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1. Introduction

Universal machines U play a central role in algorithmic information
theory. A universal plain machine is used to define the plain complex-
ity C. For a string x one lets C(x) be the length of a shortest string
p such that U(p) = x. One defines H(x) in a similar way when U is a
universal prefix-free machine. For details see [2, 14].

Which r.e. sets can be the domains of a universal plain [prefix-free]
machine? The main results of the paper give combinatorial character-
isations. They are based on the number of strings of each length in
the set. Further, the r.e. [prefix-free] supersets of such domains are
characterised.

The motivation comes in part from the facts proven in [5] and [17,
Exercise 2.2.12] : a prefix-free r.e. superset of the domain of a universal
prefix-free machine is a prefix code coding all positive integers in an
optimal way (up to a fixed constant). Such a code is Turing complete,
has maximal density, but is not maximal.

In spite of obvious differences, there is an interesting similarity be-
tween the (supersets of) domains of plain and universal prefix-free ma-
chines. The present paper explores these facts combining recursion the-
oretic arguments with (combinatorial) algorithmic information theory.
This is necessary because recursion theory alone does not yield a suf-
ficiently fine distinction between recursively enumerable prefix codes,
as, for example, the prefix-free set V = {0n1 : n ∈ A} has the same
complexity as the subset A ⊆ N and all these prefix codes are in-
distinguishable by their entropy. A special role will be played by the
spectrum function sW mapping a non-negative integer n to the number
of all strings of length n in the set W . The results proven in this paper
deal with the following topics.

(a) Combinatorial characterisations of domains and supersets of do-
mains of plain and universal prefix-free machines based on the
spectrum function are given. These investigations led to one
major question in this paper: is every domain of a universal
plain machine the superset of the domain of some universal
prefix-free machine?

(b) The halting probability ΩM of a prefix-free machine M whose
domain contains the domain of a universal prefix-free machine
is Martin-Löf random. However, dom(M) itself may fail to be
the domain of any universal prefix-free machine.

The paper is organised as follows. In the next section we will present
the notation and background. In Section 3 we discuss the case of
universal plain machines. In Section 4 we study universal prefix-free

2



machine, while in Section 5 some relations between (supersets of) do-
mains of universal plain and prefix-free machines are investigated. The
last section is devoted to conclusions and further studies.

2. Background and notation

Let X∗ be the set of all strings over X = {0, 1}: X∗ = {λ, 0, 1, 00, 01, 10,
11, 000, . . .}. A subset W ⊆ X∗ is prefix-free if there are no non-
empty strings p, q such that p, pq ∈ W . The ordering ≤qlex is called
the quasi-lexicographical, length-lexicographical or military ordering of
X∗: λ <qlex 0 <qlex 1 <qlex 00 <qlex 01 <qlex 10 <qlex 11 <qlex 000 <qlex

001 . . . and so on. Furthermore, the sets of non-negative integers N and
strings X∗ are identified by letting n ∈ N represent the unique string x
with #{y ∈ X∗ : y <qlex x} = n. This is particularly useful in order to
extend concepts like complexity to natural numbers without defining
these concepts twice.

The function a, b �→ �a, b� is Cantor’s pairing function of a and b:
�a, b� = (a + b)(a + b + 1)/2 + b.

A machine M is a partial recursive function from X∗ to X∗. We
use machine and function synonymously. The description complexity
CM(x) based on M is CM(x) = inf{|p| : M(p) = x}. The machine U
is called universal if for every machine M there is a constant c with
∀x [CU(x) ≤ CM(x) + c].

A prefix-free machine M is a partial recursive function mapping X∗

to X∗ such that its domain dom(M) ⊆ X∗ is prefix-free. Analogously,
a prefix-free machine U is referred to as universal if for every prefix-free
machine M there is a constant c with ∀x [CU(x) ≤ CM(x) + c].

If U is prefix-free and universal, we write HU(x) for inf{|p| : U(p) =
x}. Further unexplained notation can be found in the books of Odi-
freddi [18], Calude [2] and Li and Vitányi [14].

A basic result of algorithmic information theory says that such uni-
versal machines exist [2, 14]. Here are some examples for prefix-free ma-
chines. Given a uniformly r.e. listing M0, M1, M2, . . . of all the prefix-
free machines, let Uad(1n0x) = Mn(x) for all n and x ∈ dom(Mn); then
Uad is a universal machine. This is the standard example and machines
of this type are called “universal by adjunction”. Furthermore, from
a given universal machine U one can build a machine Uev such that
the domain of Uev only contains strings of even length: the idea is to
define that Uev(x0) = U(x) for all x is in the domain of U with odd
length; Uev(x) = U(x) for all x in the domain of U with even length;
Uev(x) is undefined for all other x. This machine Uev is not universal
by adjunction. Figueira, Stephan and Wu [10] constructed a universal
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prefix-free machine U such that for each x and each length n ≥ HU(x)
there is exactly one string p of length n with U(p) = x.

In the sequel, we assume the underlying machine be fixed to some
default and the complexities C (plain) and H (prefix-free) are written
without any subscript [9].

