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Abstract

This report is a self-contained summary of properties and algorithms concerning the Gray code. 
Descriptions are given of the Gray code definition, algorithms and circuits for generating the code 
and for conversion between binary and Gray code, for incrementing, counting, and adding Gray 
code words. Some interesting applications of the code are also treated. 

1. Introduction

What we now call “Gray code” was invented by Frank Gray. It was described in a patent that was 
awarded in 1953; however, the work was performed much earlier, the patent being applied for in 
1947. Gray was a researcher at Bell Telephone Laboratories; during the 1930s and 1940s he was 
awarded numerous patents for work related to television. According to Heath [Hea72] the code 
was first, in fact, used by Baudot for telegraphy in the 1870s, though it is only since the advent of 
computers that the code has become widely known.

The term “Gray code” is sometimes used to refer to any single-distance code, that is, one in which 
adjacent code words (perhaps representing integers differing by 1) differ by 1 in one digit position 
only. Gray introduced what we would now call the canonical binary single-distance code, though 
he mentioned that other binary single-distance codes could be obtained by permuting the columns 
and rotating the rows of the code table. The codes of Gray, and natural extensions to bases other 
than binary, are only a very small subset of all single-distance codes. In this report we will use the 
term "the Gray code" to refer to the code of Gray and "single-distance" to refer to the more general 
case; we will be concerned mainly with properties of the Gray code.

The original purpose of this report was to consider algorithms for parallel arithmetic using Gray 
codes (the Gray representation is particularly suited to serial arithmetic; more ingenuity is required 
to operate in parallel). In surveying the literature it became clear that there had been much 
discovered and written about the Gray code; it is associated with many elegant algorithms and 
circuits. However, this wealth of technical material had never been gathered together and treated in 
a consistent form, hence, a self-contained survey of the code’s properties, algorithms and circuits, 
has become the main topic, though parallel operations are included.

2. Definition of the Gray Code

Origin of the code

The Gray code arises naturally in many situations. Gray’s interest in the code was related to what 
we would now call analog to digital conversion. The goal was to convert an integer value, 
represented as a voltage, into a series of pulses representing the same number in digital form. The 
technique, as described in Gray’s patent, was to use the voltage being converted to displace 
vertically an electron beam that is being swept horizontally across the screen of a cathode ray tube. 
The screen has a mask etched on it that only allows the passage of the beam in certain places; a 
current is generated only when the beam passes through the mask. The passage of the beam will 
then give rise to a series of on/off conditions corresponding to the pattern of mask holes that it 



passes.

The original scheme was to use a mask representing a standard binary encoding. However, this has 
the problem that, if the beam is close to the boundary between two values, a slight distortion in the 
beam can give an output that is neither of the two adjacent values but a combination of each (in the 
example below, in the transition from 011011 (27) to 011100 (28), the device could produce these 

The manner in which the primary reflected binary number system is built up 
will now be explained.

First: write down the first two numbers in the 1-digit orthodox number system, thus:

Zero 0
One 1

Note that the symbols differ in only one digit.

Second: below this array write its “reflection” in a transverse axis:

Zero 0
One 1
-----------

1
0

The symbols still differ in not more than one digit. However, the first is 
identical with the fourth and the second with the third.

Third: to remove this ambiguity, add a second digit to the left of each symbol, 0 for 
the first two symbols and 1 for the last two, thus:

Zero 00
One 01
Two 11
Three 10

and identify the last two symbols with the numbers “two” and “three.” Each symbol is 
now unique and differs from those above and below in not more than one digit. The 
array is a representation of the first four numbers in the primary 2-digit reflected binary 
number system.

The process is next repeated giving -
First:

Zero 00
One 01
Two 11
Three 10

Second: 
Zero 00
One 01
Two 11
Three 10
------------
 10
 11
  01
 00

Third:
Zero 000
One 001
Two 011
Three 010
-------------
 Four 110
 Five 111
 Six 101
 Seven 100

Figure 2. Gray’s Definition of his Reflected Binary Code

two values but also 011111 (31) or 011000 (24) and others. To deal with this problem Gray 
proposed using a mask corresponding to a code in which adjacent code words differed in one bit 
position only. In that case, a slight beam displacement would give only a small change to the 

encoding. Figure 1 is an adaptation of the figure in the patent.



