coming from the rotation of the black
hole. This repelling effect (or cushioning effect) is analogous to “centrifugal force”
in Newtonian mechanics and will cause P to slow down in the required rate. So
the idea is that instead of the rockets of P , we would like to use for slowing
the fall of P this second effect coming from the rotation of the black hole. The
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inner event horizon marks the point where the repelling force overcomes the
gravitational force. Inside the inner horizon, it is possible again to “suspend”
an observer, say P , i.e. it becomes possible for P to stay at a constant distance
from the center of the black hole (or equivalently from the event horizons). It is
shown in [15] that the path of the in-falling observer P can be planned in such
a way that the event when P reaches the inner event horizon corresponds to the
time-bound b (on the wristwatch of P ) mentioned above before which P receives
all the possible messages sent out by C. In fact, the path of P can be chosen (to
be a geodesic, i.e.) so that P does not have to use rockets at all, all the “slowing
down” is done by the spacetime itself.

e z

x

y

Ring singularity

b

P

Inner event
horizon

Outer event horizon

Axis of rotation

Fig. 1. A slowly rotating (Kerr) black hole has two event horizons and a ring-shape
singularity (the latter can be approximated/visualized as a ring of extremely dense and
thin “wire”). The ring singularity is inside the inner event horizon in the “equatorial”
plane of axes x, y. Time coordinate is suppressed. Figure 2 is a spacetime diagram
with x, y suppressed. Rotation of ring is indicated by an arrow. Orbit of in-falling
programmer P is indicated, it enters outer event horizon at point e, and meets inner
event horizon at point b.

By this we achieved the infinite speed-up we were aiming for. This infinite
speed-up is represented in Figure 2 where P measures a finite proper time be-
tween its separation from the computer C (this separation point is not repre-
sented in the figure) and its touching the inner horizon at proper time b (which
point also is not represented in Figure 2). It can be seen in the figure that when-
ever C decides to send a photon towards P , that photon will reach P before P
meets the inner horizon.
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horizon
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outer event
horizon

wristwatch−time

1

2

2.40

2.41
III II I

t z = r− z = r+

z
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C

P

Fig. 2. The “tz-slice” of spacetime of slowly rotating black hole in coordinates where
z is the axis of rotation of black hole. The pattern of light cones between the two event
horizons r− and r+ illustrates that P can decelerate so much in this region that he will
receive outside of r− all messages sent by C. r+ is the outer event horizon, r− is the
inner event horizon, z = 0 is the “center” of the black hole as in Figure 1. The tilting
of the light cones indicates that not even light can escape through these horizons. The
time measured by P is finite (measured between the beginning of the experiment and
the event when P meets the inner event horizon at b) while the time measured by C
is infinite.

3 Implementation for a relativistic computer

We now use the above to describe a computer that can compute tasks which
are beyond the Turing limit. To break the Turing limit, let us choose the task,
for an example, to decide whether ZFC set theory is consistent. I.e. we want to
learn whether from the axioms of set theory one can derive the formula FALSE.
(This formula FALSE can be taken to be x �= x.) The programmer P and his
computer C are together (on Earth), not moving relative to each other, and P
uses a finite time-period for transferring input data to the computer C as well
as for programming C. After this, P boards a huge spaceship, taking all his
mathematical friends with him (like a Noah’s Ark), and chooses an appropriate
route towards a huge slowly rotating black hole, entering the inner event horizon
when his wrist-watch shows time b. While he is on his journey towards the black
hole, the computer that remained on the Earth checks one by one the theorems
of set theory, and as soon as the computer finds a contradiction in set theory,
i.e. a proof of the formula FALSE from the axioms of set theory, the computer
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sends a signal to the programmer indicating that set theory is inconsistent. If it
does not find a proof for FALSE, the computer sends no signal.

The programmer falls into the inner event horizon of the black hole and after
he has crossed the inner event horizon, he can evaluate the situation. If a light
signal has arrived from the direction of the computer, of an agreed color and
agreed pattern, this means that the computer found an inconsistency in ZFC
set theory, therefore the programmer will know that set theory is inconsistent. If
the light signal has not arrived, and the programmer is already inside the inner
event horizon, then he will know that the computer did not find an inconsistency
in set theory, did not send the signal, therefore the programmer can conclude
that set theory is consistent. So he can build the rest of his mathematics on the
secure knowledge of the consistency of set theory. We will return to the issue of
whether the programmer has enough space and time and resources for using the
just gained information at the end of section 5.

The above outlined train of thought can be used to show that any recursively
enumerable set can be decided by a relativistic computer [15]. Actually, more
than that can be done by relativistic computers. Welch [43] shows that the ar-
rangement described in section 3 using Kerr black holes can compute exactly ∆2

problems in the arithmetical hierarchy (under some mild extra assumptions).
Computability limits connected with such relativistic computers are also ad-
dressed in [19], [20], [36], [44].

Relativistic computers are not tied to rotating black holes, there are other
general relativistic phenomena on which they can be based. An example is anti-
de-Sitter spacetime which attracts more and more attention in explaining recent
discoveries in cosmology (the present acceleration of the expansion of the uni-
verse, cf. [30]). Roughly, in anti-de-Sitter spacetime, time ticks faster and faster
at farther away places in such a way that P can achieve infinite speed-up by
sending away the computer C and waiting for a signal from her. This scenario is
described and is utilized for computing non-Turing computable functions in [19].
This example shows that using black holes (or even singularities) is not inherent
in relativistic computers.

Spacetimes suitable for an implementation of relativistic computation like
described in this section are called Malament-Hogarth spacetimes in the physics
literature. A relativistic spacetime is called Malament-Hogarth (MH) if there is
an event (called MH-event) in it which contains in its causal past a worldline
of infinite proper length. The spacetime of ordinary Schwarzschild black hole is
not MH, the spacetime of rotating Kerr black hole is MH and any event within
the inner event horizon is MH, in anti-de-Sitter spacetime every event is an MH-
event, the spacetime of an electrically charged BH (called Reissner-Nordström
spacetime) is MH and there are many other examples for MH.

We note that using MH spacetimes does not entail faith in some exotically
“benevolent” global property of the whole of our universe. Instead, most of the
MH spacetimes, like rotating BH’s, can be built by a future, advanced civiliza-
tion inside our usual “standard” universe of high precision cosmology. Namely,
such MH spacetimes do not necessarily refer to the whole universe, but instead,
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to some “local” structure like a rotating ring of gravitationally collapsed matter
in a “spatially finite part” of a more or less usual universe involving no par-
ticular global “witchcraft”, so-to-speak. We are writing this because the word
“spacetime” in the expression “MH spacetime” might be misleading in that it
might suggest to the reader that it is an exotic unlikely property of the whole
of God’s creation, namely, the whole universe. However, in most MH spacetimes
this is not the case, they are (in some sense) finite structures that can be built,
in theory, by suitably advanced civilizations in a standard kind of universe like
the one which is predicted by the present-day standard version of cosmology. In
other words, nothing fancy is required from the whole universe, the “fancy part”
is a structure which can, in theory, be manufactured in an ordinary infinite uni-
verse. Therefore in the present context it would be more fortunate to talk about
MH regions of spacetime than about MH spacetimes.

4 Two sides of the coin and the blue-shift problem

A relativistic computer as we described in section 3 is a team consisting of a
Computer (C, for Cecil) and a Programmer (P, for Peter).

How does the computer C experience the task of this computing? C will see
(via photons) that the programmer P approaches the black hole (BH), and as he
approaches it, his wristwatch ticks slower and slower, never reaching wristwatch
time b. C will see the Programmer approaching the BH in all her infinite time.
For C, the Programmer shines on the sky for eternity. The only effect of C’s time
passing is that this image gets dimmer and dimmer, but it will never disappear.
Under this sky, C computes away her task consisting of potentially infinitely
many steps, i.e. checking the theorems of ZFC one by one, in an infinite amount
of time.

How does the Programmer experience the task of this computing? He is
traveling towards the black hole, and he only has to check whether he received a
special signal from the Computer or not. For this task, which consists of finitely
many steps, he has a finite amount of time.

What would he see would he watch his team-member, the Computer? He
would see the Computer computing faster and faster, speeding up so that when
his (P ’s) wristwatch time reaches b, C would just flare up and disappear. Well,
this flare-up would burn P , because it carries the energy of photons emitted
during the whole infinite life of C, thus the total amount of this energy is infinite.
In fact, we have to design a shield (or mirror) so that only intended signals from
C can reach P . This means that we have to ensure that P does not see C! P ’s
task is to watch whether there is one special kind of signal coming through this
shield. All in all, P ’s task is to do finitely many steps in a finite amount of time.

A task in the literature is called supertask if it involves one to carry out
infinitely many steps in a finite amount of time [12]. Therefore, by the above,
we think that the relativistic computer need not implement a supertask.

The above led us to the so-called blue-shift problem [11]. This is the following.
The frequency of light-signals (photons) sent by C to P gets increased (i.e. blue-
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shifted) by the time they reach P because of the infinite speed-up we worked so
hard to achieve! Thus, if we do nothing about this, the one signal that C sends,
can kill P . Further, P may not be able to recognize the blue-shifted signal. There
are many solutions for this problem, two such solutions can be found in sections
5.3.1 and 5.4.1 of [30]. For example, C can arrange sending the signal to P such
that C asks her sister C′ to embark on a spaceship S which speeds up in the
direction opposite to the direction of the Kerr hole, and send the signal from
this spaceship. If S moves fast enough, then any signal sent from S to P will be
red-shifted because of the speed of S. Then C chooses the speed of S to be such
that the red-shift caused by this speed exactly cancels out the blue-shift caused
by the gravitational effects at the event when P receives the signal.
Some new ideas on the blue-shift problem using mirrors. Programmer P sends
out a second spaceship P ′ inhabited by robot P ′ running ahead of P in the same
direction, i.e. towards the inner horizon of the black hole. So, P ′ travels faster
than P and P ′ is between P and the inner horizon (in the relevant time period, of
course). When computer C sends out the message (that e.g. an inconsistency was
found in ZFC), the message is “beamed” to P ′ and not to P . Careful engineering
is needed to ensure that the photons coming from C (or from anywhere the
outside area) avoid P . See the Penrose diagram in Figure 3.

Bold solution: P ′ uses a huge mirror, by which P ′ reflects the message “back”
to P . Since P ′ is moving extremely fast, we can say that P ′ is “running away”
from the incoming photons. Therefore by the Doppler Effect, the frequency of
the reflected photons (message) will be arbitrarily smaller (depending on the
relative velocity2 of P ′ and P ) and so the energy of the message received by P
from P ′ will be suitably small to ensure (i) recognizability and (ii) not burning
P to death. For this, the pilots of P and P ′ should adjust their relative velocities
appropriately. This seems to be possible as indicated in Figure 3. For the case
something would go wrong with the above “bold plan”, we include below a
cautious plan.

Cautious plan: Instead of carrying a huge mirror, P ′ carries a large banner
that can be spared. Now, the light signal (message) from C is directed to the
banner carried by P ′. So by the blue-shift effect, the message burns (destroys)
the banner of P ′. Even simpler solution is obtained by burning the whole of P ′.
Now, P is watching P ′ for the message. If P ′ disappears, then P concludes that
P ′ was burned by the message, hence there was a message, hence P concludes
that ZFC is inconsistent. If ZFC is consistent then C does not send a message
to P ′, hence P ′ does not get burned, hence P “sees” that P ′ is still there, hence
after both P and P ′ crossed the inner event horizon, P concludes that ZFC is
consistent. Although this will happen only some time after P crosses the inner
horizon, but that is consistent with our plan. The above plan of burning P ′

by the message might contain possibilities for error, e.g. P ′ might disappear
because of some completely irrelevant accident (without C’s sending a message).
While this is so, the likelihood of such an accident can be minimized by the
usual techniques of careful engineering, e.g. using redundancy (several copies of

2 measurable e.g. by radar
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P ′ moving in different directions all of which are targeted by C if C finds the
inconsistency etc).

e

∆t′

∆t

P ′

P

C

Fig. 3. Attacking the blue-shift problem by “mirrors” and by an “escaping” second
spaceship P ′. The “decoded” message is received by P only after he crossed the inner
event horizon but not later than P ′’s crossing the inner event horizon is observed by
P .

5 Some questions naturally arising

The following questions come up in connection with realizability of the plan
described in section 3.

– can the programmer check whether the distant object he chose for a slowly
rotating black hole is indeed one (whether it has the spacetime structure
needed for his purposes)?
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– can he check when he passed the event horizon?
– can he survive passing the event horizon?
– can he receive and recognize the signal sent by the computer?
– how long can he live inside the black hole?
– is there a way for the programmer to know that absence of signal from the

computer is not caused by some catastrophe in the life of the computer?
– is it possible for a civilization to exist for an infinite amount of time?
– can the programmer repeat the computation or is this a once-for-a-lifetime

computation for him?

Here we just assert that the answers to all these questions are in the affirma-
tive, or at least do not contradict present scientific knowledge. These questions
are discussed in detail in [30]. Below we address three of these questions.

On the question of traverseability of the event horizon: We chose the black
hole to be large. If the black hole is huge3, the programmer will feel nothing
when he passes either event horizon of the black hole—one can check that in
case of a huge black hole the so-called tidal forces on the event horizons of the
black hole are negligibly small [32], [15].

On the question of how long the programmer can live after crossing the event
horizon: The question is whether the programmer can use this new information,
namely that set theory is consistent, or whatever he wanted to compute, for his
purposes. A pessimist could say that OK they are inside a black hole, so—now
we are using common sense, we are not using relativity theory—common sense
says that the black hole is a small unfriendly area and the programmer will
sooner or later fall into the middle of the black hole where there is a singularity
and the singularity will kill the programmer and his friends. The reason why we
chose our black hole to be a huge slowly rotating one, say of mass 1010m�, is the
following. If the programmer falls into a black hole which is as big as this and
it rotates slowly, then the programmer will have quite a lot of time inside the
black hole because the center of the black hole is relatively far from the event
horizon. But this is not the key point. If it rotates, the “matter content”, the so-
called singularity, which is the source of the gravitational field of the black hole
so-to-speak, is not a point but a ring (see Fig.1). So if the programmer chooses
his route in falling into the black hole in a clever way, say, relatively close to the
north pole instead of the equatorial plane, then the programmer can comfortably
pass through the middle of the ring, never get close to the singularity and happily
live on forever (see Fig.s 1,2). We mean, the rules of relativity will not prevent
him from happily living forever. He may have descendants, he can found society,
he can use and pass on the so obtained mathematical knowledge.

On the question of whether the computation can be repeated: Let us look
at the extension of slow Kerr spacetime in [31, §3.3, pp.116-140]. Especially,
consider the maximal slow Kerr spacetime (MSK) on Fig. 3.16, p.139. By con-
sidering this MSK, we can convince ourselves that our GR-computation is re-
peatable and with appropriate care it can be made deterministic. Some further

3 this is a technical expression in observational astronomy
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meditation on this repeatability of GR-computing can lead to new perspectives
on the Platonism - formalism debates and views in the philosophical schools of
the foundations of mathematics. E.g. one of the ages old arguments fades away,
namely the argument saying that we cannot have access to any instances of
actual infinity.

6 Can we learn something about infinity? Impact on the
foundation of mathematics.

The relativistic computer as we implemented it in section 3 assumes that an in-
finite amount of time is available for C for computing. This seems to be essential
for breaking the Turing barrier (by our construction). We are in a good position
here, because of the following. As a result of very recent revolution in cosmology,
there is a so-called standard model of cosmology. This standard model is based
on matching members of a family of GR spacetimes against a huge number of
observational data obtained by three different astronomical projects. This huge
number of measurements (made and processed by using computers) all point
amazingly to one specific GR spacetime. This spacetime is called the standard
cosmological model, and in accordance with the so far highly successful scientific
practice of the last 2500 years, we regard this standard model of the latest form
of high-precision cosmology as the model best suited to explain observations
and experience collected so far. According to this standard model, our universe
is infinite both in regard of time and space, moreover there is an infinite amount
of matter-energy available in it. We will see soon that the latter infinity is not
needed for our construction. For more on this see Dávid [10], [30] and the ref-
erences therein. Our point here is not about believing that our universe indeed
has infinite time or not. The point is that assuming availability of an infinite
amount of time for computing is not in contradiction with our present-day sci-
entific knowledge.

We would like to say some words on the question of how much matter/energy
is needed for storing, say, 10 bits of information. Although this question is not
essential for the realizability of the relativistic computer (because of availability
of infinite energy in the standard model of cosmology), we still find this question
interesting for purely intellectual/philosophical reasons.

Is information content strongly tied to matter/energy content? Is there a
lower bound to mass which is needed to store 10 bits of information? This is
a question which has nagged one of the authors ever since he wrote his MsC
thesis [27] where a separate section was devoted to this issue. The question is:
“If I want to write more, do I need more paper to write on?” Right now it
seems to us that the answer is in the negative. Matter and information might
be two independent (orthogonal) “dimensions” of reality. The reason for this is
the following. One might decide to code data by photons. Then the amount of
matter/energy used is the energy total of these photons. But the energy of a
photon is inversely proportional with its wavelength. So, one might double the
wavelength of all photons and then one halved the energy needed to carry the
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same information one coded originally. If this is still too much energy expense,
then one can double the wavelength again. Since there is no upper bound to
the wavelengths of photons, there is no lower bound for the energy needed for
storing 10 bits of data.

So, it seems to us that energy and information are not as strongly linked
entities as energy and mass are (via E = mc2). In the above argument when we
said that there was no upper bound to the wavelength of possible photons, we
used that according to the standard cosmological model the Universe is infinite
in space. We note that Einstein when inventing photons did not say that there
is a smallest nonzero value for energy. He said this only for light of a fixed color,
i.e. fixed wavelength.

We would like to emphasize that we did not use that space is continuous. We
seem to have used that time is continuous, but we can avoid that assumption by
refining the implementation of relativistic computer. Constructions for this are
in [30]. Thus, no contradictions with the principles of quantum mechanics seems
to be involved in the idea of relativistic computer.

In the above, we argued that in principle, one can even build a relativistic
computer sometime in the future. However, a fascinating aspect of relativis-
tic computers for us is that they bring up mind-boggling questions about the
nature of infinity. These questions would be worth thinking over even if our
present-day science would predict a finite universe. We seem to understand and
be familiar with the use of potential infinity in science. However, the above
thought-experiment seems to use the notion of actual infinity. Is infinity a men-
tal construction only or does it exist in a more tangible way, too? Can we learn
something about actual infinity by making physical experiments? This leads to
questions inherent in foundational issues in mathematics and physics. For more
about this and about connection with Hilbert’s Programme for mathematics we
refer to [4].

7 Relativistic Computers and Causality Hypotheses in
Physics

Let us consider the hierarchy of causality hypotheses C0, . . . , C6 summarized
in the monograph Earman [11, §6.3, pp.164-166]. None of these follow from GR
(cf. e.g. [42, p.303]), they function as extra possible hypotheses for narrowing the
scope of the theory. The strongest of these is the strong cosmic censor hypothesis
C6 saying that spacetime is globally hyperbolic. A spacetime is called globally
hyperbolic if it contains a spacelike hypersurface that intersects every causal curve
without endpoint exactly once. This implies that the “temporal” structure of
spacetime is basically the same as that of the Newtonian world in that it admits
a “global time” associating a real number t(p) to every point p of spacetime.
In other words, C6 implies that spacetime admits a “global foliation”, i.e. it is
a disjoint union of global time-slices or “global now”-s. This is a quite extreme
assumption and its role is more of a logical status, i.e. one investigates questions
of what follows if C6 is assumed rather than assuming that it holds for the
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actual universe. Recall that Wald [42, p.305 lines 7-8] wrote about the cosmic
censor hypothesis that “there is virtually no evidence for or against the validity
of this”, as we quoted around the end of section 1. Cf. also [11, pp.97,99] for
further doubts on C6.

In section 1 we said that the assumption of absolute time has its marks on
the Turing Machine as a model for computer, and now we see that C6 provides
a kind of global time. Indeed, the construction of a GR-computer in this paper
relies heavily on failure of C6, because Hogarth proved that no MH-spacetime is
globally hyperbolic [11, Lemma 4.1, p.107]. This motivates the following ques-
tion.

Question 1. Does (a carefully formulated variant of) PhCT follow from GR+C6?

On this question: PhCT has not been formalized precisely yet, this is part
of why this question is asking for a formulation of PhCT which would follow
from GR+C6. In this question we are asking if there are some natural and
convincing extra conditions on physically realistic computability which would
yield PhCT from GR+C6. The need for such extra realisticity assumptions is
demonstrated by e.g. Tipler [41, pp.446-447]. Actually, we started collecting
such conditions for physical realisticity in the middle of sec. 1 (in the paragraph
beginning with “We are careful to avoid ...”). One might conjecture that, under
suitable assumptions on physical realisticity and with a suitable formulation of
PhCT, a kind of positive answer to Question 1 might be plausible4.

Question 1 is about the connection between PhCT and the cosmic censor
hypothesis C6. Next we concern ourselves with the connection between PhCT
and the Malament-Hogarth property of a spacetime. We note that C6 implies
that the spacetime is not Malament-Hogarth (NoMH for short), [11, Lemma
4.1, p.107] but NoMH does not imply C6 [11, p.110, first 2 sentences of sec.4.5].
Hence NoMH is a strictly weaker causality hypothesis than C6. We note that
[14] explores the connection between C6 and MH. Again, we have no reason for
believing in NoMH.

Question 2. Under what natural (extra) conditions is NoMH equivalent with
what version of PhCT?

On this question: In theory, the MH property implies failure of PhCT (i.e.
PhCT ⇒ NoMH), because in any MH-spacetime one can, at least in theory,
construct a GR-computer like in this paper, cf. [11, §4], [19]. However, there is
a reason why in the works [15], [30], [29] we chose to implement our relativis-
tic computer via a huge rotating black hole. Namely, huge-ness of the rotating
BH was used to ensure that the tidal forces at the event horizons do not kill
4 Very tentatively: Recently, emerging new kinds of computing devices like the Internet

seem to pose a challenge against the conjecture in Question 1, cf. [44]. However, even
the Internet (or even the Human Mind) will probably not prove ZFC consistent
(assuming C6). So, perhaps we should separate PhCT into two theses, one about
“hard” problems like proving the consistency of ZFC, and the other about problems
in general which are not Turing computable.
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the programmer. It is possible to construct a toy-example of a MH spacetime
in which our kind of relativistic computer is not realistic physically. By physi-
cal realisticity we mean requirements that we do not use infinitely small com-
puters (objects), infinitely precise measurements, or the like in designing our
non-Turing computer, cf. [30] for more detail. We note that if we do not insist
on physical realisticity, then already in Newtonian Mechanics PhCT would fail
as demonstrated e.g. in Tipler [41, pp.446-447]. This motivates the question of
what natural assumptions would ensure PhCT ⇒ NoMH or equivalently MH ⇒
NotPhCT in a physically realistic way. This is one direction of Question 2 above.

The other direction of Question 2 seems to be the harder one: Under what
natural conditions (if any) does NotPhCT imply MH. I.e. under what conditions
is

(�) NotPhCT ⇒ MH

true? One way of rephrasing (�) is to conjecture that if there is a physically
realistic non-Turing computer then there must be one which is built up in the
style of the present paper utilizing MH property of spacetime. (By non-Turing
computer we mean a physical computer that can compute beyond the Turing
barrier.) This seems to be a daring conjecture. But let us remember that the
question was: under what conditions is statement (�) true. In particular, if the
physical non-Turing computer “designed” in the book Pour-El and Richards
[34] turns out to be physically realizable, then our conjecture (that under some
reasonable conditions (�) might become true) might get refuted.

We note that the tentative conjecture implicit in Question 2 was arrived at
jointly with Gábor Etesi.

8 Logic based conceptual analysis of GR and “reverse
mathematics” for GR

So far we have been applying general relativity (GR) to logic and to the foun-
dation of mathematics (FOM). In the other direction, logic and FOM are being
applied to a conceptual analysis and logical/mathematical foundation of relativ-
ity (including GR). In more detail: FOM has an important branch called reverse
mathematics. In the latter we ask the question(s) of which axioms of set the-
ory are responsible (needed) for which important theorems of mathematics. In
a series of papers, e-books, and book chapters, a team containing the present
authors has been working on a programme which could be called “exporting the
success story of FOM to a foundation of relativity” (set theorist Harvey Fried-
man coined this slogan), cf. e.g. [1]–[3], [23]–[25]. Roughly speaking, this group
builds up relativity in first-order logic (like FOM is built up as a theory in the
sense of mathematical logic), then analyzes the so obtained logical theory from
various perspectives and (like in reverse mathematics) attempts to answer the
so-called why-type questions asking why a certain prediction of general relativ-
ity is being predicted, i.e. which axioms of the theory are responsible for that
particular prediction.
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Section 7 above can be regarded as a small sample from the above quoted
logical/conceptual analysis of GR and its extensions. A particular example of
this feedback from logic and FOM to GR is the paper [5].

By the above sketched feedback from logic and FOM to GR, the “circle”
GR �→ Logic �→ FOM �→ GR promised in the introduction is completed.

9 History of relativistic computation

The idea of general relativistic computing as described in section 2 was found at
different parts of the globe, independently. It was discovered by Németi in 1987
[28], Pitowsky in 1990 [33], Malament in 1989 [26], and Hogarth in 1992 [18]
independently. Németi’s idea used large slowly rotating black holes (slow Kerr
spacetimes) but the careful study of feasibility and transversability of these was
done later in Etesi-Németi [15]. All this led to a fruitful cooperation between
the parties mentioned above, e.g. between Cambridge (Hogarth et al), Budapest
(Németi et al), Pittsburgh (Earman et al). The first thorough and systematic
study of relativistic computation was probably Hogarth [19]. Related work on
relativistic computing include [43], [36], [11, §4], [12], [13], [17], [29].
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2. Andréka, H., Madarász, J. X. and Németi, I. with contributions from Andai, A.,
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23. Madarász, J. X., Németi, I. and Székely, G., Twin Paradox and the logical founda-
tion of space-time. Foundation of Physics 36,5 (2006), 681-714. arXiv:gr-qc/0504118.
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Abstract

According to the Church-Turing Thesis, effective formal behaviours can be simulated by
Turing machines; this has naturally led to speculation that physical systems can also be
simulated computationally. But is this wider claim true, or do behaviours exist which are
strictly hypercomputational? Several idealised computational models are known which
suggest the feasibility of physical hypercomputation – some based on cosmology; some
on quantum theory; some on Newtonian physics. While the physicality of these models
is debatable, they nonetheless throw into question the validity of simply extending the
Church-Turing Thesis to include all physical, as well as effective formal, systems.

We propose that the physicality of hypercomputational behaviours be determined
instead from first principles, and show that quantum theory can be reformulated in a
way that partially resolves the question, by explaining why all physical behaviours can be
regarded as ‘computing something’ in the standard computational state-machine sense.
While our approach does not rule out the possibility of hypercomputation completely, it
strongly limits the form such hypercomputation must take.
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1. Introduction

According to the Church-Turing Thesis (CTT), all effective computational behaviours
can be simulated by Turing machines [1]. Although CTT was proposed in the context of
formal mathematical systems, it is widely accepted that it can be applied more generally;
in particular, given that physical devices are routinely used for computational purposes,
it is now widely assumed that all (finitely-resourced, finitely-specified) physical machine
behaviours can be simulated by Turing machines. However, this extended claim (known
in the literature as Thesis M [2, 3]) is not a logical consequence of CTT, since it is not
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clear that every physical machine can meaningfully be said to ‘compute something’ in the
same sense as Turing machines. Proponents of digital physics [4, 5, 6] stretch CTT still
further, interpreting it to mean that all physical behaviours (whether machine-generated
or not) are Turing-simulable.

The main aim of this paper is to investigate Thesis M and its extensions in more
detail. Is it actually true that all physical behaviours are necessarily computable, or
are there behaviours which go beyond the Turing limit? We will show that quantum
theory can be reformulated in a way that partially resolves this question, by explaining
why physical behaviours can indeed always be regarded as ‘computing something’ in
the strict state-machine sense. While our approach does not rule out the possibility of
hypercomputation completely, it limits the form such hypercomputation must take.

As we recall in section 2, this question has been debated indirectly over many decades
[7]; but it has become prominent recently with the rise of quantum computation and dig-
ital physics. As is well known, Shor’s algorithm [8] can factorise integers faster than any
Turing program, and this already suggests that quantum theory has super-Turing poten-
tial. However, we need to distinguish carefully what we mean by ‘hypercomputation’ in
this context. Where a computational model – for example, Deutsch’s Universal Quan-
tum Computer (UQC) [9] – computes the same class of functions as the Turing machine,
albeit potentially faster, we call it a super-Turing model. If it is capable of computing
functions which no Turing machine can compute, we call it hypercomputational. In par-
ticular, then, while the UQC is an apparently super-Turing model, it is well known that
it is not hypercomputational, whence its implementation would not resolve the question
whether hypercomputation is physically feasible.

1.1. Layout of the paper
We begin in section 2 by considering briefly what is already known concerning the re-

lationship between physics and (hyper)computation. After summarising the information-
theoretic approach familiar from It from Bit , we review three known hypercomputational
systems: non-collision singularities in the Newtonian n-body problem; the Swansea Scat-
ter Machine Experiment (also Newtonian); and Hogarth’s cosmologically inspired family
of SAD computers. We then focus on quantum theory, where it is unclear whether any
hypercomputational model has yet been established. The question then arises whether
a new approach might be able to resolve the issue. We will show that this is indeed
the case, though only to a limited extent, by deriving a first-principles reformulation of
Feynman’s path-integral model; we review the standard formulation briefly in section 3,
and present our new formulation in section 4.

In our version of Feynman’s model, there is no such thing as a continuous trajectory.
Instead, whenever a particle moves from one spacetime event to another, it does so by
performing a finite sequence of ‘hops’, where each hop takes the particle directly from
one location to another, with no intervening motion. Although this seems somewhat
iconoclastic, we argue that ‘finitary’ motion of this kind is the only form of motion
actually supported by observational evidence.

In section 5 we consider the computational significance of the model, insofar as it
addresses the question whether hypercomputation is physically feasible. From a mathe-
matical point of view it makes little difference whether we allow ‘hops’ to move a particle
backwards as well as forwards in time, and we consider both models. In each case, the
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motion of a particle from one location to another generates a finite state machine (tech-
nically, an extended form of FSM called an X-machine [10]), where the machine’s states
are spacetime locations, and its transition labels reflect the (classical) action associated
with each hop. In unidirectional time, the regular language generated by such a machine
comprises just a single word, but if we allow time to be bidirectional, the availability of
loops ensures that infinite regular languages can be generated. In both cases, when the
motion is interpreted as an X-machine, the function computed by the motion can be
interpreted as an amplitude, and if we sum the amplitudes of all machines with a given
initial and final state, we obtain the standard quantum mechanical amplitude for the
particle to move from the initial to the final location.

Section 6 concludes our argument, and includes suggestions for further research.

2. Motivation

In this section we review various arguments both for and against the physical feasibil-
ity of hypercomputation, and its converse, digital physics; for a more complete discussion
of hypercomputational models, readers are invited to consult our earlier surveys of the
field [7, 11]. The question, whether hypercomputational behaviours are physically feasi-
ble, obviously depends on ones conception of physics itself. Hypercomputational systems
have been identified with respect to both relativistic and Newtonian physics. Where
quantum theory is concerned, however, the situation is less clear cut.

2.1. Digital physics
Proponents of digital physics argue that the Universe as a whole is essentially com-

putational, in the sense that its entire history can be viewed as the output of a digital
computation [12]. The underlying idea appears to have been proposed first by Zuse,
who suggested as early as 1967 that the Universe might be computed by a deterministic
cellular automaton inhabited by ‘digital particles’ [13, 14].

Wheeler’s subsequent It from Bit conception [15] reflected his conviction that in-
formation is just as physical as mass and energy, and indeed the relationship between
information and gravitation has remained central to theories of quantum gravity ever
since Bekenstein realised that black holes must possess intrinsic entropy [16, 17]. Hawk-
ing’s observation that black holes can evaporate [18] naturally raises the question, what
happens to quantum correlations that previously existed between particles on either side
of the event horizon? Quantum theory appears to be inconsistent with causality in such
a situation [19].1

The It from Bit doctrine focusses on the relationship between observation and infor-
mation. Just as observations provide information, so information can affect observations,
as was graphically illustrated (at first theoretically and eventually experimentally) by
Wheeler’s famous ‘delayed-choice experiment’, a modified version of the dual-slit exper-
iment. As is well known, if one slit in a barrier is covered over, photons passing through

1There is as yet no empirical evidence that Hawking radiation, the mechanism by which evaporation
takes place, exists in Nature. However, the final stages of a primordial micro black hole’s evaporation
should theoretically result in a burst of gamma-rays; one of the goals of the GLAST satellite, launched
by NASA on 11th June 2008, is to search for such flashes.
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the apparatus behave like particles, but when both slits are opened the ‘particles’ demon-
strate interference effects. Wheeler asked what would happen if the decision to cover or
uncover a slit were made after the photon had passed through the barrier, but before
the outcome were detected. In practice, the photon’s behaviour reflects the decision the
experimenter will eventually make, even though this decision occurs after the encounter
with the barrier has taken place. This suggests that the outcome of an experiment in-
volves an interaction between the apparatus and the observer; the results you get are in
some sense changed by the questions you decide to ask; or as Wheeler put it, “Every ‘it’
– every particle, every field of force, even the spacetime continuum itself – derives its
function, its meaning, its very existence entirely – even if in some contexts indirectly –
from the apparatus-elicited answers to yes-or-no questions, binary choices, bits” [20].

Schmidhuber has investigated a model of physics in which all possible realities are
the outcomes of computations [12, 21]. By considering algorithmic complexity, we can
examine the probability that a randomly selected universe would conform to any given
set of behaviours; specific physical situations can be examined and predictions made,
some of which might, in principle, be subject to experimental verification. It is impor-
tant to note, however, that the type of physics this model generates is not generally
consistent with conventional wisdom. For example, because digital physics assumes that
universes are inherent deterministic, Schmidhuber’s model rejects the notion that beta
decay is truly random. Similarly, his model suggests that experiments carried out on
widely-separated, but initially entangled, particles, should display non-local algorithmic
regularities, a prediction which, he notes, ‘runs against current mainstream trends in
physics’.

A related concept is Tegmark’s Mathematical Universe Hypothesis [6]. Tegmark notes
that, if a complete Theory of Everything (TOE) exists, then the Universe must neces-
sarily be a mathematical structure. In essence, this is because a complete TOE should
make sense to any observer, human or otherwise, whence it ought to be a formal theory
devoid of ‘human baggage’; consequently the TOE (and hence the Universe it specifies)
is a purely mathematical structure. While this argument can obviously be challenged
– it is entirely possible that pure mathematics is itself a form of human baggage and
that the concept ‘mathematical structure’ has no meaning to creatures whose brains
have evolved differently to our own – Tegmark shows that it entails a surprisingly wide
range of consequences, but interestingly, these do not include computability. Rather,
Tegmark introduces an additional Computable Universe Hypothesis, according to which
the relations describing the Universal structure can be implemented as halting computa-
tions. This is similar to Schmidhuber’s model, except that it is the relationships between
objects that are deemed computable, rather than their evolution through time.

2.2. Examples of physical hypercomputation
A key feature of the digital physics models described above (as well as others, e.g.

Zizzi’s loop quantum gravity model [22]) is that the models take the assumption of an
information- or computation-based universe as their starting point, and then ask what
consequences follow. This is inevitable, since the authors are ultimately interested in
identifying experiments which might provide evidence in support of (or which falsify)
their models. Clearly, however, if experiments are to distinguish between digital physics
and ‘conventional wisdom’, it must first be necessary that digital physics and the standard
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model are not equivalent. It follows, therefore, that digital physics cannot tell us about
the feasibility or otherwise of hypercomputation in ‘standard’ quantum theory.

Unfortunately, this is precisely the question we wish to answer. Rather than invent
a new model of physics that is computational by fiat, we wish to determine whether
the standard model is computational. Our approach, which we outline in some detail in
sections 3 and 4, is to reformulate the existing model in such a way that its computational
nature becomes intuitively obvious. Before doing so, however, we should explain why
this task is worth undertaking – as Zuse put it, “Is Nature digital, analog or hybrid?
And is there essentially any justification for asking such a question?” [14]

2.2.1. Newtonian models
It is not often appreciated that standard Newtonian physics is already complex enough

to support both super-Turing and hypercomputational behaviours, but as Xia has shown,
the Newtonian n-body problem exhibits ‘non-collision singularities’, solutions in which
massive objects can be propelled to infinity in finite time [23]. This is particularly
problematic for those models of digital physics which claim the Universe is generated
by essentially local interactions, like those connecting processes in a cellular automaton,
because the laws of physics are typically considered to be time-reversible. Consequently,
if a particle can be propelled to infinity in finite time, it should also be possible for a
particle to arrive from infinity in finite time. Clearly, however, there is no earliest time
at which such an emerging particle first arrives in the Universe (the set of times at which
the emerging particle exists does not contain its greatest lower bound). Consequently, if
all objects in the Universe have finite extent and finite history, the particle’s ‘emergence
at infinity’ must involve some non-local form of interaction between infinitely many of
these objects. On the other hand, Xia’s model depends implicitly on an idealised version
of Newtonian physics, in which gravitationally bound objects can approach arbitrarily
closely (some such idealisation is unavoidable, as the system needs to supply unbounded
kinetic energy to the escaping object as it accelerates away to infinity). While this means
that Xia’s result doesn’t actually undermine the case for digital physics, it reminds us
that the situation is considerably more complicated than might at first appear.