A real r = 0.r1r2 . . . rn . . . (ri ∈ {0, 1}) is Martin-Löf random if there
is a constant c such that for all n ≥ 1, H(r1r2 . . . rn) ≥ n − c. For a
prefix-free set V ⊆ X∗, let ΩV =

�
p∈V

2−|p|. Every real ΩV is left-r.e.
that is, the limit of an increasing computable sequence of rationals.
Chaitin [6] proved that if U is the domain of a universal prefix-free
machine, then the left-r.e. real ΩU is Martin-Löf random. Combining
the results of Calude, Hertling, Khoussainov and Wang [3] and Kučera
and Slaman [15] shows that the converse is also true: every left-r.e.
Martin-Löf random real is the halting probability of some universal
prefix-free machine.

A left-r.e. real number r is Solovay reducible to a left-r.e. real number
r̃ if there is a computable approximation a0, a1, a2, . . . of r from below,
a computable approximation b0, b1, b2, . . . of r̃ from below and a positive
real constant c > 0 such that (r− as) < c(r̃− bs) for all s. A sufficient
criterion is also that the above approximations and constant c > 0
exists and satisfy that as+1 − as < c(bs+1 − bs) for all s. Furthermore,
a set A is Solovay reducible to B if

�
n∈A

2−n is Solovay reducible to�
n∈B

2−n as real numbers.
The spectrum function of a set W ⊆ X∗ is the function sW : X∗ →

N defined as sW (n) = #(W ∩ Xn) and sW (n, m) =
�

n+m

i=n
sW (i).1

Furthermore, for a machine M , sM(n) is just sdom(M)(n).
The following facts are folklore. Let κ be one of the descriptive

complexities C or H, let U be the corresponding plain or prefix-free
universal machine and let σqlex : X∗ → X∗ be the computable function
such that σqlex(x) is the successor of x in the length-lexicographical
order of X∗.

Fact 1.

(1) Functions preserve complexity: Let ϕ be a partial recursive
function from X∗ to X∗. Then there is a constant cϕ depending
only on ϕ such that κ(ϕ(w)) ≤ κ(w)+cϕ for all w ∈ dom(ϕ). In
the case of H this holds also for functions in several arguments,
for example H(x + y) ≤ H(x) + H(y) + c for some constant c.

(2) Continuity: There is a constant cqlex such that for all x ∈ X∗

it holds |κ(x)− κ(σqlex(x))| ≤ cqlex.

1The spectrum function sW is also known as cardinality profile and the function
n �→ sW (0, n) is also known as census function.
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This implies min{κ(w)−κ(v) : κ(w) > κ(v)∧w >qlex v} ≤ cqlex.
(3) Spectrum Function: If W ⊆ X∗ is r.e. then the spectrum

function sW is recursively approximable from below.
(4) Mapping Sets: If W,W � ⊆ X∗ are r.e. and if there is a c ∈

N such that ∀n(sW (n, c) ≤ sW �(n, c)) then there is a partial-
recursive one-to-one function ϕ : W → W � such that W =
dom(ϕ) and ||ϕ(x)| − |x|| ≤ c for all x ∈ W .

(5) Kraft-Chaitin: Let f : N → N be a recursive function such
that

�∞
i=0 2−f(n) ≤ 1. Then there is a partial-recursive one-to-

one function g : N → X∗ such that |g(n)| = f(n) and g(N) ⊆
X∗ is prefix-free.

(6) Kraft-Chaitin (second variant): Let f : N → N be a func-
tion recursively approximable from below such that

�∞
i=0 f(n) ·

2−n ≤ 1. Then there is a partial-recursive one-to-one func-
tion g : N → X∗ such that #{g(i) : |g(i)| = n} = f(n) and
g(N) ⊆ X∗ is prefix-free.

Note that, due to recoding by Fact 1.4, an r.e. set W is the domain of
a plain universal machine iff sW (n) = sU(n) for some plain universal
machine U and all n; similarly, a prefix-free r.e. set W is the domain
of a plain prefix-free machine iff sW (n) = sU(n) for some prefix-free
universal machine U and all n. This first observation, as pointed out
by an anonymous referee, motivates further research about the con-
nections between the domains of universal machines and the spectrum
function sW .

3. Universal plain r.e. sets

In this section the domains of universal plain machines and their su-
persets are characterised in terms of the spectrum function.

Theorem 2. An r.e. set W is the superset of the domain of a plain
universal machine ⇔ there is a constant c such that sW (n, c�) ≥ 2n

for all n and c� ≥ c.

Proof. (⇒) : There is a constant c such that every string of length
n + 1 has a plain description complexity of at most n + c. At least
half of these strings do not have plain description complexity below
n. Thus it follows that for at least half of the 2n+1 strings x of length
n + 1 there is a p ∈ W with n ≤ |p| ≤ n + c and U(p) = x. Thus
sW (n, c) ≥ 2n.