Gray’s definition of the Code 

Figure 2 is a word-for-word reproduction of the definition given by Gray in the patent [Gra53] - it 
has never been explained better.

Gray’s definition is a procedure for generating, what we now call, the Gray code of width n. As 
well as discussing the process, he has shown, by construction that:

Property P1: Adjacent words in the Gray code sequence differ in one bit position only.

Direct application of the code

Because, apart from the leading bit, the second half of the code is the same as the first, but 
reversed, it follows that the first and last words of the code sequence differ in only the leading bit. 
In other words:

Property P2: The Gray code is cyclic.

These first two properties underlie the most common practical use found for the code which was 
for locating the rotational position of a shaft (see, for example, [Fos54]). A pattern representing the 
Gray code was printed on a shaft, or on a disk, and the pattern sensed by an optical or electrical 
detector (see figure 3). Note that the least significant end of the code has fewer transitions than 
does normal binary so the Gray code has another apparent advantage that the pattern may be 
printed to another bit of precision with the same printing resolution [Wal70]. Note that the read-out 
of the shaft's rotational position is a completely parallel operation. 

Generation of the code sequence by means related to its definition

Let us say that going through the Gray code sequence normally, is going up, or ascending and the 
opposite direction down, or descending. Generating a sequence going down is the same as 
reflecting it, in Gray’s sense. The sequence of width n comprises, by definition:

0 preceding each member of the width n-1 sequence
1 preceding each member of the width n-1 sequence reflected

To generate going down, this is reflected to give:

 

Figure 3. Gray code as used on a shaft encode for determining angle of rotation

1 preceding each member of the width n-1 sequence reflected reflected
0 preceding each member of the width n-1 sequence reflected

But reflecting a sequence twice gives back the original sequence, so the width n sequence reflected 
is:

1 preceding each member of the width n-1 sequence 
0 preceding each member of the width n-1 sequence reflected



This gives us the property:

Property P3: A descending Gray code sequence of width n is the same as an ascending sequence 
except that the leading bit is inverted.

For example, the width 3 sequence:

up down
000 100
001 101
011 111
010 110
110 010
111 011
101 001
100 000

Let’s use the following notation. The Gray code word G, of width n, is a vector of n bits, 
(Gn-1,Gn-2,......G0) and represents a number G. Likewise, a number B has the standard 
representation B, as a vector of n bits, (Bn-1,Bn-2,......B0). We will most usually be interested in the 
situation when B=G.

In expressing algorithms we will use a data type bit that is the union of Boolean and integer, and 
also word that is an array of bits.

Gray’s definition of his code sequence of width n is captured by the following algorithm: 

procedure generate (n:integer, d:bit); 
{generate width-n sequence in d(irection) up = 0, down = 1}
var G:word;
procedure generate1 (m:integer; d:bit); 
begin 
if d = 0 then begin

G[m-1] := 0; generate1(m-1,0);{up}
G[m-1] := 1; generate1(m-1,1);{down}
end;

if d = 1 then begin
G[m-1] := 1; generate1(m-1,0);{up}
G[m-1] := 0; generate1(m-1,1);{down}
end

end;
begin 
generate1(n,0);
end;

Dealing with the termination of recursion, and simplifying, we end up with the elegantly simple 
algorithm:

{ALGORITHM A1: GENERATE WIDTH N GRAY CODE SEQUENCE}
procedure generate (n:integer, d:bit); 

{d(irection) up = 0, down = 1}
var G:word;
procedure generate1 (m:integer; d:bit); 
begin



if m = 0 then display(G) else  
begin
G[m-1] := d; generate1(m-1,0);{up}
G[m-1] := not d; generate1(m-1,1);{down}
end;

end;
begin 
generate1(n,0);
end;