A recent series of investigations, reported in Beggs et al. [24], concerns a collision-
based computational system called the Scatter Machine Experiment (SME), in which a
projectile is fired from a cannon at an inelastic wedge in such a way that it bounces into a
detector either to one side (up) of the apparatus or the other (down); if the projectile hits
the vertex, various scenarios can be posited. The wedge is fixed in position with its vertex
at some height x whose binary expansion we wish to compute. The cannon can also be
moved up and down, but whereas x can take any real value, we only allow the cannon
to be placed at heights u which can be expressed in the form u = m/2n for suitable m
and n. By repeatedly firing and then re-aligning the cannon, they attempt to compute
the binary expansion of x, one digit at a time. The class of sets which are decidable
in polynomial time, when a certain protocol is used to run the SME, is exactly P/poly
(the complexity class of languages recognized by a polynomial-time Turing machine with
a polynomial-bounded advice function). Since P/poly is known to contain recursively
undecidable languages [25], it follows that the scatter machine experiment – despite its
evident simplicity – is behaving in a hypercomputational way.
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2.2.2. Relativistic models
The SADn hierarchy is a family of computational models which exploit the properties

of certain singularities in Malament-Hogarth spacetimes [26]. These are singularities with
computationally useful properties; in particular, if a test particle falls into the singularity,
it experiences infinite proper time during its journey; but an outside observer sees the
entire descent occurring in finite time. By exploiting such a singularity, we can easily
solve the Halting Problem. For suppose we want to know whether some program P halts.
We set it running on a computer, and then send that computer into the singularity. From
our vantage point, the entire process lasts just a finite length of time, say T seconds.
From the computer’s point of view the descent takes forever, so if P is going to halt, it
will have enough time to do so. We therefore program the computer’s operating system
so that, if P halts, a rocket is launched back out of the singularity (this is possible for
this kind of singularity) so as to arrive at some previously determined place and time
(sufficiently later than T seconds from now). We then travel to the rendezvous point. If
a rocket arrives at the scheduled time, we know that P must have halted. If no rocket
arrives, we know that the operating system never had cause to launch it, and we conclude
that P ran forever.

Hogarth refers to this hypercomputational system as an SAD1 computer; it uses a
standard Turing machine to run the underlying program P , but gains hypercomput-
ational power from the geometrical properties of the spacetime in which that Turing
machine finds itself. If we now repeat the construction, but this time using an SAD1

computer in an attempt to decide some question, the resulting (SAD1 + singularity)
system is called an SAD2 machine, and so on. Finally, by dovetailing a sequence of
machines, one from from each level of the hierarchy, and sending the whole lot into
a singularity, we obtain an AD machine. The SADn machines decide precisely those
first order statements which occupy the nth of the Arithmetic Hierarchy, while the AD
machine can decide the whole of arithmetic [27].

2.2.3. Quantum theoretical models
Quantum mechanics is, perhaps, mankind’s most impressive scientific achievement

to date; it enables us to predict various physical outcomes with remarkable accuracy
across a wide range of both everyday and exotic situations. In addition, as It from
Bit demonstrates, there are clear parallels between quantum theory and information
theory; since computation is largely seen as the study of information processing, it is not
surprising that the field has proven fertile ground for researchers in both digital physics
and hypercomputation theory.

One possible hypercomputational model in quantum theory is Kieu’s adiabatic quan-
tum algorithm for deciding Hilbert’s Tenth problem, concerning the solution of Diophan-
tine equations. Since this problem is known to be recursively undecidable [28], Kieu’s
algorithm – essentially a method for searching infinite sets in finite time – must be hyper-
computational. Although Kieu’s claims are controversial and his algorithm have been
disputed by various authors, he has sought to address these criticisms in a forthcoming
paper [29]. For the time being, therefore, the jury is out.
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3. The Standard Path-Integral Formulation

As we explained in section 2.2, we aim to reformulate the standard version of quantum
theory from first principles in such a way that its computational aspects become essen-
tially self-evident. We begin by recapitulating Feynman’s (non-relativistic) path-integral
formulation presented in [30, §§3–4]. Given initial and final locations qI = (xI , tI) and
qF = (xF , tF ) (where tF > tI), the goal of the standard formulation is to determine
the amplitude φ(qF , qI) that a particle P follows a trajectory qI → qF lying entirely
within some prescribed non-empty open space-time region R. As Feynman shows, this
amplitude can then be used to generate a Schrödinger wave-equation description of the
system, whence this formulation is equivalent to other standard (non-relativistic) models
of quantum theory. In Section 4, we will develop a generalised finitary formulation of the
same amplitude, and show that it is equivalent to the standard path-integral formulation
presented below.

For the sake of illustration, we shall assume that space is 1-dimensional, so that spatial
locations can be specified by a single coordinate x — the extension to higher dimensions
is straightforward. Furthermore, we shall assume in this paper that the region R is a
simple rectangle of the form R = X × T , where X and T = (tmin, tmax) are non-empty
open intervals in R; this does not limit our results, because open rectangles form a base
for the standard topology on R2, and all of our formulae are derived via integration.2

Suppose, then, that a particle P is located initially at qI = (xI , tI), and subsequently
at qF = (xF , tF ), and that its trajectory from qI to qF is some continuous path lying
entirely within the region R = X × T . Choose some positive integer ν, and split the
duration δt = tF − tI into ν + 1 equal segments: for n = 0, . . . , ν + 1, we define tn =
tI +nδt/(ν+1), so that t0 = tI and tν+1 = tF . We write x0, . . . , xν+1 for the corresponding
spatial locations, and define qn = (xn, tn). While each of the values xn can vary from path
to path, the values tn are fixed. To distinguish this situation from the situation below
(where tn is allowed to vary), we shall typically write q† = (x, t†) for those locations
qn whose associated tn-value is fixed (the points qI and qF are assumed to be fixed
throughout). We will also sometimes write [ q† ] or [ q†1, . . . , q

†
ν ] for the arbitrary path

qI = q†0 → q†1 → · · · → q†ν → q†ν+1 = qF . Apart from the fixed values x0 ≡ xI and
xν+1 ≡ xF , each of the xn is constrained only by the requirement that xn ∈ X, whence
the path [ q† ] has ν degrees of freedom.

In classical physics, the action associated with a path p is given by S =
∫
p
L dt,

where the function L = L(x(t), ẋ(t)), the Lagrangian, is a function of position x and
velocity ẋ, only. However, to form this integral we need to specify the motion of the
particle in each subinterval (t†n, t

†
n+1), so we assume that P follows some path q†n → q†n+1

that is classically permissible. Each segment q†n → q†n+1 of the path has associated

classical action S(q†n+1, q
†
n), and probability amplitude

〈
q†n+1

∣∣∣ q†n〉 defined for all q and
(subsequent) q′ by 〈q′ | q〉 = exp {iS(q′, q)/~}. The action S is determined by the clas-
sical Principle of Least Action. This says that the classical path is one which min-
imises this action, so that S(q′, q) = min

∫ t′
t
Ldt. The total action associated with the

2Integrating over a union of disjoint rectangles is the same as summing the component integrals:
given any integrable function f(x, t) defined on a disjoint union R =

S
αRα, we have

R
R f =

P
α

R
Rα

f .
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path is S[ q†1, . . . , q
†
ν ] =

∑
n S(q†n+1, q

†
n) and the associated amplitude is the product〈

qF
∣∣ q†ν〉 〈q†ν ∣∣∣ q†ν−1

〉
. . .
〈
q†2

∣∣∣ q†1〉〈q†1 ∣∣∣ qI〉. Summing over all such paths now yields the
composite amplitude

φν(qF , qI) =
1
Aν

∫ 〈
qF
∣∣ q†ν〉 dxν 〈q†ν ∣∣∣ q†ν−1

〉
dxν−1 . . .

〈
q†2

∣∣∣ q†1〉 dx1

〈
q†1

∣∣∣ qI〉 (1)

where Aν is a normalisation factor. All that remains is to take the limit as ν → ∞,
subject to the assumption that the resulting path x = x(t) is continuous. This gives us
the required amplitude φ(xF , xI) that the particle travels from qI to qF by a trajectory
that lies entirely3 within R:

φ(qF , qI) = lim
ν→∞

1
Aν

∫ 〈
qF
∣∣ q†ν〉 dxν 〈q†ν ∣∣∣ q†ν−1

〉
dxν−1 . . .

〈
q†2

∣∣∣ q†1〉 dx1

〈
q†1

∣∣∣ qI〉 .

4. A Finitary Formulation

In section 3 we showed how the amplitude φ(qF , qI), that the particle P travels from
qI to qF along some path lying entirely within the non-empty open spacetime region
R = X × T , is given by φ = limν→∞ φν . If we now write

∆n = φn − φn−1 , (2)

it follows from the identity φν = (φν − φν−1) + · · ·+ (φ1 − φ0) + φ0 that

lim
ν→∞

φν = lim
ν→∞

(
φ0 +

ν∑
n=1

∆n

)
= φ0 +

∞∑
n=1

∆n .

This replacing of a limit with a sum is a key feature of our model, since it allows us to
describe a system in terms of a set of mutually distinct finite sets of observations. We can
think of this sum in terms of correction factors. For, suppose you were asked to estimate
the amplitude φ(qF , qI) that some object or particle P will be observed at qF , given that
it had already been observed at qI and was constrained to move within the region R.
With no other information to hand, your best bet would be to assume that P follows
some action-minimising classical path, and so the estimate you give is the associated
amplitude 〈qF | qI〉. Some time later, you realise that one or more observations may
have been made on the particle while it was moving from qI to qF , and that this would
have perturbed the amplitude. To take account of these possibilities, you add a series of
correction factors to your original estimate; first you add ∆1 in case 1 observation had
taken place, instead of the 0 observations you had originally assumed. Then you add ∆2

in case there were actually 2 observations, and so on. Each ∆n takes into account the
extra information acquired by performing n observations instead of n− 1, and since the
overall estimate needs to take all of the corrections into account, we have φ = φ0 +

∑
∆n.

The simple truth, however, is that continuous motion cannot be observed, because
making an observation takes time. The best we can ever do is to make a series of distinct

3Strictly, only the internal points of the trajectory are required to lie in R. Either (or both) of the
endpoints qI and qF can lie outside R, provided they are on its boundary.
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measurements showing us where an object was at finitely many closely-spaced instants
t1, t2, . . . , tν during the relocation from qI to qF . The classical spirit within us then tells
us to extrapolate these discrete points into a continuous curve (namely, that path which
‘best’ joins the points). It is as if we draw the individual locations on celluloid, and then
play a mental film projector to give ourselves the comfortable impression of continuous
movement. But this mental film projector — represented in the standard formulation
by the construction of limφν — is no part of physical observation; it represents instead
an assumption about the way the world ‘ought to be’. All we can truthfully say is that
the object was at such and such a location xn when we observed it at time tn, and
was subsequently at location xn+1 at time tn+1. Regardless of underlying reality (about
which we can say virtually nothing), the observed universe is inherently discrete. We can
ask ourselves how the motion appears if no observations are made; the composite answer,
taking into account all potential observers, is given by some amplitude ψ0. If we ask how
it appears if precisely ν observations are made during the relocation from qI to qF , we get
another amplitude ψν . Since these possibilities are all mutually exclusive, and account
for every possible finitely observed relocation from qI to qF , the overall amplitude that
the relocation happens is the sum of these amplitudes, namely some function ψ =

∑
ψν .

Although they both involve infinite sums, these two descriptions are very different,
because ψn tells us the amplitude for a path with a specific number of hops, while ∆n

describes what happens when we change the number of hops. Nonetheless, prompted by
the formal structural similarity of the equations φ = φ0 +

∑
φn and ψ = ψ0 +

∑
ψn, we

shall equate the two sets of terms, and attempt to find solutions. By requiring ψ0 = φ0

and ψn = ∆n, this will ensure that the description we generate – no matter how unnatural
it might appear at first sight — satisfies φ = ψ, whence it describes exactly the same
version of physics as the standard formulation.

The surprising feature in what follows is that the description we generate is not
unnatural. Quite the opposite. To see why, we need to remember that amplitudes are
normally given in the form φn = exp {i(S1 + · · ·+ Sn))/~}. In very rough terms, we can
think of the various S values as being essentially equal, so that φn ≈ exp {inS/~}. When
we compute ∆n, we are asking how φn changes when n changes; in other words, we can
think of ∆n in fairly loose terms as a measure of dφn/dn. Again arguing loosely, we can
calculate dφn/dn ≈ iSφn/~, and now it becomes clear why equating the two sets of terms
works, for in essence, ∆n is approximately proportional to φn. Since ψn is structurally
similar to φn, in the sense that both measure the amplitude associate with a sequence
of jumps, it is not surprising to find a similar relationship holding between ∆n and ψn.
Since the equations we form will eventually include integrals with normalisation factors,
these factors will effectively absorb any remaining constants of proportionality.

4.1. Paths, Actions and Amplitudes
The standard formulation assumes that each trajectory x(t) is a consistently future-

pointing spacetime path; this is implicit in the continuity of the representation x ≡ x(t),
which assigns one location to each t in the interval [tI , tF ]. Since our formulation rejects
this assumption, we need to provide a different definition for paths.

We shall assume the abstract existence of a clock, represented by the integer variable
τ , used to indicate the order in which observations occur. Each time the clock ticks, i.e.
for each τ = 0, 1, 2, . . . , the particle is observed to exist at some space-time location qτ =
(xτ , tτ). We call each transition qτ → qτ+1 a hop. A finite sequence of consecutive hops
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q0 → · · · → qν+1 constitutes a path. As before, we take q0 = (xI , tI) and qν+1 = (xF , tF ),
and consider the properties of an arbitrary path from qI to qF via ν intermediate points,
all of which are required to lie in the prescribed space-time region R = X × T .

We again write [ q1, . . . , qν ] for the path qI → q1 → · · · → qν → qF . However,
whereas the intervals tn+1 − tn were formally fixed to have identical duration δt/(ν+1),
there is no constraint on the temporal separation tτ+1 − tτ in the finitary formulation;
the path q0 → · · · → qν+1 therefore has 2ν degrees of freedom, or twice the number in
the standard formulation. Notice that we now write qn rather than q†n, to show that the
value tn is no longer fixed.

What is not clear at this stage is whether hops need necessarily always be future-
pointing. The standard formulation forces this on us through its assumption that some
continuous motion t 7→ x(t) is being observed, but this assumption is no longer relevant.
We shall therefore describe two finitary formulations, one in which hops are unidirec-
tional in time, and one in which space and time are treated symmetrically, in that hops
can move both forwards and backwards in time as well as space. Both models are re-
lated to computation theory, but the second is by far the more interesting, both from a
computational, and a physical, point of view. The mathematical distinction between the
two models is minor. If time is unidirectional into the future, then tτ+1 must lie in the
range tτ < tτ+1 ≤ tmax. Otherwise, it can take any value in T .

In the standard formulation, any unobserved motion from one observation to the next
is assumed to be classical, and its amplitude is determined by minimising the classical
action S. Since we no longer assume that any such motion exists, we shall simply assume
that each hop q → q′ has a hop amplitude, denoted 〈q′ | q〉h, and that this amplitude (when
it is non-zero) is associated with an abstract hop action, denoted sh(q′, q), by the formula
〈q′ | q〉h = eish(q′,q)/~. One of our tasks will be to identify the function sh.

The amplitude associated with the path [ q1, . . . qν ] is defined, as usual, to be the
product 〈qF | qν〉h× · · · × 〈q1 | qI〉h. The amplitude computed by summing over all paths
of this length will be denoted ψn, so that the overall finitary amplitude that the particle
moves from qI to qF along a sequence of hops lying entirely within R is just ψ(qF , qI) =∑∞
n=0 ψn.

4.2. The Finitary Equations
Consider again the formulae giving the amplitude that a particle P follows a path

from qI to qF that lies entirely within the region R, subject to the assumption that qF
occurs later than qI — the standard formulation isn’t defined when this isn’t the case.
We can write these in the form

φ = φ0 +
∞∑
n=1

∆n (3)

ψ = ψ0 +
∞∑
n=1

ψn (4)

whence it is clear that one particular solution can be obtained by solving the infinite
family of equations

ψ0 = φ0 (5)
ψn = φn − φn−1 (i.e. ψn = ∆n) for n > 0 (6)
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to find the hop-action sh. Since the terms φn and An are those of the standard formula-
tion, we shall henceforth assume that S, φn, ∆n and An are all known functions in what
follows.

4.3. Solving the Equations
As usual, we shall assume that qF occurs later than qI (so that φn = φn(qF , qI) is

defined for each n). We shall be careful to distinguish locations q† = (x, t†) for which the
time of observation is fixed in the standard formulation, from those of the form q = (x, t)
used in the finitary version, for which the value of t is variable. Note first that (1) can
be rewritten to give us a recursive definition of φn, viz.

φν(qF , qI) =
1
Aν

∫ 〈
qF
∣∣ q†ν〉 dxν 〈q†ν ∣∣∣ q†ν−1

〉
dxν−1 . . .

〈
q†2

∣∣∣ q†1〉 dx1

〈
q†1

∣∣∣ qI〉
=
Aν−1

Aν

∫ 〈
qF
∣∣ q†ν〉 dxν 1

Aν−1

∫ 〈
q†ν

∣∣∣ q†ν−1

〉
dxν−1 . . .

〈
q†2

∣∣∣ q†1〉 dx1

〈
q†1

∣∣∣ qI〉
=
Aν−1

Aν

∫ 〈
qF
∣∣ q†ν〉φν−1(q†ν , qI) dxν

(7)
and an identical derivation gives ψν in the form

ψν(qF , qI) =
Bν−1

Bν

∫
X

∫
T ′
〈qF | qν〉h ψν−1(qν , qI) dtν dxν (8)

where the Bn are normalisation factors, and the integration range T ′ depends on whether
we allow hops to jump backwards in time, or insist instead that they move only forwards
(we consider the two cases separately, below).

Using (7) to substitute for φν in the definition (2) of ∆n gives

∆ν(qF , qI) = φν(qF , qI)− φν−1(qF , qI)

=
[
Aν−1

Aν

∫ 〈
qF
∣∣ q†ν〉φν−1(q†ν , qI) dxν

]
− φν−1(qF , qI) .

The case ν = 0 is worth noting in detail. The amplitudes φ0(qF , qI) and ψ0(qF , qI)
describe the situation in which P moves from qF to qI without being observed. In the
standard formulation, it is assumed in such circumstances that P follows some classical
path for which the action S is minimal, while in the finitary formulation we assume that
the particle hops directly from qI to qF . The amplitudes for these behaviours are 〈qF | qI〉
and 〈qF | qI〉h, respectively. However, we need to remember that φ0 and ψ0 are defined in
terms of their contribution to the overall amplitudes φ and ψ; it is important, therefore,
to include the relevant normalisation factors. We therefore define, in accordance with
(1), (3), (4) and (8),

φ0(qF , qI) =
1
A0
〈qF | qI〉 and ψ0(qF , qI) =

1
B0
〈qF | qI〉h ,

so that, whenever qF occurs later than qI ,

〈qF | qI〉h = σ 〈qF | qI〉 (9)
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where
σ = B0/A0 .

Taking principal logarithms on both sides of (9) now gives

sh(qF , qI) = S(qF , qI)− i~ log σ

and if we assume that sh should be real-valued (the classical action S is always real-
valued), then log σ must be a real multiple of i, say σ = eiρ where ρ ∈ R, whence
|σ|2 = 1. Consequently, |〈qF | qI〉h|

2 = |〈qF | qI〉h|
2, and the two formulations assign the

same standard and finitary probabilities to the relocation qI → qF , whenever this is
unobserved and future-directed. Moreover, since

sh(qF , qI) = S(qF , qI) + ρ~

we see that our earlier intuition is essentially confirmed: the hop-action sh (the best
estimate of the path-amplitude, given that no observations will be made) is just the
classical action S, though possibly re-scaled by the addition of a constant action of size
ρ~ (which we can think of as a kind of ‘zero-point’ action). For the purposes of this
paper, the values of ρ and σ = eiρ are essentially arbitrary; we shall leave ρ (and hence
σ) an undetermined parameter of the model, in terms of which

B0 = σA0 (10)

and
sh(qF , qI) = S(qF , qI) + ρ~ if qF occurs after qI . (11)

The physical significance of ρ is discussed briefly in Section 4.5, in relation to null-hops.

4.4. The Unidirectional Model
If we wish to allow only future-pointing hops — we shall call this the unidirectional

model — there is little left to do. We know from (5) and (6) that each function ψn is
defined in terms of the known functions φ0 and ∆n. It only remains to identify the hop
amplitude sh and the normalisation factors Bn. As explained above, our solutions will
be given in terms of the undetermined phase parameter σ.

Since the side-condition on (11) is satisfied, the hop amplitude is given in terms of
the classical action by the formula 〈q′ | q〉h = σ 〈q′ | q〉 = σ exp{iS(q′, q)/~}, whenever q′

follows q.
To find the normalisation factors, we note first that (10) gives us the value B0 = σA0

directly. Next, when ν > 0, we observe that, since tν must come after tν−1, the range T ′

in (8) is the interval (tν−1, tF ). Consequently,

ψν(qF , qI) =
Bν−1

Bν

∫
X

∫ tF

tν−1

〈qF | qν〉h ψν−1(qν , qI) dtν dxν

=
σBν−1

Bν

∫
X

∫ tF

tν−1

〈qF | qν〉ψν−1(qν , qI) dtν dxν .

(12)
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When ν = 1, (12) can be rewritten

ψ1(qF , qI) =
σB0

B1

∫
X

∫ tF

tI

〈qF | q1〉ψ0(q1, qI) dt1 dx1

=
σB0

B1

∫
X

∫ tF

tI

〈qF | q1〉
1
B0
〈q1 | qI〉h dt1 dx1

=
σ2

B1

∫
X

∫ tF

tI

〈qF | q1〉 〈q1 | qI〉 dt1 dx1

and, since ψ1 = ∆1, this gives us

B1 =

(∫
X

∫ tF
tI
〈qF | q1〉 〈q1 | qI〉 dt1 dx1

∆1(qF , qI)

)
σ2 .

Finally, for ν > 1, (12) becomes

∆ν(qF , qI) = ψν(qF , qI)

=
σBν−1

Bν

∫
X

∫ tF

tν−1

〈qF | qν〉ψν−1(qν , qI) dtν dxν

=
σBν−1

Bν

∫
X

∫ tF

tν−1

〈qF | qν〉∆ν−1(qν , qI) dtν dxν

and hence Bν can be defined recursively, as

Bν =
σBν−1

∆ν(qF , qI)

∫
X

∫ tF

tν−1

〈qF | qν〉∆ν−1(qν , qI) dtν dxν .

4.5. The Bidirectional Model
Far more interesting is the case where hops are allowed to jump backwards as well as

forwards in time. It is important to note that the derivation of Bν given above for the
unidirectional model no longer works, because it relies on using (9) to replace 〈qF | qν〉h
with σ 〈qF | qν〉, and on (6) to replace ψn+1(qν , qI) with ∆n+1(qν , qI). But our use of
(9) assumes that qF occurs after qν , and that of (6) that qν comes after qI , and neither
assumption is generally valid in the bidirectional model. Consequently, before we can
make progress, we need to decide how 〈q′ | q〉h should be defined when the hop q → q′

moves backwards in time.
To address this problem, we recall the standard interpretation of anti-matter as ‘mat-

ter moving backwards in time’. For example, the Feynman diagram in Figure 1 shows
how the annihilation of e.g. an electron and a positron (its antiparticle) to form two
photons can be interpreted instead as showing an electron that moves forward in time,
interacts with the photons, and then returns into the past.

Accordingly, whenever we are presented with a backwards hop by the particle P , we
re-interpret it as a forwards hop by the appropriate anti-particle, P . Writing S for the
classical action associated with the antiparticle P , we therefore define

sh(qF , qI) =

{
ρ~ + S(qF , qI) if qI is earlier than qF , and
ρ~ + S(qI , qF ) if qI is later than qF .

(13)
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�
Figure 1: Anti-matter can be thought of as matter moving backwards in time. A
particle arrives at bottom left, and the corresponding antiparticle (shown as usual
with the arrow reversed) at bottom right; they annihilate to produce two gamma
rays, emitted top left and top right. Time advances up the page.

It is tempting to assume that S is just the negative of S, but this need not be the case.
For example, since photons are their own anti-particles, they would require S = S. Or
consider an electron moving in both an electric and a gravitational field. If we replaced
it with a positron, the electric forces would reverse, but the gravitational forces would
remain unchanged, and the overall change in action would reflect both effects.

Spatial hops - the physical meaning of σ. What about purely spatial hops that move
the particle P sideways in space, without changing its temporal coordinate? There are
two cases to consider. If qF = qI , the particle has not actually moved, and the classical
solution S(q, q) = 0 holds valid. Consequently, we can simply extend our existing solution
by defining sh(q, q) = ρ~, or 〈q | q〉h = σ. This, then, explains the physical significance
of σ — it is the amplitude associated with the null hop, i.e. that hop which leaves the
particle in its original location from one observation to the next.

If qF and qI differ in their x (but not their t) values, we shall simply take 〈qF | qI〉h =
0; i.e. we ban all such hops (this definition is, of course, purely arbitrary, and other
definitions may be more appropriate in regard to other investigations4; but for our current
purposes the specific choice of purely spatial hop action makes little difference, because
the paths in question contribute nothing to the integrals we shall be constructing). This
doesn’t mean, of course, that a path cannot be found from qI to a simultaneous location
qF — it can, via any past or future location! — but that more than one hop is required
to complete the journey. Indeed, the possibility of purely spatial relocations is highly
significant, since one could interpret them as explaining quantum uncertainty: one cannot
say definitely where a particle is at any given time t, precisely because it is able to relocate
from one location to another, with no overall change in t.

Solving the Equations. As before, we know from (5) and (6) that each function ψn is
defined in terms of the known functions φ0 and ∆n, and it remains to identify the hop
amplitude sh and the normalisation factors Bn. Once again, our solutions will be given
in terms of the undetermined phase parameter σ. As always, we assume that tI < tF ,
although we allow individual hops to move backwards through time.

To define the hop amplitude, we appeal to (13), and the relationship 〈q′ | q〉h =
eish(q′,q)/~. Taken together with our discussion of spatial hops, these allow us to define

4For example, suppose we know (from wave-equation methods, say) that P has amplitude η(x)
to be at location x† = (x, t†), for each x ∈ X. A more intuitive solution might then be to take˙
x†
˛̨
y†
¸
h

= η(x†)/η(y†). This gives
˙
x†
˛̨
x†
¸
h

= 1 in agreement with the ‘classical amplitude’, but also

provides information about the relative amplitudes of all other spatial locations at time t†.

243



sh fully:

〈qF | qI〉h =


σ 〈qI | qF 〉 if qF is earlier than qI ,
σ 〈qF | qI〉 if qF is later than qI

σ if qF = qI , and
0 otherwise.

where 〈qI | qF 〉 = exp {iS(qI , qF )/~} is the ‘classical amplitude’ associated with the anti-
particle. This idea extends throughout the functions defined in this section; for example,
when q′ is earlier than q, we write ψn(q, q′) for the amplitude that the antiparticle follows
some path q′ → q lying entirely within R. We will see below that the amplitude functions
ψn(q′, q) and ψn(q′, q) are, as one would expect, related to one another in a mutually
recursive way.

Now we consider the normalisation constants Bn. We already know that B0 = σA0,
so we consider the case when n > 0. Because hops are allowed to move in both directions
through time, the integration range T ′ in (8) is the whole of T . Consequently, (8) becomes

ψν(qF , qI) =
Bν−1

Bν

∫
X

∫
T

〈qF | qν〉h ψν−1(qν , qI) dtν dxν .

The integral over T splits into three parts, depending on the value of tν relative to tI
and tF . We have

ψν(qF , qI) =
Bν−1

Bν

∫
X

∫
T

〈qF | qν〉h ψν−1(qν , qI) dtν dxν

=
Bν−1

Bν

∫
X

[IL(xν) + IM (xν) + IR(xν)] dxν
(14)

where IL(xν) is the integral over [tmin, tI ], IM (xν) over [tI , tF ] and IR(xν) over [tF , tmax].
When ν = 1, (14) becomes

ψ1(qF , qI) =
B0

B1

∫
X

[IL(x1) + IM (x1) + IR(x1)] dx1

and the integrals IL, IM and IR are defined by

IL(x1) = σ

∫ tI

tmin

〈qF | qν〉h ψ0(qν , qI) dtν =
σ2

B0

∫ tI

tmin

〈qF | q1〉 〈qI | q1〉 dtν

IM (x1) = σ

∫ tF

tI

〈qF | qν〉h ψ0(qν , qI) dtν =
σ2

B0

∫ tF

tI

〈qF | q1〉 〈q1 | qI〉 dtν

IR(x1) = σ

∫ tmax

tF

〈qF | qν〉h ψ0(qν , qI) dtν =
σ2

B0

∫ tmax

tF

〈q1 | qF 〉 〈q1 | qI〉 dtν .

Thus IL(xν) + IM (xν) + IR(xν) =

σ2

B0

[∫ tI

tmin

〈qF | q1〉 〈qI | q1〉 dtν +
∫ tF

tI

〈qF | q1〉 〈q1 | qI〉 dtν +
∫ tmax

tF

〈q1 | qF 〉 〈q1 | qI〉 dtν
]
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and

ψ1(qF , qI) =
σ2

B1

[∫ tI

tmin

〈qF | q1〉 〈qI | q1〉+
∫ tF

tI

〈qF | q1〉 〈q1 | qI〉+
∫ tmax

tF

〈q1 | qF 〉 〈q1 | qI〉
]
.

On the other hand, (2) tells us that ψ1 = ∆1, and so B1 =
(∫ tI

tmin
〈qF | q1〉 〈qI | q1〉 dtν +

∫ tF
tI
〈qF | q1〉 〈q1 | qI〉 dtν +

∫ tmax

tF
〈q1 | qF 〉 〈q1 | qI〉 dtν

)
∆1(qF , qI)

σ2 .

Finally, when ν > 1, the integrals IL, IM and IR are given by

• IL(xν) = σ
∫ tI
tmin
〈qF | qν〉∆ν−1(qI , qν) dtν ;

• IM (xν) = σ
∫ tF
tI
〈qF | qν〉∆ν−1(qν , qI) dtν ;

• IR(xν) = σ
∫ tmax

tF
〈qν | qF 〉∆ν−1(qν , qI) dtν ,

and (14) gives us Bν recursively,

Bν =
σBν−1

∆ν(qF , qI)

∫
X

{∫ tI

tmin

〈qF | qν〉∆ν−1(qI , qν) dtν

+
∫ tF

tI

〈qF | qν〉∆ν−1(qν , qI) dtν +
∫ tmax

tF

〈qν | qF 〉∆ν−1(qν , qI) dtν

}
.

5. Computational Interpretation of the Model

To illustrate the full computational significance of our reformulation (especially the
bidirectional version), we first need to digress slightly, and explain Eilenberg’s 1974 X-
machine model of computation [10]. This is an extremely powerful computational model,
which easily captures (and extends) the power of the Turing machine. We will then show
that a particle’s trajectory can be regarded as an X-machine drawn in spacetime, and
that (a minor variant of) this machine computes its own amplitude (as a trajectory).

5.1. X-machines
An X-machine M = FΛ (where X is a data type) is a finite state machine F over

some alphabet A, together with a labelling function Λ: a 7→ aΛ : A→ R(X), where R(X)
is the ring of relations of type X ↔ X.

Each word w = a1 . . . an in the language |F | recognised by the machine F can be
transformed by Λ into a relation wΛ on X, using the scheme

wΛ = a1
Λ ◦ · · · ◦ anΛ

and taking the union of these relations gives the relation
∣∣FΛ

∣∣ computed by the machine,∣∣FΛ
∣∣ =

⋃{
wΛ

∣∣ w ∈ |F | } .
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If we want to model a relation of type Y ↔ Z, for data types Y 6= Z, we equip the
machine with encoding and decoding relations, E : Y → X and D : X → Z. Then the
behaviour computed by the extended machine is the relation E ◦

∣∣FΛ
∣∣ ◦D.

Although the language |F | is necessarily regular, the computational power of the
X-machine model is unlimited. For, given any set-theoretic relation ζ : Y → Z, we
can compute it using the trivial (2-state, 1-transition)-machine with X = Y × Z, by
picking any z† ∈ Z, and using the labelling yE = (y, z†), the decoder (y, z)D = z,
and encoder aΛ = ζ, where (y, z†)ζ = (y, ζ(y)). For now, given any y ∈ Y , we have∣∣FΛ

∣∣ =
⋃{

aΛ
}

= ζ, and

y(E◦|FΛ|◦D) = y(E◦ζ◦D) = (y, z†)(ζ◦D) =
⋃

(y, ζ(y))D = ζ(y) .

5.2. Computation by admissible machines
In our case, all of the path relations we consider will be constant multipliers of the

form fc : z 7→ zc, where c, z ∈ C. The resulting machine behaviour will therefore be a set
of such multipliers, and we can meaningfully form their sum (which is again a multiplier).
For reasons that will shortly become clear, however, we will restrict attention to those
paths which visit each state of the machine at least once. We therefore define the additive
behaviour of such a machine M = FΛ to be the function |M |+ on C given by

|M |+ (z) =
∑{

wΛ(z)
∣∣ w ∈ |F | , w visits each state of F at least once

}
If M is a machine of this form, we will declare the behaviour of M to be the function
|M |+, and speak of M as an additive X-machine . Any finitary path [ q ] = qI → q1 →
· · · → qν → qF generates an additive X-machine Mq with state set { qI , q1, . . . , qν , qF },
alphabet A = { h0, . . . , hν }, and transitions {qn

hn−−→ qn+1 | n = 0, . . . , ν}. Each transi-
tion in the machine is a hop along the path, and is naturally associated with the function
hn

Λ = λz.(z. 〈qn+1 | qn〉h) : C → C that multiplies any input amplitude z by the hop
amplitude 〈qn+1 | qn〉h. If Mq is an additive X-machine generated by some path [ q ] with
initial state qI , final state qF , and intermediate states in R, we shall say that M is admis-
sible, and that [ q ] generates M . We claim that each path computes its own amplitude,
when considered as the machine it generates.

Computation by the unidirectional model.. For unidirectional machines, each hop hn
involves a jump forward in time, so the states { qn } must all be distinct, and the path
[ q ] forms a future-pointing chain through spacetime. Consequently, the machine Mq

recognises precisely one string, and the additive and standard behaviours of the X-
machine are identical. The function computed by this path maps each z ∈ C to

z[(h0
Λ)◦···◦(hνΛ)] = z × 〈qn+1 | qn〉h 〈qn | qn−1〉h . . . 〈q1 | q0〉h = z × ψ[ q ] . (15)

As claimed, therefore, each (unidirectional) trajectory directly computes its own contri-
bution to the amplitude of any path containing it.
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Computation by the bidirectional model.. Equation (15) holds also for unidirectional
paths in bidirectional machines, but the general physical interpretation is more com-
plicated, because of the possibility of loops. Essentially, we need to distinguish carefully
between two related questions, viz.

• what is the amplitude that the path [ q ] is traversed?

• what is the amplitude that the path [ q ] is observed to have been traversed?

To see why, let us suppose that the path [ q ] contains only one loop, and that m
is minimal such that qm+1 = qn+1 for some n satisfying m < n; write the associated
sequence of hops as a concatenation of three segments, viz. h0 . . . hν = u.v.w, where
u = h0 . . . hm, v = hm+1 . . . hn and w = hn+1 . . . hν . Since v represents a spacetime
loop from qm+1 back to qn+1 = qm+1, there is no observable difference between any
of the paths u.vj .w, for j ≥ 1. Consequently, while the amplitude for the path [ q ] is
just ψ[ q ], the amplitude that this path is observed is instead the amplitude ψ∗[ q ] =∑∞
j=1 ψ[u ]× (ψ[ v ])j × ψ[w ].
More generally, given the machine F generated by any bidirectional trajectory [ q ],

and any two strings α, β which are recognised by F , and which visit each state at least
once, there will be no observable difference between α and β. Consequently, if we define

F+ =
{
wΛ

∣∣ w ∈ |F | , w visits each state at least once
}

then the amplitude ψ+ that [ q ] is observed to have been the path traversed will satisfy,
for z ∈ C,

z.ψ+ =
∑{

wΛ(z)
∣∣ w ∈ F+

}
=
∣∣FΛ

∣∣+ (z)

and once again, if we think of [ q ] as an additive X-machine, it computes its own contri-
bution to the amplitude of any path containing it.