(⇐) : For every n which is a multiple of c+1 and uniformly recursively
in n, one can construct a one-one function from An = Xn∪Xn+1∪ . . .∪
Xn+c into W such that every p ∈ An is mapped into W ∩An+c+1; these
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functions just enumerate the first 2n+c+1 elements of W ∩ An+c+1 and
then map the elements of An in a one-one manner into the enumerated
elements. This function has a partial recursive and one-one inverse f
whose domain is a subset of W and whose range is the full set X∗; note
that |f(p)| ≥ |p| − 2c− 2 for all p where f(p) is defined.

If U is a universal plain machine, then the mapping p �→ U(f(p)) is
also a universal plain machine and its domain is a subset of W ; this
completes the proof. �

Theorem 3. An r.e. set W ⊆ X∗ is the domain of a universal plain
machine ⇔ there is a constant c such that C(sW (n, c)) ≥ n for each n.

Proof. (⇒) : Let W = dom(U) for some universal plain machine U .
One defines a three-place partial recursive function ϕ : N×N×N→ X∗

with inputs m, n and c as follows. The function simulates U until U
has halted on a set V of m strings q with n ≤ |q| ≤ n + c and it
then outputs the length-lexicographic first q� ∈ R for which U(q�) is
length-lexicographically maximal: U(q�) ≥qlex U(q) for all q ∈ V .

This function terminates whenever m ≤ sU(n, c). If m = sU(n, c) let
pn,c denote its output. In this case, in view of Theorem 2, 2n+c+1 >
sU(n, c) ≥ 2n. So the value of n can be obtained from sU(n, c) and a
constant c0 ≤ c+1. Thus, in this case, C(pn,c) ≤ C(sU(n, c))+4 log c+c�

for some constant c�.
Next it is shown that C(U(pn,c)) = |pn,c| for c ≥ cqlex. Assume

C(U(pn,c)) < |pn,c|, that is, there is a p such that |p| < |pn,c| and
U(p) = U(pn,c). Then, by the definition of ϕ, p /∈ V and hence |p| < n.
Now following Fact 1 (2), there is a q ∈ dom(U) such that |p| < |q| ≤
|p| + cqlex, C(U(q)) = |q| and U(pn,c) = U(p) <qlex U(q) whence |q| <
n + c. Repeating this argument gives that there is a q0 ∈ dom(U) such
that U(pn,c) <qlex U(q0), C(U(pn,c)) < C(U(q0)) and n ≤ |q0| < n + c
which contradicts the choice of pn,c.

Note that, in the same way, Fact 1 (2) implies |pn,c| ≤ n + c −
cqlex. Finally, it follows from Fact 1 (1) that the inequality C(pn,c) ≥
C(U(pn,c))− cU ≥ |pn,c| − cU holds. Putting the inequalities together,
one obtains C(sU(n, c)) ≥ n+ c− cU − cqlex− 4 log c− c� which satisfies
C(sU(n, c)) ≥ n for a sufficiently large constant c.

(⇐) : Let the condition be satisfied. Now a plain machine M is built
as follows. Let b be a coding constant for M given by the recursion
theorem. Let p0, p1, p2, . . . be a recursive one-one enumeration of the
domain of a universal plain machine U . Define a computable sequence
t0, t1, t2, . . . ∈ N in stages.
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At stage s let m = |ps|+b+1. Let Wt be the subset of W enumerated
at stage t and

M(ps) = sWts
(m, c).

Then C(sWts
(m, c)) < m, so there must be a ts+1 > ts such that

sWts+1
(m, c) > sWts

(m, c).

Now a machine M is defined on the domain of W . Let M(q) = U(ps)
for all q ∈ Wts+1 \ Wts .

Indeed, U(ps) has an M -description which is at most b+c bits longer
than ps, hence M is a universal plain machine with domain W . �
Recall that a string w is compressible (with respect to C) iff C(w) <
|w|. A consequence of Theorem 3 is that the compressible strings form
the domain of a universal plain machine. This is interesting because
shortest descriptions cannot be compressed by more than a constant.

Corollary 4. Let W = {p ∈ X∗ : C(p) < |p|}. Then there is a
universal plain machine with domain W .

Proof. Let Cs be an approximation of the complexity C from above
and let U be the underlying universal plain machine. Now define a
partial-recursive function ϕ : X∗ → X∗ as follows: If the input has the
form 0i1j0p, j ≥ 1, then do

(1) Let n = |p| + i + 1.
(2) Determine m = U(p).
(3) If m is found, search for the first stage s such that there are at

least m strings in the set {q : n ≤ |q| ≤ n + 2j ∧ Cs(q) < |q|}.
(4) If m, s are found, let ϕ(0i1j0p) = r be the lexicographic first

string of length n + 2j with Cs(r) ≥ |r|.
Let ϕ be undefined on all other inputs.

Note that ϕ(0i1j0p) is defined iff the second and third step of this
algorithm terminate. Then Fact 1 (1) yields a constant cϕ ≥ 1 such
that

∀i, j > 0
�
C(ϕ(0i1j0p)) < i + j + |p| + cϕ

�
.

