
CDMTCS
Research
Report
Series

An Algebraic
Characterization
of the Halting Probability

Gregory Chaitin
IBM T. J. Watson Research Center, USA

CDMTCS-305
April 2007

Centre for Discrete Mathematics and
Theoretical Computer Science

An Algebraic Characterization
of the Halting Probability

Gregory Chaitin∗

Abstract

Using 1947 work of Post showing that the word problem for semi-
groups is unsolvable, we explicitly exhibit an algebraic characteriza-
tion of the bits of the halting probability Ω. Our proof closely follows
a 1978 formulation of Post’s work by M. Davis. The proof is self-
contained and not very complicated.

1. Introduction

Algorithmic information theory [4] shows that pure mathematics is infinitely
complex and contains irreducible complexity. The canonical example of such
irreducible complexity is the infinite sequence of bits in the base-two expan-
sion of the halting probability Ω. The halting probability is defined by taking
the following summation

0 < Ω =
∑

U(p) halts

2−|p| < 1

over all the self-delimiting programs p that halt when run on a suitably
defined universal Turing machine U . Here |p| denotes the size in bits of the
program p. The value of Ω depends on the choice of U , but its surprising
properties do not.

The numerical value of Ω is maximally unknowable in the following precise
sense. You need an N -bit theory in order to be able to determine N bits of

∗IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598,
U.S.A., chaitin@us.ibm.com.

1

Ω [7]. Nevertheless, Ω has a kind of diophantine reality, because there is a
diophantine equation with a parameter k that has finitely or infinitely many
solutions depending on whether the kth bit of Ω is respectively 0 or 1 [4].
More recently, Ord and Kieu [5] have shown that there is also a diophantine
equation with a parameter k that has an even or odd number of solutions
depending on whether the kth bit of Ω is respectively 0 or 1.

The purpose of this note is to discuss the fact that as well as “diophantine
reality,” Ω also possesses a kind of algebraic reality, because there is an
algebraic problem with a parameter i which yields the infinite sequence of
bits bi in the binary expansion of Ω:

Ω =
∑

i=1,2,3,...

bi × 2−i.

First of all, note that one can calculate better and better lower bounds
on Ω, for example, by using the simple LISP function given in [7, pp. 65–69].
This works because Ω is the limit of Ωn defined as follows:

Ωn =
∑

|p| ≤ n and U(p) halts in ≤ n steps

2−|p|.

As n tends to infinity, Ωn tends to Ω, and from some point on each bit of
Ωn will remain correct, since Ω is irrational.1 In other words, as n tends to
infinity, the values of individual bits of Ωn will fluctuate but eventually settle
down to the correct values.

Our construction closely follows the presentation in Davis [1] of the idea
in Post [2]. Davis [1] explains Post [2] so well, that it seems foolish to use a
different formulation here. Sections 2 through 4 are taken word from word
from Davis [1], except for changes to adapt Davis [1] to our present needs.2

2. The Turing – Post programming language

We work with a finite alphabet of α possible tape symbols

0 1 a b c . . . �
1I.e., this limiting process cannot give us .3659999. . . instead of .3660000. . . because

then Ω would be a rational number and would therefore not be irreducibly complex.
2Davis only allows his Turing–Post programs to use the two-symbol alphabet 0, 1.

However, here we use a bigger alphabet, as was originally done by Post.

2

Here � stands for a blank square on the tape. Any computation can be
thought of as being carried out by an automatic scanning device, working
with strings of these α symbols written on a linear tape, which executes
instructions of the form:

• Write the symbol 0,

• Write the symbol 1, etc.

• Move scanner one square to the right,

• Move scanner one square to the left,

• Observe the symbol currently scanned and choose the next step accord-
ingly,

• Stop.

The procedure which our calculator is carrying out then takes the form
of a numbered list of instructions of these kinds. As in modern computing
practice, it is convenient to think of these kinds of instructions as constituting
a special programming language. A list of such instructions written in this
language is then called a program.

We are now ready to introduce the Turing–Post programming language.
In this language there are 2α + 3 kinds of instructions:

WRITE 0
WRITE 1 etc.
MOVE SCANNER RIGHT
MOVE SCANNER LEFT
GO TO INSTRUCTION # i IF 0 IS SCANNED
GO TO INSTRUCTION # i IF 1 IS SCANNED etc.
STOP

A Turing–Post program is then a list of instructions, each of which is of one
of these 2α + 3 kinds. Of course in an actual program the letter i in each
GO TO instruction must be replaced by a definite (positive whole) number.