6. Concluding Arguments

Recall that an additive X-machine M is admissible provided there is some finitary
bidirectional path [ q ] that generates it. Say that two paths [ q ]1 and [ q ]2 are equiv-
alent, provided they generate precisely the same admissible machine M . Clearly, this
is an equivalence relation, and given any path [ q ], there will some equivalence class q̃
containing it. Moreover, the amplitude |M |+ is given by summing the amplitudes of the
various paths in q̃. Consequently, summing over all paths is the same as summing over
all admissible machines, so that (regarding ψ(qF , qI) as a multiplier),

ψ(qF , qI) =
∑{

|M |+
∣∣∣ M is admissible

}
,

and ψ(qF , qI) can be regarded as integrating all of the admissible machine amplitudes. In
the bidirectional formulation, then, the nature of motion in quantum theory reveals itself
to be inherently computational. It is not that trajectories can be computed; rather, they
are computations. As a particle hops through spacetime, it simultaneously constructs and
executes a computational state machine, and the amplitude computed by this machine
is precisely the amplitude of the trajectory that constructed it.
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In section 2.1, we noted how digital physics assumes the existence of a computation
that computes each universe’s history, which suggests that the ‘computer’ which executes
the computation is somehow external to the universes being constructed. In contrast, the
bidirectional model is telling us that each universe is a process, in which each trajectory
is a sub-process which computes its own amplitude. Moreover, all of these sub-processes
interact with one another non-locally, because hop amplitudes are based on the classical
action, and this in turn depends on the ever-changing spacetime distribution of the other
particles. In other words, as we have argued elsewhere, quantum theory is best thought
of, not in terms of computation, but in terms of interactive formal processes [31].

Clearly, this idea has echoes of It from Bit , and indeed the bidirectional model helps
explain Wheeler’s delayed-choice experiment. The apparent paradox relies on two as-
sumptions concerning the experimental set-up. First, the photon must pass through the
barrier in order to be observed on the other side; and second, we can reliably identify a
time by which the photon has travelled beyond the barrier (we need to make our delayed
choice after this time). Both of our reformulations refute the first assumption (the discon-
tinuous nature of hop-based motion means that the Intermediate Value Theorem cannot
be invoked to prove that the trajectory necessarily passes through the barrier), while the
bidirectional model also refutes the second assumption, since there is no reliable sense
in which the decision can be said to have been made ‘after’ the trajectory intersects the
barrier. Thus the delayed-choice experiment contains no paradox, and there is nothing
to explain.

We should also be clear as to what our reformulation does not say. Throughout
this discussion we have focussed on the computational nature of trajectories, but it
should be stressed that there is an important distinction to be be drawn between what
a process does, and how that process is structured. This is the same distinction as
that highlighted in section 2.1 between Schmidhuber’s and Tegmark’s versions of the
computational universe hypothesis: whereas Schmidhuber considers process evolutions
to be computable, Tegmark requires instead that their descriptions be computable. In
our case, while we know that each trajectory computes its amplitude, we cannot say that
the amplitude itself is necessarily ‘computable’ in the Turing sense, because we cannot as
yet identify the extent to which the two forms of computation are related. As a process,
each trajectory is computational, but the values it manipulates need not be.

6.1. Open questions
1. Clearly, we need to determine the relationship between trajectory computations and
Turing computations. There must certainly be some such relationship, because the un-
derlying X-machine model is closely related to the Finite State Machine, which also
underpins the basic structure of the Turing machine.

2. Although we have exchanged continuous motion for motion based on discrete hops, we
have not as yet done away with continuous spaces in their entirety, because many of the
expressions given in this paper make use of integration. As we argued above, continuity is
not directly observable, so we would prefer a purely discrete model. We should therefore
investigate the extent to which the formulation presented here can be re-expressed in
purely formal terms, for example using the π-calculus (a standard theoretical vehicle for
modelling mobile distributed process-based systems).
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3. Suppose we impose the condition that whenever a particle hops inside some arbitrary
region (which we can think of as the interior of an event horizon), it cannot hop back
out again. This will have a global influence upon trajectory amplitudes, because every
journey would otherwise have the option to include hops that pass through the excluded
region. In particular, the observed positions of geodesics (which can be modelled in
terms of trajectories) can be expected to change position, whence the presence of the
excluded region will generate a perceived ‘warping’ of spacetime geometry. Does this
warping agree with the warping predicted by General Relativity? Can the bidirectional
model be extended to give a model of quantum gravity?
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I. QUANTUM COMPUTATION BY STATE IDENTIFICATION

One of the advantages of quantum computation (Beals et al., 2001; Bennett et al., 1997; Cleve, 2000; Fortnow,
2003; Gruska, 1999; Mermin, 2007; Nielsen and Chuang, 2000; Ozhigov, 1998) over classical algorithms (Odifreddi,
1989; Rogers, Jr., 1967) is due to the fact that during a quantum computation some classically useful information
can be coded in or “spread among” multi-partite coherent states in such a way that certain decision problems can be
solved by identifying a quantum state which “globally” contains that solution (Mermin, 2003; Svozil, 2006). Thereby,
information about single cases contributing to the solution of the decision problem are not useful for (and even makes
impossible) the quantum computation.

In comparison, the retreival of information, such as the result of a decision problem, is analogous to the preparation
and characterization of states with the properties corresponding to such a decision problem. In particular, unlike
classical physical states, quantum states can also be characterized with respect to propositions and properties not
encoded into a single quantum, but “spread among” quanta in an entangled multi-partite state (Brukner and Zeilinger,
1999a,b, 2003; Donath and Svozil, 2002; Svozil, 2002, 2004; Zeilinger, 1999). Stated differently (Brukner et al., 2002),
the essence of entanglement can be identified by two observations: the finiteness of the amount of information per
participating quantum, and the possibility that “the information in a composite system resides more in the correlations
than in properties of individuals.” This is also evident from the fact that entangled states cannot be represented as
the product of individual states of the participating quanta (cf. Ref. (Mermin, 2007), Sect. 1.5).

The potentiality to quantum mechanically solve decision problems by considering an appropriate multipartite state
is not only present in binary decision problems of the usual type, such as Deutsch’s algorithm (Cleve et al., 1998;
Deutsch, 1985; Deutsch and Jozsa, 1992; Mermin, 2007; Nielsen and Chuang, 2000). It can be extended to d-ary
decision problems on dits. (For the related state determination problem, see Ref. (Zeilinger, 1999), footnote 6, and
Ref. (Svozil, 2002).)

In what follows we shall consider as the simplest of such problems the trivalent functions of one trit. We shall group
them in three functional classes corresponding to an equipartition of the set of functions into three elements. We then
investigate the possibility to separate each of these classes by quantum state identifications (Donath and Svozil, 2002;
Svozil, 2002).

A strategy to identify an observable associated with the solution of a decision problem can be implemented via the
method of general state identification (Donath and Svozil, 2002; Svozil, 2002, 2004) as follows (Svozil, 2006):

1. Re-encode the behaviour of the algorithm or function involved in the decision problem into an orthogonal set
of states, such that every distinct function results in a single distinct state orthogonal to all the other ones.
Suppose that this is impossible because the number of functions exceeds the number of orthogonal states, then

∗Electronic address: svozil@tuwien.ac.at; URL: http://tph.tuwien.ac.at/~svozil
†Electronic address: tkadlec@fel.cvut.cz; URL: http://math.feld.cvut.cz/tkadlec/
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(a) one could attempt to find a suitable representation of the functions in terms of the base states; e.g., the
generalized Deutsch algorithm in Ref. (Svozil, 2006).

(b) Alternatively, the dimension of the Hilbert space could be increased by the addition of auxiliary Qdbits.
The latter method is hardly feasible for general q-ary functions of n dits, since the number of possible
functions increases with qd

n

, as compared to the dimension dn of the Hilbert space of the input states.
In our case of trivalent (q = 3) functions of a single (n = 1) trit (d = 3), there are 27 such functions on
three-dimensional Hilbert space. [For the original Deutsch algorithm computing the parity (constancy or
nonconstancy) of the four binary functions of one bit, there are 221

= 4 such functions.]

2. For a one-to-one correspondence between functions and orthogonal states, trivalent decision problems among
the 27 trivalent functions of a single trit require three three-state quanta associated with the set of 33 = 27
states corresponding to some orthogonal base in C3 ⊗ C3 ⊗ C3. Then, create three equipartitions containing
three elements per partition — thus, every such partition element contains nine orthogonal states — such that

(a) one of the partitions corresponds to the solution of the decision problem.

(b) The other two partitions “complete” the system of partitions such that the set theoretic intersection of
any three arbitrarily chosen elements of the three partition with one element per partition always yields a
single base state.

3. Formally, the three partitions correspond to a system of three co-measurable filter operators Fi, i = 1, 2, 3 with
the following properties:

(F1) Every filter Fi corresponds to an operator (or a set of operators) which generates one of the three equipar-
titions of the 27-dimensional state space into three slices (i.e., partition elements) containing 27/3 = 9
states per slice. A filter is said to separate two eigenstates if the eigenvalues are different.

(F2) From each one of the three partitions of (F1), take an arbitrary element. The intersection of these elements
of all different partitions (one element per partition) results in a single one of the 27 different states.

(F3) The union of all those single states generated by the intersections of (F2) is the entire set of states.

4. As the first partition corresponds to the solution of the decision problem, the corresponding first filter operator
corresponds to the “quantum oracle” operator solving the decision problem on the set of states corresponding
to the different cases or branches involved — one state per case or branch.

Ideally, in order for the above strategy to work in three-dimensional Hilbert space of a single Qtrit, one should find
a function g on the set of trivalent functions of a trit “folding” the decision problem into a single triple of orthogonal
vectors and the one-dimensional subspaces spanned by the vectors; with nine orthogonal vectors per component of
this triple. However, as has been already pointed out, because the number of functions may exceed the dimension
of the Hilbert space, this task might be impossible. For some decision problem, it might still be possible to find a
suitable vector representation for the functional values. Another possibility might be the enlargement of Hilbert space
by the inclusion of more auxiliary Qdits.

II. OPTIONS FOR “FOLDING” THE DECISION PROBLEM INTO A SINGLE QTRIT

For the sake of demonstration, let us again consider our example of trivalent functions of a single trit. Formally,
we shall consider the functions

f : {−, 0,+} → {−, 0,+}

which will be denoted as triples (
f(−), f(0), f(+)

)
.

There are 331
= 27 such functions. They can be enumerated in lexicographic order “− < 0 < +” as in Table I.

The trits will be coded by elements of some orthogonal base in C3. Without loss of generality we may take
(1, 0, 0) = |−〉, (0, 1, 0) = |0〉, (0, 0, 1) = |+〉.

For a given “quantum oracle” function

g : {−, 0,+} → C
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TABLE I Enumeration of all trivalent functions of a single trit in lexicographic order “− < 0 < +.”

f0 : (−−−)

f1 : (−− 0)

f2 : (−−+)

f3 : (−0−)

f4 : (−00)

f5 : (−0+)

f6 : (−+−)

f7 : (−+ 0)

f8 : (−+ +)

f9 : (0−−)

f10 : (0− 0)

f11 : (0−+)

f12 : (00−)

f13 : (000)

f14 : (00+)

f15 : (0 +−)

f16 : (0 + 0)

f17 : (0 + +)

f18 : (+−−)

f19 : (+− 0)

f20 : (+−+)

f21 : (+0−)

f22 : (+00)

f23 : (+0+)

f24 : (+ +−)

f25 : (+ + 0)

f26 : (+ + +)

we represent a function f : {−, 0,+} → {−, 0,+} by a linear subspace of C3 generated by the vector

g
(
f(−)

)
|−〉+ g

(
f(0)

)
|0〉+ g

(
f(+)

)
|+〉 ,

i.e., by the vector (
g(f(−)), g(f(0)), g(f(+))

)
.

In order to be able to implement the first, re-encoding, step of the above strategy, we will be searching for a function
g such that the subspaces representing functions {−, 0,+} → {−, 0,+} are nonzero and form the smallest possible
number — ideally only one — of orthogonal triples.

First, let us show that we may find a function g such that we obtain three orthogonal triples of orthogonal vectors,
each one of the three triples containing nine triples of the form

(
f(−), f(0), f(+)

)
and associated with cases of the

functions f , which can grouped into three partitions of three triples of the form
(
f(−), f(0), f(+)

)
. Let the values

of g be the 3
√

1 (in the set of complex numbers). Let us, for the sake of simplicity and briefness of notation, denote
α = e2πi/3 = − 1

2 (1 − i
√

3). Then the values of g are α, α2 = α∗ = e−2πi/3 = − 1
2 (1 + i

√
3) and α3 = 1. Moreover,

αα∗ = 1 and α+ α∗ = −1. Then, the “quantum oracle” function g might be given by the following table:

x − 0 +
g(x) α∗ 1 α

and (if we identify ‘−’ with ‘−1’ and ‘+’ with ‘+1’) might be expressed by

g(x) = αx = e2πix/3 .

g maps the 27 triples of functions
(
f(−), f(0), f(+)

)
into nine groups of three triples of functions, such that triples

within the nine groups are assigned the same vector (except a nonzero multiple) by the scheme enumerated in Table II.
In every column we obtain an orthogonal triple of vectors

t1 = {(1, 1, 1), (1, 1, α), (1, 1, α∗)} ,
t2 = {(1, α, α∗), (1, α, 1), (1, α∗, 1)} ,
t3 = {(1, α∗, α), (α, 1, 1), (α∗, 1, 1)} .

Moreover, vectors from different orthogonal triples are apart by the same angle φ, for which cosφ =
√

3/3.
Now, let us prove by contradiction that in general the function g cannot be defined in such a way that we obtain at

most two orthogonal triples of subspaces. This implies that g cannot “generate” a single triple of orthogonal vectors
or subspaces, — with nine different functions

(
f(−), f(0), f(+)

)
per element of that triple — required for the method

of computation by state identification in three-dimensional Hilbert space.
For the sake of contradiction, let us suppose that this proposition is false, e.g., that there is a function g such that

we obtain at most two orthogonal triples of subspaces.
First, all values g(−), g(0), g(+) are nonzero [if, e.g., g(−) = 0 then the vector

(
g(−), g(−), g(−)

)
assigned to the

function (−,−,−) is a zero vector]. Hence, we obtain a vector
(
g(−), g(−), g(−)

)
that is a nonzero multiple of the

vector (1, 1, 1).
Second, g(−), g(0), g(+) cannot have the same value (in this case we obtain only one subspace generated by the

vector (1, 1, 1)).
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TABLE II Enumeration of the map g of all trivalent functions
“
f(−), f(0), f(+)

”
into nine groups of three triples of functions,

such that triples within the nine groups are assigned the same vector (except a nonzero multiple).

(−,−,−)

(0, 0, 0)

(+,+,+)

9>=>; 7→ (1, 1, 1)

(−,−, 0)

(0, 0,+)

(+,+,−)

9>=>; 7→ (1, 1, α)

(−,−,+)

(0, 0,−)

(+,+, 0)

9>=>; 7→ (1, 1, α∗)

(−, 0,+)

(0,+,−)

(+,−, 0)

9>=>; 7→ (1, α, α∗)

(−, 0,−)

(0,+, 0)

(+,−,+)

9>=>; 7→ (1, α, 1)

(−,+,−)

(0,−, 0)

(+, 0,+)

9>=>; 7→ (1, α∗, 1)

(−,+, 0)

(+, 0,−)

(0,−,+)

9>=>; 7→ (1, α∗, α)

(0,−,−)

(+, 0, 0)

(−,+,+)

9>=>; 7→ (α, 1, 1)

(+,−,−)

(−, 0, 0)

(0,+,+)

9>=>; 7→ (α∗, 1, 1)

Let us show that the vectors assigned to the functions (−,−, 0) and (−, 0, 0) are not orthogonal. Indeed, if(
g(−), g(−), g(0)

)
and

(
g(−), g(0), g(0)

)
are orthogonal, then they have a zero scalar product 0 = g(−) g(−)∗ +

g(−) g(0)∗ + g(0) g(0)∗ = |g(−)|2 + g(−) g(0)∗ + |g(0)|2 and therefore g(−) g(0)∗ is a negative real number. Hence
0 = |g(−)|2 − |g(−)| · |g(0)|+ |g(0)|2 =

(
|g(−)| − 1

2 |g(0)|
)2 + 3

4 |g(0)|2 and therefore g(0) = 0 that is impossible.
Let us show that all values g(−), g(0), g(+) are different. Indeed, let, e.g., g(−) = g(0). Since g(−), g(0), g(+) cannot

have the same value, we obtain g(+) 6= g(−) and therefore the vectors
(
g(−), g(−), g(+)

)
and

(
g(−), g(+), g(+)

)
are not multiples of the vector (1, 1, 1) and do not generate the same subspace. Analogously as in the previous
paragraph we can show that the vectors

(
g(−), g(−), g(+)

)
and

(
g(−), g(+), g(+)

)
are not orthogonal, hence they

do not belong to one orthogonal triple and therefore at least one of these vectors is orthogonal to (1, 1, 1). Let, e.g.,(
g(−), g(−), g(+)

)
is orthogonal to (1, 1, 1). Then we obtain a zero scalar product 0 = 2 g(−) + g(+) and therefore

the vector
(
g(−), g(−), g(+)

)
is a multiple of (1, 1,−2). The subspace making an orthogonal triple with subspaces

generated by vectors (1, 1, 1) and (1, 1,−2) is generated by (1,−1, 0). But, since all values g(−), g(0), g(+) are nonzero,
this subspace is not obtained.

We have shown that the subspaces assigned to functions (−,−, 0) and (−, 0, 0) are not orthogonal and do not
coincide (otherwise g(−) = g(0)). Hence they do not belong to one orthogonal triple and at least one of them
should belong to an orthogonal triple with the space generated by the vector (1, 1, 1). Let, e.g.,

(
g(−), g(−), g(0)

)
is

orthogonal to the vector (1, 1, 1). Then we obtain a zero scalar product 0 = 2 g(−) + g(0). Analogously (using the
transformations (−, 0) → (−,+) and (−, 0) → (0,+)) we can show that one of the vectors

(
g(−), g(−), g(+)

)
and(

g(−), g(+), g(+)
)

(
(
g(0), g(0), g(+)

)
and

(
g(0), g(+), g(+)

)
, resp.) is orthogonal to the vector (1, 1, 1) and therefore

0 = 2 g(−)+g(+) or 0 = g(−)+2 g(+) (0 = 2 g(0)+g(+) or 0 = g(0)+2 g(+), resp.). Since all values g(−), g(0), g(+)
are different and 0 = 2 g(−) + g(0), we obtain that 0 6= 2 g(−) + g(+) and 0 6= g(0) + 2 g(+). Hence 0 = g(−) + 2 g(+)
and 0 = 2 g(0) + g(+). The system of equations 0 = 2 g(−) + g(0), 0 = g(−) + 2 g(+) and 0 = 2 g(0) + g(+) has the
only solution g(−) = g(0) = g(+) = 0, which results in a complete contradiction.

III. INCREASING THE DIMENSION OF STATE SPACE BY ADDITIONAL QUANTA

The geometric constraints obtained in the last section can be interpreted as the impossibility to “fold” a decision
problem into an appropriate quantum state identification in low-dimensional Hilbert space. As has been mentioned
already, this can be circumvented by the introduction of additional quanta, thereby increasing the dimension of Hilbert
space. In that way, the functions of a small number of dits can be mapped one-to-one onto orthogonal quantum states.
However, this strategy fails for a large number of arguments, since the ratio of the number of q-ary functions of n dits
to the dimension of the Hilbert space of n dits d−nqd

n

increases fast with growing n.
One possibility of mapping the 27 trivalent functions of one trit into the 27 orthogonal base states of the Hilbert

space spanned by three Qtrits is

|h
(
f(−)

)
〉 ⊗ |h

(
f(0)

)
〉 ⊗ |h

(
f(+)

)
〉 ,
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with h = id being the identity function. A reversible implementation of this function can be given by

h :
∏
x∈{−,0,+} |x〉|0〉 →

→
∏
x∈{−,0,+} |x〉|0⊕ h(f(x))〉 =∏

x∈{−,0,+} |x〉|h(f(x))〉 ,

where “⊕” stands for modulo-two addition.
For the sake of demonstration, consider the following trivalent decision problem associated with the three triples of

vectors t1, t2, and t3 as follows:

Given some trivalent function of a single trit fi(x), i ∈ {0, . . . , 26}, x ∈ {−, 0,+}. Find the triple of
vectors t among the three triples t1, t2 and t3, such that g(fi) ∈ t.

IV. SUMMARY

In summary we find that, in three-dimensional Hilbert space, we cannot solve the type of trivalent decision problems
discussed above by a single query. Such a behaviour has already been observed for the problem to find the parity of
an unknown binary function f : {0, 1}k → {0, 1} of k bits, which turned out to be quantum computationally hard
(Beals et al., 2001; Farhi et al., 1998; Miao, 2001; Orus et al., 2004; Stadelhofer et al., 2005). We conjecture that this
hardness increases with the number d of possible states of a single dit.

We have also explicitly discussed a trivalent decision problem which can be interpreted as the solution of a quantum
state identification problem.
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Abstract

A synchronous concurrent algorithm (SCA) is a parallel deterministic algorithm

based on a network of modules and channels, computing and communicating data in

parallel, and synchronised by a set of clocks. Many types of algorithms, computer

architectures, and mathematical models of spatially extensive physical and biological

systems are examples of SCAs. For example, conventional digital hardware is made

from components that are SCAs and many computational models possess the essential

features of SCAs, including systolic arrays, neural networks, cellular automata and

coupled map lattices.

In this paper we formalise the general concept of an SCA equipped with a global

clock in order to analyse precisely (i) specifications of their spatio-temporal behaviour;

and (ii) the senses in which the algorithms are correct. We start the mathematical

study of SCA computation, specification and correctness using methods based on

computation on many-sorted topological algebras and equational logic. We show that

specifications can be given equationally and, hence, that the correctness of SCAs can

be reduced to the validity of equations in certain computable algebras. Since the

idea of an SCA is general, our methods and results apply to each of the classes of

algorithms and dynamical systems above.
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many sorted algebras; equational specifications; streams; computability on topological
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1This paper is still under review due to late submission
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1 Introduction

1.1 The Concept

A synchronous concurrent algorithm (SCA) is an algorithm based on a network of modules
and channels, computing and communicating data in parallel, and synchronised by a set of
clocks. The etymology of ‘synchronous’ is Greek: “at the same time”. SCAs can process
infinite streams of input data and return infinite streams of output data. Most importantly,
a SCA is a parallel deterministic algorithm. The deterministic nature of these algorithms
is established by a single, global clock.

Many types of algorithms, computer architectures, and mathematical models of spa-
tially extensive physical and biological systems are examples of SCAs. First and foremost,
conventional digital hardware, including all forms of serial and parallel computers and
digital controllers, is made from components that are SCAs. In many cases, complete
specifications of computers at different levels of abstraction are SCAs. Interestingly, the
structure of Charles Babbage’s Analytical Engine (developed from 1833 onwards) is that
of an SCA.

Further, many specialised models of computation possess the essential features of SCAs,
including systolic arrays, neural networks, cellular automata and coupled map lattices.

The parallel algorithms, architectures and dynamical systems that comprise the class
of SCAs have many applications, ranging from their use in special purpose devices (for
communication and signal processing, graphics, and process control instrumentation) to
computational models of biological and physical phenomena.

From the point of view of computing, an SCA can be considered to be a type of de-
terministic data flow network, in which time is explicit and enjoys a primary role. SCAs
require a new specialised mathematical theory with applications of its own.

From the point of view of mathematical physics and biology, an SCA can be considered
to be a type of spatially extensive discrete space, discrete time, deterministic dynamical
system that is studied independently or as an approximation to continuous space, contin-
uous time dynamical systems.

In most cases, SCAs are complicated and require extensive simulation and mathematical
analysis to understand their operation, behaviour and verification. In fact, in the indepen-
dent literatures on the above types of SCAs it is often difficult to formulate precisely

(i) specific SCAs and their operation in time;

(ii) specifications of their spatio-temporal behaviour; and

(iii) the senses in which the algorithms are correct.

In the case of neural networks, correctness is further complicated by the difficulty of writ-
ing problem specifications, the existence of a learning phase, and notions of approximate
correctness. In the case of non-linear dynamical systems, correctness is concerned with
properties such as chaotic, stable, and coherent behaviour over time. Thus, SCAs consti-
titute a wide ranging class of useful algorithms for which many basic questions concerning
their structure and design remain unanswered.
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In this paper we formalise the general concept of an SCA equipped with a global clock
and analyse precisely ideas about the specification and correctness of SCAs. Our mathe-
matical study of SCA computation, specification and correctness provides a unified theory
of deterministic parallel computing systems and deterministic, spatially extensive, non-
linear dynamical systems.

The methods are based on abstract computability theory on many-sorted topological
algebra and equational logic. We show how to define SCAs by equations over stream
algebras in a simple way. We also show that specifications can be given equationally and,
hence, that the correctness of SCAs can always be reduced to the validity of equations in
certain algebras. Thus, a natural method for verification of SCAs is equational reasoning,
although this is incomplete.

Our methods and results apply to each of the classes of algorithms and architectures
listed above. In particular, they can be used in case studies and software tools for design
and verification of specific classes of SCAs, and as a starting point for a general theoretical
analysis of hardware verification.

1.2 The theory

Data is modelled by a “T-standard” algebra

A = (A,B,T; F1 . . . Fk)

with three carrier sets: the set A of data, B of booleans and T of naturals {0, 1, 2, . . . }
(written T instead of N because it represents the discrete time on the global clock), and
functions F1, . . . , Fk which include the standard boolean operations (with possibly equality
on A) and the arithmetic operations of 0 and successor.

The behaviour of SCAs in time is modelled using streams of elements of A, which
are infinite sequences indexed by (discrete) time. Let [T→ A] be the set of all streams.
operations on data, time and streams are combined to form a stream algebra:

Ā = (A,B,T, [T→ A]; F1 . . . Fk, eval)

Typically, in models of hardware systems, SCAs compute with streams of bits, integers or
terms. In dynamical systems, SCAs compute with streams of real and complex numbers.
To prepare for this mathematical view, we provide some preliminaries on topological al-
gebras in Section 2 and stream algebras and computable algebras in Section 3. We note
that all stream algebras are topological algebras and often have certain dense subalgebras
that are computable.

In Section 5 we define synchronous concurrent algorithms and architectures and for-
malise their semantics by means of functions defined by simultaneous primitive recursion
equations over Ā.

More specifically, an SCA based on a network N m modules and p input streams is
specified by a network value function

VN : T×Am × [T→ A]p → Am
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defined by in which VN (t,a,x) denotes the state of the SCA at time t ∈ T on processing
p input streams x ∈ [T→ A]p from initial state a ∈ Am.

In Section 5 we consider specifications and correctness criteria for a simple form of the
space-time behaviour of SCAs: correctness based on specifications with respect to a single
system clock of the SCA. Other forms of correctness are possible, such as correctness based
on specifications with respect to a clock external to the SCA [TT91].

In Section 6 we consider the SCA equational models from the point of view of com-
putability theory. We define a class of predicates on Ā: equational PR, broader than the
class of PR predicates.

We consider specifications and correctness relations and impose conditions that they be
algorithmically testable e.g., by primitive recursive computations. We prove some results
concerning the logical and computational structure of SCA correctness, including results
having the following form:

Theorem 1. The network value function VN is primitive recursive on A.

Theorem 2 (Computability of correctness specification). Suppose

(a) P , Q and R are equationally λPR on Ā,

(b) A has a dense computable subalgebra D.

Then we can effectively construct a computable algebra CV,P,Q,R with signature ΣV,P,Q,R

that expands Dreg by functions, and equations eP , eQ, eV,R over ΣV,P,Q,R such that the
following are equivalent:

(i) V is correct w.r.t. P , Q and R, i.e., (6.3) holds;

(ii) CV,P,Q,R |= eP ∧ eQ → eV,R.

Thus the correctness of the SCA (as in (i)) which through our definitions involves a
wide variety of complex space-time behaviours for a wide variety of computing devices and
dynamical systems, can be reduced to the validity of a conditional equation in a computable
algebra (as in (ii)).

This has several consequences, including the fact that SCA correctness is co-recursively
enumerable. This suggests there are no nice complete proof systems for SCA verification.

However, we do have the following result in this direction.

Theorem 3 (Validity of correctness specification). Given the hypotheses of Theo-
rem 2, we can effectively construct a finite conditional equational specification (ΣV,P,Q,R),
EV,P,Q,R) and equations eP , eQ, eV,R over ΣV,P,Q,R such that the following are equivalent:

(i) V is correct w.r.t. P , Q and R, i.e., (6.3) holds;

(ii) T (ΣV,P,Q,R, EV,P,Q,R) |= eP ∧ eQ → eV,R.

Since the emphasis in this paper is on the a general mathematical model of SCAs, it
will be helpful if the reader has some familiarity with theory for algorithmic computability
on discrete and continuous data [PER89, Wei00, TZ00, TZ04, BT87].
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1.3 Origins

The idea of a making a mathematical theory of SCAs that would uncover and analyse
common structures and properties between hardware, parallel algorithms, and dynamical
systems modelling natural phenomena arises in the work of the second author (JVT) at
Leeds University, starting in 1981. Over many years, the SCA notion was developed
primarily through studying applications in:

• work with N.A. Harman on hardware design and verification [Har89, HT88b, HT88a,
HT90, HT91, HT93, HT96]

• work with A.V. Holden and M.J. Poole on non-linear dynamical systems [HTT90,
HTT91, HPTZ92, PTH98, PTH02]

The first author (BCT) and JVT started work on these mathematical foundations for
SCA theory in November 1987, leading to the report [TT91]. Although unpublished, it
was widely circulated (forming, e.g., part of JVT’s lecture notes for the NATO Summer
School on Logic and algebra of specification, Marktoberdorf, Germany, 1991).

There is a full conceptual analysis and extensive reflection on correctness and examples
this report. However, the subtlety of the connections between the SCA models and abstract
and concrete computability theories for continuous data types, such as streams of real
numbers, was a problem. Thus, a gap of 17 years is partly excused by the need to master
computability theories for topological algebras, to which JVT and the third author (JIZ)
have devoted many pages in the period [TZ94, TZ99, TZ00, TZ02a, TZ02b, TZ04, TZ05]
Our current understanding enabled us to look at continuous time, discrete space systems
in our paper [TZ07], where we were motivated by the idea of models capable of unifying
disparate analogue technologies. Clearly, this application to analogue computation was
inspired by the earlier unification of models work on SCAs.

2 Topological algebras

We briefly survey the basic concepts of topological and metric many-sorted algebras. More
details can be found in [TZ00, TZ99, TZ04]

2.1 Basic algebraic definitions

A signature Σ (for a many-sorted algebra) is a pair consisting of (i) a finite set Sort(Σ)
of sorts, and (ii) a finite set Func (Σ) of (basic) function symbols, each symbol F having
a type s1 × · · · × sm → s, where s1, . . . , sm, s ∈ Sort(Σ); in that case we write F :
s1 × · · · × sm → s. (The case m = 0 corresponds to constant symbols.)

A Σ-product type has the form u = s1 × · · · × sm (m ≥ 0), where s1, . . . , sm are
Σ-sorts.

A Σ-algebra A has, for each sort s of Σ, a non-empty carrier set As of sort s, and for
each Σ-function symbol F : u→ s, a function FA : Au ⇀ As, where, for the Σ-product
type u = s1 × · · · × sm, we write Au =df As1 ×· · ·×Asm . For m = 0, FA is an element
of As. (The notation f : X ⇀ Y refers in general to a function from X to Y .)

The algebra A is total if FA is total for each Σ-function symbol F .
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Remark 2.1.1 (Assumption of total algebras). for the purpose of this paper, we
work only with total algebras, for the sake of simplicity. The interesting generalisation to
the framework of partial algebras (with partial operations and partial streams) is left to a
future paper.

Given an algebra A, we write Σ(A) for its signature.

Examples 2.1.2. (a) The algebra B of booleans has the carrier B = {t, f} of sort bool:

B = (B; t, f, and, or, not)

(b) The algebra T 0 of naturals has a carrier T of sort nat, together with the zero constant
and successor function:

T 0 = (T; 0,S)

Note that here and elsewhere we use the notation

T =df N = { 0, 1, 2, . . . }

for the set of natural numbers (denoted t, t′, . . . ), since the interpretation of N through-
out this paper will be almost exclusively as a discrete global clock . Similary we write
‘T 0’, etc.

(c) The ring R0 of reals has a carrier R of sort real:

R = (R; 0, 1,+,×,−).

We make the following

Instantiation Assumption. For every Σ-sort s, there is a closed term of that sort,
called the default term δs of that sort. In any Σ-algebra A, it names an element of As,
called the default element of As.

2.2 Adding booleans: Standard signatures and algebras.

Definition 2.2.1 (Standard signature). A signature Σ is standard if it includes the
signature of booleans, i.e., Σ(B) ⊆ Σ.

Given a standard signature Σ, a sort of Σ is called an equality sort if Σ includes an
equality operator eqs : s2 → bool.

Definition 2.2.2 (Standard algebra). Given a standard signature Σ, a Σ-algebra A
is standard if (i) it is an expansion of B; (ii) the equality operator eqs is interpreted as
identity on the carrier of each equality sort s.

An example of an equality sort is the sort nat of naturals, with carrier T. Intuitively,
equality is “computable” or “decidable” on T. as an interpretation of eqs are:
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A non-equality sort is the sort real of reals. Intuitively, equality is (“co-semi-decidable”,
but) not (totally) decidable on R.

Any many-sorted signature Σ can be standardised to a signature ΣB by adjoining
the sort bool together with the standard boolean operations; and, correspondingly, any
algebra A can be standardised to an algebra AB by adjoining the algebra B, together with
equality at the equality sorts.

Examples 2.2.4.

(a) A standard algebra of naturals T is formed by standardising the algebra T 0

(Example 2.1.2(b)), with (total) equality and order operations on T:

T = (T 0,B; eqnat, lessnat)

(b) The standardised ring of reals (cf. Example 2.1.2(c)):

R = (R0,B)

Note that there is no (total) equality on R, as discused above.

2.3 Adding the naturals: T-standard signatures and algebras.

Definition 2.3.1 (T-standard signature). A signature Σ is T-standard if (i) it is
standard, and (ii) it contains the standard signature of naturals, i.e., Σ(T ) ⊆ Σ.

Definition 2.3.2 (T-standard algebra). Given an T-standard signature Σ, a corre-
sponding Σ-algebra A is T-standard if it is an expansion of T .

Any standard signature Σ can be T-standardised to a signature ΣT by adjoining the sort
nat and the operations 0, S, eqnat and lessnat. Correspondingly, any standard Σ-algebra
A can be T-standardised to an algebra AT by adjoining the carrier T together with the
corresponding standard functions.

Throughout this paper, we will assume:

T-standardness Assumption. The signature Σ, and the Σ-algebra A, are T-standard.

2.4 Topological algebras.

Definition 2.4.1. (a) A topological Σ-algebra is a Σ-algebra with topologies on the
carriers such that each of the basic Σ-functions is continuous.

(b) A (T-)standard topological algebra is a topological algebra which is also an (T-)standard
algebra, such that the carriers B (and T) have the discrete topology.

Examples 2.4.2. (a) Discrete algebras: The standard algebras B and T of booleans
and naturals respectively (§§2.1, 2.2) are topological (total) algebras under the discrete
topology. All functions on them are trivially continuous, since the carriers are discrete.
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(b) The T-standard topological total real algebra RT is defined by

RT = (R, T ; divnat)

where R is the standardised ring of reals (2.2.4(b)), T is the standard algebra of naturals
(2.2.4(a)), and divnat : R×T→ R) is the total (continuous!) function defined by

divnat(x, t) =
{
x/t if t 6= 0
0 if t = 0

Note that RT does not contain (total) boolean-valued functions ‘<’ or ‘=’ on the reals,
since they are not continuous; nor does it contain division of reals by reals, since that
cannot be total and continuous. See [TZ99, TZ04, TZ05] for discussions of these issues.

2.5 Metric algebra

A particular type of topological algebra is a metric algebra. This is a many-sorted standard
algebra A with an associated metric:

A = (A1, . . . , Ar,R; FA1 , . . . , F
A
k , d

A
1 , . . . , d

A
r )

where R is the standardised ring of reals (Example 2.2.4(b)), the carriers Ai are metric
spaces with metrics dAi : A2

i → R, (i = 1, . . . , r), F1, . . . , Fk are the Σ-function symbols
other than d1, . . . , dk, and the functions FAi are all continuous with respect to these
metrics. The carriers B and T (included among the Ai) are given the discrete metric,
which induces the discrete topology.

Clearly, metric algebras can be viewed as special cases of topological algebras.

Example 2.5.1. The real algebraRT (Example 2.4.3(b)) can be recast as a metric algebra
in an obvious way.

3 Stream algebras; Computable algebras

3.1 Adding streams to algebras: Algebras Ā of signature Σ

LetΣ be a T-standard signature, and A a T-standard Σ-algebra. We define an extension
of Σ and a corresponding expansion of A.