Let c = 2·cϕ and assume by way of contradiction that there is a number
n with C(sW (n, c)) < n. Then there would be a p with |p| < n and
U(p) = sW (n, c). Let i = n− |p| − 1 and let j = cϕ. By construction,
ϕ(0i1j0p) is a string of length n + c not in W and

C(ϕ(0i1j0p)) ≤ i + j + |p| + cϕ = n + c− 1 < n + c .

These two facts together contradict the definitions of c, cϕ and W .
Hence W is the domain of a universal machine by Theorem 3. �
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One can also show that one can remove the incompressible strings from
a given domain of a universal machine.

Theorem 5. Assume that U is a given universal machine. Then there
is a further universal machine N such that dom(N) = {p ∈ dom(U) :
C(p) < |p|}.

Proof. First define a machine M such that M(p) = y whenever U(p) ∈
y10∗ and M(p) = λ whenever U(p) ∈ 0∗. Now there is a partial-
recursive function f such that f(p, c) is the first q found with |p|+ c ≤
|q| ≤ |p| + 2c and M(q) = M(p). As there is a constant bounding the
differences of the Kolmogorov complexities of y and y1 as well as the
differences of the Kolmogorov complexities of y10k and y10k+1 for all
y and k, it follows that for all sufficiently large c and all p ∈ dom(U),
f(p, c) is defined. Now C(f(p, c)) ≤ |p|+ |c|/2+ d for a constant d and
all p, c where f(p, c) is defined; hence one can choose c such that f(p, c)
is defined and C(f(p, c)) < |p| + c for all p ∈ dom(U). So there is for
every p ∈ dom(U) an index f(p, c) which is at most 2c bits longer than
p and which satisfies M(f(p, c)) = U(p). It follows that the machine
N with dom(N) = {q ∈ dom(U) : C(q) < |q|} and N(q) = M(q) on
this domain is a universal machine as well. �

4. Universal r.e. prefix codes

Recall that a universal prefix-free machine U is a prefix-free machine
such that for every further prefix-free machine M there is a constant c
such that for every p ∈ dom(M) there is a q ∈ dom(U) with U(q) =
M(p) and |q| ≤ |p| + c. Following [5], an r.e. prefix-free set W ⊆ X∗

containing the domain of a universal prefix-free machine is referred to
as a universal r.e. prefix code.

It has been shown in [5] that though universal r.e. prefix codes
W ⊆ X∗ are not maximal prefix-free sets they satisfy the same density
condition as the whole set X∗ namely

lim
n→∞

log sW (0, n)

n
= 1 .

However, this density condition does not specify universal r.e. prefix
codes among r.e. prefix-free sets: a simple recursive prefix-free set L ⊆
X∗ satisfying the same condition was obtained in [5]. The next theorem
gives a necessary and sufficient condition on the spectrum function
which specifies the universal r.e. prefix codes among r.e. prefix-free
sets.
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Theorem 6. Let W be an r.e. prefix-free set. Then W is an universal
r.e. prefix code ⇔ there exist constants c, d ∈ N such that

∀n
�
2n−H(n)−d ≤ sW (n, c) ≤ 2n−H(n)+d

�
.

Proof. (⇒) : Let W be a universal r.e. prefix code. It is well-known
that for each r.e. set W ⊆ X∗ satisfying

�
w∈W

2−|w| < ∞ and for every
c ∈ N there is a constant dc ∈ N such that

∀n
�
sW (n, c) ≤ 2n−H(n)+dc

�
.

This shows the upper bound.
The lower bound follows by an argument from Section 9 of [11] (see

also Section 4 of the first edition of [14]) where it is shown that for
any domain of a universal prefix-free machine U there are constants
c, d ∈ N such that 2n−H(n)−d ≤

��{y : n− c ≤ HU(y) ≤ n + c}
��.

(⇐) : Conversely, let W ⊆ X∗ be an r.e. prefix-free set satisfying
2n−H(n)−d ≤ sW (n, c) for some constants c, d ∈ N and let U be a uni-
versal prefix-free machine. As shown in the first direction, the constant
c and some further constant dc satisfy that sU(n, c) ≤ 2n−H(n)+dc . Now
consider the universal machine U0 which is defined via U0(0d

�+dc+1 ·p) =
U(p) and undefined elsewhere. Then sU0(n + d�, c) ≤ 2n−H(n)−dc .

On the other hand sW (n + d�, c) ≥ 2n+d
�−H(n+d

�)−d. Using the fact
that H(n+d�) ≤ H(n)+2 log d�+c� for some constant c� ∈ N, it follows
that for sufficiently large d� the inequality

n + d� −H(n + d�)− d ≥ n + d� −H(n)− 2 log d� − c� − d

≥ n−H(n)− dc

holds. Thus sW (n + d�, c) ≥ sU0(n + d�, c) and sU0(n) = 0 for n ≤ d�.
According to Fact 1 (4) there is a one-one partial recursive function

ϕ : dom(U0) → W such that
��|ϕ(x)| − |x|

�� ≤ c + 1. Consequently,
U0 ◦ϕ−1 is a universal machine having domain dom(U0 ◦ϕ−1) ⊆ W . �
Corollary 7. For every prefix-free r.e. set W and every constant c
there is a constant d such that

∀n [H(�n, sW (n, c)�) ≤ n + d ] .