In order that a particular Turing–Post program begin to calculate, it
must have some “input” data. That is, the program must begin scanning at
a specific square of a tape already containing a sequence of symbols. The
symbol � functions as a “blank”; although the entire tape is infinite, there

3

are never more than a finite number of non-� symbols that appear on it in
the course of a computation. (A reader who is disturbed by the notion of an
infinite tape can replace it for our purposes by a finite tape to which blank
squares—that is, squares filled with �’s—are attached to the left or the right
whenever necessary.)

3. What is a word problem?

We now explain what a word problem is.
In formulating a word problem one begins with a (finite) collection, called

an alphabet, of symbols, called letters. Any string of letters is called a word on
the alphabet. A word problem is specified by simply writing down a (finite)
list of equations between words. Figure 1 exhibits a word problem specified
by a list of 3 equations on the alphabet a, b, c. From the given equations
many other equations may be derived by making substitutions in any word
of equivalent expressions found in the list of equations. In the example of
Figure 1, we derive the equation bac = abcc by replacing the part ba by abc
as permitted by the first given equation.

We have explained how to specify the data for a word problem, but we
have not yet stated what the problem is. It is simply the problem of de-
termining for two arbitrary given words on the given alphabet, whether one
can be transformed into the other by a sequence of substitutions that are
legitimate using the given equations.

4. Converting the question of whether a Tur-

ing – Post program halts into a word problem

Consider a Turing–Post program P which we assume consists of n instruc-
tions. We now use an alphabet consisting of the α + n + 2 symbols:

0 1 a b c . . . � h q1 q2 . . . qn qn+1.

The fact that the ith step of P is about to be carried out and that there is
some given tape configuration is coded by a certain word (sometimes called
a Post word) in this alphabet. This Post word is constructed by writing
down the string of symbols constituting the current nonblank part of the
tape, placing an h to its left and right (as punctuation marks) and inserting

4

Given an alphabet of three symbols a, b, c, and three equations

ba = abc

bc = cba

ac = ca

we can obtain other equations by substitution:

[ba]c = abcc

Or

b[ac] = [bc]a = c[ba]a = cabca = [ca]bca = acbca = . . .

= cab[ca] = cabac = . . .

= ca[bc]a = cacbaa = . . .

(The expressions in brackets are the symbols about to be replaced.) In this
context can be raised questions such as: “Can we deduce from the three
equations listed above that bacabca = acbca?” The word problem defined
by the three equations is the general question: to determine of an arbitrary
given equation between two words, whether or not it can be deduced from
the three given equations.

Figure 1. A Word Problem

5

the symbol qi (remember that it is the ith instruction which is about to be
executed) immediately to the left of the symbol being scanned. For example,
with a tape configuration

1101
↑
1

and instruction number 4 about to be executed, the corresponding Post word
would be

h110q411h.

This correspondence between tape configurations and words makes it pos-
sible to translate the steps of a program into equations between words. For
example, suppose that the fourth instruction of a certain program is

WRITE 0.

We translate this instruction into the α equations

q40 = q50, q41 = q50, etc.

which, for example, yield the equation between Post words

h110q411h = h110q501h

corresponding to the next step of the computation. Suppose next that the
fifth instruction is

MOVE SCANNER RIGHT.

It requires α(α+1) equations to fully translate this instruction, of which two
typical ones are

q501 = 0q61, q51h = 1q6�h.

In a similar manner each of the instructions of a program can be translated
into a list of equations. In particular when the ith instruction is STOP, the
corresponding equation will be:

qi = qn+1.

So the presence of the symbol qn+1 in a Post word serves as a signal that the
computation has halted. Finally, the 2α equations

qn+10 = qn+1, qn+11 = qn+1,

0qn+1 = qn+1, 1qn+1 = qn+1,

6

etc. serve to transform any Post word containing qn+1 into the word hqn+1h.
Putting all of the pieces together we see how to obtain a word problem which
“translates” any given Turing–Post program.

Now let a Turing–Post program P begin scanning the leftmost symbol of
the string v; the corresponding Post word is hq1vh. Then if P will eventually
halt, the equation

hq1vh = hqn+1h

will be derivable from the corresponding equations as we could show by
following the computation step by step. If on the other hand P will never
halt, we would like to prove that this same equation will not be derivable.
The problem is that every time we use one of the equations which translates
an instruction, we are either carrying the computation forward, or—in case
we substitute from right to left—undoing a step already taken.