We choose a set S ⊆ Sort(Σ) of pre-stream sorts, and then extend ΣN to a stream

signature ΣS relative to S, as follows. With each s ∈ S, associate a new stream sort
s̄, also written nat→ s. Then

(a) Sort(ΣS) = Sort(Σ) ∪ {s̄ | s ∈ S};

(b) Func(ΣS) consists of Func (Σ), together with the evaluation function

evals : (nat→ s)× nat→ s,
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for each s ∈ S.

Now we can expand AT to a (ΣS)-stream algebra Ā
S by adding for each s ∈ S:

(i) the carrier for s̄, which is the set

As̄ = Ās = [T→ As]

of all streams on As i.e., functions u : T→ As;

(ii) the interpretation of evals on A as the function evalAs : [T→ As]×T→ As which
evaluates a stream at a time instant: evalAs (u, t) = u(t).

The algebra Ā
S is the (full) stream algebra over A with respect to S. (We will

usually omit explicit reference to the set S.)

Note that the Instantiation Assumption does not hold (in general) for the signature of
a stream algebra.

3.2 Expanding topological algebras to stream algebras

The algebraic expansion of an algebra A to a stream algebra Ā induces a corresponding
topological expansion.

(a) The topological T-standardisation AT , of signature ΣT , is constructed from A by giving
the new carrier T the discrete topology.

(b) Next, a topology on AT can be extended to one on Ā by giving the stream carriers
[T→ As] the product topology based on As, where the basic open sets have the form

U = {u ∈ Ās | u(ti) ∈ Ui for i = 1, . . . , n } (2.1)

for some n > 0, t1, . . . , tn ∈ T and U1, . . . , Un open subsets of As.

With this topology, the operator evalAs is continuous.

Remarks 3.2.1.

(1) This topology is the same as the inverse limit topology on [T→ As] [TZ08, §2.1].

(2) If As is metrisable by the metric ds, then so is [T→ As] [TZ08, §3.1], by the metric

ds̄(u, v) =df

∞∑
t=0

min
(
ds(u(t), v(t)), 2−t

)
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3.3 Regular streams

Let B be a Σ-subalgebra of A. Then the stream algebra B over B is a Σ-subalgebra
of the stream algebra Ā. Further, for any stream sort s, if we replace [T → Bs] by any
nonempty subset of it in the definition ofB, then we again obtain a “stream subalgebra”
of Ā. All subalgebras of Ā are obtained in this way.

Of special interest is the following subset of the set Ās of all streams in Ā of sort s.
Define the set of regular streams of A of sort s by

(Ās)reg = [T→ As]reg = {u ∈ [T→ As] | ∃t0 ∀t ≥ t0 (u(t) = δs) }

where δs is the default element of As (2.1).

Further, for each T-standard Σ-algebra A we define Āreg, the regular stream algebra

over A, to be the Σ-subalgeba of the stream algebra Ā obtained by restricting , at each
stream sort s, Ās to the set (Ās)reg of regular streams of sort s̄.

Lemma 3.3.1. If B is a Σ-subalgebra of A then the regular stream algebra (B)reg over

B is a Σ-subalgebra of the stream algebras B, Āreg, and Ā.

3.4 Dense regular subalgebras

We need the following general topological result.

Lemma 3.4.1. If X is a topological space and Y a Hausdorff space, and f : X → Y
and g : X → Y are both continuous, with f �D = g �D for some dense subset D of X,
then f = g.

Let A be a Σ-algebra.

Definition 3.4.2 (Dense subset). A Sort(Σ)-indexed subset D is dense in A if for
all Σ-sorts s, Ds is dense in As.

Lemma 3.4.3. Let A be a T-standard topological Σ-algebra. Then

(i) if A is Hausdorff then so is Ā;

(ii) if D is a dense Σ-subalgebra of A then D and Dreg are dense Σ-subalgebras of Ā.

Proof: We prove the second part of (ii). Note first that Dbool = Abool = B and Dnat =
Anat = N. Now, for any stream sort s, by assumption Ds is dense in As. It remains to
show that (Ds)reg is dense in Ās = [T→ As]. Choose any basic open set U in [T→ As],
as in (2.1). Since Ds is dense in As, we can find di ∈ Ui ∩Ds for i = 1, . . . , n. Now define
a stream u by

ui(t) =


di if t = ti for i = 1, . . . , n

δs otherwise.

Then u ∈ U ∩ (Ds)reg. �
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From now on, we will assume that all our topological algebras satisfy

Hausdorff Assumption. A is a Hausdorff topological algebra.

3.5 Computable algebras; Computable stream algebras

In order to investigate effective aspects of correctness specification of SCAs (Section 8),
we need the concept of a computable algebra [BT87].

Definition 3.5.1 (Recursive number algebra). A recursive number Σ-algebra Ω is a
Σ-algebra in which for each Σ-sort s, Ωs is a recursive subset of N and for each Σ-function
symbol F : u→ s,

FΩ : Ωu → Ωs

is a total recursive function.

Let A be a T-standard Σ-algebra.

Definition 3.5.2 (Effectively presented algebra). An effective presentation (α,Ω)
for A consists of a recursive number Σ-algebra Ω and a Σ-epimorphism α : Ω → A.
We assume that Ωnat = N and αnat = idN.
A is said to be effectively presented by (α,Ω).

Next we define the Sort(Σ)-sorted congruence relation

≡α = 〈≡α,s| s ∈ Sort(Σ)〉

induced by α on Ω:
x ≡α,s y ⇐⇒ αs(x) = αs(y)

for all x, y ∈ Ωs. Note also that A ∼= Ω/≡α.

Definition 3.5.3 (Computable algebra). A is computable if it has an effective
presentation (α,Ω) in which ≡α is decidable on Ω; that is, for each s ∈ S, ≡α,s is decidable.

Note, next, that the stream algebra Ā has uncountable carrier sets Ās and so it cannot
be effectively presented. We therefore work with a regular subalgebra of Ā.

Lemma 3.5.4. Let D be a computable dense Σ-subalgebra of A. Then Dreg is a
computable dense Σ-subalgebra of Ā.

Proof: It is easy to extend an effective presentation for A with decidable equality to one
for Ā. The denseness of Dreg in Ā follows from Lemma 3.4.3. �

Remark 3.5.5. An example of a computable dense subalgebra of an algebra, satisfying
the assumptions of Lemma 3.5.4, is in the real algebra RT (Example 2.4.3(b)), in which
the rationals Q form a dense subset of R.
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4 Synchronous Concurrent Algorithms

4.1 Introduction to SCAs

An SCA is an algorithm given by a network N of modules, channels, sources and
sinks. The modules compute and communicate in parallel; computation and data flow
between modules is synchronised by a single global clock measuring discrete time, with
values in T.

For simplicity, assume that our T-standard Σ-algebra A contains only one carrier (apart
from B and T), also called A, of sort data. The data flowing between modules are taken
from this set.

The SCA processes streams or infinite sequences u(0), u(1), u(2), . . . of data from A,
clocked by T. Such a stream is represented as a function u : T→ A. Let [T→ A] be the
set of all streams over A.

The network N is made from a set M1, . . . ,Mm of modules, a set Iin of p sources and a
set Iout of q sinks. For simplicity we represent the modules, sources and sinks as natural
numbers: I = {1, . . . ,m}, Iin = {1, . . . , p} and Iout = {1, . . . , q}.

Communication between modules occurs by means of the channels. These have unit
bandwidth and are unidirectional; that is, they can transmit only a single datum a ∈ A
at any one time in one direction. Channels may branch with the intention that the datum
transmitted along the channel is “copied” and transmitted along each branch. However,
channels may not merge.

A module is an atomic computing device capable of some specific internal processing.
If module Mi has ki(> 0) input channels and one output channel then we assume the
processing of Mi to be specified by a total function Fi : Aki → A with the intention that if
a1, . . . , aki

∈ A arrive on the module’s ki input channels (one datum per channel) at time
t then Mi computes Fi(a1, . . . , aki), and transmits it at time t+ 1.

A source has no input and one output channel (which may branch). A network with
p sources will process p input streams u1, . . . , up ∈ [T→ A], or, equivalently, a vector-
valued input stream u ∈ [T→ A]p with u(t) = (u1(t), . . . , up(t)).

The sinks each have one input and no output channel. These will transmit the q output
streams.

An SCA’s architecture is given by three wiring functions

α : I×N → Iin ∪ I

β : I×N → {S,M}
out : Iout → I.

The map out is such that for each sink i, out(i) is the module that supplies i.

The maps α and β are partial functions that enumerate the inputs to a given module in
the following way. Given a module i ∈ I with ki input channels, for j = 1, . . . , ki the jth
input channel is the output channel of module α(i, j) if β(i, j) = M, or the output channel
of source α(i, j) if β(i, j) = S. If j 6∈ {1, . . . , ki} then α(i, j) and β(i, j) are undefined.
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Note that feedback is characterised by a module i with input j, where α(i, j) = i and
β(i, j) = M.

The initial state of the network is specified by a vector a = (a1, . . . , am) ∈ Am, where
ai denotes the value output by module i at time t = 0.

4.2 Informal Explanation of Operation

Initially, at time t = 0, each module i has some initial value ai ∈ A on its output channel.
Each source j of N is yet to supply its first input datum uj(0) to the network. Thus, at
t = 0 there is a single datum on every channel in the network.

Each module i now computes by first reading ite input data and then evaluating Fi on
these data. The result of this evaluation is stored on the module’s output channel.

Unit Delay Assumption. For each module in N , the element on its output channel at
time t+ 1 is uniquely determined by the data on its input channels at time t.

So we assume that it takes at most one time cycle for every module to read, evaluate
and store in some order, and that any module taking less than one time unit is forced to
wait until any slower modules have finished.

Hence, as the clock beats t = 0, 1, 2, . . . , the modules concurrently pass data and com-
pute with each module performing its t-th read/evaluate/store sequence starting at time
t and ending by time t+ 1.

4.3 Algebraic Formalisation

We start with a T-standard signature ΣT and Σ-algebra AT (§2.3). As stated above, we
assume for convenience that there are only three carriers: A of data, B of booleans and T
of naturals (i.e., discrete time instants). Apart from the standard boolean and arithmetic
operations, there may be other functions, including (perhaps) equality on A.

Now we form the module algebra AN by adding the module functions to AT :

AN = (AT ; F1, . . . ,Fm)

Next, we extend this to the algebra Ā
N of streams over AN (§3.1), which we call the

module stream algebra :

Ā
N = (AN , [T→ A]; eval).

Recall that the input to N is a stream tuple u = (u1, . . . , up) ∈ [T → A]p and the
initial values are a = (a1, . . . , am) ∈ Am.

Termination Assumption. At each time t ∈ T there is a value output from each
module, which can be determined uniquely from t, u and a.

We return to the Unit Delay and Termination Assumptions in Section 4.6.
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For each module i ∈ I we define its module value function

Vi : T×Am × [T→ A]p → A

where Vi(t,u,a) is the value output by the module i at time t when the network is
executed on input u and initial data a. Note that these functions are total by Assumption
T.

Thus the state of the network N is given by combining the module value functions
V1, . . . ,Vm into the single network value function

VN : T×Am × [T→ A]p → Am (4.1a)

defined by
VN (t,a,x) = (V1(t,a,x) . . . ,Vm(t,a,x)). (4.1b)

This defines the state of N at each time cycle. (We will sometimes drop the “network
superscript” ‘N’.)

The concurrent execution of the modules of N is modelled by the parallel evaluation of
V1, . . . ,Vm. We now develop general formulae for the computation of V1, . . . ,Vm and
hence of VN .

4.4 Recursive network equations

We define V1(t,a,x), . . . ,Vm(t,a,x) for a = (a1, . . . , am) ∈ Am, x = (x1, . . . , xp) ∈
[T→ A]p, and t = 0, 1, 2, . . . , by simultaneous recursion on t.

Base case: Initialisation. For i = 1, . . . ,m:

Vi(0,a,x) = ai (4.2)

Recursion step: State transition. Each module i has a functional specification
Fi : Aki → A, where, if b1, . . . , bki

arrive on i’s input channels at time t then the value
output by the module at time t + 1 is Fi(b1, . . . , bki

). Let the SCA have wiring functions
α and β as described in §4.1. Then for i = 1, . . . ,m and all t ≥ 0

Vi(t+ 1,a,x) = Fi(bi1, . . . , biki
) (4.3a)

where for j = 1, . . . , ki

bij =


Vα(i,j)(t,a,x) if β(i, j) = M

xα(i,j)(t) if β(i, j) = S.
(4.3b)

Remark 4.4.1. The equations (4.2) and (4.3) together form a definition by simulta-
neous primitive recursion .
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Remark 4.4.2 (Stream transformation). We can rewrite the network value function
V (4.1) as a stream transformation by “abstraction” or “currying”; i.e., define

V̂ : Am × [T→ A]p → [T→ A]m (4.4a)

where
V̂(a,x)(t) = V(t,a,x). (4.4b)

We return to a consideration of these two forms, from a computational point of view, in
§6.2.

4.5 Output specification

Note that the network value function VN gives the values output by every module in
the network. In many cases we are interested only in the values sent to the network’s
sinks. When the network has q > 0 sinks with Iout = {1, . . . , q} we use the function
out : Iout → I (§4.1). Now define the network output function

Vout : T×Am × [T→ A]p → Aq (4.5a)

by
Vout(t,a,x) = (Vout(1)(t,a,x), . . . ,Vout(q)(t,a,x)), (4.5b)

so that Vout(t,a,x) is the vector of q values at the sinks of N at time t.

Note (cf. Remark 4.4.2) that we can also reformulate Vout as a stream transformation
by abstraction:

V̂out : Am × [T→ A]p → [T→ A]q

where
V̂out(a,x)(t) = Vout(t,a,x).

4.6 Generalisation of the model: Partial algebra of data

There are many fruitful generalisations of our mathematical model. We wish to mention
one, where we drop the assumption that the data algebra A is total. This is of great
practical importance, in the case, for example, that A is an algebra of reals, that includes
the operation of real division, and the boolean operations of equality and order . In order
that these operations be continuous, we must make them partial , as explained in [TZ04].

In such a framework, the module functions will also be partial. as will the network value
function. We will also have to work with partial streams.

If we maintain our assumption that the channels have unit bandwidth (§4.1), we will
have to drop both the Unit Delay and Termination Assumptions (§§4.2,4.3). We will also
have to replace our global clock model with a system of local clocks. We conjecture that
this will be equivalent to the global clock model, with the Termination and Unit Delay
Assumptions, in the special case that the algebra A, and the function modules, are total.

Details will be given in a forthcoming publication.
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5 Specifications and Correctness

5.1 Indexed sets and operations

Let S be a finite non-empty set. An S-indexed set A is a family A = 〈As | s ∈ S〉.
Given two S-indexed sets A = 〈As | s ∈ S〉 and B = 〈Bs | s ∈ S〉, an S-indexed map-

ping from A to B is a family f = 〈fs | s ∈ S〉 where fs : As → Bs for each s ∈ S. In
symbols we write f : A→ B.

5.2 Syntax: Variables, terms and equations

(a) Var(Σ) is a Sort(Σ)-indexed set, the set of Σ-variables (x, x1, x′, . . . ). Vars(Σ) is
the set of Σ-variables of sort s, denoted xs, . . . .

(b) T(Σ) is the Sort(Σ)-indexed set of Σ-terms (denoted t, . . . ), where the set Tms(Σ)
of such terms of sort s (denoted t : s) is defined (simultaneously over S) by

ts ::= xs | c | F (ts11 , . . . , t
sm
m )

where c is a constant symbol of type s, and F is a Σ-function symbol of type s1, . . . , sm → s
(m > 0). We also use the notation b, . . . for boolean terms, i.e., terms of sort bool.

Let var(E) be the set of variables contained in any syntactic object E.

(c) Eq(Σ) is the set of Σ-equations (ts1 = ts2) between Σ-terms of the same Σ-sort. We
also write equations as e, e′, . . . .

5.3 Semantics: Assignments and term evaluations; Satisfaction

Let A be a Σ-algebra. A (Σ-)assignment on A is an S-indexed map θ : Var(Σ) → A.

Definition 5.3.1 (Term evaluation). Given an assignment θ : Var(Σ) → A, we
extend it to an S-indexed map [[ · ]]A,θ : T(Σ) → A, defined by structural induction on
T(Σ):

(i) If t ≡ x then [[t]]A,θ = θ(x).

(ii) If t ≡ c then [[t]]A,θ = cA.

(iii) If t ≡ F (t1, . . . , tm) then [[t]]A,θ = FA([[t1]]A,θ, . . . , [[tm]]A,θ).

Note that for a closed term t, [[t]]A,θ does not depend on θ. We therefore write it as tA.

Definition 5.3.2 (Equational specification). A (Σ)-equational specification is a pair
(Σ,E) where E ⊆ Eq(Σ).

Definition 5.3.3 (Equational satisfaction). Let A be a Σ-algebra.

(a) A satisfies the Σ-equation (t1 = t2), written A |= t1 = t2, if for all Σ-assignments
θ on A, [[t1]]A,θ = [[t2]]A,θ.

(b) A satisfies the equational specification (Σ,E), written A |= E, if A |= e for all
e ∈ E.
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5.4 Correctness of an SCA

We develop the concept of specification of an algebra introduced above, and apply it
particularly to stream algebras and SCAs. Hence we introduce the notion of correctness
of an SCA. We will concentrate on relational correctness.

Suppose that a computational task or behaviour is specified by a relation of the form

R ⊆ T×Am × [T→ A]p ×Aq (5.1)

such that for each t ∈ T, a ∈ Am, x ∈ [T→ A]p, and y ∈ Aq,

R(t,a,x,y)

means that y is acceptable as an output at time t for and initial state a and input stream
x. We call R the specification relation .

There are various ways of formulating correctness w.r.t. a specification relation R, de-
pending on how we treat initialisations and inputs: We can consider a particular
initialisation , or all initialisations from some subset of Am (possibly all of Am).
Similarly, we can consider a particular input stream , or all inputs from some subset
of [T→ A]p (possibly all of [T→ A]p). To take a typical (and useful) case:

Definition 5.4.1 (Correctness for initialisations and inputs from some set).
For any sets P ⊆ Am of initialisations and Q ⊆ [T→ A]p of inputs, the SCA is correct
w.r.t. P , Q and R if

(∀t ∈ T) (∀a ∈ P ) (∀x ∈ Q) R(t,a,x,Vout(t,a,x)). (5.2)

Here the output value function Vout : T × Am × [T→ A]p → Aq (3.9) is a selection
function for the relation R, relative to P and Q.

We will investigate the computational significance of such correctness assertions in the
next section.

6 Primitive recursive computability on stream algebras

6.1 Primitive recursion on abstract algebras

In [TZ88] we developed a theory of abstract computability on standard abstract
many-sorted algebras. We formulated a generalised Church-Turing thesis, which
identifies a certain class of functions (namely, ‘µPR’ computable or ‘While’ computable)
with functions algorithmically computable on such structures.

We also developed a theory of generalised primitive recursion over T-standard
algebras A. These generalise Kleene’s primitive recursion functions on N [Kle52]. and
form a proper subclass of the class µPR.

Briefly, we define a class PR(A) of PR (primitive recursive) functions on A, generated by
schemes for (i) the initial functions and constants, i.e., the interpretations on A of the Σ-
functions, (ii) projections, (iii) definition by cases, (iv) composition, and (v) simultaneous
primitive recursion.
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Note that the class µPR(A) is formed from PR(A) by adding a scheme for the (con-
structive) least number operator.

Lemma 6.1.1 (PR computability and continuity). Let A be a topological algebra.
Then all functions in PR(A) are continuous.

This is proved, in fact for all µPR functions, in [TZ88].

We now consider a class of relations on algebras broader than primitive recursiveness.

Definition 6.1.2 (Equationally PR definable relations). A relation R ⊆ Au on
an algebra A is equationally PR definable on A (EqPR(A)) if there are PR(A) functions
fR, gR : u→ s for some Σ-sorts u, s such that for all a ∈ Au

a ∈ R ⇐⇒ fR(a) = gR(a). (6.1)

We call the rhs of (6.1) a PR defining equation for R, and the pair (fR, gR) PR defining
functions for R.

Remark 6.1.3 (Comparison of PR and EqPR computability). Note that EqPR(A)
is a broader concept than PR(A). For on the one hand, any PR(A) relation R is also
EqPR(A), since (if χR is the characteristic function of R)

a ∈ R ⇐⇒ χR(a) = true

(a special case of (6.1)). But on the other hand, the range sort s (in Definition 6.1.2) need
not be an equality sort (cf. §2.2), i.e., equality at sort s is not necessarily PR.

6.2 Primitive recursion on stream algebras

Assume for simplicity (as stated in Section 4) that our T-standard Σ-algebra A contains
(apart from B and T) only one carrier A of data.

Consider now PR stream valued functions or stream transformers on Ā:

f : [T→ A]m ×An → [T→ A]. (6.2)

It has been shown [TZ94] that all PR stream transformers f of type as in (6.2) have the
form

f(u1, . . . , um, a1, . . . , an) = uf0(u1,...,um,a1,...,an)

for some PR function
f0 : [T→ A]m ×An → T.

In other words, PR stream transformers are not “interesting”; they only return one of the
input streams (the choice of which one depending primitive recursively on the inputs).

We therefore consider a broader, more interesting class of stream transformers, namely
the class λPR(Ā) formed from PR(Ā) by adding a scheme for stream (λ)-abstraction. Note
that a function f as in (6.2) will be in λPR(Ā) if its “cartesian” or “uncurried” form

f̌ : [T→ A]m ×An ×T → A
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is in PR(Ā), where
f̌(u,a, t) = f(u,a)(t).

Note also that we can define the class EqλPR(A) of equational λPR definable relations on
A, analogously to EqPR(A) (Definition 6.1.2).

Now assume A, and hence Ā, are topological algebras.

Lemma 6.2.1. For f as in (6.2), f is continuous iff f̌ is continuous.

Hence, from Lemma 6.1.1:

Lemma 6.2.2. All functions in λPR(Ā) are continuous.

Corollary 6.2.3. Let A be Hausdorff T-standard Σ-algebra, and D a dense subalgebra
of A. Let f and g be λPR functions on Ā. Then the following are equivalent:

(i) f = g on Ā

(ii) f = g on D

(iii) f = g on Āreg

(iv) f = g on Dreg.

Proof: From Lemmas 3.4.1, 3.4.3 and 6.2.2. �

6.3 Primitive recursiveness of SCA state function

Recall the module, network and output value functions (§§4.3, 4.5).

Theorem 1. For any SCA over A with network N and module functions F1, . . . ,Fm:

(a) The module value functions V1, . . . ,Vm, network value function VN and network
value function Vout are in PR(Ā).

(b) The abstracted forms V̂ and V̂out are in λPR(Ā).

Proof: The main step in (a) is to show that VN is definable (uniquely) by simultaneous
primitive recursion (equations 4.8) from the module functions V1, . . . ,Vm. This can be
seen by a simple inductive argument, parallelling the PR definition. �

Remark 6.3.1 (Fixed point theory for network functions). In [TZ08] the question
of the existence of a solution to network equations is investigated in a more general context,
which includes, as special cases, (i) a discrete global clock , characteristic of SCAs, and
(ii) a continuous global clock , characteristic of analog systems [TZ07]. This involves
a fixed point argument as follows. Define, for all a ∈ Am and x ∈ [T→ A]p, the stream
transformation

Φa,x : [T→ A]m → [T→ A]m

by Φa,x(u) = v, where (cf. equations (4.2) and (4.3)) for i = 1, . . . ,m

vi(0) = ai



276

and for all t ≥ 0
vi(t+ 1) = Fi(bi1, . . . , biki

)

where for j = 1, . . . , ki

bij =


uα(i,j)(t) if β(i, j) = M

xα(i,j)(t) if β(i, j) = S.

Then Φa,x is contracting , in the sense that for all t ∈ T and all u1,u2 ∈ [T→ A]m:

u1 �t = u2 �t =⇒ Φa,x(u1)�t+1 = Φa,x(u2)�t+1

(where ‘u �t’ means the restriction of u to the initial segment {0, 1, . . . , t} of T.) From
this we can derive the existence of a unique fixed point u of Φa,x, satisfying u = V̂(a,x).

6.4 Computability of relational correctness specification

Recall the definition (5.4.1) of correctness for a specification relation R with initialisations
and input streams from sets P ⊆ Am and Q ⊆ [T→ A]p respectively (repeating (5.2)):

(∀t ∈ T) (∀a ∈ P ) (∀x ∈ Q) R(t,a,x,Vout(t,a,x)). (6.3)

Theorem 2 (Computability of correctness specification). Suppose

(a) P , Q and R are EqλPR on Ā,

(b) A has a dense computable subalgebra D.

Then we can effectively construct a computable algebra CV,P,Q,R with signature ΣV,P,Q,R

that expands Dreg by functions, and equations eP , eQ, eV,R over ΣV,P,Q,R such that the
following are equivalent:

(i) V is correct w.r.t. P , Q and R, i.e., (6.3) holds;

(ii) CV,P,Q,R |= eP ∧ eQ → eV,R.

In consequence, correctness in the sense of (i) can be effectively reduced to the validity of
conditional equations in a computable algebra and is co-recursively enumerable.

Proof: We prove (i)⇒(ii). Consider the statement

a ∈ P ∧ x ∈ Q −→ R(t,a,x,Vout(t,a,x)). (6.4)

Let (fP , gP ), (fQ, gQ) and (fR, gR) be λPR defining functions for the sets P , Q and R
respectively. By assumption and Theorem 1, these functions, as well as V, are all λPR
on Dreg. By assumption (i), (6.4) holds on A, and therefore, by Corollary 6.2.3, on Dreg.
Since D is a computable algebra, so is Dreg, by Lemma 3.5.4, with effective presentation
(α,Ω) say (recall §3.5). Now expand Dreg to the algebra

CV,P,Q,R =df (Dreg; V, fP , gP , fQ, gQ, fR, gR) (6.5)
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with signature ΣV,P,Q,R. Since the seven functions shown in (6.5) are all λPR over Dreg,
they are “α-computable” on Dreg. (This follows from the soundness theorem for abstract
computability [TZ04]). Hence CV,P,Q,R is also a computable algebra. Moreover (6.4) has
the form of a conditional equation eP ∧ eQ → eV,R over CV,P,Q,R. Hence (ii) follows.

That the correctness problem is co-r.e. follows from the α-computability of the functions
noted above, together with the decidability of ≡α. �

Example 6.4.1. Let A be the T-standard topological agebra RT (Example 2.4.3(b)).
A has a dense computable subalgebra D = QT consisting of the rationals Q with the
same signature as A. As a (very simple) example of an equationally λPR (in fact, PR)
specification relation, we could take

R(t, a, x1, x2, y) ⇐⇒ x1(t)2 + x2(t)2 = y2.

A more interesting example would be something like

R′(t, a, x1, x2, y) ⇐⇒ (0 < x1(t)) ∧ (0 < x2(t)) ∧ (x1(t)2 + x2(t)2 < y2),

i.e., a boolean combination of equalities and inequalities between λPR terms.

The problem here is that equality and order, as total operations on R, are not com-
putable [TZ99, TZ04, TZ05]. In this paper we have solved this problem for equality by
using the computable subalgebra QT of RT , together with the concept of equational PR
definability (Definition 6.1.2).

To handle ‘<’, however, would seem to require a major extension of the theory, so as to
incorporate partial algebras. This is planned for a future publication.

We could ask if condition (ii) in Theorem 2 could be replaced by a statement that the
conditional equation is a valid consequence of a certain set of axioms, i.e., a completeness
result. However the correctness problem for conditional equations in stream algebras is
complete Π0

1 [BT87] and so completeness fails. In this direction, however, we can prove the
following, using results of Bergstra and Tucker on initial algebra semantics [BT80, BT82,
BT87, BT92].

Theorem 3 (Validity of correctness specification). Given the hypotheses of Theo-
rem 2, we can effectively construct a finite conditional equational specification (ΣV,P,Q,R),
EV,P,Q,R) and equations eP , eQ, eV,R over ΣV,P,Q,R such that the following are equivalent:

(i) V is correct w.r.t. P , Q and R, i.e., (6.3) holds;

(ii) T (ΣV,P,Q,R, EV,P,Q,R) |= eP ∧ eQ → eV,R,

where T (ΣV,P,Q,R, EV,P,Q,R) is the ΣV,P,Q,R-term model generated by EV,P,Q,R.

In particular (ΣV,P,Q,R, EV,P,Q,R) can be chosen to be either (a) a complete orthogonal
term rewriting system; or (b) a small specification: if A has n+ 2 sorts then ΣV,P,Q,R has
6(n+ 2) hidden operations and EV,P,Q,R has 4(n+ 2) equations.
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7 Concluding remarks

Since the idea of a SCA is general, our methods and results apply to the various classes
of algorithms, architectures and physical models mentioned in the Introduction, as well as
to several others.

Consider abstract hardware, for example. Our mathematical notions can be used to
clarify and improve methods developed in case studies and software tools for design, simu-
lation and verification work on specific classes of SCAs; and to make comparisons and help
transfer specific methods between different classes. A fundamental problem in computing
is that of hierarchy and the relationship between levels of abstraction in specifications and
programs. A theory of SCAs could be used as a starting point for a very general theory of
hardware.

As another example, consider physical modelling. Our notions can be used to clarify and
improve methods developed in case studies and software tools for modelling, simulation
and analysis work on specific classes of SCAs; and to make comparisons and help transfer
specific methods between different classes. Again, hierarchy and the relationship between
levels of abstractions in physical models is a fundamental problem. As one example of
this, in [PTH02] we discuss how ideas from hardware design can be applied to non-linear
dynamical systems in the case of whole-heart modelling.

There are, however, many more mathematical questions to answer. For example, we
want to investigate the theory of SCAs based on partial data algebras, with partial streams.
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UncomputabilityI and Undecidability in Economic
Theory

K. Vela Velupillaia,∗

aDepartment of Economics, University of Trento, Via Inama 5, 381 00 Trento, Italy

Abstract

Economic theory, game theory and mathematical statistics have all increasingly
become algorithmic sciences. Computable Economics, Algorithmic Game The-
ory ([28]) and Algorithmic Statistics ([13]) are frontier research subjects. All of
them, each in its own way, are underpinned by (classical) recursion theory – and
its applied branches, say computational complexity theory or algorithmic infor-
mation theory – and, occasionally, proof theory. These research paradigms have
posed new mathematical and metamathematical questions and, inadvertently,
undermined the traditional mathematical foundations of economic theory. A
concise, but partial, pathway into these new frontiers is the subject matter of
this paper. Interpreting the core of mathematical economic theory to be defined
by General Equilibrium Theory and Game Theory, a general – but concise –
analysis of the computable and decidable content of the implications of these
two areas are discussed. Issues at the frontiers of macroeconomics, now domi-
nated by Recursive Macroeconomic Theory1, are also tackled, albeit ultra briefly.

IBy ‘uncomputability’ I mean both that arising from (classical) recursion theoretic con-
siderations, and from those due to formal non-constructivities (in any sense of constructive
mathematics).

∗Quite serendipitously, I am in the happy position of being able to pay long overdue
acknowledgements to four of my “fellow-invitees” at this meeting: Ann Condon, Barry Cooper,
Chico Doria and Karl Svozil - although they are, almost certainly, unaware of the kind of
ways in which I have benefitted from their wisdom and scholarship, over the years (cf. in
particular, [7], [8] and [46], respectively). Indeed, in the case of Barry Cooper, I am also deeply
indebted to his own distinguished teacher, R.L. Goodstein, whose works have had a lasting
influence in the way I think about the kind of mathematics that is suitable for mathematizing
economics. In particular, it was from his outstanding calculus text ([14]) that I learned the
felicitous phrase ’undecidable disjunction’, which was instrumental in my understanding of
the pernicious influence of the Bolzano-Weierstrass theorem in algorithmic mathematics and,
a fortiori, in algorithmic economics.But, as always these days, it is to Chico Doria and Stefano
Zambelli that I owe most - without the slightest implications for the remaining infelicities in
the paper.

Email addresses: kvelupillai@gmail.com (K. Vela Velupillai)
1The qualification ‘recursive’ here has nothing to do with ‘recursion theory’. Instead, this

is a reference to the mathematical formalizations of the rational economic agent’s intertem-
poral optimization problems, in terms of Markov Decision Processes, (Kalman) Filtering and
Dynamic Programming, where a kind of ‘recursion’ is invoked in the solution methods. The
metaphor of the rational economic agent as a ‘signal processor’ underpins the recursive macroe-
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The point of view adopted is that of classical recursion theory and varieties of
constructive mathematics.

Key words: General Equilibrium Theory, Game Theory, Recursive
Macroeconomics, (Un)computability, (Un)decidability, Constructivity

1. A Mathematical and Metamathematical Preamble2

Distinguished pure mathematicians, applied mathematicians, philosophers
and physicists have, with the innocence of integrity and the objectivity of their
respective disciplines, observing the mathematical practice and analytical as-
sumptions of economists, have emulated the ‘little child’ in Hans Christian
Andersen’s evocative tale to exclaim similar obvious verities, from the point
of view of algorithmic mathematics. I have in mind the ‘innocent’, but obvi-
ously potent, observations made by Michael Rabin ([35]), Hilary Putnam ([34])
Maury Osborne ([29]), Jacob Schwartz ([41]), Steve Smale ([42]), Glenn Shafer
& Vladimir Vovk ([39]) and David Ruelle ([36])3, each tackling an important
core issue in mathematical economics and finding it less than adequate from a
serious mathematical and computable point of view – in addition to being con-
trived, even from the point of view of common sense economics4. Decidability in
games, uncomputability in rational choice, inappropriateness of real analysis in
the modelling of financial market dynamics, the gratuitous assumption of (topo-
logical) fix point formalizations in equilibrium economic theory, the question of
the algorithmic solvability of supply-demand (diophantine) equation systems,
finance theory without probability (but with an algorithmically underpinned
theory of martingagles), are some of the issues these ‘innocent’ pioneers raised,
against the naked economic theoretic emperor.

I hasten to add that there were pioneers even within the ‘citadel’ of economic
theory. Their contributions have been discussed and documented in various of
my writings over the past 20 years or so and, therefore, I shall not rehash that

conomic paradigm.
2I am deeply indebted to two anonymous referees for clarifying many obscure issues in

an earlier version of this paper. They also contributed with deep and penetrating questions
and suggestions that contributed considerably to improving the paper. Alas, they are not
responsible for the remaining obscurities.

3In addition to the themes Ruelle broached in this ‘Gibbs Lecture’, the first four, chapter 9
and the last four chapters of his elegant new book ([37]) are also relevant for the philosophical
underpinnings of this paper. Although the two Ruelle references are not directly related to
the subject matter of this paper, I include them because the mathematical themes of these
works are deeply relevant to my approach here.

4Discerning scholars would notice that I have not included the absolutely pioneering work
of Louis Bachelier in this list (cf. [9] or [12] for easily accessible English versions of Bachelier’s
Théorie de la Spéculation). This is only because he did not raise issues of computability,
decidability and constructivity, that he could not possibly have done at the time he wrote,
even though Hilbert’s famous ‘Paris Lecture’ was only five months away from when Bachelier
defended his remarkable doctoral dissertation – also in Paris.
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part of the story here5. Suffice it to mention just the more obvious pioneers
who emerged from within the ‘citadel’: Peter Albin, Kenneth Arrow, Douglas
Bridges6, Alain Lewis, Herbert Scarf and Herbert Simon. Albin, Arrow, Lewis,
Scarf and Simon considered seriously, to a greater and lesser extent, the issue
of modelling economic behaviour, both in the case of individually rational and
in cases of strategically rational interactions, the place of formal computability
considerations and their implications. Bridges and Scarf were early contributors
to what may be called ‘constructive economics’, complementing the ‘computable
economics’ of the former contributors. Scarf, of course, straddled both divides,
without – surprisingly – providing a unifying underpinning in what I have come
to call ’algorithmic economics’7.

Economic theory, at every level and at almost all frontiers - be it microe-
conomics or macroeconomics, game theory or IO - is now almost irreversibly
dominated by computational, numerical8 and experimental considerations. Cu-
riously, though, none of the frontier emphasis from any one of these three points
of view - computational, numerical or experimental - is underpinned by the nat-
ural algorithmic mathematics of either computability theory or constructive
analysis9. In particular, the much vaunted field of Computable General Equi-
librium theory, with explicit claims that it is based on constructive and com-
putable foundations is neither the one, nor the other10. Similarly, Newclassical
Economics, the dominant strand in Macroeconomics, has as its formal core so-
called Recursive Macroeconomic Theory. The dominance of computational and
numerical analysis, powerfully underpinned by serious approximation theory, is
totally devoid of computable or constructive foundations.

5The absence of any detailed discussion of honest priorities from within the ‘citadel’ in this
paper is also for reasons of space constraints.