Proof. Let W and c be given. There is a program pn for n of length
H(n). Furthermore, there is by Theorem 6 a constant e such that
∀n [sW (n, c) ≤ 2n−H(n)+e ] and sW (n, c) can be written down in a string
σn of n + e − |p| binary bits. Hence there is a prefix-free machine M
with M(pnσn) = �n, sW (n, c)�; M first finds n from a suitable prefix
pn and then takes the n + e− |pn| binary bits following pn to produce
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sW (n, c). Translating V into the underlying universal machine can be
done by replacing the constant e by a new constant d. �
The following sharper lower bound on the possible spectrum function
sW (n, c) can be obtained in the case that W is the domain of a universal
prefix-free machine.

Theorem 8. The following conditions are equivalent for a prefix-free
r.e. set W :

(a) W is the domain of a universal prefix-free machine;
(b) There is a constant c such that H(�n, sW (n, c)�) ≥ n for each n;
(c) There is a constant c such that H(sW (n, c)) ≥ n for each n.

Proof. This is shown by adapting the proof of the corresponding im-
plications in Theorem 3 to a universal prefix-free machine U and prefix-
free complexity H.

(a) ⇒ (b): This follows the corresponding direction of Theorem 3.
The only change to the direction (⇒) in the proof of Theorem 3 is
that one replaces C by H; also, replace the equation defining M by
M(ps) = �m, sWts

(m, c)�. Now define the machine V as before. Note
that the domain of V is prefix-free by hypothesis on W .

(b) ⇒ (a): The proof is similar to the one of Theorem 3, direction
(⇐). The main change is that one cannot determine the value of n
from sU(n, c). Instead, this value comes from the pair �n, sU(n, c)� and
one uses this pair in place of sU(n, c) throughout the proof. One obtains
that H(pn,c) ≤ H(�n, sU(n, c)�) + 2 log c + c�. Once taken into account
this difference and using H in place of C, the proof runs exactly as the
one for Theorem 3.

(a) and (b) ⇒ (c): Assume that (a) and (b) hold; that U be the prefix-
free universal machine with domain W and that c be the constant as in
(b). Now, one can define a partial-recursive function ψ with prefix-free
domain such that

ψ(0n−|p|10a1 · p) = �n + 2a, sW (n + 2a, c)�

whenever U(p) = sW (n, 2a + c) and |p| ≤ n. This is possible as n is
|p| plus the number of zeroes at the beginning of 0n−|p|10a1 · p, a is the
number of zeroes between the first and second 1 and sW (n + 2a, c) can
be obtained by computing U(p) = sW (n, 2a+ c) and then enumerating
the sW (n, 2a+c) strings of W of length n to n+2a+c and counting how
many of them have length between n+2a and n+2a+ c. Now there is
a constant b such that H(�n+2a, sW (n+2a, c)�) ≤ n+a+ b where b is
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independent of a. Letting a = b + 1, it follows that n + a + b < n + 2a
and

H(sW (n, 2a + c)) < n ⇒ H(�n + 2a, sW (n + 2a, c)�) < n + 2a.

As H(�n + 2a, sW (n + 2a, c)�) < n + 2a does not hold for any n,
H(sW (n, 2a + c)) ≥ n for all n. So (c) is satisfied with the constant
2a + c.

(c) ⇒ (b): This follows directly from the definition. �
Theorem 9. There exist a prefix-free r.e. set W and a universal prefix-
free machine U such that dom(U) ⊂ W and W is not the domain of a
universal prefix-free machine.

Proof. Now it is shown that there is a prefix-free r.e. set W ⊆ X∗

which satisfies Theorem 6 but not Theorem 8. For this, one starts from
a universal prefix-free machine U � such that

�
n∈N sU �(n) · 2−n < 1/2

and 2n−H(n)−d ≤ sU �(n, c) ≤ 2n−H(n)+d for suitable constants c, d.
Define s(n) = 0 if sU �(n) = 0 and s(n) = 2�log su(n)� otherwise. Then�
n∈N s(n) · 2−n < 1 and s is a function recursively approximable from

below. According to Fact 1 (6) there is a prefix-free r.e. set W with
sW = s.

Since sU �(n) ≤ sW (n) ≤ 2 · sU �(n), one has 2n−H(n)−d−1 ≤ sW (n, c) ≤
2n−H(n)+d+1 and W satisfies Theorem 6.

On the other hand H(sW (n)) = O(log n), thus W cannot satisfy
Theorem 8. �
Although the complexity of a universal r.e. prefix code might not be
large up to a given length n, the next result shows that the number

ΩW =
�

x∈W

2−|x|

is Martin-Löf random, a property shared with the domains of prefix-
free universal machines. Note that there is no contradiction as for every
left-r.e. real number ρ > 0 one can find a recursive prefix-free set W
such that ΩW = ρ, see [3] and [19].