5. Running computations backwards and for-

wards simultaneously

So the computation, when it is expressed in terms of Post words, can run
both forwards and backwards! Does this ruin things? Post realized that
it cannot.3 What we actually get is a tree with all the computations that
eventually halt. The final word hqn+1h is the root of this tree. As time goes
forward, computational trajectories can merge or join, but they can never
split in two. So even if the computation runs backward for a while, and even
splits off from the correct trajectory, when it starts forward again it will have
to retrace its steps, so this detour does not affect the final result.

Post’s argument is different; it’s a proof by induction.4 He considers
the last backwards step in the derivation. The step right after that goes
forward (since we were looking at the last backwards step), and must undo
that backwards step. Hence we can delete these two steps which mutually
annihilate each other and then apply Post’s argument again to the resulting
2-step-shorter derivation.

3Unfortunately, Davis [1] does not explain why.
4See Post’s Lemma II in Davis [3, pp. 297–298.]

7

6. Converting individual bits of the halting

probability Ω into word problems

Recall the definition of Ωj given in Section 1. Ωj approximates Ω by looking
at the finite set of all programs p up to j bits in size, and running each of
them for j steps. Each program p that halts that is discovered in this way
contributes 1/2|p| to Ωj, i.e., contributes 1 over 2 raised to size in bits of p.
These approximations will get better and better. More precisely, as j tends
to infinity, the values of individual bits of Ωj will fluctuate but eventually
settle down to the correct values.

Now let aj be a string of j letters a, and let bk be a string of k letters b.
Consider a Turing–Post program which when started scanning the leftmost
symbol of the word ajbk on its tape, eventually halts if the kth bit of Ωj is
a 1, and never halts if the kth bit of Ωj is a 0. This Turing–Post program
computes the kth bit of the jth approximation to Ω, and then halts at once
or loops forever depending on whether this bit is a 1 or a 0. Convert this
Turing–Post program to a set of equations using Post’s method as explained
above. Then

hq1a
jbkh = hqn+1h

will be derivable from this set of equations iff the kth bit of Ωj is a 1. Hence,
fixing k and letting j vary, the set of all words of the form hq1a

jbkh which
are equal to the word hqn+1h will be infinite if the kth bit of Ω is a 1, and it
will be finite if the kth bit of Ω is a 0. This is our algebraic characterization
of the bits of the halting probability.5

By the way, it is well worth it to read Davis [1], reprinted in Calude [8], in
its entirety, not just the parts we have excerpted here. For more on the word
problem, see Chapter 12 of Rotman [9]. For the philosophical significance of
Ω, see [10].

5Using a different construction due to Ord and Kieu [5] (explained in Chaitin [6, pp.
135–139]) we can instead construct a set of equations with the following property. Fix k
and let j vary. The set of all words of the form hq1a

jbkh which are equal to the word
hqn+1h will always be finite, and furthermore the cardinality of this set will be odd if the
kth bit of Ω is a 1, and its cardinality will be even if the kth bit of Ω is a 0.

8

References

[1] M. Davis, “What is a computation?,” in L. A. Steen, Mathematics
Today: Twelve Informal Essays, Springer-Verlag, New York, 1978, pp.
241–267. Reprinted in Calude [8].

[2] E. Post, “Recursive unsolvability of a problem of Thue,” Journal of
Symbolic Logic, Vol. 12 (1947), pp. 1–11. Reprinted in Davis [3, pp.
293–303].

[3] M. Davis, The Undecidable, Dover, 2004.

[4] G. Chaitin, Algorithmic Information Theory, Cambridge University
Press, 1987.

[5] T. Ord, T. D. Kieu, “On the existence of a new family of diophantine
equations for Ω,” Fundamenta Informaticae, Vol. 56 (2003), pp. 273–
284.

[6] G. Chaitin, Meta Math!, Pantheon, 2005.

[7] G. Chaitin, The Limits of Mathematics, Springer-Verlag, 1998.

[8] C. Calude, Randomness & Complexity, from Leibniz to Chaitin, World
Scientific, to appear.

[9] J. J. Rotman, An Introduction to the Theory of Groups, Fourth edition,
Springer-Verlag, 1995, Corrected second printing, 1999.

[10] G. Chaitin, Thinking about Gödel & Turing: Essays on Complexity,
1970–2007, in preparation.

9