6Douglas Bridges is, of course, a distinguished mathematician who has made fundamental
contributions - both at the research frontiers and at the level of cultured pedagogy - to con-
structive analysis, computability theory and their interdependence, too. However, I consider
his contributions to ‘constructive economics’ to be at least as pioneering as Alain Lewis’s to
‘computable economics’. Alas, neither the one nor the other seems to have made the slightest
difference to the orthodox, routine, practice of the mathematical economist.

7In this paper I shall not discuss the place of computational complexity theory in economics,
which has an almost equally distinguished ancestry. I provide a fairly full discussion of the
role of computational complexity theory, from the point of view of algorithmic economics in
[54]

8By this I aim to refer to classical numerical analysis, which has only in recent years
shown tendencies of merging with computability theory - for example through the work of
Steve Smale and his many collaborators (cf. for example [2]). To the best of my knowledge
the foundational work in computable analysis and constructive analysis was never properly
integrated with classical numerical analysis.

9With the notable exception of the writings of the above mentioned pioneers, none of
whom work - or worked - in any of these three areas, as conceived and understood these days.
For excellent expositions of numerical and computational methods in economics, particularly
macroeconomics, see [4], [18] and [23].

10A complete and detailed analysis of the false claims – from the point of view of com-
putability and constructivity – of the proponents and practitioners of CGE modelling is given
in my recent paper devoted explicitly to the topic (cf. [52]).
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The reasons for this paradoxical lack of interest in computability or construc-
tivity considerations, even while almost the whole of economic theory is almost
completely dominated by numerical, computational and experimental consid-
erations, are quite easy to discern: the reliance of every kind of mathematical
economics on real analysis for formalization. I shall not go into too many details
of this ‘conjecture’ in this paper, but once again the interested reader is referred
to [51] and [53] for more comprehensive discussions and formal analysis (but see
also § 3, below).

Against this ‘potted’ background of pioneering innocence and core issues,
the rest of this paper is structured as follows. Some of the key results on un-
computability and undecidability, mostly derived by this author are summarised
in a fairly merciless telegraphic form (with adequate and detailed references to
sources) in the next section. In section 3 some remarks on the mathematical
underpinnings of these ‘negative’ results are discussed and, again, stated in the
usual telegraphic form. The concluding section suggests a framework for in-
voking my ‘version’ of unconventional computation models for mathematical
models of the economy.

Two distinguished pioneers of economic theory and, appropriately, national
income accounting, Kenneth Arrow and Richard Stone (in collaboration with
Alan Brown) – who also happened to be Nobel Laureates – almost delineated
the subject matter of what I have come to call Computable Economics. The
former conjectured, more than two decades ago, as a frontier research strategy
for the mathematical economic theorist, that:

“The next step in analysis, I would conjecture, is a more con-
sistent assumption of computability in the formulation of economic
hypothesis. This is likely to have its own difficulties because, of
course, not everything is computable, and there will be in this sense
an inherently unpredictable element in rational behavior.” [1]

Richard Stone (together with Alan Brown), speaking as an applied
economist, grappling with the conundrums of adapting an economic theory for-
mulated in terms of a mathematics alien to the digital computer and to the
nature of the data11, confessed his own credo in characteristically perceptive

11Maury Osborne, with the clarity that can only come from a rank outsider to the internal
paradoxes of the dissonance between economic theory and applied economics, noted pungently:

“There are numerous other paradoxical beliefs of this society [of economists], con-
sequent to the difference between discrete numbers. . . in which data is recorded,
whereas the theoreticians of this society tend to think in terms of real numbers.
...No matter how hard I looked, I never could see any actual real [economic]
data that showed that [these solid, smooth, lines of economic theory] ... actually
could be observed in nature. . . . At this point a beady eyed Chicken Little might
. . . say, ‘Look here, you can’t have solid lines on that picture because there is
always a smallest unit of money . . . and in addition there is always a unit of
something that you buy. . . . [I]n any event we should have just whole numbers
of some sort on [the supply-demand] diagram on both axes. The lines should be

284



terms 12

“Our approach is quantitative because economic life is largely
concerned with quantities. We use [digital] computers because they
are the best means that exist for answering the questions we ask. It
is our responsibility to formulate the questions and get together the
data which the computer needs to answer them.” [3], p.viii

Economic analysis, as practised by the mathematical economist – whether as
a microeconomist or a macroeconomist, or even as a game theorist or an IO theo-
rist – continues, with princely unconcern for these conjectures and conundrums,
to be mired in, and underpinned by, conventional real analysis. Therefore, it is
a ‘cheap’ exercise to extract, discover and display varieties of uncomputabilities,
undecidabilities and non-constructivities in the citadel of economic theory. Any-
one with a modicum of expertise in recursion theory, constructive analysis or
even nonstandard analysis in its constructive modes, would find, in any reading
from these more algorithmically oriented perspectives, the citadel of economic
theory, game theory and IO replete with uncomputabilities, undecidabilities and
non-constructivities – even elements of incompleteness.

Against this ‘potted’ background of pioneering innocence and core issues, the
rest of this paper is structured as follows. Some of the key results on uncom-
putability and undecidability, mostly derived by this author, are summarized
in a fairly merciless telegraphic form (with adequate and detailed references
to sources) in the next section. In section 3 some remarks on the mathemati-
cal underpinnings of these ‘negative’ results are discussed and, again, stated in
the usual telegraphic form. The concluding section suggests a framework for
invoking my ‘version’ of unconventional computation models for mathematical
models of the economy13.

dotted.. . . Then our mathematician Zero will have an objection on the grounds
that if we are going to have dotted lines instead of solid lines on the curve then
there does not exist any such thing as a slope, or a derivative, or a logarithmic
derivative either.. . . .

“If you think in terms of solid lines while the practice is in terms of dots and
little steps up and down, this misbelief on your part is worth, I would say
conservatively, to the governors of the exchange, at least eighty million dollars
per year.” [29], pp.16-34.

12Prefaced, elegantly and appositely, with a typically telling observation by Samuel Johnson:
”Nothing amuses more harmlessly than computation, and nothing is oftener applicable to real
business or speculative enquiries. A thousand stories which the ignorant tell, and believe, die
away at once when the computist takes them in his grip”

ibid, p.vii
Surely, this is simply a more literary expression of that famous credo of Leibniz:
“..[W]hen a controversy arises, disputation will no more be needed between two philosophers

than between two computers. It will suffice that, pen in hand, they sit down ... and say to
each other: Let us calculate.” [19]

13An acute observation by one of the referees requires at least a nodding mention. The
referee wondered why the paper did not consider the famous ‘Socialist Calculation Debate’,
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2. Uncomputability and Undecidability in Economic Theory

Although many of the results described in this section may appear to have
been obtained ’cheaply’ – in the sense mentioned above – my own reasons for
having worked with the aim of locating uncomputabilities, non-constructivities
and undecidabilities in core areas of economic theory have always been a com-
bination of intellectual curiosity – along the lines conjectured by Arrow, above
–and the desire to make the subject meaningfully quantitative – in the sense
suggested by Brown and Stone (op.cit). In the process an explicit research strat-
egy has also emerged, on the strategy of making economic theory consistently
algorithmic. The most convincing and admirably transparent example of this
research strategy is the one adopted by Michael Rabin to transform the cele-
brated Gale-Stewart Game to an Algorithmic Game and, then, to characterise
its effective content. A full discussion of this particular episode in the develop-
ment of Computable Economics is given in [48] and [50], chapter 7. However,
the various subsections below simply report some of the results I have obtained,
on uncomputability, non-constructivity and undecidability in economic theory,
without, in each case, describing the background motivation, the precise re-
search and proof strategy that was developed to obtain the result and the full
extent of the implications for Computable Economics.

2.1. Undecidability (and Uncomputability) of Maximizing Choice
All of mathematical economics and every kind of orthodox game theory rely

on some form of formalized notion of individually ‘rational behaviour’ Two key
results that I derived more than two decades ago, are the following, stated as
theorems14:

Theorem 1. Rational economic agents in the sense of economic theory are
equivalent to suitably indexed Turing Machines; i.e, decision processes imple-
mented by rational economic agents - viz., choice behaviour - is equivalent to
the computing behaviour of a suitably indexed Turing Machine.

emerging, initially, from careless remarks by Pareto about the computing capabilities of a
decentralised market. This issue later – in the 1920s and 1930s, revisited by one of the
protagonists as late as 1967 – became a full-blooded debated about the feasibility of a de-
centralised planning system, an oxymoron if ever there was one. However, the reason I am
not considering the debate in this paper is twin-pronged: firstly, it was, essentially, about
analog computing (although Oskar Lange muddied the issue in his revisit to the problem in
1967 in the Dobb Festschrift); secondly, it is less about computability than computational
complexity. For reasons of space, I have had to refrain from any serious consideration of any
kind of complexity issue - whether of the computational or algorithmic variety.

14A perceptive referee wondered ‘why rational choice can be interpreted as an equivalent
of the whole class of Turing machines, maybe we should consider in this context only some
subclass of Turing machines (e.g. polynomial-time Turing machines)’. This is an obviously
important point, which I have addressed in other writings, in the spirit of Herbert Simon’s
research program on boundedly rational choice and satisficing decision problems by economic
agents. However, the question of restricting the class of Turing machines to a ‘relevant’
subclass becomes pertinent when one begins to focus attention on the ‘complexity of choice’,
implemented in empirically relevant contexts. Unfortunately, to go into details of this aspect
will require me to expand this paper beyond the allocated constraints and its limited scope.
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Put another way, this theorem states that the process of rational choice by an
economic agent is equivalent to the computing activity of a suitably programmed
Turing Machine.
Proof. Essentially by construction from first principles (no non-constructive
assumptions are invoked). See [49].

An essential, but mathematically trivial, implication of this Theorem is the
following result:

Theorem 2. Rational choice, understood as maximizing choice, is undecidable.

Proof. The procedure is to show, again by construction, that preference order-
ing is effectively undecidable. See [50], §3.3 for the details.

Remark 3. These kinds of results are the reasons for the introduction of for-
malized concepts of bounded rationality and satisficing by Herbert Simon. Cur-
rent practice, particularly in varieties of experimental game theory, to identify
boundedly rational choice with the computing activities of a Finite Automaton
are completely contrary to the theoretical constructs and cognitive underpinnings
of Herbert Simon’s framework. The key mistake in current practice is to divorce
the definition of bounded rationality from that of satisficing. Simon’s framework
does not refer to the orthodox maximizing paradigm; it refers to the recursion
theorist’ s and the combinatorial optimizer’s framework of decision procedures.

2.2. Computable and Decidable Paradoxes of Excess Demand Function
2.2.1. Algorithmic Undecidability of a Computable General Equilibrium

The excess demand function plays a crucial role in all aspects of computable
general equilibrium theory and, indeed, in the foundation of microeconomics.
Its significance in computable general equilibrium theory is due to the crucial
role it plays in what has come to be called Uzawa’s Equivalence Theorem (cf.
[44], §11.4) – the equivalence between a Walrasian Equilibrium Existence The-
orem (WEET) and the Brouwer Fixed Point Theorem. The finesse in one half
of the equivalence theorem, i.e., that WEET implies the Brouwer fix point the-
orem, is to show the feasibility of devising a continuous excess demand function,
X(p), satisfying Walras’ Law,(and homogeneity), from an arbitrary continuous
function, say f(.) : S → S, where S is the unit simplex in RN , such that the
equilibrium price vector, p∗, implied by X(p) is also the fix point for f(.), from
which it is ‘constructed’. For the benefit of those whose memories may well
require some rejuvenations,a simple, succinct, version of Walras’ Law can be
stated as follows:

∀p, p ·X (p) =
N∑
i=1

pi ·Xi (p) = 0. (1)

I am concerned, firstly, with the recursion theoretic status of X(p). Is this
function computable for arbitrary p ∈ S? Obviously, if it is, then there is
no need to use the alleged constructive procedure to determine the Brouwer fix
point (or any of the other usual topological fix points that are invoked in general
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equilibrium theory and CGE Modelling) to locate the economic equilibrium
implied by WEET.

The key step in proceeding from a given, arbitrary, f(.) : S → S to an excess
demand function X(p) is the definition of an appropriate scalar:

µ(p) =

∑n
i=1 pifi(

p
λ(p) )∑n

i=1 p
2
i

=
p.f(p)
‖p‖2

(2)

Where:

λ(p) =
n∑
i=1

pi (3)

From (1) and (2), the following excess demand function, X(p), is defined:

xi(p) = fi(
p

λ(p)
)− piµ(p) (4)

i.e.,
X(p) = f(p)− µ(p)p (5)

I claim that the procedure that leads to the definition of (3) [or, equivalently,
(4)] to determine p∗is provably undecidable. In other words, the crucial scalar
in (1) cannot be defined recursion theoretically (and, a fortiori, constructively)
to effectivize a sequence of projections that would ensure convergence to the
equilibrium price vector.

Clearly, given any p ∈ S, all the elements on the r.h.s of (1) and (2) seem to
be well defined. However, f(p) is not necessarily computable (nor meaningfully
constructive) for arbitrary p ∈ S. Restricting the choice of f(.) to the partial
recursive functions may most obviously violate the assumption of Walras’ Law.
Therefore, I shall show that it is impossible to devise an algorithm to define (3)
[or (4)] for an arbitrary f(p), such that the equilibrium p∗ for the defined excess
demand function is also the fix point of f(.). If it were possible, then the famous
Halting Problem for Turing Machines can be solved, which is an impossibility.

Theorem 4. X(p∗), as defined in (3) [or (4)] above is undecidable; i.e., cannot
be determined algorithmically.
Proof. Suppose, contrariwise, there is an algorithm which, given an arbitrary
f(.) : S → S, determines X(p∗). This means, therefore, that the given algo-
rithm determines the equilibrium p∗ implied by WEET. In other words, given
the arbitrary initial conditions p ∈ S and f(.) : S → S, the assumption of the
existence of an algorithm to determine X(p∗) implies that its halting configura-
tions are decidable. But this violates the undecidability of the Halting Problem
for Turing Machines. Hence, the assumption that there exists an algorithm to
determine - i.e., to construct - X(p∗) is untenable.

Remark 5. The algorithmically important content of the proof is the follow-
ing. Starting with an arbitrary continuous function mapping the simplex into
itself and an arbitrary price vector, the existence of an algorithm to determine

288



X(p∗) entails the feasibility of a procedure to choose price sequences in some
determined way to check for p∗ and to halt when such a price vector is found.
Now, the two scalars, µ and λ are determined once f(.) and p are given. But
an arbitrary initial price vector p, except for flukes, will not be the equilibrium
price vector p∗. Therefore the existence of an algorithm would imply that there
is a systematic procedure to choose price vectors, determine the values of f(.), µ
and λ and the associated excess demand vector X(p;µ, λ). At each determina-
tion of such an excess demand vector, a projection of the given, arbitrary, f(p),
on the current X(p), for the current p, will have to be tried. This procedure
must continue till the projection for a price vector results in excess demands
that vanish for some price. Unless severe recursive constraints are imposed on
price sequences - constraints that will make very little economic sense - such a
test is algorithmically infeasible. In other words, given an arbitrary, continuous,
f(.), there is no procedure - algorithm (constructive or recursion theoretic) - by
which a sequence of price vectors, p ∈ S, can be systematically tested to find p∗.

Corollary 6. The Recursive Competitive Equilibrium (RCE)of New Classical
Macroeconomics – Recursive Macroeconomic Theory – is uncomputable.

Remark 7. See [55] (definition 2, p. 16) for a detailed definition of RCE and
hints on proving this Corollary.

Remark 8. The proof procedure is almost exactly analogous to the one used
above to show the recursive undecidability of a computable general equilibrium –
with one significant difference. Instead of using the unsolvability of the Halting
problem for Turing Machines to derive the contradiction, I use a version of
Rice’s Theorem.

Remark 9. The more empirically relevant question would be to consider the
question of the feasibility of approximating X (p∗). This, like the issue of con-
sidering a subclass of Turing machines to formalize empirically relevant rational
choice procedures, falls under a burgeoning research program on the complexity
of computing varieties of economic and game theoretic equilibria. Since I have
had to limit the scope of my considerations in this paper to questions of com-
putability and decidability in principle, I must - albeit reluctantly - refrain from
going further into these issues. An excellent reference on the problem, via a
discussion of the complexity of computing Nash equilibria, can be found in [30].

2.2.2. Recursive Undecidability of the Excess Demand Function
The nature of economic data and the parameters underpinning the mecha-

nisms generating the data – as noted by Stone and Osborne, if any substantia-
tion of the obvious must be invoked via the wisdom of eminence – should imply
that the excess demand function is a Diophantine relation. Suppose we take
economic reality, Stone, Osborne and Smale seriously assume that all variables
and parameters defining the excess demand functions are, in fact, integer or
rational valued (with the former, in addition, being non-negative, as well).
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Indeed, Smale has brilliantly articulated the perplexity of the Arrow-Debreu
‘subversion’ of the classic problem of supply-demand equilibrium as a system of
equations to be solved for non-negative valued, rational-number variables, into
a system of inequalities whose consistency is proved by blind appeals to non-
constructive fix point theorems and, thereby, an existence of a set of equilibrium
prices is asserted:

“We return to the subject of equilibrium theory. The existence
theory of the static approach is deeply rooted to the use of the mathe-
matics of fixed point theory. Thus one step in the liberation from the
static point of view would be to use a mathematics of a different
kind. Furthermore, proofs of fixed point theorems traditionally use
difficult ideas of algebraic topology, and this has obscured the eco-
nomic phenomena underlying the existence of equilibria. Also the
economic equilibrium problem presents itself most directly and with
the most tradition not as a fixed point problem, but as an equation,
supply equals demand. Mathematical economists have trans-
lated the problem of solving this equation into a fixed point
problem.

I think it is fair to say that for the main existence problems in the
theory of economic equilibrium, one can now bypass the fixed
point approach and attack the equations directly to give
existence of solutions, with a simpler kind of mathematics
and even mathematics with dynamic and algorithmic overtones.”

[42], p.290; bold emphasis added.

To ‘attack the equations directly,’ taking into account the obvious constraints
on variables and parameters in economics - i.e., that the variables have to be
non-negative, rational numbers and the parameters at least the latter (and if
they are not the former, then there are feasible transformations to make them
so, cf. [24], chapter 1) – is actually a very simple matter. I shall only indicate
the skeleton of such an approach here. Full details are available in the author’s
other writings.

Now, dividing the vector of parameters and variables characterizing the ex-
cess demand function X into two parts, a vector a of parameters and the vector
of prices, p, we can write a relation of the form (in supply-demand equilibrium)

X (a1, a2, ....., an, x1, x2, ..., xm) = 0

where:

Definition 10. X is a polynomial15 with integer (or rational number) co-
efficients with respect to the parameters a1, a2, ....., an and variables

15I am restricting the excess demand functions to be polynomials simply to be consistent
with the traditional definition. The more mathematically satisfying approach may have been
to consider, in the general case, arbitrary functions from N to N. I am indebted to a referee’s
observation regarding the need to clarify this point.
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x1, x2, ..., xm (which are also non-negative) and is called a parametric Dio-
phantine equation.

Definition 11. X in Definition 8 defines a set z of the parameters for which
there are values of the unknowns such that:

〈a1, a2, ..., an〉 ∈ ⇐⇒ ∃x1, x2, ..., xm [X (a1, a2, ..., an, x1, x2, ..., xm) = 0] (6)

Loosely speaking, the relations denoted in the above two definitions can be
called Diophantine representations. Then sets, such as z, having a Diophantine
representation, are called simply Diophantine. With this much terminology at
hand, it is possible to state the fundamental problem of a Diophantine system
of excess demand equations as follows:

Problem 12. A set, say 〈a1, a2, ....., an〉 ∈ G, is given. Determine if this set is
Diophantine. If it is, find a Diophantine representation for it.

Of course, the set z may be so structured as to possess equivalence classes of
properties, P and relations, R.Then it is possible also to talk, analogously, about
a Diophantine representation of a Property P or a Diophantine representation
of a Relation R. For example, in the latter case we have:

R (a1, a2, ....., an)⇐⇒ ∃x1, x2, ..., xm [X (a1, a2, ....., an, x1, x2, ..., xm) = 0]

Next, how can we talk about the solvability of a Diophantine representa-
tion of the excess demand relation? This is where undecidability (and uncom-
putability) will enter – through a remarkable connection with recursion theory,
summarized in the next Proposition:

Proposition 13. Given any parametric Diophantine equation, X, it is possible
to construct a Turing Machine, M , such that M will eventually Halt, beginning
with a representation of the parametric n-tuple, 〈a1, a2, ....., an〉, iff X in Defi-
nition 9 is solvable for the unknowns, x1, x2, ..., xm.

But, then, given the famous result on the Unsolvability of the Halting prob-
lem for Turing Machines, we are forced to come to terms with the algorithmic
unsolvability of the excess demand function as a Diophantine equations.

2.3. Nonconstructivity of Welfare Theorems
Let me conclude this section by showing, in a very general way, the role

played by the Hahn-Banach Theorem in proving the crucial ‘Second Welfare
Theorem’ in economics. I shall refer to the way it is presented, proved and
discussed in [22] (although I could equally well have chosen the slightly simpler
and clearer exposition in [44]). The Second Welfare Theorem establishes the
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proposition that any Pareto optimum can, for suitably chosen prices, be sup-
ported as a competitive equilibrium. The role of the Hahn-Banach theorem in
this proposition is in establishing the suitable price system.

Lucas and Stokey state ‘their’ version of the Hahn-Banach Theorem in the
following way16:

Theorem 14. Geometric form of the Hahn-Banch Theorem.
Let S be a normed vector space; let A,B ⊂ S be convex sets. Assume:
(a). Either B has an interior point and A ∩ B̊ = ∅,

(
B̊ : closure of B

)
;

(b). Or, S is finite dimensional and A ∩B = ∅;
Then: ∃ a continuous linear functional φ, not identically zero on S, and a

constant c s.t:
φ(y) ≤ c ≤ φ(x), ∀x ∈ A and ∀y ∈ B.

Next, I state the economic part of the problem in merciless telegraphic form
as follows:

There areI consumers, indexed i = 1, ...., I;
S is a vector space with the usual norm;
Consumer i chooses from commodity set Xi ⊆ S, evaluated according to the

utility function ui : Xi → <;
There are J firms, indexed j = 1, ...., J ;
Choice by firm j is from the technology possibility set, Yj ⊆ S; (evaluated

along profit maximizing lines);
The mathematical structure is represented by the following absolutely stan-

dard assumptions:

1. ∀i,Xi is convex ;
2. ∀i, if x, x′ ∈ Ci, ui(x) > ui(x′), and if θ ∈ (0, 1) , then ui [θx+ (1− θ)x′] >
ui(x′);

3. ∀i, ui : Xi → < is continuous;
4. The set Y =

∑
j Yj is convex ;

5. Either the set Y =
∑
j Yj has an interior point, or S is finite dimensional ;

Then, the Second Fundamental Theorem of Welfare Economics is:

Theorem 15. Let assumptions 1 − 5 be satisfied; let
[(
x0
i

)
,
(
y0
j

)]
be a Pareto

Optimal allocation; assume, for some h ∈
{

1̄, .....Ī
}
,∃x̂h ∈ Xh with uh(x̂h) >

16Essentially, the ‘classical’ mathematician’s Hahn-Banach theorem guarantees the exten-
sion of a bounded linear functional, say ρ, from a linear subset Y of a separable normed linear
space, X, to a functional, η, on the whole space X, with exact preservation of norm; i.e.,
|ρ| = |η|. The constructive Hahn-Banach theorem, on the other hand, cannot deliver this
pseudo-exactness and preserves the extension as: |ρ| ≤ |η|+ε, ∀ε > 0. The role of the positive
ε in the constructive version of the Hahn-Banach theorem is elegantly discussed by Nerode,
Metakides and Constable in their beautiful piece in the Bishop Memorial Volume ([27], pp.
85-91). Again, compare the difference between the ‘classical’ IVT and the constructive IVT
to get a feel for the role of ε.
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uh(x0
h). Then ∃ a continuous linear functional φ : S → <, not identically zero

on S, s.t:
(a). ∀i, x ∈ Xi and ui(x) ≥ ui(x0) =⇒ φ(x) ≥ φ(x0

i );
(b). ∀j, y ∈ Yj =⇒ φ(j) ≤ φ(y0

i );

Anyone can see, as anyone would have seen and has seen for the last 70
years, that an economic problem has been ‘mangled’ into a mathematical form
to conform to the structure and form of a mathematical theorem. This was the
case with the way Nash formulated his problems; the way the Arrow-Debreu
formulation of the general equilibrium problem was made famous; and legions
of others.

It is a pure mechanical procedure to verify that the assumptions of the
economic problem satisfy the conditions of the Hahn-Banach Theorem and,
therefore, the powerful Second Fundamental Theorem of Welfare Economics is
‘proved’17.

The Hahn-Banach theorem does have a constructive version, but only on
subspaces of separable normed spaces. The standard, ‘classical’ version, valid
on nonseparable normed spaces depends on Zorn’s Lemma which is, of course,
equivalent to the axiom of choice, and is therefore, non-constructive18.

Schechter’s perceptive comment on the constructive Hahn-Banach theorem is
the precept I wish economists with a numerical, computational or experimental
bent should keep in mind (ibid, p. 135; italics in original; emphasis added).:

“[O]ne of the fundamental theorems of classical functional analysis
is the Hahn-Banach Theorem; ... some versions assert the existence
of a certain type of linear functional on a normed space X. The
theorem is inherently nonconstructive, but a constructive proof can
be given for a variant involving normed spaces X that are separable
– i.e., normed spaces that have a countable dense subset. Little is
lost in restricting one’s attention to separable spaces19, for in applied
math most or all normed spaces of interest are separable. The con-
structive version of the Hahn-Banach Theorem is more complicated,
but it has the advantage that it actually finds the linear functional
in question.”

So, one may be excused for wondering, why economists rely on the ‘classical’

17To the best of my knowledge an equivalence between the two, analogous to that between
the Brouwer fix point theorem and the Walrasian equilibrium existence theorem, proved by
Uzawa ([47]), has not been shown.

18This is not a strictly accurate statement, although this is the way many advanced books
on functional analysis tend to present the Hahn-Banach theorem. For a reasonably accessible
discussion of the precise dependency of the Hahn-Banach theorem on the kind of axiom of
choice (i.e., whether countable axiom of choice or the axiom of dependent choice), see [26].
For an even better and fuller discussion of the Hahn-Banach theorem, both from ‘classical’
and a constructive points of view, Schechter’s encyclopedic treatise is unbeatable ([38]).

19However, it must be remembered that Ishihara, [17], has shown the constructive validity
of the Hahn-Banach theorem also for uniformly convex spaces.
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versions of these theorems? They are devoid of numerical meaning and compu-
tational content. Why go through the rigmarole of first formalizing in terms of
numerically meaningless and computationally invalid concepts to then seek im-
possible and intractable approximations to determine uncomputable equilibria,
undecidably efficient allocations, and so on?

Thus my question is: why should an economist force the economic domain
to be a normed vector space? Why not a separable normed vector space? Isn’t
this because of pure ignorance of constructive mathematics and a carelessness
about the nature and scope of fundamental economic entities and the domain
over which they should be defined?

2.4. Noneffectivity of Games
The most celebrated exercise in Computable Economics or what has recently

come to be called Algorithmic Game Theory is Michael Rabin’s famous result:

Theorem 16. (Rabin, 1957) There are games in which the player who in
theory can always win cannot do so in practice because it is impossible to
supply him with effective instructions regarding how he should play in order
to win.

Rabin’s strategy to obtain this result is the paradigmatic example of what
I conceive to be the typical research program of a Computable Economist. Es-
sentially, the idea is to consider any formal, orthodox, game theoretic example
and strip it away of all non-effective considerations and, then, ask whether the
remaining scaffolding is capable of being algorithmically decidable in an em-
pirically meaningful sense. A complete description and explanation of Rabin’s
strategy is fully discussed in [48].

But at the time I first studied Rabin’s example – about twenty years ago –
and extracted his implicit research strategy as a paradigmatic example for the
work of a Computable Economist, I missed an important aspect: its place in a
particular tradition of game theory. It was only in very recent times that I have
been able to place it in the original tradition of game theory – the tradition
that began with Zermelo, before it was ‘subverted’ by the von Neumann-Nash
subjective approach which dominates all current frontiers of research in game
theory, at least in the citadel of economic theory (including its computational
and experimental branches). My starting point for the tradition that came
to a transitory completion, therefore, would be Zermelo’s celebrated lecture of
1912 ([58]) and his pioneering formulation of an adversarial situation into an
alternating game and its subsequent formulation and solution as a mini-max
problem by Jan Mycielski in terms of alternating the existential and universal
quantifiers.

The Zermelo game has no subjective component of any sort. It is an entirely
objective game of perfect information, although it is often considered part of
the orthodox game theoretic tradition. Let me describe the gist of the kind of
game considered by Zermelo, first. In a 2-player game of perfect information,
alternative moves are made by the two players, say A and B. The game, say

294



as in Chess, is played by each of the players ‘moving’ one of a finite number of
counters available to him or her, according to specified rules, along a ‘tree’ - in
the case of Chess, of course, on a board of fixed dimension, etc. Player A, say,
makes the first move (perhaps determined by a chance mechanism) and places
one of the counters, say a0 ∈ A0, on the designated ‘tree’ at some allowable
position (again, for evocative purposes, say as in Chess or any other similar
board game); player B, then, observes the move made by A - i.e., observes, with
perfect recall, the placement of the counter a1 - and makes the second move by
placing, say b1 ∈ B1, on an allowable position on the ‘board’; and so on. Let us
suppose these alternating choices terminate after Player B’s n − th move; i.e.,
when bn ∈ Bn has been placed in an appropriate place on the ‘board’.

Definition 17. A play of such a game consists of a sequence of such alternative
moves by the two players

Suppose we label the alternating individual moves by the two players with
the natural numbers in such a way that:

1. The even numbers, say, a(0), a(2), ....., a(n−1) enumerate player A’s moves;
2. The odd numbers, say, b(1), b(3), ......., b(n) enumerate player B’s moves;

• Then, each (finite) play can be expressed as a sequence, say γ, of
natural numbers.

Suppose we define the set α as the set of plays which are wins for player A;
and, similarly, the set β as the set of plays which are wins for player B.

Definition 18. A strategy is a function from any (finite) string of natural num-
bers as input generates a single natural number, say σ, as an output.

Definition 19. A game is determined if one of the players has a winning
strategy; i.e., if either σ ∈ α or σ ∈ β.

Theorem 20. Zermelo’s Theorem: ∃ a winning strategy for player A, whatever
is the play chosen by B; and vice versa for B20

Remark 21. This is Zermelo’s version of a minimax theorem in a perfect re-
call, perfect information, game.

It is in connection with this result and the minimax form of it that Steinhaus
observed, with considerable perplexity:

20One referee found this way of stating the celebrated ‘Zermelo Theorem’ somewhat ’un-
clear’. The best I can do, to respond to the referee’s gentle – albeit indirect – admonition to
state it more intuitively is to refer to the excellent pedagogical discussion, and a particularly
lucid version, of the Zermelo Theorem in [45].
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“[My] inability [to prove the minimax theorem] was a consequence
of the ignorance of Zermelo’s paper ([58]) in spite of its having been
published in 1913. .... J von Neumann was aware of the impor-
tance of the minimax principle (cf. [57]); it is, however, difficult
to understand the absence of a quotation of Zermelo’s lecture in his
publications.”

Steinhaus ([45], p. 460; italics added)

Why didn’t von Neumann refer, in 1928, to the Zermelo-tradition of alter-
nating games? The tentative answer to such a question is a whole research
program in itself and I will simply have to place it on an agenda and pass
on. I have no doubts whatsoever that any serious study to answer this almost
rhetorical question will reap a rich harvest of further cons perpetrated by the
mathematical economists, perhaps inadvertently. The point I wish to make is
something else and has to do with the axiom of choice and its place in economic
conning. So, let me return to this theme.

Mycielski (cf., [45], pp. 460-1) formulated the Zermelo minimax theorem in
terms of alternating logical quantifiers as follows21:

∼
{
∪

a0∈A0
∩

b1∈B1
......... ∪

an∈An−1
∩

bn∈Bn

(a0b1a2b3.....an−1bn)
}
∈ α

=⇒
{
∩

a0∈A0
∪

b1∈B1
......... ∩

an∈An−1
∪

bn∈Bn

(a0b1a2b3.....an−1bn)
}
/∈ β

Now, summarizing the structure of the game and taking into account My-
cielski’s formulation in terms of alternating we can state as follows:

1. The sequential moves by the players can be modelled by alternating exis-
tential and universal quantifiers.

2. The existential quantifier moves first; if the total number of moves is odd,
then an existential quantifier determines the last chosen integer; if not, the
universal quantifier determines the final integer to be chosen.

3. One of the players tries to make a logical expression, preceded by these
alternating quantifiers true; the other tries to make it false.

4. Thus, inside the braces the win condition in any play is stated as a propo-
sition to be satisfied by generating a number belonging to a given set.

5. If, therefore, we can extract an arithmetical form - since we are dealing
with sequences of natural numbers - for the win condition it will be possible
to discuss recursive solvability, decidability and computability of winning
strategies.

The above definitions, descriptions and structures define, therefore, an Arith-
metical Game of length n (cf. [50], pp. 125-6 for a formal definition). Stating
the Zermelo theorem in a more formal and general form, we have:

21Discerning and knowledgeable readers will recognize, in this formulation, the way Gödel
derived undecidable sentences.
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Theorem 22. Arithmetical Games of finite length are determined.

Remark 23. However, the qualifications required by Harrop’s Theorem (see
below) have to be added as ‘constructive’ caveats to this result22.

The more general theorem, for games of arbitrary (non-finite) length, can
be proved by standard diagonalization arguments and is23:

Theorem 24. Arithmetical Games on any countable set or on any set which
has a countable complement is determined.

Now, enter the axiom of choice! Suppose we allow any unrestricted sets α and
β. Then, for example if they are imperfect sets24, the game is not determined. If
we work within ZFC, then such sets are routinely acceptable and lead to games
that cannot be determined - even if we assume perfect information and perfect
recall. Surely, this is counter-intuitive? For this reason, this tradition in game
theory chose to renounce the axiom of choice and work with an alternative axiom
that restricts the class of sets within which arithmetical games are played. The
alternative axiom is the axiom of determinacy, introduced by Steinhaus:

Axiom 25. The Axiom of Determinacy: Arithmetical Games on every sub-
set of the Baire line25 is determined.

The motivation given by Steinhaus ([45], pp. 464-5) is a salutary lesson
for mathematically minded economists or economists who choose to accept the
axiom of choice on ‘democratic’ principles or economists who are too lazy to
study carefully the economic meaning of accepting a mathematical axiom:

“It is known that [the Axiom of Choice] produces such conse-
quences as the decomposition of a ball into five parts which can be
put together to build up a new ball of twice the volume of the old
one [the Banach-Tarski paradox], a result considered as paradoxical
by many scientists. There is another objection: how are we to speak
of perfect information for [players] A and B if it is impossible to
verify whether both of them think of the same set when they speak
of [α]? This impossibility is inherent in every set having only [the
Axiom of Choice] as its certificate of birth. In such circumstances it
is doubtful whether human beings will ever play really [an infinite
game].

All these considerations impelled me to place the blame on the
Axiom of Choice. Sixty years of the theory of sets have elapsed since

22I am indebted to a referee for making me think about this important point.
23The real time paradox of implementing an infinite play is easily resolved (cf., [45], pp.

465; [50], chapter 7).
24A set G is a perfect set if it is a closed set in which every point is a limit point.
25A Baire line is an irrational line which, in turn, is a line obtainable from a continuum by

removing a countable dense subset.
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this Axiom was proclaimed, and some ideas have .... convinced me
that a purely negative attitude against [the Axiom of Choice] would
be dangerous to propose. Thus I have chosen the idea of replacing
[the Axiom of Choice] by the [above Axiom of Determinacy].

italics added.

There is a whole tradition of game theory, beginning at the beginning, so to
speak, with Zermelo, linking up, via Rabin’s modification of the Gale-Stewart
infinite game, to recursion theoretic formulations of arithmetical games under-
pinned by the axiom of determinacy and completely independent of the axiom
of choice and eschewing all subjective considerations. In this tradition
notions of effective playability, solvability and decidability questions take on
fully meaningful computational and computable form where one can investi-
gate whether it is feasible to instruct a player, who is known to have a winning
strategy, to actually select a sequence to achieve the win.

3. Towards Unconventional Computational Models in Economic The-
ory

My personal view – indeed, vision – has been evolving, very gradually, to-
wards a mathematical economics that is formalized exclusively in terms of strict
Brouwerian Constructive Mathematics. To make this case, from methodological
and epistemological points of view would require more space than I have at my
disposal and, moreover, would necessitate a widening of the scope of the paper.
Therefore, I shall only make a few salient observations that may indicate the
reasons for this vision.