Theorem 10. Suppose U is a universal prefix-free machine with do-
main contained in a prefix-free r.e. set W . Then ΩW is Martin-Löf
random.

Proof. The basic idea of the proof is to show that ΩU is Solovay
reducible to ΩW . This is done by approximating the halting probability
of U such that ΩU,0 = 0 and for every u one can compute a natural
number ku with ΩU,u+1−ΩU,u = 2−ku . Next one constructs a sequence
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t0, t1, . . . of integers such that there is a rational constant δ > 0 with
the property:

∀u [δ · 2−ku ≤ ΩW,tu+1 − ΩW,tu ] .

This property is a reformulation of the fact that there is a Solovay-
reduction from ΩU to ΩW . If ΩU is Solovay-reducible to a left-r.e. set
the latter is Martin-Löf random [21], so the theorem follows.

The constant δ and the sequence t0, t1, t2, . . . will come out of the
following inductive construction. Using the recursion theorem together
with the Kraft-Chaitin Theorem, one can obtain a constant c and an
r.e. prefix-free set V such that for every x ∈ V there is a p ∈ dom(U)
with U(p) = x ∧ |p| ≤ |x| + c. In more detail, given c, one constructs
V . This yields the Kraft-Chaitin set {�|x|, x� : x ∈ V } and hence
a corresponding prefix-free machine M , for which one can effectively
obtain a coding constant �c with respect to U . By the recursion theorem
one can suppose that �c = c.

Given c, one defines V in stages:

(1) An invariant of the construction is ΩV,u = ΩU,u for all u.
(2) The initialisation is t0 = 0 and V0 = ∅ which is consistent with

the given invariant.
(3) At stage u, assume that tu and Vu are defined. Let ku be the

unique integer with

2−ku = ΩU,u+1 − ΩU,u .

Find a natural number mu which is so large that 2|Wtu | < 2mu .
By the Kraft-Chaitin Theorem one can select 2mu strings of
length ku + mu which are not yet in Vu and put them as new
elements into Vu+1. This adds 2−ku to ΩV giving

ΩV,u+1 = ΩV,u + 2mu · 2−ku−mu = ΩU,u + 2−ku = ΩU,u+1 .

Furthermore, one can select tu+1 to be the first stage beyond tu
where for every string x ∈ Vu+1 there is an y ∈ dom(Utu+1) ∩
Wtu+1 such that |y| ≤ |x| + c and U(y) = x; as at least half of
these strings y had not been in Wtu it follows that

ΩW,tu+1 − ΩW,tu ≥ 2−ku−c−1 .

(4) The last equation in (3) permits to choose δ = 2−c−1.

Hence ΩU is Solovay reducible to ΩW . �
Remark 11. The anonymous referees of this paper suggested an alter-
native proof for the previous result using semimeasures. Here a discrete
semimeasure is a function µ is a mapping from natural numbers to non-
negative real numbers such that

�
n
µ(n) ≤ 1.
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A semimeasure µ is referred to as recursively approximable from below
provided the set {(n, m, k) : n, m, k ∈ N ∧m/k < µ(n)} is recursively
enumerable.

A discrete semimeasure µ is called universal iff for every further
discrete semimeasure ν recursively approximable from below there is a
multiplicative constant c with ν(n) ≤ cµ(n) for all n. The anonymous
referees provided the following result to the authors:

(∗) If µ is a universal discrete semimeasure then µ(N) is
Martin-Löf random.

To see (∗), let U be a universal prefix-free machine and let f : N →
dom(U) be a recursive one-one enumeration of dom(U). Then ν(n) =
2−|f(n)| is a (computable) discrete semimeasure and ΩU =

�
n
ν(n) is a

Martin-Löf random real.
Since µ is universal there is a c ∈ N such that ν(n) ≤ c · µ(n) for all

n. Then, since ν : n → Q is a recursive function, the real

β =
�

n∈N
(c · µ(n)− ν(n))

is a real recursively approximable from below. Then c ·
�

n
µ(n) =

ΩU + β as the sum of two reals recursively approximable from below
where one of them is Martin-Löf random is also Martin-Löf random
[2, Corollary 7.55]. Hence

�
n
µ(n) is also Martin-Löf random. This

completes the proof of (∗).
Using (∗), one can then obtain Theorem 10 directly from Theorem 6

as follows: Let c be so large that sW (n, c) ≥ 2n−H(n) for all n. Then
define the semimeasure

µ(n) = sW ((c + 1)n) · 2−(c+1)n + sW ((c + 1)n + 1) · 2−(c+1)n−1 +

. . . + sW ((c + 1)n + c) · 2−(c+1)n−c .

Now µ(n) ≥ 2−H((c+1)n)−c and 2−H((c+1)n)−c ≥ 2−H(n)−d for some con-
stant d. Hence it follows that µ is a universal semimeasure. As
ΩW =

�
n
2−n · sW (n) =

�
n
µ(n), the number ΩW is Martin-Löf ran-

dom.