3. Relationship between binary code and Gray code
 
Generating the Gray code from binary

The above algorithm, with two calls per recursion, has a binary tree of possible procedure calls. 
We can label the nodes of the tree, and thus give each Gray code word a binary equivalent, by 
setting a bit prior to each recursive call. Lets concentrate on the ascending sequence:

procedure generate (n:integer); 
{direction up}
var B,G:word;
procedure generate1 (m:integer; d:bit); 
begin
if m = 0 then display(B,G) else  

begin
G[m-1] := d; B[m-1] := 0; generate1(m-1,0);{up}
G[m-1] := not d;B[m-1] := 1; generate1(m-1,1);{down}
end;

begin 
generate1(n,0);
end;
 
The algorithm will now generate the integers B along with the associated Gray codes. The inner 
compound statement is equivalent to:

begin
G[m-1] := d; B[m-1] := 0;generate1(m-1,B[m-1]);{up}
G[m-1] := not d;B[m-1] := 1;generate1(m-1,B[m-1]);{down}
end;

i.e. (if we set B[n] appropriately):
begin
G[m-1] := B[m]; B[m-1] := 0;generate1(m-1);
G[m-1] := not B[m]; B[m-1] := 1;generate1(m-1);
end;

i.e.
begin
B[m-1] := 0;G[m-1] := B[m]B[m-1]; generate1(m-1);
B[m-1] := 1;G[m-1] := B[m]B[m-1]; generate1(m-1);
end;



i.e.
for B[m-1] := 0 to 1 do begin

G[m-1] := B[m]B[m-1]; generate1(m-1);
end;

Now, as G is not used except in "display",  the generation of its elements may be done in any order 
following the generation of the necessary bits of B - it can thus be generated at "display time". 
Giving:

{ALGORITHM A2: GENERATE WIDTH N GRAY CODE SEQUENCE FROM BINARY 
SEQUENCE}

procedure generate (n:integer); {generate width-n sequence}
var G:word; i:integer;
procedure generate1 (m:integer; d:bit); 

{d(irection) up = 0, down = 1}
begin
if m>0 then for B[m-1] := 0 to 1 do generate1(m-1) 

else begin
for i := n-1 downto 0 do G[i-1] := B[i]B[i-1];
display(B,G);
end 

end;
begin 
B[n] := 0;
generate1(n);
end;

Conversion from binary to Gray

The above generation algorithm gives us immediately the property (specified by Gray):

Property P4: (Gi-1 = BiBi-1), i = n .... 0, where Bn is taken as 0

This gives a parallel algorithm or circuit for generating G from B, because the expressions are 
independent. Alternatively, if a computer has a bitwise xor between words then we can calculate G  
using a right shift:

G = B(B/2) 

Another way of thinking of this is:

Property P5: Gi-1 = 1 where Bi  Bi-1, i = n .... 0 (where Bn is taken as 0)

i.e. the Gray code word is a record of the transitions within the corresponding binary word.

Example.

Binary word 0011110011001110100110111101101
Gray code word 0010001010101001110101100011011

Conversion of Gray to binary



Conversion of Gray to Binary is not as simple as the other direction. We have from property P4:

i (BiGi-1 = BiBi Bi-1) where Bn is taken as 0, i.e.

Property P6: Bi-1 = Bi Gi-1, i = n .... 0,  where Bn is taken as 0

but unfortunately these are not independent and individual equations. They do give rise naturally to 
a nice sequential algorithm but the parallel version involves a prefix accumulation of xor:

Property P7: Bi-1 = Gn-1 Gn-2 .....  Gi-1

This can be generated by a parallel prefix circuit as in Figure 4.

Figure 4. Parallel Gray to Binary Conversion Circuit

Alternatively [Wan66], if a computer has a bitwise xor between words and fast parallel shifts then 
the binary code may be generated by a succession of xors and shifts that implement the work of 
figure 4, level by level:

B = G(G/2); B = B(B/4); B = B(B/16); etc

However, there are conversion techniques that are more suited to software. Lets concentrate on the 
bits of the Gray code word that are 1. Define for each G another vector I of length z. I = (Iz-1,Iz-2, 
... ,I0  ) which is the set of subscripts for which the Gray code is not zero. Recalling property P5, 
that  the Gray code word is a record of the transitions within the corresponding binary word, Iz-1 is 
the position of the first 1 in the binary code and Iz-2 is the next 0, etc. Now, we have:

B = Bn-12n-1+Bn-22n-2+...  +B020

Listing only the bits of B that are non-zero:

B = [2Iz-1+... +2(Iz-2+1) ] + [2Iz-3+... +2(Iz-4+1) ] + ...