Even more than a justification from an algorithmic point of view, for which
it is possible to make almost equally strong cases for either a classical com-
putability or Bishop-style constructivist approaches towards a consistent quan-
titative formalization of economic theory, there is the epistemological question of
the meaning of proving economic propositions using classical, non-constructive,
logic. To the best of my knowledge, there is only one serious, fundamental,
work in economic theory that is consistently constructive in the way the eco-
nomic propositions in it are proved: Piero Sraffa’s magnum opus, [43]. I have
dissected the methods of proof in this elegant, terse, text and made my case
for a constructive epistemology in the formalization of economic theory (see
[56]). However, from a strictly methodological point of view, I remain indiffer-
ent between formalizing economic entities and processes recursion theoretically
or constructively, either of them in any of the many variants in which they are
being developed these days.

Whether methodologically or epistemologically, a formalization of economic
theory via classical recursion theory or any variant of constructive mathematics,
will have to lead to fairly drastic rethinking of fundamental issues in economics
from policy and empirical points of view. This is primarily because the welfare
theorems and computable properties of equilibria lose their quantitative under-
pinnings and become almost mystically sustained. The issues I have chosen to
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dissect in this paper suggest this implication, sometimes explicitly, but more
than often only implicitly. The following remarks are somewhat limited further
elaborations of these issues, but primarily from a methodological standpoint.26

I am not in any way competent in any form of unconventional models of
computation. The remarks below should, therefore, be taken as reflections of a
Computable Economist who is deeply committed to making economics algorith-
mically meaningful – from a methodological point of view – so that computation
and experimentation can be seriously and rigorously underpinned in the honest
mathematics of the computer, whether digital or analog.

My original motivation for coining the term Computable Economics, to en-
capsulate the kind of issues raised by Arrow and Stone, mentioned in the opening
section, was quite a different kind of perplexity. It was a perplexity grounded
in proof theory and model theory27. There is no better way to summarize these
originating concerns, from the perspective of a Computable Economist, than to
recall two deep and subtle caveats added by two of the pioneers of computabil-
ity theory, Alonzo Church and Emil Post, in their pathbreaking contributions
to the origins of classical and higher recursion theory. Their insights suggested
a deeper interplay between computability and constructivity than is normally
understood or acknowledged by any of the social scientists now deeply immersed
in developing the frontiers of computable economics, algorithmic game theory
and algorithmic statistics.

To place these insights in the context of the present paper, let me state a
conjecture in the form of a theorem28:

Theorem 26. Nash equilibria of finite games are constructively indetermi-
nate29.

Proof. Apply Harrop’s Theorem ([15], p.136).
To make sense of this ‘theorem’, and its proof using ‘Harrop’s Theorem’, it

is necessary to understand the subtle differences between computability as un-
derstood in (classical) recursion theory, accepting Church’s Thesis30 and com-
putations by algorithmic mathematics as specified in varieties of constructive
mathematics, particularly intuitionistic constructive mathematics. I shall not

26The brief few opening paragraphs of this concluding section were added in response to
observations made by two very helpful referees.

27To a large extent in their incarnation as constructive and non-standard analysis.
28These thoughts were inspired entirely by a reading of a fundamental series of results by

Francisco Doria and his collaborators (cf. [10] and [11]), which introduced me to Harrop’s
important work ([15]). These papers put in proper perspective my initial proof- and model-
theoretic perplexities when faced with assumptions and proofs in mathematical economics.

29The proof of the existence of Nash equilibria, given in standard textbooks, rely on one or
another of the nonconstructive fix point theorems (Brouwer’s, Kakutani’s etc.). Since these,
in turn, are proved invoking the Bolzano-Weierstrass theorem, which is intrinsically non-
constructive, due to essentially undecidable disjunctions, the proof of the non-constructivity
of Nash equilibria for general infinite games is ‘easy’ – and ‘cheap’ – at least from one point
of view.

30Or the Church-Turing Thesis.
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enter into the deep domain of the foundations of mathematics and its thorny
controversies here - although I, too, have my view and take my ‘sides’ and find
myself, as always, in the minority! The subtle issues that have to be clarified, to
make sense of the above almost counter-intuitive ‘theorem’, were made clear in
Charles Parson’s ‘review’, [31] of Harrop’s result31. The issues are the bearing
of Harrop’s Theorem on, whether:

1. Every finite set is recursive;
2. Every recursive set is effectively decidable;
3. Every finite set is effectively decidable;

This neat three-point characterization of Harrop’s theorem, by Parsons, is
a summary of the following explanation of the implications of his Theorem by
Harrop himself:

“Although it is correct to classically to state that the values of a
partial function computed by a machine of arbitrary Gödel number
form of a finite set or an infinite set, this statement should not be
used together with the statements that every finite set is recursive
and that every recursive set has an intuitively effective test for mem-
bership (converse of Church’s thesis) to conclude that if we know
classically that a certain integer is the Gödel number of a machine
which computes a function with a finite range then automatically
there is an intuitively effective test for membership of that range.
Our theorem shown that as far as the general case is concerned there
is no recursive method for obtaining machines which will compute
the characteristic functions which would all individually be obtain-
able if there were such intuitively effective tests. There may in any
particular case be an intuitively effective test.”

ibid, p.139; italics added.

Now how this links up with the early contributions by Church and Post
to the defining frameworks for classical and higher recursion theory, can easily
be gauged by two caveats they made in two of their classic writings ([5], [33],
respectively). Church observed (ibid, p. 351):

“It is clear that for any recursive function of positive integers
there exists an algorithm using which any required particular value
of the function can be effectively calculated.”

To this almost innocuous observation – ‘innocuous’ at least to the modern
‘classical’ recursion theorist – Church added the subtle (I almost wrote ‘slightly
devious’ – but no one can possibly accuse Alonzo Church of being ‘devious’ !!)
caveat:

31And the subsequent development and simplification of Harrop’s result and proof by Jǐŕı
Hořješ ([16]).
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“The reader may object that this algorithm cannot be held to
provide an effective calculation of the required particular values
of F i unless the proof is constructive that the required equation
fni

i(k1
i, , k2

i, ...., kn
i) = ki will ultimately be found. But if so this

merely means that he should take the existential quantifier which
appears in our definition of a set of recursion equations in a con-
structive sense. What the criterion of constructiveness shall be is
left to the reader.” ibid, p.351, footnote 10; italics added.

Post, analogously, first states what may seem obvious to a modern
‘classical’ recursion theorist ([33], p. 469; italics in the original):

“Clearly, any finite set of positive integers is recursive. For if
n1, n2, ....., nν are the integers in question, we can test n being, not
being, in the set by directly comparing it with n1, n2, ....., nν .”

But, then, goes on with his caveat:

“The mere32 existence of a general recursive function defining
the finite set is in question. Whether, given some definition of the
set, we can actually discover what the members thereof are, is a
question for a theory of proof rather than for the present theory of
finite processes. For sets of finite sets the situation is otherwise, ...
.”

ibid, p.469, footnote 10; italics added.

Harrop’s theorem’s clarifies these caveats and drives the wedge between com-
putabilty, classically understood, and algorithms as understood by (at least)
some constructivists. I believe this ‘wedge’ allows the Computable Economist
to seek ‘unconventional models of computation’ – i.e., going beyond or, at least,
sideways from, the phenomenological limits imposed by the Church-Turing The-
sis.

Whether the institutions and mechanisms of a market economy make feasible
such ‘unconventional models of computation’, depending on the ‘wedge’ between
the Church-Turing Thesis and its ‘converse’, is not something that is formally
decidable – let alone algorithmically decidable. But that does not mean the
market mechanism is not actually involved in ‘unconventional computation’.
However, to make sense of this question it will be necessary to algorithmise
orthodox economic theory - or, even better, develop an algorithmic economics,
ab initio. To this extent I find it sobering to contemplate on an analogy between
the lessons to be learned from Abel’s impossibilities – and Gödel’s:

“Why was it that, in His infinite wisdom, God should have created alge-

braic solutions for general equations of the first four degrees, but not for

32I suspect a reading of this sentence by replacing ‘mere’ with ‘very’ will make the sense
more accurate!
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the equation ax5 + bx4 + cx3 + dx2 + ex + f = 0? Is it the case that

human powers are too limited to understand such a transcendent matter?

Or have we simply not yet ascended to the ‘meta-mathematical’ level in

which comprehension will be forthcoming? If Abel’s proof was spared

such conundrums Gödel’s theorem unfortunately was not;.... . For while

Gödel’s theorem looks like – and was initially intended to be seen as –

a closure, it has been widely interpreted as a transitional impossibility

proof.”

[40], p.167; italics in original

The ‘fallacy of composition’ that drives a felicitous wedge between micro
and macro, between the individual and the aggregate, and gives rise to emergent
phenomena in economics, non-algorithmic ways – as conjectured, originally more
than a century and a half ago – by John Stuart Mill ([25]) and George Herbert
Lewes ([20]), and codified by Lloyd Morgan in his Gifford Lectures ([21]) – may
yet be tamed by unconventional models of computation.
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[58] Zermelo, Ernst (1912), “Über ein Anwendung der Mengenlehre auf die The-
orie des Schachspiels”, Proceedings of the Fifth International Congress of
Mathematicians, Cambridge, Vol. 2, pp. 501– 4.

306



Optical computing �

Damien Woods a

aDepartment of Computer Science and Artificial Intelligence
University of Seville, Spain

Thomas J. Naughton b,c

bDepartment of Computer Science
National University of Ireland, Maynooth, County Kildare, Ireland

cUniversity of Oulu, RFMedia Laboratory, Oulu Southern Institute, Vierimaantie 5, 84100 Ylivieska,
Finland

Abstract

We consider optical computers that encode data using images and compute by transforming such
images. We give an overview of a number of such optical computing architectures, including
descriptions of the type of hardware commonly used in optical computing, as well as some
of the computational efficiencies of optical devices. We go on to discuss optical computing
from the point of view of computational complexity theory, with the aim of putting some old,
and some very recent, results in context. Finally, we focus on a particular optical model of
computation called the continuous space machine. We describe some results for this model
including characterisations in terms of well-known complexity classes.

Key words:
PACS:

1. Introduction
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In Section 2 we begin by stating what we mean by the term optical computing, and we
discuss some common optical computing architectures. Unlike a number of other areas of
nature inspired computing, optical computers have existed (mostly in laboratories) for
many years, and so in Section 3 we describe hardware components that are found in many
optical computing systems. In Section 4 we describe some of the physical principles that
underlie the parallel abilities and efficiencies found in optical computing. These include
high fan-in, high interconnection densities, and low energy consumption.

In order to understand the abilities of optics as a computing medium we would argue
that computational complexity theory is an indispensable tool. So in Section 5 we collect
a number of existing algorithmic results for optical computers. In particular we focus
on algorithms and models for matrix-vector multipliers, and some other architectures.
We also offer suggestions for future work directions for optical algorithm designers. In
Section 6, we take a detailed look at a particular model of optical computing (the contin-
uous space machine, or CSM) that encompasses most of the functionality that coherent
optical information processing has to offer. We begin by defining the CSM and a total of
seven complexity measures that are inspired by real-world (optical) resources. We go on
to discuss how the CSM’s operations could be carried out physically. Section 7 contains
some example datastructures and algorithms for the CSM. In Section 8 we motivate and
introduce an important restriction of the model called the C2-CSM, and in Section 9
we briefly describe a number of C2-CSM computational complexity results, and their
implications.

2. Brief overview of optical computing architectures

Traditionally, in optical information processing a distinction was made between sig-
nal/image processing through optics and numerical processing through optics, with only
the latter (and often only the digital version of the latter) being called optical comput-
ing [57,48,29,101]. However, it was always difficult to clearly delineate between the two,
since it was largely a question of the interpretation the programmer attached to the
output optical signals. The most important argument for referring to the latter only as
optical computing had to do with the fact that the perceived limits (or at least, ambi-
tions) of the former was simply for special-purpose signal/image processing devices while
the ambitions for the latter was general-purpose computation. Given recent results on
the computational power of optical image processing architectures [63,98,93], it is not
the case that such architectures are limited to special-purpose tasks.

Furthermore, as the field become increasingly multidisciplinary, and in particular as
computer scientists play a more prominent role, it is necessary to bring the definition
of optical computing in line with the broad definition of computing. In particular, this
facilitates analysis from the theoretical computer science point of view. The distinction
between analog optical computing and digital optical computing is similarly blurred given
the prevalence of digital multiplication schemes effected through analog convolution [48].
Our broad interpretation of the term optical computing has been espoused before [19].
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2.1. Optical pattern recognition

Arguably, optical computing began with the design and implementation of optical
systems to arbitrarily modify the complex valued spatial frequencies of an image. This
concept, spatial filtering [67,86,89], is at the root of optics’ ability to perform efficient
convolution and correlation operations. In a basic pattern recognition application, spatial
filtering is called matched filtering, where a filter is chosen that matches (i.e. conjugates)
the spectrum of the sought object. Employing this operation for advanced pattern recog-
nition [12,18,43,47], effort focused on achieving systems invariant to scaling, rotation,
out-of-plane rotation, deformation, and signal dependent noise, while retaining the exist-
ing invariance to translating, adding noise to, and obscuring parts of the input. Effort also
went into injecting nonlinearities into these inherently linear systems to achieve wider
functionality [46]. Improvements were made to the fundamental limitations of the basic
matched filter design, most notably the joint transform correlator architecture [92].

Optical correlators that use incoherent sources of illumination (both spatially and tem-
porally) rather than lasers are also possible [11,71]. The simplest incoherent correlator
would have the same basic spatial filtering architecture as that used for matched fil-
tering. While coherent systems in principle are more capable than incoherent systems
(principally because the former naturally represents complex functions while the latter
naturally represents real functions), incoherent systems require less precise positioning
when it comes to system construction and are less susceptible to noise.

Trade-offs between space and time were proposed and demonstrated. These included
time integrating correlators [90] (architecturally simpler linear time variants of the con-
stant time space integrating matched filter mentioned already) and systolic architec-
tures [21]. In addition to pattern recognition, a common application for these classes of
architectures was numerical calculation.

2.2. Analog optical numerical computation

An important strand of image-based optical computation involved numerical calcula-
tions: analog computation as well as multi-level discrete computation. Matrix-vector and
matrix-matrix multiplication systems were proposed and demonstrated [42,57,90,48,4,29,51].
The capability to expand a beam of light and to focus many beams of light to a common
point directly corresponded to high fan-out and fan-in capabilities, respectively. The limi-
tations of encoding a number simply as an intensity value (finite dynamic range and finite
intensity resolution in the modulators and detectors) could be overcome by representing
the numbers in some base. Significant effort went into dealing with carry operations so
that in additions, subtractions, and multiplications each digit could be processed in par-
allel. Algorithms based on convolution to multiply numbers in this representation were
demonstrated [48], with a single post-processing step to combine the sub-calculations
and deal with the carry operations.

An application that benefited greatly from the tightly-coupled parallelism afforded by
optics was the solving of sets of simultaneous equations and matrix inversion [17,1]. An
application that, further, was tolerant to the inherent inaccuracies and noise of analog
optics was optical neural networks [28,20] including online neural learning in the presence
of noise [62].
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2.3. Digital optical computing

The next major advances came in the form of optical equivalents of digital comput-
ers [44]. The flexibility of digital systems over analog systems in general was a major
factor behind the interest in this form of optical computation [78]. Specific drawbacks of
the analog computing paradigm in optics that this new paradigm addressed included no
perceived ability to perform general purpose computation, accumulation of noise from
one computation step to another, and systematic errors introduced by imperfect analog
components. The aim was to design digital optical computers that followed the same
principles as conventional electronic processors but which could perform many binary
operations in parallel. These systems were designed from logic gates using nonlinear op-
tical elements: semitransparent materials whose transmitted intensity has a nonlinear
dependence on the input intensity.

Digital optical computing was also proposed as an application of architectures designed
originally for image-based processing, for example logic effected through symbolic substi-
tution [10]. At the confluence of computing and communication, optical techniques were
proposed for the routing of signals in long-haul networks [29,101].

3. Optical computing hardware

The three most basic hardware components of an optical information processing system
are a source, a modulator, and a detector. A source generates the light, a modulator
multiplies the light by a (usually, spatially varying) function, and a detector senses the
resulting light. These and others are introduced in this section.

3.1. Sources

Lasers are a common source of illumination because at some levels they are math-
ematically simpler to understand, but incoherent sources such as light-emitting diodes
are also used frequently for increased tolerance to noise and when nonnegative functions
are sufficient for the computation. Usually, the source is monochromatic to avoid the
problem of colour dispersion as the light passes through refracting optical components,
unless this dispersion is itself the basis for the computation.

3.2. Spatial light modulators (SLMs)

It is possible to encode a spatial function (a 2D image) in an optical wavefront. A page
of text when illuminated with sunlight, for example, does this job perfectly. This would
be called an amplitude-modulating reflective SLM. Modulation is a multiplicative effect,
so an image encoded in the incoming wavefront will be pointwise multiplied by the image
on the SLM. Modulators can also act on phase and polarisation, and can be transmissive
rather than reflective. They include photographic film, and electro-optic, magneto-optic,
and acousto-optic devices [57,4,48,29,35]. One class of note are the optically-addressed
SLMs, in which, typically, a 2D light pattern falling on a photosensitive layer on one side
of the SLM spatially varies (with an identical pattern) the reflective properties of the
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other side of the SLM. A beam splitter then allows one to read out this spatially-varying
reflectance pattern. The liquid-crystal light valve [45] is one instance of this class. Other
classes of SLMs such as liquid-crystal display panels and acousto-optic modulators allow
one to dynamically alter the pattern using electronics. It is possible for a single device
(such as an electronically programmed array of individual sources) to act as both source
and modulator.

3.3. Detectors and Nature’s square law

Optical signals can be regarded as having both an amplitude and phase. However,
detectors will measure only the square of the amplitude of the signal (referred to as its
intensity). This phenomenon is known as Nature’s detector square law and applies to
detectors from photographic film to digital cameras to the human eye. Detectors that
obey this law are referred to as square-law detectors. This law is evident in many physical
theories of light. In quantum theory, the measurement of a complex probability function
is formalised as a projection onto the set of real numbers through a squaring operation.
Square-law detectors need to be augmented with a interferometric or holographic ar-
rangement to measure both amplitude and phase rather than intensity [13], or need to
be used for multiple captures in different domains to heuristically infer the phase.

Since it squares the absolute value of a complex function, this square law can be
used for some useful computation (for example, in the joint transform correlator [92]).
Detectors most commonly used include high range point (single pixel) detectors such as
photodiodes, highly sensitive photon detectors such as photomultiplier tubes, and 1D
and 2D array detectors such as CCD- or CMOS-digital cameras. Intensity values outside
the range of a detector (outside the lowest and highest intensities that the detector
can record) are thresholded accordingly. The integration time of some detectors can be
adjusted to sum all of the light intensity falling on them over a period of time. Other
detectors can have quite large light sensitive areas and can sum all of the light intensity
falling in a region of space.

3.4. Other optical computing hardware

Lenses can be used to effect high fan-in and fan-out interconnections, to rescale images
linearly in either one or two dimensions, and for taking Fourier transforms. In fact, a co-
herent optical wavefront naturally evolves into its Fresnel transform, and subsequently
into its Fourier transform at infinity, and the lens simply images those frequency compo-
nents at a finite fixed distance.

A mirror changes the direction of the wavefront and simultaneously reflects it along
some axis. A phase conjugate mirror [25] returns an image along the same path at which
it approached the mirror.

Prisms can be used to for in-plane flipping (mirror image), in-plane rotations, and out-
of-plane tilting. A prism or diffraction grating can be used to separate by wavelength the
components of a multi-wavelength optical channel. For optical fiber communications ap-
plications, more practical (robust, economical, and scalable) alternatives exist to achieve
the same effect [101].
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Polarisation is an important property of wavefronts, in particular in coherent optical
computing, and is the basis for how liquid crystal displays work. At each point, an
optical wavefront has an independent polarisation value dependent on the angle, in the
range [0, 2π), of its electrical field. This can be independent of its successor (in the case
of randomly polarised wavefronts), or dependent (as in the case of linear polarisation),
or dependent and time varying (as in the case of circular or elliptical polarisation).
Mathematically, a polarisation state, and the transition from one polarisation state to
another, can be described using the Mueller calculus or the Jones calculus.

Photons have properties such as phase, polarisation, and quantum state that can be
used for computation. For example, quantum computers using linear optical elements
(such as mirrors, polarisers, beam splitters, and phase shifters) have been proposed and
demonstrated [50].

4. Efficiencies in optical computing

Optical computing is an inherently multidisciplinary subject whose study routinely
involves a spectrum of expertise that threads optical physics, materials science, optical
engineering, electrical engineering, computer architecture, computer programming, and
computer theory. Applying ideas from theoretical computer science, such as analysis of
algorithms and computational complexity, enables us to place optical computing in a
framework where we can try to answer a number of important questions. For example,
which problems are optical computers suitable for solving? Also, how does the resource
usage on optical computers compare with more standard (e.g. digital electronic) architec-
tures? The physical principles behind some efficiencies in optical computing are outlined
here.

4.1. Fan-in efficiency

Kirchoff’s Law is well understood in analog electronics as a natural and constant-time
means of summing the current at the intersection of an arbitrary number of wires [58]. In
optics, the same thing is possible by directing several light beams towards a point detector
with a linear response to incident light. Such an optical arrangement sums n nonnegative
integers in O(1) addition steps. On a model of a sequential digital electronic computer
this would require n − 1 addition operations and even many typical (bounded fan-in)
parallel models, with n or more processors, take O(log n) timesteps. Tasks that rely on
scalar summation operations (such as matrix multiplication) would benefit greatly from
an optical implementation of the scalar sum operation. Similarly, O(1) multiplication
and O(1) convolution operations can be realised optically. Very recently, an optics-based
digital signal processing platform has been marketed that claims digital processing speeds
of tera (1012) operations per second [53].

4.2. Efficiency in interconnection complexity

As optical pathways can cross in free space without measurable effect on the infor-
mation in either channel, high interconnection densities are possible with optics [20].
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Architectures with highly parallel many-to-many interconnections between parallel sur-
faces have already been proposed for common tasks such as sorting [7]. Currently, intra-
chip, inter-chip, and inter-board connections are being investigated for manufacturing
feasibility [59].

4.3. Energy efficiency

Electrical wires suffer from induced noise and heat, which increases dramatically when-
ever wires are made thinner or placed closer together, or whenever the data throughput
is increased [59]. As a direct consequence of their resistance-free pathways and noise-
reduced environments, optical systems have the potential to generate less waste heat and
so consume less energy per computation step than electronic systems [14]. This has been
demonstrated experimentally with general-purpose digital optical processors [38].

5. Optical models of computation and computational complexity

There has been a lot of effort put into designing optical computers to emulate conven-
tional microprocessors (digital optical computing), and to image processing over contin-
uous wavefronts (analog optical computing and pattern recognition). Numerous physical
implementations of the latter class exist, and example applications include fast pattern
recognition and matrix-vector algebra [35,90]. There have been much resources devoted
to designs, implementations and algorithms for such optical information processing ar-
chitectures (for example see [4,15,29,35,52,55,57,62,77,90,101,27] and their references).

However the computational complexity theory of optical computers (that is, finding
lower and upper bounds on computational power in terms of known complexity classes)
has received relatively little attention when compared with other nature-insired com-
puting paradigms. Some authors have even complained about the lack of suitable mod-
els [29,55]. Many other areas of natural computing (e.g. [41,2,54,100,82,37,70,60,61]) have
not suffered from this problem. Despite this, we review a number of algorithmically orien-
tated results related to optical computing. We then go on to suggest classes of problems
where optical computers might be usefully applied.

Reif and Tyagi [77] study two optically inspired models. One model is a 3D VLSI model
augmented with a 2D discrete Fourier transform (DFT) primitive and parallel optical
interconnections. The other is a DFT circuit with operations (multiplication, addition,
comparison of two inputs, DFT) that compute over an ordered ring. Time complexity
is defined for both models as number of (parallel) steps. For the first model, volume
complexity is defined as the volume of the smallest convex box enclosing an instance of
the model. For the DFT circuit, size is defined as the number of edges plus gates. Constant
time, polynomial size/volume, algorithms for a number of problems are reported including
matrix multiplication, sorting and string matching [77]. These interesting results are
built upon the ability of their models to compute the 2D DFT in one step. The authors
suggest that the algorithm designer and optical computing architecture communities
should identify other primitive optical operations, besides the DFT, that might result
in efficient parallel algorithms. Barakat and Reif [6], and Tyagi and Reif [76] have also
shown lower bounds on the optical VLSI model.
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Reif, Tygar and Yoshida [75] examined the computational complexity of ray tracing
problems. In such problems we are concerned about the geometry of an optical system
where diffraction is ignored and we wish to predict the position of light rays after passing
through some system of mirrors and lenses. They gave undecidability and PSPACE hard-
ness results, which gives an indication of the power of these systems as computational
models.

Feitelson [29] gives a call to theoretical computer scientists to apply their knowledge
and techniques to optical computing. He then goes on to generalise the concurrent read,
concurrent write parallel random access machine, by augmenting it with two optically
inspired operations. The first is the ability to write the same piece of data to many global
memory locations at once. Secondly, if many values are concurrently written to a single
memory location then a summation of those values is computed in a single timestep.
Essentially Feitelson is using ‘unbounded fan-in with summation’ and ‘unbounded fan-
out’. His architecture mixes a well known discrete model with some optical capabilities.

A symbolic substitution model of computation has been proposed by Huang and Bren-
ner, and a proof sketched of its universality [10]. This model of digital computation oper-
ates over discrete binary images and derives its efficiency by performing logical operations
on each pixel in the image in parallel. It has the functionality to copy, invert, and shift
laterally individual images, and OR and AND pairs of images. Suggested techniques for
its optical implementation are outlined.

In computer science there are two famous classes of problems called P and NP [68]. P
contains those problems that are solvable in polynomial time on a standard sequential
computer, while NP is the class of problems that are solvable in polynomial time on a
nondeterministic computer. NP contains P, and it is widely conjectured that they are not
equal. A direct consequence of this conjecture is that there are (NP-hard) problems for
which we strongly believe there is no polynomial time algorithm on a standard sequential
computer.

It is known that it is possible to solve any NP (and even any PSPACE) problem in
polynomial time on optical computers, albeit with exponential use of some other, space-
like, resources [97,93,95]. These results were shown on the CSM, a general model of a
wide range of optical computers. The lower bound results were shown by generating
appropriate Boolean masks, of exponential size, and manipulating the masks via parallel
multiplications and additions to simulate space bounded Turing machines in a time-
efficient way. The model was designed on the one hand to be close to the realities of
optical computing, and on the other hand to be relatively straightforward to analyse from
the point of view of computational complexity theory (e.g. see Section 6). In Section 9.1
we discuss the computational abilities of this computational model.

Since these general results, there have been a number of specific examples of optical
systems (with exponential resource usage) for NP-hard problems.

Shaked et al. [79–81] design an optical system for solving the NP-hard travelling sales-
man problem in polynomial time. Basically they use an optical matrix-vector multiplier
to generate the (exponentially large) matrix of all possible tours, then they multiply this
tour matrix by the vector of intercity weights, and finally the lowest value in the resulting
vector corresponds to the shortest tour. Interestingly, they give both optical experiments
and simulations. They note that solving travelling salesman problems (or Hamiltonian
path problems) with more than 15 nodes is problematic. However they argue that for less
nodes (e.g. 5) their system works in real-time, which is faster than digital-electronic ar-

314



chitectures. Problems with such bounds on input size (i.e. constant) lie in the class NC1,
and moreover in AC0. As argued below, perhaps this suggests that the optical comput-
ing community should be focusing on problems where optics excels over digital-electronic
architectures, such as problems in P or NC, rather than NP-hard problems.

Dolev and Fitoussi [26] give optical algorithms that make use of (exponentially large)
masks to solve a number of NP-hard problems. Oltean [66], and Haist and Osten [39],
give architectures for Hamiltonian path, and travelling salesman problem, respectively,
via light travelling through optical cables. As is to be expected, both suffer from expo-
nential resource use. The paper by MacKenzie and Ramachandran [56] is an example of
algorithmic work, and lower bounds, on dynamically reconfigurable optical networks.

5.1. A possible way forward

Nature-inspired systems that apparently solve NP-hard problems in polynomial time,
while using an exponential amount of some other resource(s), have been around for many
years. So the existence of massively parallel optical systems for NP-hard problems should
not really suprise the reader.

One could argue that it is interesting to know the computational abilities, limitations,
and resource trade-offs of such optical architectures, as well as to find particular (tractable
or intractable) problems which are particularly suited to optical algorithms. However,
“algorithms” that use exponential space-like resources (such as number of pixels, number
of images, number of amplitude levels, etc.) are not realistic to implement for large input
instances. What happens to highly parallel optical architectures if add the requirement
that the amount of space-like resources are bounded in some reasonable way? We could,
for example, stipulate that the optical machine use no more than a polynomially bounded
amount of space-like resources. If the machine runs in polynomial time, then it is not
difficult to see that it characterises P [99] (by characterise we mean that the model solves
exactly those problems in P), for a wide range of reasonable parallel and sequential
optical models. Many argue that the reason for using parallel architectures is to speed-
up computations. Asking for an exponential speed-up motivates the complexity class NC.
The class NC can be thought of as those problems in P that can be solved exponentially
faster on parallel computers than on sequential computers. NC is contained in P and it is
an major open question whether this containment is strict: it is widely conjectured that
this is indeed the case [36].

How does this relate to optics? It turns out that a wide range of optical computers that
run for at most polylogarithmic time, and use at most polynomial space-like resources,
solve exactly NC [97,93,95] (this can be shown to be a corollary of the PSPACE char-
acterisation cited earlier in Section 5). In effect this means that we have an algorithmic
way (in other words, a compiler) to convert existing NC algorithms into optical algo-
rithms that use similar amounts of resources. There is scope for further work here, on
the CSM in particular, in order to find exact characterisations, or as close as possible for
NCk for given k. On a technical note, NC can be defined as ∪∞

k=0NCk, where NCk is the
class of problems solvable on a PRAM that runs for O(log n)k time and uses polynomial
processors/space, in input length n. Equivalently NCk can be defined as those problems
solvable by circuits of O(log n)k depth (parallel time), and polynomial size. From the
practical side of things, perhaps we can use these kinds of results to find problems within
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NC, where optical architectures can be shown to excel. Obvious examples for which this
is already known are matrix-vector multiplication (which lies in NC2), or Boolean matrix
multiplication (which is in NC1). Another example is the NC1 unordered search prob-
lem [99,98]. Another closely related idea is to exploit the potential unbounded fan-in
of optics to compute problems in the AC, and TC, (parallel) circuit classes. These are
defined similarly to NC circuits except we allow unbounded fan-in gates, and threshold
gates, respectively. The results in the above mentioned paper of Reif and Tyagi [77], and
Caulfield’s observation on the benefits of unbounded fan-in [16], can be interpreted as
exploiting this important and efficient aspect of optics.

6. Continuous space machine (CSM)

For the remainder of this paper we focus on an optical model of computation called the
CSM. The model was originally proposed by Naughton [63,64]. The CSM is inspired by
analog Fourier optical computing architectures, specifically pattern recognition and ma-
trix algebra processors [35,62]. For example, these architectures have the ability to do unit
time Fourier transformation using coherent (laser) light and lenses. The CSM computes
in discrete timesteps over a number of two-dimensional images of fixed size and arbitrary
spatial resolution. The data and program are stored as images. The (constant time) oper-
ations on images include Fourier transformation, multiplication, addition, thresholding,
copying and scaling. The model is designed to capture much of the important features
of optical computers, while at the same time be amenable to analysis from a computer
theory point of view. Towards these goals we give an overview of how the model relates
to optics as well as giving a number of computational complexity results for the model.

Section 6.1 begins by defining the model. We analyse the model in terms of seven
complexity measures inspired by real-world resources, these are described in Section 6.2.
In Section 6.3 we discuss possible optical implementations for the model. We then go
on to give example algorithms and datastructures in Section 7. The CSM definition is
rather general, and so in Section 8 we define a more restricted model called the C2-
CSM. Compared to the CSM, the C2-CSM is somewhat closer to optical computing as
it happens in the laboratory. Finally, in Section 9 we show the power and limitations
of optical computing, as embodied by the C2-CSM, in terms computational complexity
theory. Optical information processing is a highly parallel form of computing and we
make this intuition more concrete by relating the C2-CSM to parallel complexity theory
by characterising the parallel complexity class NC. For example, this shows the kind of
worst case resource usage one would expect when applying CSM algorithms to problems
that are known to be suited to parallel solutions.

6.1. CSM definition

We begin this section by describing the CSM model in its most general setting, this
brief overview is not intended to be complete and more details are to be found in [93].

A complex-valued image (or simply, image) is a function f : [0, 1)× [0, 1) → C, where
[0, 1) is the half-open real unit interval. We let I denote the set of complex-valued images.
Let N+ = {1, 2, 3, . . .}, N = N+ ∪ {0}, and for a given CSM M let N be a countable set
of images that encode M ’s addresses. An address is an element of N × N. Additionally,
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for a given M there is an address encoding function E : N → N such that E is Turing
machine decidable, under some reasonable representation of images as words.

Definition 1 (CSM) A CSM is a quintuple M = (E, L, I, P,O), where
E : N → N is the address encoding function,
L = ((sξ, sη) , (aξ, aη) , (bξ, bη)) are the addresses: sta, a and b, where a �= b,
I and O are finite sets of input and output addresses, respectively,
P = {(ζ1, p1ξ

, p1η ), . . . , (ζr, prξ
, prη)} are the r programming symbols ζj and

their addresses (pjξ , pjη ) where ζj ∈ ({h, v, ∗, ·,+, ρ, st, ld, br, hlt}∪ N ) ⊂ I.
Each address is an element from {0, . . . ,Ξ − 1} × {0, . . . ,Y − 1} where Ξ,Y ∈ N+.

Addresses whose contents are not specified by P in a CSM definition are assumed
to contain the constant image f(x, y) = 0. We interpret this definition to mean that
M is (initially) defined on a grid of images bounded by the constants Ξ and Y, in the
horizontal and vertical directions respectively. The grid of images may grow in size as the
computation progresses. In our grid notation the first and second elements of an address
tuple refer to the horizontal and vertical axes of the grid respectively, and image (0, 0) is
located at the lower left-hand corner of the grid. The images have the same orientation
as the grid. For example the value f(0, 0) is located at the lower left-hand corner of the
image f .

In Definition 1 the tuple P specifies the CSM program using programming symbol
images ζj that are from the (low-level) CSM programing language [93,98]. We refrain from
giving a description of this programming language and instead describe a less cumbersome
high-level language [93]. Figure 1 gives the basic instructions of this high-level language.
The copy instruction is illustrated in Figure 2. There are also if/else and while control
flow instructions with conditional equality tests of the form (fψ == fφ) where fψ and fφ
are binary symbol images (see Figures 3(a) and 3(b)).

Address sta is the start location for the program so the programmer should write
the first program instruction at sta. Addresses a and b define special images that are
frequently used by some program instructions. The function E is specified by the pro-
grammer and is used to map addresses to image pairs. This enables the programmer to
choose her own address encoding scheme. We typically don’t want E to hide complicated
behaviour thus the computational power of this function should be somewhat restricted.
For example we put such a restriction on E in Definition 7. At any given timestep, a
configuration is defined in a straightforward way as a tuple 〈c, e〉 where c is an address
called the control and e represents the grid contents.

6.2. Complexity measures

In this section we define a number of CSM complexity measures. As is standard, all
resource bounding functions map from N into N and are assumed to have the usual
properties [5]. We begin by defining CSM time complexity in a manner that is standard
among parallel models of computation.

Definition 2 The time complexity of a CSM M is the number of configurations in the
computation sequence of M , beginning with the initial configuration and ending with the
first final configuration.

317



h(i1;i2) : replace image at i2 with horizontal 1D Fourier transform of i1.

v(i1;i2) : replace image at i2 with vertical 1D Fourier transform of image at i1.

∗(i1;i2) : replace image at i2 with the complex conjugate of image at i1.

··· (i1,i2;i3) : pointwise multiply the two images at i1 and i2. Store result at i3.

+(i1,i2;i3) : pointwise addition of the two images at i1 and i2. Store result at i3.

ρ(i1,zl,zu;i2) : filter the image at i1 by amplitude using zl and zu as lower and upper
amplitude threshold images, respectively. Place result at i2.

[ξ′1, ξ
′
2, η

′
1, η

′
2] ← [ξ1, ξ2, η1, η2] : copy the rectangle of images whose bottom left-hand

address is (ξ1, η1) and whose top right-hand address is (ξ2, η2) to the
rectangle of images whose bottom left-hand address is (ξ′1, η

′
1) and whose

top right-hand address is (ξ′2, η
′
2). See illustration in Figure 2.

Fig. 1. CSM high-level programming language instructions. In these instructions i, zl, zu ∈ N × N are
image addresses and ξ, η ∈ N. The control flow instructions are described in the main text.

ξ ξ + 3

η
i

Fig. 2. Illustration of the instruction i ← [ξ, ξ + 3, η, η] that copies four images to a single image that is
denoted i.

(a) (b) (c) (d) (e) (f)

Fig. 3. Representing binary data. The shaded areas denote value 1 and the white areas denote value
0. (a) Binary symbol image representation of 1 and (b) of 0, (c) list (or row) image representation of
the word 1011, (d) column image representation of 1011, (e) 3 × 4 matrix image, (f) binary stack image
representation of 1101. Dashed lines are for illustration purposes only.