If W is a universal r.e. prefix code, then one can use the constants c, d
from Theorem 6 to compute relative to W for every n the value H(n)
up to an additive constant error. It follows that one can find for every
number n a number m with H(m) > n: one just takes that m below
4n for which m − log(sW (m, c)) is maximal and the choice is right in
all but finitely many places. Using Merkle’s result on complex sets [12]
or Arslanov’s completeness criterion for weak truth-table reducibility
in combination with the fact that W has r.e. dnr Turing degree [18],
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one obtains that W is wtt-complete. For this, recall that a set A is
wtt-complete iff it is r.e. and the halting problem K is wtt-reducible
to A, that is, there is a recursive function f and a Turing machine M
which computes K relative to A such that K(n) is computed without
making any query to A above f(n).

Corollary 12. If W is a universal r.e. prefix code then W is weak
truth-table complete, that is, K ≤wtt W .

Remark 13. Corollary 4 does not carry over to prefix-free machines
as the set of compressible strings is not prefix-free and cannot be the
domain of a universal prefix-free machine. But Theorem 5 transfers as
follows: If U is a universal prefix-free machine then there is a further
universal prefix-free machine M such that dom(M) = {x ∈ dom(U) :
H(x) < |x|}. Note that for every r.e. prefix-free set there is a constant
d such that H(x) ≤ |x| + d for all its members; this fact is crucial for
transferring the proof of Theorem 5 to the prefix-free case.

5. Supersets of domains of universal plain versus
prefix-free machines

The domain W of a universal plain machine cannot be prefix-free
because its density is too high. This section addresses the question
whether such a domain always contains the domain of a universal pre-
fix free machine. While we left the question open, we collect some
interesting facts surrounding it. The first theorem gives some mini-
mum requirement on the function sW .

Theorem 14. Suppose the r.e. set W contains the domain of a uni-
versal prefix-free machine U . Then either there is a constant c such
that sW (n, c) ≥ 2n for all n or the Turing degree of sW is that of the
halting problem.

Proof. Assume by way of contradiction that W <T K and that there
is a W -recursive function f such that sW (f(c), 2c) < 2f(c) for all c
and let ft be a recursive approximation of f such that the convergence
module of the approximation is also W -recursive, that is, the mapping
n �→ min{t : ∀t� ≥ t [ft�(n) = f(n)]} is W -recursive. This is possible as
W is an r.e. set. Furthermore, let a0, a1, a2, . . . be a recursive one-to-
one enumeration of K. Now one defines a prefix-free machine M such
that M(0at1σ) = σ for all σ ∈ {0, 1}ft(at)+2. There is a constant d such
that for every t and every σ ∈ {0, 1}ft(at) there is p ∈ dom(U) with
U(p) = σ ∧ |p| ≤ at + |σ| + d.

As W has r.e. Turing degree and W <T K, the convergence module
of f cannot dominate that of K; hence there are infinitely many t such
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that ft(at) = f(at). Now choose t such that at > d and ft(at) = f(at).
It follows that HU(σ) ≤ f(at) + 2at for 2f(at)+2 strings; at least 2f(at)+1

of these strings must be the image of a p ∈ dom(U) with f(at) ≤ |p| ≤
f(at) + 2at in contradiction to the choice of f . Hence it is not possible
that both assumptions on W are true, so either there is a constant c
such that sW (n, c) ≥ 2n for all n or W ≡T K. �
Note that for each constant c > 0 the set {0cp : |p| is a multiple of c} is
a superset of the domain of some universal prefix-free machine; hence
the “either-condition” Theorem 14 cannot be dropped. The next result
shows that the “or-condition” is not sufficient to guarantee that some
subset is the domain of a universal prefix-free machine.

Theorem 15. Let W be an r.e. set such that for every c there is an
n with sW (n, c) < 2n. Then there is an r.e. set W � with sW = sW �

such that W � does not contain the domain of any universal prefix-free
machine.

Proof. The central idea is to construct by induction relative to the
halting problem a sequence p0, p1, p2, . . . of strings such that each pe+1

extends pe and pe ∈ We whenever this can be satisfied without violating
the extension-condition. Furthermore, the set W � is constructed such
that for each length n one enumerates sW (n) many strings of length
n into W � and chooses each string w ∈ Xn such that w is different
from the strings previously enumerated into W � and one satisfies that
w extends the approximations p0,n, p1,n, . . . , pe,n of p0, p1, . . . , pe for the
largest possible e which can be selected.

For any fixed e it holds for almost all n that pe,n = pe and that
sW (n) ≤ 2n−|pe| implies that all members of W � ∩ Xn extend pe. By
assumption there is for each constant c > |pe| a sufficiently large n
such that sW (n, 4c) < 2n and all members of W � of length n + c, n +
c + 1, . . . , n + 4c extend pe. Assume now that We is the domain of a
universal machine. Then, for one of these constants c the corresponding
n has in addition the property that there is a member of We of length
between n + c and n + 2c. If this member of We is not in W � then
We is not a subset of W �. If this member of We is in W � then it is an
extension of pe and by the way pe is chosen it follows that also pe ∈ We,
a contradiction with the assumption that We is prefix-free. Hence none
of the We is a subset of W � and the domain of a universal prefix-free
machine. �
The previous result is contrasted by the following example.

Example 16. Assume that W is an r.e. set (not necessarily prefix-free)
such that there is a real constant c > 0 with sW (n) · 2−n > c for all n

15



and assume that f is a recursive function with
�

n
2−nf(n) < c. Then

there is a prefix-free recursive subset W � ⊆ W with sW �(n) = f(n) for
all n.

The set W � can be constructed by simply picking, for n = 0, 1, 2, 3, . . .,
exactly f(n) strings of length n out of W which do not extend previously
selected shorter strings.

The main question is to find conditions on sW which guarantee that W
has a subset which is the domain of a universal prefix-free machine. In
the light of Theorem 15 a necessary condition is that ∃c ∀n [sW (n, c) ≥
2n]. Is this condition also sufficient? By Theorem 3 this condition
characterises the supersets of plain universal machines; hence in the
conference version of this paper [4], the question was stated as follows:

Question 17. Does the domain of every universal plain machine con-
tain the domain of a universal prefix-free machine?

While this paper was under review and revision, Andreev, Razenshteyn
and Shen [1] solved the question to the negative by constructing a
recursive set containing the third of all strings of each length which is
not the superset of any domain of a prefix-free universal machine.

6. Discussion

One major topic of the paper were characterisations of (supersets of)
domains of universal plain and prefix-free machines expressed in terms
of the spectrum function sV . Although the results were stated in form
of sV (n, c), they can also stated as follows using sV (0, n) in place of
sV (n, c):

(1) W is the superset of the domain of a universal plain machine iff
there exists a natural number c such that ∀n [sW (0, n) ≥ 2n−c];

(2) W is the domain of a universal plain machine iff there exists a
natural number c such that ∀n [C(sW (0, n)) ≥ n− c];

(3) W is the superset of the domain of a universal prefix-free ma-
chine iff there exists a natural number c such that ∀n [sW (0, n) ≥
2n−H(n)−c];

(4) W is the domain of a universal prefix-free machine iff there
exists a natural number c such that ∀n [H(�sW (0, n), n) ≥ n−c].

Furthermore, the halting probability ΩM of a prefix-free machine M
containing the domain of a universal prefix-free machine is Martin-
Löf random, but dom(M) may not be the domain of any universal
prefix-free machine. Various relations between (supersets of) domains
of universal plain and prefix-free machines have been investigated.
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The analogy between the cases of plain and prefix-free description
complexity is not perfect. Pursuing this analogy one might look at the
property that every r.e. prefix-free superset of the domain of a universal
prefix-free machine is also the subset of such a domain. Therefore one
can ask which r.e. sets are the subset of the domain of a first universal
machine and the superset of the domain of a second universal machine.
The answer is that these are all r.e. sets V where there is a constant c
such that

∀n
�
2n ≤ sV (n, c) ≤ 2n+c − 2n

�

and therefore this class is not really interesting. One might question
whether the set is “isomorphic” to the prefix-free r.e. superset of the
domain of a universal prefix-free machine. Although a good charac-
terisation for the domains of universal machines had been found, the
adequate question for the supersets was not found.

There are various definitions of universality and in this paper we
considered the definition according to which U is universal if the de-
scription complexity based on U cannot be improved by more than a
constant. A prominent alternative notion says that U is universal by
adjunction if for every further machine M there is a finite string q such
that U(qp) = M(p) for all p ∈ dom(M). Universality by adjunction is
quite restrictive and using the spectrum function sV one cannot char-
acterise when a prefix-free set V is the domain of a machine which
is universal by adjunction; however, this is done for normal universal
machines in Theorem 8. Nevertheless, due to the more restrictive na-
ture, prefix-free machines U which are universal by adjunction have the
property

∃c ∀n [H(sU(n)) ≥ n−H(n)− c].

In other words, these machines are difficult on every level. This is
not true for normal universal machines and one can use this method
to obtain a machine which is universal but not universal by adjunc-
tion: the desired machine U is obtained from a given universal ma-
chine M such that for all p ∈ dom(M), U(p0) = U(p1) = M(p) if |p|
is odd and U(p) = M(p) if |p| is even; it is easy to see that U inherits
prefix-freeness and universality from M . Fact 5 in [5] provides more
information about this topic.

As the topic of the paper are mostly supersets of domains of universal
machines, it is natural to ask what can be said about the r.e. subsets
of such domains. Indeed, these subsets are easy to characterise, where
in the following two strings are comparable if one of them extends the
other.
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Proposition 18. A prefix-free r.e. set V ⊆ X∗ is a subset of the
domain of a universal prefix-free machine iff there is a string p such
that no q comparable to p is in V ; an r.e. set V ⊆ X∗ is the subset of
the domain of a universal plain machine iff there is a constant c such
that sX∗\V (n, c) ≥ 2n for all n.

Note that a subset of the domain of a prefix-free machine is also the
subset of the domain of a universal plain machine, but not vice versa.
Indeed, every prefix-free subset of X∗ is a subset of the domain of a
universal plain machine.
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