The first of our six space-like resources is called grid.

Definition 3 The grid complexity of a CSM M is the minimum number of images,
arranged in a rectangular grid, for M to compute correctly on all inputs.

Let S : I × (N×N) → I, where S(f(x, y), (Φ,Ψ)) is a raster image, with ΦΨ constant-
valued pixels arranged in Φ columns and Ψ rows, that approximates f(x, y). If we choose
a reasonable and realistic S then the details of S are not important.

Definition 4 The spatialRes complexity of a CSM M is the minimum ΦΨ such that if
each image f(x, y) in the computation of M is replaced with
S(f(x, y), (Φ,Ψ)) then M computes correctly on all inputs.
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One can think of spatialRes as a measure of the number of pixels needed during a
computation. In optical image processing terms, and given the fixed size of our images,
spatialRes corresponds to the space-bandwidth product of a detector or SLM.

Definition 5 The dyRange complexity of a CSM M is the ceiling of the maximum of
all the amplitude values stored in all of M ’s images during M ’s computation.

In optical processing terms dyRange corresponds to the dynamic range of a signal.
We also use complexity measures called amplRes, phaseRes and freq [93,98]. Roughly

speaking, the amplRes of a CSM M is the number of discrete, evenly spaced, amplitude
values per unit amplitude of the complex numbers in M ’s images. For example, we would
need amplRes of 3 to directly store values from the set {0,±1/3,±2/3,±1,±4/3, . . .} as
complex values in an image. Thus amplRes corresponds to the amplitude quantisation
of a signal. The phaseRes of M is the total number (per 2π) of discrete evenly spaced
phase values in M ’s images, and so phaseRes corresponds to the phase quantisation of
a signal. For example, we would need phaseRes of 3 to directly store values from the set
{eix | x ∈ {0, 2/3π, 4/3π}} as complex values in an image. Finally, the freq complexity
of a CSM M is the minimum optical frequency necessary for M to compute correctly,
this concept is explained further in [98].

Often we wish to make analogies between space on some well-known model and CSM
‘space-like’ resources. Thus we define the following convenient term.

Definition 6 The space complexity of a CSM M is the product of the grid, spatialRes,
dyRange, amplRes, phaseRes and freq complexities of M .

6.3. Optical realisation

In this section, we outline how some of the elementary operations of the CSM could
be carried out physically. We do not intend to specify the definitive realisation of any of
the operations, but simply convince the reader that the model’s operations have physical
interpretations. Furthermore, although we concentrate on implementations employing
visible light (optical frequencies detectable to the human eye) the CSM definition does
not preclude employing other portion(s) of the electromagnetic spectrum.

A complex-valued image could be represented physically by a spatially coherent optical
wavefront. Spatially coherent illumination (light of a single wavelength and emitted with
the same phase angle) can be produced by a laser. A SLM could be used to encode the
image onto the expanded and collimated laser beam. One could write to a SLM offline
(expose photographic film, or laser print or relief etch a transparency) or online (in the
case of a liquid-crystal display [102,62,91] or holographic material [24,74]). The functions
h and v could be effected using two convex cylindrical lenses, oriented horizontally and
vertically, respectively [90,35,62,34].

A coherent optical wavefront will naturally evolve into its own Fourier spectrum as
it propagates to infinity. What we do with a convex lens is simply image, at a finite
distance, this spectrum. This finite distance is called the focal length of the lens. The
constant θ used in the definitions of h and v could be effected using Fourier spectrum
size reduction techniques [90,35] such as varying the focal length of the lens, varying the
separation of the lens and SLM, employing cascaded Fourier transformation, increasing
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the dimensions/reducing the spatial resolution of the SLM, or using light with a shorter
wavelength.

The function ∗ could be implemented using a phase conjugate mirror [25]. The func-
tion · could be realised by placing a SLM encoding an image f in the path of a wavefront
encoding another image g [90,35,89]. The wavefront immediately behind the SLM would
then be ·(f, g). The function + describes the superposition of two optical wavefronts.
This could be achieved using a 50:50 beam splitter [90,25,92]. The function ρ could be
implemented using an electronic camera or a liquid-crystal light valve [91]. The parame-
ters zl and zu would then be physical characteristics of the particular camera/light valve
used. zl corresponds to the minimum intensity value that the device responds to, known
as the dark current signal, and zu corresponds to the maximum intensity (the saturation
level).

A note will be made about the possibility of automating these operations. If suitable
SLMs can be prepared with the appropriate 2D pattern(s), each of the operations h, v, ∗, ·,
and + could be effected autonomously and without user intervention using appropriately
positioned lenses and free space propagation. The time to effect these operations would
be the sum of the flight time of the image (distance divided by velocity of light) and
the response time of the analog 2D detector; both of which are constants independent
of the size or resolution of the images if an appropriate 2D detector is chosen. Examples
of appropriate detectors would be holographic material [24,74] and a liquid-crystal light
valve with a continuous (not pixellated) area [91]. Since these analog detectors are also
optically-addressed SLMs, we can very easily arrange for the output of one function to act
as the input to another, again in constant time independent of the size or resolution of the
image. A set of angled mirrors will allow the optical image to be fed back to the first SLM
in the sequence, also in constant time. It is not known, however, if ρ can be carried out
completely autonomously for arbitrary parameters. Setting arbitrary parameters might
fundamentally require offline user intervention (adjusting the gain of the camera, and so
on), but at least for a small range of values this can be simulated online using a pair of
liquid-crystal intensity filters.

We have outlined some optics principles that could be employed to implement the op-
erations of the model. The simplicity of the implementations hides some imperfections in
our suggested realisations. For example, the implementation of the + operation outlined
above results in an output image that has been unnecessarily multiplied by the constant
factor 0.5 due to the operation of the beam splitter. Also, in our suggested technique,
the output of the ρ function is squared unnecessarily. However, each of these effects can
be compensated for with a more elaborate optical setup and/or at the algorithm design
stage.

A more important issue concerns the quantum nature of light. According to our cur-
rent understanding, light exists as individual packets called photons. As such, in order
to physically realise the CSM one would have to modify it such that images would have
discrete, instead of continuous, amplitudes. The atomic operations outlined above, in
particular the Fourier transform, are not affected by the restriction to quantised ampli-
tudes, as the many experiments with electron interference patterns indicate. We would
still assume, however, that in the physical world space is continuous.

A final issue concerns how a theoretically infinite Fourier spectrum could be represented
by an image (or encoded by a SLM) of finite extent. This difficulty is addressed with the
freq complexity measure [98].
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7. Example CSM datastructures and algorithms

In this section we give some example data representations. We then to go on to give
an example CSM algorithm that efficiently squares a binary matrix.

7.1. Representing data as images

There are many ways to represent data as images and interesting new algorithms
sometimes depend on a new data representation. Data representations should be in some
sense reasonable, for example it is unreasonable that the input to an algorithm could (non-
uniformly) encode solutions to NP-hard or even undecidable problems. From Section 8.1,
the CSM address encoding function gives the programmer room to be creative, so long
as the representation is logspace computable (assuming a reasonable representation of
images as words).

Here we mention some data representations that are commonly used. Figures 3(a)
and 3(b) are the binary symbol image representations of 1 and 0 respectively. These im-
ages have an everywhere constant value of 1 and 0 respectively, and both have spatialRes
of 1. The row and column image representations of the word 1011 are respectively given
in Figures 3(c) and 3(d). These row and column images both have spatialRes of 4. In
the matrix image representation in Figure 3(e), the first matrix element is represented at
the top left corner and elements are ordered in the usual matrix way. This 3 × 4 matrix
image has spatialRes of 12. Finally the binary stack image representation, which has
exponential spatialRes of 16, is given in Figure 3(f).

Figure 2 shows how we might form a list image by copying four images to one in a single
timestep. All of the above mentioned images have dyRange, amplRes and phaseRes
of 1.

Another useful representation is where the value of a pixel directly encodes a number,
in this case dyRange becomes crucial. We can also encode values as phase values, and
naturally phaseRes becomes a useful measure of the resources needed to store such
values.

7.2. A matrix squaring algorithm

Here we give an example CSM algorithm (taken from [95]) that makes use of the data
representations described above. The algorithm squares a n×n matrix in O(log n) time
and O(n3) spatialRes (number of pixels), while all other CSM resources are constant.

Lemma 1 Let n be a power of 2 and let A be a n × n binary matrix. The matrix A2

is computed by a C2-CSM, using the matrix image representation, in time O(log n),
spatialRes O(n3), grid O(1), dyRange O(1), amplRes 1 and phaseRes 1.

Proof. (Sketch) In this proof the matrix and its matrix image representation (see Fig-
ure 3(e)) are both denoted A. We begin with some precomputation, then one parallel
pointwise multiplication step, followed by logn additions to complete the algorithm.

We generate the matrix image A1 that consists of n vertically juxtaposed copies of
A. This is computed by placing one copy of A above the other, scaling to one image,
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and repeating to give a total of log n iterations. The image A1 is constructed in time
O(log n), grid O(1) and spatialRes O(n3).

Next we transpose A to the column image A2. The first n elements of A2 are row 1 of
A, the second n elements of A2 are row 2 of A, etc. This is computed in time O(log n),
grid O(1) and spatialRes O(n2) as follows.

Let A′ = A and i = n. We horizontally split A′ into a left image A′
L and a right

image A′
R. Then A′

L is pointwise multiplied (or masked) by the column image that
represents (10)i, in time O(1). Similarly A′

R is pointwise multiplied (or masked) by the
column image that represents (01)i. The masked images are added. The resulting image
has half the number of columns as A′ and double the number of rows, and for example:
row 1 consists of the first half of the elements of row 1 of A′ and row 2 consists of the
latter half of the elements of row 1 of A′. We call the result A′ and we double the value
of i. We repeat the process to give a total of logn iterations. After these iterations the
resulting column image is denoted A2.

We pointwise multiply A1 andA2 to giveA3 in timeO(1), grid O(1) and spatialRes O(n3).
To facilitate a straightforward addition we first transpose A3 in the following way:

A3 is vertically split into a bottom and a top image, the top image is placed to the
left of the bottom and the two are scaled to a single image, this splitting and scaling is
repeated to give a total of logn iterations and we call the result A4. Then to perform
the addition, we vertically split A4 into a bottom and a top image. The top image is
pointwise added to the bottom image and the result is thresholded between 0 and 1.
This splitting, adding and thresholding is repeated a total of logn iterations to create
A5. We ‘reverse’ the transposition that created A4: image A5 is horizontally split into a
left and a right image, the left image is placed above the right and the two are scaled
to a single image, this splitting and scaling is repeated a total of logn iterations to give
A2. �

The algorithm highlights a few points of interest about the CSM. The CSM has quite
a number of space-like resources, and it is possible to have trade-offs between them. For
example in the algorithm above, if we allow grid to increase from O(1) to O(n) then
the spatialRes can be reduced from O(n3) to O(n2). In terms of optical architectures
modelled by the CSM this phenomenon could be potentially very useful as certain re-
sources may well be more economically viable than others. The algorithm is used in the
proof that that polynomial time CSMs (and C2-CSMs, see below) compute problems
that are in the PSPACE class of languages. PSPACE includes the famous NP class. Such
computational complexity results are discussed further in Section 9 below.

There are a number of existing CSM algorithms, for these we point the reader to the
literature [63–65,93,95,97,98].

8. C2-CSM

In this section we define the C2-CSM. One of the motivations for this model is the need
to put reasonable upper bounds on the power of reasonable optical computers. As we’ve
shown elsewhere [96], it turns out that CSMs can very quickly use massive amounts of
resources, and the C2-CSM definition is an attempt to define a more reasonable model,
especially towards the goal of providing useful upper bounds on its power.
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8.1. C2-CSM

Motivated by a desire to apply standard complexity theory tools to the model, we
defined [93,96] the C2-CSM, a restricted and more realistic class of CSM.

Definition 7 (C2-CSM) A C2-CSM is a CSM whose computation time is defined for
t ∈ {1, 2, . . . , T (n)} and has the following restrictions:
– For all time t both amplRes and phaseRes have constant value of 2.
– For all time t each of grid, spatialRes and dyRange is 2O(t) and space is rede-

fined to be the product of all complexity measures except time and freq.
– Operations h and v compute the discrete Fourier transform in the horizontal and ver-

tical directions respectively.
– Given some reasonable binary word representation of the set of addresses N , the ad-

dress encoding function E : N → N is decidable by a logspace Turing machine.

Let us discuss these restrictions. The restrictions on amplRes and phaseRes imply
that C2-CSM images are of the form f : [0, 1) × [0, 1) → {0,± 1

2 ,±1,± 3
2 , . . .}. We have

replaced the Fourier transform with the discrete Fourier transform [9], this essentially
means that freq is now solely dependent on spatialRes; hence freq is not an interest-
ing complexity measure for C2-CSMs and we do not analyse C2-CSMs in terms of freq
complexity [93,96]. Restricting the growth of space is not unique to our model, such
restrictions are to be found elsewhere [33,69,73].

In Section 6.1 we stated that the address encoding function E should be Turing ma-
chine decidable, here we strengthen this condition. At first glance sequential logspace
computability may perhaps seem like a strong restriction, but in fact it is quite weak.
From an optical implementation point of view it should be the case that E is not compli-
cated, otherwise we cannot assume fast addressing. Other (sequential/parallel) models
usually have a very restricted ‘addressing function’: in most cases it is simply the identity
function on N. Without an explicit or implicit restriction on the computational complex-
ity of E, finding non-trivial upper bounds on the power of C2-CSMs is impossible as E
could encode an arbitrarily complex Turing machine. As a weaker restriction we could
give a specific E. However, this restricts the generality of the model and prohibits the
programmer from developing novel, reasonable, addressing schemes.

9. Optical computing and computational complexity

As we saw in Section 5, there are number of optical algorithms that use the inherent
parallelism of optics to provide fast solutions to certain problems. An alternative approach
is to ask the following question: How does a given optical model relate to standard se-
quential and parallel models? Establishing a relationship with computational complexity
theory, by describing both upper and lower bounds on the model, gives immediate access
to a large collection of useful algorithms and proof techniques.

The parallel computation thesis [31,23,49,87,69] states that parallel time (polynomi-
ally) corresponds to sequential space, for reasonable parallel and sequential models. An
example would be the fact that the class of problems solvable in polynomial space on a
number of parallel models is equivalent to PSPACE, the class of problems solvable on
Turing machines that use at most polynomial space [40,8,30,32,22,33,88,85,83,3,84].
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Of course the thesis can never be proved, it relates the intuitive notion of reasonable
parallelism to the precise notion of a Turing machine. When results of this type were
first shown researchers were suitably impressed; their parallel models truly had great
power. For example if model M verifies the thesis then M decides PSPACE (includ-
ing NP) languages in polynomial time. However there is another side to this coin. It is
straightforward to verify that given our current best algorithms, M will use at least a
superpolynomial amount of some other resource (like space or number of processors) to
decide a PSPACE-complete or NP-complete language. Since the composition of polyno-
mials is itself a polynomial, it follows that if we restrict the parallel computer to use at
most polynomial time and polynomial other resources, then it can at most solve problems
in P.

Nevertheless, asking if M verifies the thesis is an important question. Certain problems,
such as those in the class NC, are efficiently parallelisable. NC can be defined as the class
of problems that are solvable in polylogarithmic time on a parallel computer that uses a
polynomial amount of hardware. So one can think of NC as those problems in P which
are solved exponentially faster on parallel computation thesis models than on sequential
models. If M verifies the thesis then it may be useful to apply M to these problems. We
also know that if M verifies the thesis then there are (P-complete) problems for which
it is widely believed that we will not find exponential speed-up using M .

9.1. C2-CSM and parallel complexity theory

Here we summarise some characterisations of the computing power of optical comput-
ers. Such characterisations enable the algorithm designer to know what kinds of problems
are solvable with resource bounded optical algorithms.

Theorem 2 below gives lower bounds on the computational power of the C2-CSM by
showing that it is at least as powerful as models that verify the parallel computation
thesis.

Theorem 2 ([95,97]) NSPACE(S(n)) ⊆ C2-CSM–TIME(O(S2(n)))

In particular, polynomial time C2-CSMs accept the PSPACE languages. PSPACE is
the class of problems solvable by Turing machines that use polynomial space, which
includes the famous class NP, and so NP-complete problems can be solved by C2-CSMs
in polynomial time. However, any C2-CSM algorithm that we could presently write to
solve PSPACE or NP problems would require exponential space.

Theorem 2 is established by giving a C2-CSM algorithm that efficiently generates, and
squares, the transition matrix of a S(n) = Ω(log n) space bounded Turing machine.
This transition matrix represents all possible computations of the Turing machine and
is of size O(2S) × O(2S). The matrix squaring part was already given as an example
(Lemma 1), and the remainder of the algorithm is given in [95]. The algorithm uses
space that is cubic in one of the matrix dimensions. In particular the algorithm uses
cubic spatialRes, O(23S), and all other space-like resources are constant. This theorem
improves upon the time overhead of a previous similar result [93,97] that was established
via C2-CSM simulation of the vector machines [72,73] of Pratt, Rabin, and Stockmeyer.

From the resource usage point of view, it is interesting to see that the older of these two
algorithms uses grid, dyRange, and spatialRes that are each O(2S), while the newer
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algorithm shows that if we allow more spatialRes we can in fact use only constant grid
and dyRange. It would be interesting to find other such resource trade-offs within the
model.

Since NP is contained in PSPACE, Theorem 2, and the corresponding earlier results
in [93,97], show that this optical model solves NP-complete problems in polynomial time.
As described in Section 5, this has also been shown experimentally, for example Shaked
et al. [80] have recently given a polynomial time, exponential space, optical algorithm
to solve the NP-complete travelling salesperson problem. Their optical setup can be
implemented on the CSM.

The other of the two inclusions that are necessary in order to verify the parallel com-
putation thesis have also been shown: C2-CSMs computing in time T (n) are no more
powerful than TO(1)(n) space bounded deterministic Turing machines. More precisely,
we have:

Theorem 3 ([93,94]) C2-CSM-TIME(T (n)) ⊆ DSPACE(O(T 2(n)))

This result gives an upper bound on the power of C2-CSMs and was established via C2-
CSM simulation by logspace uniform circuits of size and depth polynomial in space and
time respectively [94].

These computational complexity results for the C2-CSM have shown that the model is
capable of parallel processing in much the same way as models that verify the parallel
computation thesis (and models that are known to characterise the parallel class NC).
These results strongly depend on their use of non-constant spatialRes. The algorithms
exploit the ability of optical computers, and the CSM in particular, to operate on large
numbers of pixels in parallel. But what happens when we do not have arbitrary numbers
of pixels? If allow images to have only a constant number of pixels then we need to
find new CSM algorithms. It turns out that such machines also characterise PSPACE in
polynomial time.

Theorem 4 ([99]) PSPACE is characterised by C2-CSMs that are restricted to use poly-
nomial time T = O(nk), spatialRes O(1), grid O(1), and generalised to use amplRes

O(22T

), dyRange O(22T

).

So by treating images as registers and generating exponentially large, and exponentially
small, values we can solve seemingly intractable problems. Of course this kind of CSM is
quite unrealistic from the point of view of optical implementations. In particular, accurate
multiplication of such values is difficult to implement in optics [99].

To restrict the model we could replace arbitrary multiplication, by multiplication by
constants, which can be easily simulated by a constant number of additions. If we disallow
multiplication in this way, we characterise P.

Theorem 5 ([99]) C2-CSMs without multiplication, that compute in polynomial time,
polynomial grid O(nk), and spatialRes O(1), characterise P.

We can swap the roles of grid and spatialRes, and still obtain a P characterisation:

Theorem 6 ([99]) CSMs without multiplication, that compute in polynomial time,
polynomial spatialRes O(nk), and grid O(1), characterise P.
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Theorems 5 and 6 give conditions under which our optical model essentially looses its
parallel abilities and acts like a standard sequential Turing machine.

Via the proofs of Theorems 2 and 3 we can show that C2-CSMs that simultaneously
use polynomial space and polylogarithmic time solve exactly those problems in the
class NC.

Corollary 7 C2-CSM-SPACE,TIME(nO(1), logO(1) n) = NC

Problems in NC highlight the power of parallelism, as these problems can be solved
exponentially faster on a polynomial amount of parallel resources than on polynomial
time sequential machines. As further work in this area one could try to find alternate
characterisations of NC in terms of the C2-CSM. In particular, one could try to find
further interesting trade-offs between the various space-like resources of the model. In
the real world this would correspond to computing over various different optical resources.
As discussed in Section 5 it would be interesting for optical algorithm designers to try to
design (implementable) optical algorithms for NC problems in an effort to find problems
that are well-suited to optical solutions.
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Abstract. We turn the physical Church-Turing Hypothesis from an ambiguous source of sensational
speculations into a (collection of) sound and well-defined scientific problem(s):
Examining recent controversies and causes for misunderstanding concerning the state of the Church-
Turing Hypothesis (CTH), it is suggested to study the CTH ‘sharpened’ relative to an arbitrary but
specific physical theory—rather than vaguely referring to “nature” in general. For this purpose we
combine physical structuralism with computational complexity theory. The benefits of this approach
are illustrated by some exemplary results on computability and complexity in computational physics.
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1 Introduction

In 1937 Alan Turing investigated the capabilities and fundamental limitations of a mathematical abstraction
and idealization of a computer. Nowadays, this Turing machine (TM) is considered the most appropriate
model of actual digital computers reflecting what a common PC can do or cannot do, and capturing its
fundamental capabilities in computability and complexity classes: any computation problem that can be
(efficiently) solved in practice by a PC belongs to ∆1 (to P ); and vice versa. In this sense, the TM is widely
believed to be universal; and problems P 6∈ P , or the Halting problem H 6∈ ∆1, have to be faced up as
principally unsolvable.

1.1 Turing Universality in Computer Science and Mathematics

There are some good reasons for this belief:

• There exists a so-called universal Turing machine (UTM), capable of simulating (with at most poly-
nomial slowdown) any other given TM.
• Several other reasonable models of computation have turned out as equivalent to the TM: WHILE-

programs, λ–calculus etc. Notice that these models correspond to real-world programming languages
like Lisp.

We qualify those good reasons as computer scientific—in contrast to the following evidence based on a
purely mathematical notion:

• An integer function f is TM-computable iff it is µ-recursive;
that is, f belongs to the least class of functions

– containing the constant function 0,
– the successor function x 7→ x+1,
– the projections (x1, . . . ,xn) 7→ xi,
– and being closed under composition,
– under primitive recursion,
– and under so-called µ-recursion.

1.2 Turing Universality in Physics

The? Church-Turing Hypothesis (CTH) claims that every function which would naturally be regarded as
computable is computable under his [i.e. Turing’s] definition, i.e. by one of his machines [Klee52, p.376].
Its strong version claims that efficient natural computability corresponds to polynomial-time Turing com-
putability. Put differently, CTH predicts a negative answer to the following

Question 1. Does nature admit the existence of a system whose computational power strictly exceeds that
of a TM?

Notice that the CTH exceeds the realm of computer science; it involves physics as the general analysis of
nature. Hence, in addition to the computer scientific and mathematical dimensions of Turing universality, a
third dimension would arise if the answer to Question 1 turned out to be negative (cmp. [Benn95,Svoz05]):

• The class of (efficiently) physically computable functions coincides with the class of (polynomial-time)
Turing computable ones.

Insofar a TM can be built at least in principle?? it constitutes a physical system. Conversely, a negative
answer to Question 1 means that every physical ‘computer’ can be simulated (maybe even in polynomial
time) by a TM. Such an answer is supported by long experience in two ways:

? To be fair, this is just one out of a variety of refined interpretations of a claim which neither ALONZO CHURCH nor
ALAN TURING have ever put forth; see, e.g. [Hodg06], [Ord02, SECTION 2.2], [Cope02], or [LoCo08]. In fact I
refer to what in in literature is more specifically called the physical Church-Turing Hypothesis, but for reasons of
conciseness shall in the sequel omit this adjective.

?? it is for instance realized (in good approximation) by any standard PC
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– the constant failure to physically solve the Halting problem and
– the success of simulating a plethora of physical systems on a TM,

namely in Computational Physics.

So far all attempts have failed to prove the CTH, i.e. have given at best bounds on the speed of cal-
culations but not on the general capabilities of computation, based e.g. on the laws of thermodynamics
[BeLa85,Fran02] or on the speed of light (special relativity) [Lloy02]. In fact it has been suggested [Loff07,
p.39] that the Church-Turing Hypothesis be included into physics as an axiom (called the Church-Turing
criterion): just like the impossibility to extract energy from nothing (or from thermal energy alone) started
as a recurring experience and was then postulated as the First (Second) Law of Thermodynamics—and
only later ‘justified’ using Statistical Mechanics. Either way, whether axiomatizing or trying to prove the
Church-Turing Thesis, first of all one needs a formalization of Question 1.

Such attempts are, of course, not new. For instance, Gandy Machines have been proposed [Gand80,Sieg00]
a model of computation based on some specific physical principles. Our approach on the other hand is based
on arbitrary physical theories, providing a more thorough and accurate formal coverage of ‘nature’.

1.3 Summary

The CTH is the subject of a plethora of publications and of many disputes and speculations. The present
work aims to put some reason into the ongoing [Galt06] and often sensational [Kie03b,Lloy06] discussion.
We are convinced that formalizing Question 1 will come useful. However, it seems unlikely that one single
formalization can reach consensus. We notice that most, if not all, disputes about the state of the Church-
Turing Hypothesis arise from disagreeing and/or implicit conceptions of how to formalize it [Smi99b].
The best we can hope for is a class of formalizations, namely one for each physical theory [BeTu07,
SECTION 2(b)]. Let me fortify this:

Manifesto 2. a) Describing the scientific laws of nature is the purpose and virtue of physics. It does so
by means of various physical theories Φ, each of which ‘covers’ some part of reality (but may deviate
on other parts).

b) Consequently, instead of vaguely referring to ‘nature’ (recall Section 1.2) any claim concerning (the
state of) the CTH should explicitly mention the specific physical theory Φ it considers;

c) and criticism against such a claim as ‘based on unrealistic presumptions’ should be regarded as di-
rected towards the underlying physical theory (and stipulate re-investigation subject to another Φ,
rather than dismissing the claim itself); cmp. [BeTu07, PRINCIPLE 2.4].

d) Also the input/output encoding better be specified explicitly when referring to some “CTHΦ”: How is
the argument ~x, of natural or real numbers, fed into the system; i.e. how does its preparation (e.g. in
Quantum Mechanics) proceed operationally; and how is the ‘result’ to be read off (e.g. what ‘question’
is the system to answer)? [Ship93, SECTION I]

Particularly Item b) is central to the present work and explains for its title!
The suggestion to consider physically-relativized Church-Turing Hypotheses “CTHΦ” (cmp. also [BeTu07,

PRINCIPLE 2.1]) bears the spirit of the related treatment of the famous “P versus N P ” Question in
[BGS75]; there it has been shown that, relative to some oracle, both complexity classes coincide whereas
relative to another one they do not.

Section 3 below expands on the concept of a physical theory Φ and its analogy to a model of com-
putation in computer science. We turn Manifesto 2b) into a research programme (Section 6) and illustrate
its benefit for computational physics. Before, Section 2 reports on previous attempts to disprove the CTH
by examples of hypercomputers purportedly capable of solving the Halting problem, and the respective
physical theories they exploit. Subsequently, we simplify one such example in order to inspect its source
of computational power. Based on this insight, we are in Section 4.2 led to extend the above Manifesto:

Manifesto 2 (continued).

e) The concept of “existence” of a hypercomputational physical system (recall Question 1) must be inter-
preted from a constructivistic point of view.
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2 Physical Computing

Common (necessarily informal) arguments in favor of the Church-Turing Hypothesis usually proceed along
the following line: A physical system is mathematically described by an ordinary or partial differential
equation which can be solved numerically using time-stepping—as long as the solution remains regular:
whereas a singular solution is unphysical or too unstable (or both) in order to be harnessed for physical
computing.

On the other hand, in literature there are a variety of suggestions for physical systems of computational
power exceeding that of a TM, e.g.

Example 3 i) General Relativity might admit for space-times such that the clock of a TM M following
one world-line seems to reach infinity within finite time according to the clock of an observer O starting
at the same event but following another world-line; thus O can decide whether M terminates or not
[EtNe02].
However it is unknown whether such space-times actually exist in our universe; and if they exist,
how to locate them and how far from earth they might be in order to be used for solving the Halting
problem. (Notice that the closest known Black Hole, namely next to star V4641, takes at least 1600
years to travel to). Finally, it has been criticized that the TM in question had to run indefinitely—and
use corresponding amounts of storage tape and energy.

ii) While ‘standard’ quantum computers using a finite number of qubits can be simulated on a TM (al-
though possibly at exponential slowdown), Quantum Mechanics (QM) supports operators on infinite
superpositions which could be exploited to solve the Halting problem [CDS00,Kie03a,ACP04,Zieg05].
On the other hand there are already considerable doubts that finite??? quantum parallelism is in con-
siderable is practical due to issues of decoherence, i.e. susceptibility to external, classical noise (a
kind of instability if you like); hence how much more unrealistic be infinite one!

iii) Already in their mathematical formulation, certain theories of Quantum Gravitation involve combi-
natorial conditions which are known undecidable to a TM [GeHa86].
These, however, are still mere (and preliminary) theories. . .

iv) A light ray passing through a finite system of mirrors corresponds to the computation of a Turing
machine; and by detecting whether it finally arrives at a certain position, one can solve the Halting
problem [RTY94].
The catch is that the ray must adhere to Geometric Optics, i.e. have infinitely small diameter, be
devoid of dispersion, and propagate instantaneously; also the mirrors have to be perfect.

v) The above claim that singular solutions can be ruled out is put into question by the discovery of non-
collision singularities in Newtonian many-body systems [Yao03,Smi06a,Svoz07].
On the other hand, the construction of these singularities heavily relies on the moving particles being
ideal points obeying Newton’s Law (with the singularity at 0) up to arbitrary small distances.

vi) Even Classical Mechanics has been suggested to allow for physical objects which can be probed
in finite time to answer queries “n ∈ X” for any fixed set X ⊆ N (and in particular for the Halting
problem) [BeTu04].
However creating this classical device seems to require solving X in the first place.

vii) Already 1D heat conduction has been shown [PERi81] capable of evolving a computable initial con-
dition x 7→ u(0,x) into an uncomputable one x 7→ u(1,x). Here the caveat is that, while the initial
condition is computable and continuously differentiable, its derivative is not, and hence again implic-
itly contains the superrecursive power as input [WeZh02].

Notice that each approach is based on and exploits sometimes beyond recognition some (more or less
specific) physical theory. Also, the indicated reproaches against each approach to hypercomputation aim at
the physical theory it is based on.

??? The present world-record seems to provide calculations on only 28 qubits; and even that is rather questionable
[Pont07]
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3 Physical Theories

have been devised as the scientific means for objectively describing and predicting the behavior of nature
for thousands of years. Nowadays, we may feel inclined to patronize e.g. ARISTOTLE’s eight books, but
his concept of Elements (air, fire, earth, water) constitutes an important first step towards putting some
structure into the many phenomena experienced†

Since Aristotle, a plethora of physical theories of space-time has evolved (cf. e.g. [Duhe85]), associated
with famous names like GALILEO GALILEI, PTOLEMY, NICOLAUS COPERNICUS, JOHANNES KEPLER,
SIR ISAAC NEWTON, HENDRIK LORENTZ, and ALBERT EINSTEIN. Moreover, theories of electricity and
magnetism have sprung and later became unified (JAMES CLERK MAXWELL) with GAUSSian Optics. And
there are various‡ quantum mechanical and field theories. The unification process continued: Electricity
and Magnetism, been merged into Electrodynamics, were joined by Quantum Mechanics to make up
Quantumelectrodynamics (QED), and then with Weak Interaction formed Electroweak Interaction;
moreover Gravitation and Special Relativity became General Relativity.

Remark 4 (Analogy between a Physical Theory and a Model of Computation). Each such theory has
arisen, or rather been devised in order to describe some part of nature with sufficient accuracy—while nec-
essarily neglecting others. (Quantum Mechanics for instance is aimed at describing elementary particles
moving considerably slower than light; whereas Relativity Theory focuses on very fast yet macroscopic ob-
jects.) We point out the analogy of a physical theory to a model of computation in computer science: Here,
the aim is to reflect some aspects of actual computing devises as well, possibly at the expense of other
aspects. (A Turing machine has unbounded working tape; hence it can decide whether a 4GB-memory
bounded PC algorithm terminates. Whereas the canonical model for computing devises with finite mem-
ory, a DFA is unable to decide the correct placement of brackets.)

But what exactly is a physical theory? In addition to a means for clearing up misunderstandings as indicated
in Footnote‡, agreement on this issue is a crucial prerequisite for treating important further questions like:

Are Newton’s Laws an extension of Kepler’s? [Duhe54]
Does Quantum Mechanics imply Classical Mechanics—and if so, in what sense exactly?

To us, such intertheory relations [Batt07,Stoe95] are in turn relevant in view of the above Manifesto 2 with
questions as the following one:

Do the computational capabilities of Quantum Mechanics include those of Classical Mechanics?

3.1 Structuralism in Physics

Just like a physical theory is regularly obtained by trying to infer a simple description of a family of em-
pirical data points obtained from experimental measurements, a meta-theory of physics takes the variety of
existing physical theories as empirical data points and tries to identify their common underlying structure.
The philosophy of science knows several meta-theories of physics, i.e., conceptions of what a physical
theory is [Schm08]:

• SNEED focuses on their mathematical aspects [Snee71]; STEGMÜLLER suggests to formalize physical
theories in analogy to the Bourbaki Programme in mathematics [Steg79,Steg86].

• C.F. V. WEIZSÄCKER envisions the success of unifying previously distinct theories (recall above) to
continue and ultimately lead into a “Theory of Everything” [Weiz85,Sch97b]. From this point of view
any other physical theory (like e.g. Newton Mechanics) is merely a tentative draft [Wein94].

† Even more, closer observation reveals that an argument like “A rock flung up will fall down, because it is a rock’s
nature to rest on earth.” is no less circular than the following two more contemporary ones: “A rock flung up will
fall down, because there is a force pulling it towards the earth.” and Electrons in an atom occupy different orbits,
because they are Fermions.

‡ Remember how scientists regularly get into a fight when starting to talk about (their conception of) Quantum Me-
chanics
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• MITTELSTAEDT emphasizes pluralism in physical theories, i.e., various theories equally appropriate to
describe the same range of phenomena [Mitt72, SECTION 4]. Also [Hage82] points out (among many
other things) that any physical theory or model is a mere approximation and idealization of reality.
• For our purpose, LUDWIG [Ludw90] and, building thereon, SCHRÖTER [Schr96] propose the most

appropriate and elaborated formalization, based on the following (meta-)

Definition 5 (Sketch). A physical theory Φ consists of

– a description of a part of nature it applies to (WB)
– a mathematical theory as the language to describe it (MT)
– and mapping between physical and mathematical objects (AP).

In this setting, each physical theory has a specific and limited range of applicability (WB): a quite pragmatic
approach, compared to the almost eschatological hope of von Weizsäcker and Weinberg for a ToE. From
the point of view of Ludwig and Schröter on the other hand, each new theory adds to and extends with its
WB (=images of MT under AP) that part of nature ‘covered’ by physics: just like a mathematical manifold
being covered and described by the images of Euclidean subsets under charts [Miln97]; see also [Svoz06].

Remark 6. Some major physical theories have already been formalized in the sense of Definition 5; we
mention for instance two‡ Quantum Mechanics [Ludw85,Haet96] and space-time theories
[Meis90,Schr88,ScSc92,Sche92,Sch97a]. Fortunately, our approach suffices with a rather low level of de-
tail compared to the depth of formalization of each of the three components (WB,MT,AP) provided by the
exhaustive [Schr96].

3.2 On the Reality of Physical Theories

The purpose of a physical theory Φ is to describe a part of nature. Hence, when some better description
Φ′ is found, a ‘revolution’ may occur and Φ gets disposed of [Kuhn62]. However a full rejection of Φ

has never happened (and is one source of criticism against Kuhn): more commonly, the new theory Φ′ is
applied to those parts of nature which the old one would not describe (sufficiently well) while keeping Φ

for applications where it long has turned as appropriate.

Example 7 a) Classical/Continuum Mechanics (CM) for instance is often heard of as ‘wrong’—because
matter is in fact composed from atoms circled by electrons on stable orbits—yet it still constitutes the
theory which most mechanical engineering is based on.

b) Similarly, audio systems are successfully designed using Ohm’s Law for (complex) electrical resis-
tance: in spite of Maxwell’s Equations being a more accurate description of alternating currents, not
to mention QED.

Ludwig in [Ludw85] has proven that QM, often considered as ‘better’ (in the sense of more fundamental
and realistic) a theory than CM, does not include or imply CM; see also [Boku08]. (Nevertheless such
claims regularly re-emerge especially in popular science.) Moreover, even QM itself is merely§ an approx-
imation to parts of nature, unrealistic e.g. at high velocities or in the presence of large masses.

These observations urge us to enhance Manifesto 2a+c) with an ontological commitment to scientific
realism:

Manifesto 8. A physical theory Φ (like, e.g. CM) constitutes an element of reality: It exists¶ no less than
“points” or “atoms” do. In particular, it is advisable to investigate the computational power of, and within
such a Φ: Dismissing a theory for being ‘unrealistic’ in one extend or another would in consequence
deprive us of all of them!

§ In particular we disagree with the, seemingly prevalent, opinion that Quantum Theory is somehow salient or even
universal in some sense [HaHa83,Holl96]

¶ Note that this refers to existence on the meta-level of physical theories, as opposed to the existence of a physical
object within a physical theory according to Manifesto 2e). Our distinction between these two levels is analogous
to GÖDEL’s (meta-)proof of the existence (!), for any [. . . ] mathematical theory, of an arithmetical statement which
cannot, within this theory, be proven nor refuted.
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Again, we stress the analogy to theoretical computer science (Remark 4) studying the computational
power of models of computation M (e.g. finite automata, nondeterministic pushdown automata, linear-
bounded nondeterministic Turing machines: the famous Chomsky Hierarchy of formal languages) al-
though each such M is unrealistic in some respects.

4 Hypercomputation in Classical Mechanics?

Let us exemplify Example 3vi) with an alternative ‘hypercomputer’ similar to the one presented in [BeTu04]
yet stripped down to purely exhibit the core idea and make it accessible for further study.

Example 9 Consider a solid body, a cuboid into which has been carved a ‘comb’ with infinitely many teeth
of decreasing width and distance, cf. Figure 1. Moreover, having broken off tooth no.n iff n 6∈ H, we arrive
at an encoding of the Halting problem into a physical object in CM.

This very object (together with some simple mechanical control) is a hypercomputer: It can be read
off and used to decide for each n ∈ N the question “n ∈ H?” by probing with a wedge the presence of the
corresponding tooth.

Fig. 1. Infinite comb with a wedge to probe its teeth

A first reproach against Example 9 might object that the described system, although capable of solving
the Halting problem, is no hypercomputer: because it cannot do anything else, e.g. simulate other Turing
machines. But this is easy to mend: just attach the system to a universal TM, realized in CM [FrTo82].

The second deficiency of Example 9 is more serious: the concept of a solid body in CM is merely an
idealization of actual matter composed from a very large but still finite number of atoms—bad news for an
infinite comb. However, as pointed out in Section 3.2, we are to take a physical theory for serious and study
the computational power of, and within CM.

But there remains another important

Observation 10 (Third issue about Example 9) Even within CM, i.e. granting the existence of ideal solids
and infinite combs: How are we to get hold of one encoding H? Obviously, one cannot construct it from a
blank without solving the Halting problem in the first place. Our only chance is simply to find one (e.g. left
behind by some aliens [Clar68,StSt71]) without knowing how to create one ourselves.

4.1 Existence in Physics

In order to formalize the Church-Turing Hypothesis (a prerequisite for attempting to settle it), we notice
an ambiguity about the word “exist” in Question 1 pointed out already in [Zieg05, REMARK 1.4]: For a
physical object, “existence” (within a physical theory) means that
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A) one has to actually construct it?
B) its non-existence leads to a contradiction?
C) or that its existence does not lead to a contradiction (i.e. is consistent)?

These three opinions correspond in mathematics to the points of view taken by a constructivist, a classical
mathematician (working e.g. in the Zermelo-Fraenkel framework) and one ‘believing’ in the Axiom of
Choice, respectively. The last standpoint (C) is well known to lead to counter-intuitive consequences when
taken in the physical realm of CM:

Example 11 (Banach-Tarski Paradoxon) For a solid ball (say of gold) of unit size in 3-space, there exists
a partition into finitely many (although necessarily not Lebesgue-measurable) pieces that, if put together
appropriately (i.e. after applying certain Euclidean isometries), then form two solid balls of unit size.

This example (see also [Svoz97]) is in no danger of causing inflation: first, because actual material gold is
not infinitely divisible (cmp. the second deficiency of Example 9); secondly, even within CM, because the
partition of the ball ‘exists’ merely in the above Sense C).

Hence, in order to avoid both ‘obviously’ unnatural (counter-) Examples 9 and 11, Manifesto 8 leads
us to transfer and adapt the constructivist standpoint from mathematics to physics and for physics as well.

4.2 Constructivism into Physical Theories!

As explained above, the “existence” of some physical object within a theory Φ has to be interpreted con-
structively; cmp. e.g. PROBLEMS 6.2 and 6.3 in [BeTu04]. To this end and as in [CDCG95], let us distin-
guish two ways of introducing constructivism into a physical theory Φ = (MT,AP,WB):

α) By interpreting the mathematical theory MT constructively; compare [BiBr85,Kush84,BrSv00,Flet02]
and [DSKS95, SECTION III].

β) By imposing constructivism onto the side of physical objects WB.

It seems that Method α), although meritable of its own, does not quite meet our goal of making a physical
theory constructive:

Example 12 Consider the condition for a function f : X → Y between normed spaces to be open; or even
simpler: that of the image f [B(0,1)]⊆ Y of the unit ball in X to be an open subset of Y .

∀u ∈ f [B(0,1)] ∃ε > 0 ∀y ∈ B(u,ε) ∃x ∈ B(0,1) : f (x) = y . (1)

A constructivist would insist that both existential quantifiers have to be interpreted constructively; whereas
in a setting of computation on real numbers by rational approximation, applications suffice that only ε is
computable from u, while the existence of x depending on y need not: compare [Zieg06].

4.2.1 Constructing Physical Objects
Underlying β) is the conception that every object in nature (or more precisely: that part of nature described
by WB) be

• either a primitive one (e.g. a tree, modeled in Φ as a homogeneous cylinder of density ρ = 0.7g/cm3;
or some ore, modeled as CuFeS2)

• or the result of some technological process applied to such primitive objects.

The latter may, e.g., include crafting a tree into a wheel or even a wooden gear; or smelting ore to produce
bronze.

Notice how such a process—the sequence of operations from cutting the tree, cleaning, sawing, carving;
or of melting, reducing, and alloying copper—constitutes an algorithm (and crucial cultural knowledge
passed on from carpenters or redsmiths‖ to their apprentices). More modern and advanced science, too,

‖ An attentative referee has pointed out the inconsequence to admit human interaction for creating a hypercom-
puter, but not during the computation itself. Permitting the latter leads to notions considered, e.g., in [Mins68]
or [GoWe08].
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knows and teaches ‘algorithms’ for constructing physical objects: e.g., in mechanical engineering (say,
designing a gear); or in QM (using a furnace with boiling silver and some magnets to create a beam of
spin- 1

2 particles as in the famous STERN and GERLACH Experiment: This is an example of operationally
constructing a physical object, namely corresponding via AP to a certain wave function ψ as a mathematical
object in MT).

Thus, we are led to extend Definition 5:

Definition 13 (Meta-). The WB of a physical theory Φ consists of

• a specific collection of primitive objects (PrimOb)
• and all so-called constructible objects,

i.e., that can be obtained from primitive ones by a sequence (oi) of preparatory operations.

• The latter are elements o from a specified collection PrepOp.
• Moreover, the sequence (oi) must be ‘computable’.

The first two items of Definition 13 are analogous to a mathematical theory MT consisting of axioms (i.e.
claims which are true by definition) and theorems: claims which follow from the axioms by a sequence
of arguments. The last requirement in Definition 13 is to prevent the body in Example 9 from being ‘con-
structed’ by repeated∗∗ “breaking off a tooth” as preparatory operations. On the other hand, we seem to be
heading for a circular notion: trying to capture the computational contents of a physical theory Φ has re-
quired to restrict to ‘constructible’ objects which, in turn, are defined as the result of a computable sequence
of preparatory operations. That circle is avoided as follows:

Definition 13 (continued).‘Computability’ means relative to a pre-theory ϕ to, and to be specified with,
Φ.

4.2.2 Pre-Theories: Ancestry among Physical Theories
Recall the above example from metallurgy of redoxing an ore: this may described by the phlogiston theory
(an early form of theoretical chemistry, basically extending Aristotle’s concept of four Elements by a fifth
resembling what nowadays would be considered oxygen). Such a ‘chemical’ theory ϕ of its own is required
to formulate (yet does not imply) metallurgy Φ and, in particular, the algorithm therein that yields to bronze:
ϕ is a pre-theory to Φ.

We give some further and more advanced examples of pre-theories:

Example 14 a) The classical Hall Effect relies on Ohm’s law of electrical direct current as well as on
Lorentz’ force law.

b) The Stern-Gerlach experiment, and the quantum theory of spin Φ it spurred, is based on
– a classical, mechanical theory of a spinning top and precession;
– some basic theory of (inhomogeneous) magnetism and in particular of Lorentz force onto a dipole
– an atomic theory of matter (to explain e.g. the particle beam)
– and even a theory of vacuum (TORRICELLI, VON GUERICKE).

c) In fact, any quantum theory of microsystems requires [Ludw85] some macroscopic pre-theory in order
to describe the devices (furnaces, scintillators, amplifiers, counters) for preparing and measuring the
microscopic ensembles under consideration.

d) BARDEEN, COOPER, and SCHRIEFFER’s Nobel prize-winning BCS-Theory of superconductivity is
essentially based on QM

e) whereas superconducting magnets, in turn, are essential to many particle accelerators used for explor-
ing elementary particles.

The reader is referred to [Schr96, DEFINITION 4.0.8] for a more thorough and formal account of this
concept.

∗∗ The reader may be tempted to admit only finite sequences of preparatory operations. However, this would exclude
woodturning a handrail out of a wooden cylinder by letting the carving knife follow a curve, i.e. a continuous
sequence.
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Observation 15 Technological progress can be thought as a directed acyclic graph: a node u corresponds
to a physical theory Φ and may be based on (one or more) predecessor nodes, pre-theories ϕ to Φ. Put
differently, physical theories form nets or logical hierarchies; cmp. [Schr96, VERMUTUNG 14.1.2] and
[Stoe95].

It would be an interesting endeavor to trace the net of (sub-)theories which the Large Hadron Collider
(LHC) at CERN is based on.

5 Computational Physics

Over the last few decades, computer simulations of physical systems have become an important new disci-
pline of physics of its own (in addition to experimental, applied, and theoretical physics). It has, however,
received very little support on behalf of Theoretical Computer Science. Specifically scientists working
in this area—typically highly-skilled programmers with an extensive education in physics and excellent
intuition for it—are highly interested in

Question 16. For a specific (class of) physical systems Φ:

1. Why are they so hard to simulate (in the sense of computing resources like CPU-time) ?
2. How about computational predictions of their long-term behavior? (Compare [Ship93, SECTION I]. . . )
3. Are our respective algorithms optimal, and in what sense?

And, more generally: Which are the principal limits of computer simulation?

Answers to such questions for various Φ (namely theories in the sense of Section 3) are highly appreciated
in Computational Physics: answers given of course in the language of Computational Complexity Theory
[Papa94] and using the methods thereof, namely locating Φ in some complexity (or recursion theoretic)
class and proving that it is complete for that class.

We observe that there are rather few serious and rigorous answers to such questions to-date [FLS05,Wolf85,Krei87,Moor90,Ship93,Svoz93,ReTa93,RTY94,PIM06,Loff07].

5.1 Complexity in Computational Physics↔↔↔ Physically-Relativized Church-Turing Hypotheses

CTH and Question 1 are usually considered with the purpose of exploiting nature’s computing capabilities.
In view of our physically-relativized approach this requires, for a (hyper-)computational system Φ,

• the ability to operationally initialize it (‘preparation’) with a given argument x;
• to read-off the resulting value f (x) calculated by Φ;
• to detect if (or, preferably, even predict when) Φ has completed its ‘computation’.

These properties are clearly violated by most items in Example 3; hence, they are (even more) unlikely to
give rise to a hypercomputer. However, in the case of computer-simulating a physical system Φ, the above
issues vanish: Scientists regularly set up initial conditions for two inspiraling black holes, say, and then
follow their evolution numerically [MTB*07].

Observation 17 A system Φ which turns out to violate CTH has important consequences for computational
physics, even though it might not be harnessable as a hypercomputer: It follows that Φ is intractable to
simulations on a Turing machine (and thus neither on any nowadays digital computer).

Indeed, a variant, the (strong) Simulation Church-Turing Hypothesis claims (cf. e.g. [Loff07, PART I]):

Every function which simulates a finite physical system can be computed by a Turing machine (in
polynomial time).
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Manifesto 2 applies also to this variant of the CTH and yields a natural approach towards resolving Ques-
tion 16(1) as well as Questions 16(2-4): Fix some well-specified physical theory Φ and explore both
(Turing-) computability and computational complexity of simulating and predicting the behavior of sys-
tems in Φ. Here, one is particularly interested in completeness results: In the extreme case, the physical
theory under consideration is rich enough to allow for universal computation (Turing-completeness) and
consequently incorporates the Halting problem; this means that such a Φ is (at least in the worst-case
sense) intractable to Computational Physics; recall e.g. [GeHa86]. But even systems which do comply with
CTH might violate its strong version, i.e., admit superpolynomial lower time complexity bounds; or, more
realistically, they can be proven complete for some classical complexity class like N P or P SPACE :

Observation 18 If (any part of) nature is capable of universal computation, this entails some sort of com-
putational completeness, that is a lower complexity bound.

Remark 19. (Not just) Physicists may tend to avert such negative results: they want solutions, not infeasi-
bility. However, trying to (devise algorithms to) solve a proven (e.g. N P , P SPACE , or even Turing-) hard
problem is of course a waste of effort, time, and money. Hence, seemingly ‘negative’ results can in fact be
used positively:
• as a kind of ‘radar’ guiding around pitfalls of intractability;
• or as an incentive to slightly modify the problem under consideration (e.g. from exact to approximate,

recall Knapsack) in order to make it tractable;
• or as a proof that some algorithm already employed is in fact optimal (and attempts for further im-

provement thus in vain).

Compare also DAVID HILBERT’s emphasis in his famous 1900 presentation in Paris on the high problem
solving effectiveness of negative results in mathematical research.

5.2 Real Number Computation
As opposed to classical problems considered in computational complexity, those problems arising in Com-
putational Physics typically involve real numbers [PERi89,WeZh02,WeZh06]. In order to study their com-
plexities three major approaches are at hand:
a) the bit model: using Turing machines to calculate (numerator and denominator of) rational or dyadic

approximations qn to the desired real x up to some prescribed error [Turi36,Grze57]. Here, complexity
is inherently connected to classical, discrete classes like P , N P , and P SPACE [Frie84,Ko91].

b) the algebraic model: replacing the Boolean ({0,1},∨,∧,¬) and/or integer ring (Z,+,−,×,<) with
that of reals (R,+,−,×,<), that is considering real numbers as primitives and arithmetic operations
thereon as exact, one arrives at the BSS Machine [BCSS98] or real-RAM [PrSh85, SECTION 1.4];
see also [TuZu00]. So one arrives at complexity classes corresponding to the classical ones, too
[BSS89,MeMi97].

c) Restrict to rational inputs!

Approach b) models fixed precision (e.g. double) floating point arithmetic whereas approach a) is more
appropriate for calculations using adaptive accuracy. Note that in both cases, uncomputability/hardness
easily occurs without completeness [Wolf85,Moor90,Smi06a,MeZi06].

Approach c) does not fully count as real number computation. Also, carelessly restricting the domain
of a problem might deprive it of some important features; recall e.g. [Xia92,Smi06a]. Finally, if the output
is not rational again, closure under composition fails already semantically.

6 Vision of a Research Programme

We encourage a systematic exploration of the computational power (i.e. completeness) of a large variety
of physical theories [BeTu07, PRINCIPLE 2.2]. The first goal is a general picture of physically-relativized
Church-Turing Hypotheses, i.e., on the boundary between decidability and Turing-completeness [BeTu07,
PRINCIPLE 2.3]. In the next step one may turn to lower complexity classes like EX P , P SPACE , N P , P ,
and N C . The focus be on a thorough investigation, starting from simplest, decidable theories and slowly
proceeding towards more complex ones (not necessarily in historical order) rich enough to admit a Turing-
complete system therein. In particular, it seems advisable to begin with rather modest physics:
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6.1 Celestial Mechanics

Recall the historical progress of describing and predicting the movement of planets and stars observed in
sky from Eudoxus/Aristotle via Ptolemy, Copernicus, and Kepler to Newton and Einstein. These descrip-
tions constitute physical theories! (They are not necessarily comparable in the sense of reduction.) The
present subsection exemplifies our proposed approach by investigating and reporting on the computational
complexities of two of them.

6.1.1 Newton
Particularly with regard to computability and complexity, Newtonian Mechanics is far from a simple theory.
For this reason we are going to study certain simple subtheories of it [BeTu07, SECTION 2(c)]. Specifically,
let us consider a physical theory Φ of N points moving in Euclidean 3-space under mutual attracting force
proportional to distance−2 (inverse-square law). This is the case for Electrostatics (Coulomb) as well as
for Classical Gravitation (Newton). Some concretions of Question 16 may ask:

1. Does point #1 reach within one second the unit ball B centered at the origin?
2. Does some point eventually escape to infinity?
3. Do two points (within 1sec or ever) collide?

It has been argued that Question 3 makes not much sense, because a ‘collision’ of ideal points (recall
Manifesto 8) can be analytically continued just to pass through each other. Note that Question 1 is not
‘well-posed’ in case that the point just touches the boundary of B; it is therefore usually accompanied by
the promise that point #1 either meets the interior of B within one second or avoids the blown-up ball 2B for
two seconds; and shown P SPACE-hard in this case [ReTa93]. Concerning Question 2, recently it has been
revealed that a point may actually escape to infinity within finite time [Xia92]; the question of whether this
happens has been shown undecidable [Smi06a]—although for input configurations described by (possibly
transcendental) real numbers given as infinite sequences of rational approximations: for such encodings,
mere discontinuity is known to imply uncomputability trivially and without completeness [Grze57].

6.1.2 Planar Eudoxus/Aristotle
An early theory of celestial mechanics originates from ancient Greece. An important purpose of it (and also
of its successors, see Section 6.1.4 below) was to describe and predict the movement of planets and stars
and in particular their conjunctions. Let us capture these aims in the following

Question 20. 1. Will certain planets ever attain perfect conjunction?
2. or within a given time interval?
3. or reach an approximate conjunction, i.e. meet up to some prescribed angular distance ε?

According to ARISTOTLE (Book Λ of Metaphysics) and EUDOXUS OF CNIDUS, earth resides in the center
of the universe (recall the beginning of Section 3) and is circled by celestial spheres moving the celestial
bodies.

Definition 21. Let Φ denote the physical theory (which we refrain from fully formalizing in the sense of
Definition 5 or even [Schr96]) parameterized by the initial positions ui of planets i = 1, . . . ,N, and their
constant directions ~di and velocities vi of rotation.

By Φ′, we mean a two-dimensionally restricted version: planets rotate on circles perpendicular to one
common direction; compare Figure 2. Moreover, initial positions and angular velocities are presumed
‘commensurable††’, that is, rational (multiples of π).

Recall that N C ⊆ P is the class of problems solvable in polylogarithmic parallel time on polynomially
many processors; whereas P –hard problems (say w.r.t. logspace-reductions) presumably do not admit
such a beneficial parallelization. The greatest common divisor gcd(a,b) of two given (say, n-bit) integers

†† We don’t want anybody to get drowned like, allegedly, HIPPASUS OF METAPONTUM. Also, since rational numbers
are computable, we thus avoid the issues from Section 4.2.
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Fig. 2. Celestial orbs as drawn in PETER APIAN’s Cosmographia (Antwerp, 1539)

can be determined‡‡ in polynomial time; however it is unknown whether it belongs to N C or is P -hard;
the same holds for the calculation of an extended Euclidean representation “a · y+b · z = gcd(a,b)”, i.e. of
(y,z) = gcdex(a,b) [GHR95, B.5.1].

After these preliminaries, we are able to state the computational complexity of the above theory Φ′;
more precisely the complexity of the decision problems raised in Question 20 in terms of Φ′s parameters:

Theorem 22. Let k ≤ n ∈ N and u1, . . . ,un,v1, . . . ,vn ∈Q be given initial positions and angular velocities
(measured in multiples of 2π) of planets #1, . . . ,#n in Φ′.

a) Planets #1 and #2 will eventually appear in perfect conjunction iff v1 6= v2 ∨u1 = u2.
b) Planets #1 and #2 appear closer than ε > 0 to each other within time interval (a,b) iff it holds, in

interval notation:
/0 6= Z ∩

(
(a,b) · (v1− v2)+u1−u2 +(−ε,+ε)

)
.

This can be decided within N C 1.
c) The question of whether all planets #1, . . . ,#n will ever attain a perfect conjunction, can be decided in

N C gcd;
d) and if so, the next time t for this to happen can be calculated in N C gcdex.
e) Whether there exist k (among the n) planets that ever attain a perfect conjunction, is N P –complete a

problem.

6.1.3 Proofs
The major ingredient is the following tool concerning the computational complexity of problems about
rational arithmetic progressions:

Definition 23. For u,v ∈Q, let u÷ v := (a÷b)/q and gcd(u,v) := gcd(a,b)/q where a,b,q ∈ Z are such
that u = a/q and v = b/q and 1 = gcd(a,b,c); similarly for u remv and lcm(u,v).

For a,α ∈Q, write Pa,α := {α+a · z : z ∈ Z}.
‡‡ The attentative reader will connive our relaxed attitude concerning decision versus function problems
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Lemma 24. a) Given a,α∈Q, the unique 0≤ α′ < a with Pa,α = Pa,α′ can be calculated as α′ := α rema
within complexity class N C 1.

b) Given a,α and b,β, the question whether Pa,α∩Pb,β = /0 can be decided in N C gcd

c) and, if so, (c,γ) with Pa,α∩Pb,β = Pc,γ can be calculated in N C gcdex.
d) Items b) and c) extend from the intersection of two given arithmetic progressions to that of k.
e) Given n,k and a1,α1, . . . ,an,αn, deciding whether some k among the arithmetic progressions P(i1) :=

Pai1 ,αi1
, . . . ,P(ik) := Paik ,αik

have a non-empty common intersection, is N P –complete.

A result similar to the last item has been obtained in [MaHa94]. . .

Proof. a) Notice that Pa,α = Pa,α′⇔α−α′ ∈ Pa,0. Hence there exists exactly one such α′ in [0,a), namely
α′ = α rema. Moreover, integer division belongs to N C [BCH86,CDL01].

b) Observe that Pa,α∩Pb,β 6= /0 holds iff gcd(a,b) divides α−β. Indeed, the extended Euclidean algorithm
then yields z′1,z

′
2 ∈Z with gcd(a,b)=−a ·z′1 +b ·z′2; then α−β =−a ·z1 +b ·z2 yields Pa,α 3α+a ·z1 =

β+b · z2 ∈ Pb,β. Conversely α+a · z1 = β+b · z2 ∈ Pa,α∩Pb,β implies that α−β =−a · z1 +b · z2 is a
multiple of any (and in particular the greatest) common divisor of a and b.

c) Notice that c = lcm(a,b) = a ·b/gcd(a,b); according to the proof of b), γ := α+a · z1 will do, where
z1,z2 ∈ Z with α−β =−a · z1 +b · z2 result from the extended Euclidean algorithm applied to (a,b).

d) Notice that
x ∈ Pa1,α1 ∩·· ·∩Pak,αk ⇔ x≡ αi (mod ai), i = 1, . . . ,k . (2)

According to the Chinese Remainder Theorem, the latter system of congruences in turn admits such
a solution x iff gcd(ai,a j) divides αi−α j for all pairs (i, j).
In order to calculate such an x, notice that a straight-forward iterative Pa1..k−1,α1..k−1 ∩Pak,αk fails as it
does not parallelize well, and also the numbers calculated according to c) may double in length in each
of the k steps. Instead, combine the Pai,αi in a binary way first two tuples Pa2 j,2 j+1,α2 j,2 j+1 of adjacent
ones, then on to quadruples and so on. At logarithmic depth (=parallel time), this yields the desired
result x =: α0 and a0 := lcm(a1, . . . ,ak) satisfying Pa0,α0 =

Tk
i=1 Pai,αi .

e) It is easy to guess i1, . . . , ik and, based on d), verify in polynomial time that P(i1)∩ . . .∩P(ik) 6= /0.
We establish N P –hardness by reduction from Clique [GaJo79]: Given a graph G = ([n],E), choose
n · (n−1)/2 pairwise coprime integers qi,` = q`,i ≥ 2, 1≤ i < `≤ n; for instance qi,` := pi+n·(`−1) will
do, where pm denotes the m-th prime number, found in time polynomial in n ≤ |〈G〉| (though not in
|〈pm〉| ≈ logm+ loglogm) by simple exhaustive search. Then calculate ai := ∏ 6̀=i qi,` and observe that
gcd(ai,a j) = qi, j for i 6= j. Now start with α1 := 0 and iteratively for ` = 2,3, . . . ,n determine α` by
solving the following system of simultaneous congruences:

α` ≡
{

αi (mod qi,`) for (i, `) ∈ E
1+αi (mod qi,`) for (i, `) 6∈ E , 1≤ i < ` (3)

Indeed, as the qi,` are pairwise coprime, the Chinese Remainder Theorem asserts the existence of a
solution—computable in time polynomial in n, regarding that α` can be bounded by ∏i, j qi, j having a
polynomial number of bits). The thus constructed vector (αi)i satisfies:

αi ≡ α j (mod gcd(ai,a j)︸ ︷︷ ︸
=qi, j

) ⇔ (i, j) ∈ E

because, for (i, j) 6∈ E, Equation (3) implies αi ≡ α j+1 (mod qi, j).
We claim that this mapping G 7→ (ai,αi : 1≤ i≤ n) constitutes the desired reduction: Indeed, according
to Equation (2), any sub-collection P(i1), . . . ,P(ik) has non-empty intersection (i.e. a common element
x) iff αi` ≡ αi j (mod gcd(ai` ,ai j)), i.e., by our construction, iff (i`, i j) ∈ E; hence, cliques of G are
in one-to-one correspondence with subcollections of intersecting arithmetic progressions. ut

Proof (Theorem 22). At time t, planet #i appears at angular position ui + t · vi mod 1; and an exact con-
junction between #i and # j occurs whenever ui + t · vi = u j + t · v j + z for some z ∈ Z, that is iff

t ∈
{u j−ui

vi− v j
+ z · 1

vi− v j

}
= P(i, j) := Pai, j ,αi, j where ai, j :=

1
vi− v j

,αi, j :=
u j−ui

vi− v j
. (4)
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Therefore, planets #1, . . . ,#n attain a conjunction at some time t iff t ∈
Tn

i=1 P(1,i). The existence of such t
thus amounts to the non-emptiness of the joint intersection of arithmetic progressions and can be decided in
the claimed complexity according to Lemma 24b+d). Moreover, Lemma 24a+c+d) shows how to calculate
the smallest t.

Concerning N P –hardness claimed in Item f), we reduce from Lemma 24e): Given n arithmetic pro-
gressions P(i) = Pai,αi , let ui := −αi ·ai, vi := 1/ai, and u0 := 0 =: v0. Then conjunctions between #0 and
#i occur exactly at times t ∈ P(i); and P(i1), . . . ,P(ik) meet iff (and when/where) #0,#i1, . . . ,#ik do.

Approximate conjunction up to ε in time interval (u,v) means:

∃t ∈ (u,v) ∃z ∈ Z : (v2− v1)t +u2−u1 + z ∈ (−ε,+ε)

which is equivalent to Claim b). The boundaries of the interval (a,b) · (v1− v2)+ u1− u2 +(−ε,+ε) can
be calculated in N C 1. ut

6.1.4 General Eudoxus/Aristotle; Ptolemy, Copernicus, and Kepler
Proceeding from the restricted 2D theory Φ′ to Eudoxus/Aristotle’s full Φ obviously complicates the com-
putational complexity of the above predictions; and it seems desirable to make that precise, e.g. with the
help of [ACG93,GaOv95,BrKi98,CPPY06]. Moreover also Φ in turn had been refined: PTOLEMY intro-
duced additional so-called epicycles and deferents located and rotating on the originally earth-centered
spheres. That extension (and its additional free parameters) allowed him to describe the observed planetary
motions more accurately. Copernicus relocated the spheres (and sub-spheres thereon) to be centered around
the sun rather than earth. And Kepler replaced them with ellipses in space. Again, the respective increase
in complexity is worth-while investigating:

From an observer’s perspective located on earth, the planets’ 3D movements project down to curves.
So, we are led to study the complexity of deciding whether and when such given curves, parameterized
by time, intersect. A first step is to decide (mathematically) whether these curves are of an algebraic or
transcendental nature, in order to choose the appropriate model of computation (Section 5.2). We point
out that even for problems which naturally involve transcendental numbers restricting the input to rationals
(and handling them in the original Turing model), may turn out to admit surprising algorithmic treatment;
see, e.g., [CCK*04] or [Zieg06, PROPOSITION 30]!

6.2 Opticks

There is an abundance of (physical theories giving) explanations for optical phenomena; cmp. e.g. The
Book of Optics by IBN AL-HAYTHAM (1021) or NEWTON’s book providing the title of this section. We are
specifically interested in the progression from geometric via Gaussian optics (taking into account disper-
sion) over HUYGENS and FOURIER (i.e. diffractive, wave) optics to Maxwell’s theory of electromagnetism
and even to quantum and quantum field theories (describing e.g. Raman/Rayleigh and other kinds of scat-
tering). Note that this sequence of optical theories Φi reflects their historical succession, but not a logical
one in the sense that Φi+1 ‘implies’ (and hence is computationally at least as hard as) Φi.

Our purpose is to explore more thoroughly the computational complexities of these theories. Their com-
putational relations may happen to be similar, unrelated, or just opposite to their historical ones! Consider
for example geometric optics versus Electrodynamics:

6.2.1 Geometric Optics considers light rays as ideal geometric objects, i.e., of infinitesimal section
proceeding instantaneously and straightly until hitting a, say, mirror. Now depending on the kind of mirrors
(straight or curved, with rational or algebraic parameters) and the availability of further optical devices
(lenses, beam splitters), [RTY94] has developed a fairly exhaustive (although not entirely sound) taxonomy
of the induced computational complexities of ray tracing ranging from P SPACE to undecidable!

6.2.2 Electrodynamics on the other hand treats light as a vector-valued wave obeying a system of linear
partial differential equations named after JAMES CLERK MAXWELL. From given initial conditions, their
solution is computable even over real numbers [WeZh99]!
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6.3 Quantum Mechanics

The advent of Quantum Computing is based on the hope to surpass the strong CTH, i.e. to build computers
not polynomial-time equivalent to a Turing machine. It originates back to RICHARD P. FEYNMAN’s famous
Lectures on Computation [FLS05] and has, in connection with the work of PETER SHOR’s, become a
fashionable yet speculative [Kie03a] research topic lacking a general picture
[Myrv95,Smi99a,Breu02,Zieg05,WeZh06,Smi06b].

Speaking in complexity theoretic terms, the (as usual highly ambiguous) question raised by the strong
CTH (recall Section 1.2) asks to locate the computational power of QM somewhere among or between
P , P IntegerFactorization, N P , and ∆2. Further, it is worth-while to explore how the answer depends on the
underlying Hamiltonians being un-/bounded as indicated in [PERi89, CHAPTER 3]?

For a sound and more definite investigation, our approach suggests to start exploring well-specified
sub- and pre-theories of QM. These may, e.g., be the BOHR-SOMMERFELD theory of classical electron
orbits with integral action-angle conditions.

Another promising direction considers computational capabilities and complexity of Quantum Logic:

6.3.1 Quantum Logic arises as an abstraction of the purely algebraic structure exhibited by the collec-
tion of effect operators (i.e. projections onto closed subspaces) introduced by G. LUDWIG on a Hilbert
space, that are certain quantum mechanical observables; cf. e.g. [Birk67,Svoz98]. This discipline has flour-
ished from the comparison with (i.e. systematic and thorough investigation of similarities and differences
to) Boolean logic:

For a finite-dimensional Hilbert space H ∈ {RN ,CN}, variables a,b,c denote any linear subspace of
H , including 0 := {0} and 1 := H itself; moreover let a∧ b := a∩ b, ¬a := a⊥, a ≤ b :⇔ a ⊆ b, and
a∨b := linspan(a∪b). These operations indeed extend the classical Boolean connectives in that the latter
are recovered by restricting to 0 and 1, i.e. to N = 1. The collection of linear subspaces of H , equipped
with (∨,∧,¬,≤), forms a lattice; which however violates distributivity: Formula

(a ∨ b) ∧ (a∨b⊥) ∧ (a⊥∨b) ∧ (a⊥∨b⊥) = 1 (5)

is not classically satisfiable but does, for N ≥ 2 admit satisfying assignment a := linspan
(1

0

)
and b :=

linspan
(1

1

)
. Nevertheless it has recently been proved that the satisfiability problem for such quantum logic

formula is decidable [DHMW05, SECTION 3] and raised the question on the algorithmic complexity of
this problem. We make the following

Proposition 25. For N ∈ N, let

QLN :=
{
〈ϕ〉 : formula ϕ in m variables

admits subspaces a1, . . . ,am ⊆ CN such that ϕ(a1, . . . ,am) 6= 0
}

. (6)

a) QL1 is N P –complete,
b) For each N ≤M, QLN 4 QLM . In particular, QLM is N P –hard.
c) For fixed N (or with N given unary), QLN ∈N P C.

That is, QLN can be decided by a nondeterministic BSS machine in time polynomial in N and m; recall
Section 5.2 (and cmp. also [CuGr97] for BSS computation on binary inputs).

Proof. Item a) is of course the famous Cook-Levin Theorem. Item b) follows from QLN ⊆QLM [DHMW05,
LEMMA 5]. Concerning Item c), a BSS machine may first ‘guess’ dimensions 0 ≤ d1, . . . ,dm ≤ N of, and
orthogonal bases for, subspaces a1, . . . ,am; then use linear algebra to obtain an orthogonal basis for the
value ϕ(a1, . . . ,am). ut

More generally, we envision a theory of computational complexity similar to that of Boolean circuits
[Papa94, SECTIONS 4.3 and 11.4] with classical gates replaced by such quantum logic ones (cmp. [Ying05]
for quantum logic finite automata). Note that this is different from (well-studied) ‘standard’ quantum com-
plexity theory and the quantum circuit model it is based on:
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• Quantum gates map H to H whereas operations “∨”, “∧”, and “¬” map (pairs of) subspaces of H to
subspaces.

• Closed subspaces correspond to quantum 0/1-observables, i.e. to measurements; whereas quantum
circuits are generally required to be reversible, forcing any measurement to be delayed to the end of
the computation.

• A quantum circuit maps pure n-qubit states (i.e. in N = 2n-dimensional Hilbert space) to mixed states;
whereas the result of a measurement is always a pure state.

• Quantum parallelism usually refers to the simultaneous operation on (any linear combination of) all
qubit states; whereas parallelism in a quantum logic circuit enters as in the Boolean case with notions
like ‘width’ and ‘depth’.

• It seems that inequality of two quantum logic expressions “X(a,b,c) 6= Y (a,b,c)” cannot be expressed
using equality and quantum logic connectives alone; cmp. also Question 26b) below. That is, additional
Boolean negation (and/or quantifiers) may be needed here.

We find that the last item makes a further exploration of the expressive power of quantum logic worthwhile;
and the first items suggest quantum logic circuits as an alternative (and hopefully more tractable) model
for complexity theoretic explorations in quantum mechanics. To begin with, we ask

Question 26. a) Which m-variate functions on the lattice of linear subspaces of CN can be realized as
quantum logic expressions?

b) Does Proposition 25b) also hold with “6= 0” in Equation (6) replaced by “= 1”?
c) If a quantum logic formula admits a satisfying assignment in CN , does it also admit one in QN?

Concerning a) recall that, in the Boolean case N = 1, the answer is of course: all F(m,1) = 22m
of them.

In the two-variate non-Boolean case N > 1 on the other hand it holds F(2,N) = 96: the free orthomodular
lattice on two generators a,b is known to have 96 elements x(a,b) [Kalm83] which can be achieved to
differ x(a,b) 6= y(a,b) for appropriate linear subspaces a,b of Q2.

7 Conclusion

Although gradually increasing in speed according to Moore’s Law, all digital computers built since the last
60 years remain basically still instances of (and in particular polynomial-time equivalent to) the very same
machine model that Alan Turing had introduced already in 1937.

Is this due to our lack of ideas for fundamentally new approaches to computing? Or have we
already reached the ultimate computing capabilities of nature? Why does nature admit (i.e. is rich
enough to provide us with the physical means to realize) universal computation, anyway?

In the present work, we have proposed an approach towards answering these questions: Start off modestly
by considering the CTH relative to some simple physical theories Φ; then gradually work the way up to
more complex ones. This approach permits to systematically explore the boundary between computable and
incomputable physical theories; and similarly for the boundaries of completeness for various complexity
classes.
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