Applying a Booth recoding:

B =  [2(Iz-1+1) - 2(Iz-2+1)] +  [2(Iz-3+1) - 2(Iz-4+1)] + ...
(-1 if the number of 1 bits in G is odd)

Let’s write P(X,a,b) for the parity of (Xa Xb ), which can be defined as Xa 
Xb , or (Xa+Xb )mod 2, or whether the number of bits 1 in  (Xa 
Xb ) is odd (1) or even (0). Also write P(X,i) for P(X,n-1,i) and P(X) for P(X,n-1,0).

We may write the above:

Property P7: B = (-1)P(G,Iz-1).2(Iz-1+1) + .... + (-1)P(G,I0).2(I0+1) - P(G);

This property my be used to convert from Gray to binary by adding the shifted bits of the Gray 
code with appropriate sign.



Example:

Binary word 0011100111
Gray code word 0010010100

B = 0100000000 - 0000100000 + 0000001000  -  0000000001

This property also explains the origin of difficulty with doing arithmetic on Gray code words. In a 
conventional binary word, if bit i is one it means 2i, but bit i in a Gray code word could represent 
+2i+1 or -2i+1 - the sense can only be resolved if the parity of the leading part of the word up to the 
bit is determined. In a sense, Gray code is a signed-bit ternary representation [Wal70], where each 
bit can be 1, 0, or -1 (but with the restriction that non-zero bits must alternate in sign).

Although the property P7 could be used to convert from Gray to Binary, it is not a good approach, 
because the subtractions involve propagation of carry. A better approach, ([Irs87], also noted by 
Gray himself), is to replace each power  2i in the above by (2i-1)+1. We get:

B = (-1)P(G,Iz-1). [2(Iz-1+1)-1] + .. + (-1)P(G,I0). [2(I0+1)-1]
+ (-1)P(G,Iz-1) +(-1)P(G,Iz-2)+...+(-1)P(G,I0)    -   P(G)

The second line is zero. So we have:

Property P8:  B = (-1)P(G,Iz-1). [2(Iz-1+1)-1] + .. + (-1)P(G,I0). [2(I0+1)-1]

The reason that this is useful is that the successive additions and subtractions can now be 
performed to construct the binary equivalent with no carry being required at any stage (in fact, 
addition and subtraction may be replaced by xor).

Example:

Binary word 0011100110
Gray code word 0010010101

B = 0011111111 - 0000011111 + 0000000111 - 0000000001
  =        0011100000       +        0000000110

Parity of Gray code word

Property P8 shows that knowledge of the parity of a Gray code word can useful. We will see other 
examples of its use later.

Recall that in going up from B to B+1 exactly one bit of G changes. It follows that exactly two bits 
change in going from B to B+2 . Thus the nunber of bits that are 1 remains the same or changes by 
2, i.e. the parity remains the same. This gives us:

Property P9:  The parity of a Gray code word is 0 iff it represents an even number, i.e.  P
(G,n-1,0) = B0 

One of the drawbacks of the convential binary representation is that the parity of the result of an 
arithmetic operation is not easy to predict from the parities of its operands. However, the sum or 
difference of two numbers is even if, and only if, the inputs are both even or both odd, and the 



product is even if either operand is even. This allows the parity of Gray-code results to be 
predicted:

Property P10:  If the parities of two Gray code operands are Pa and Pb, then the parity of the Gray 
code result is:

+ Pa  Pb
* Pa  and  Pb

Gray codes arising in binary counters

In [Bur70] it was noted that Gray codes arise naturally if one constructs a binary counter from 
master-slave (i.e. race-free or edge triggered) toggle flip-flops. In a master-slave flip-flop the 
“second” flip-flops,  represent the value. However, if we concentrate on the “first” flip-flops they 
are seen to be following a different pattern. 

Figure 5. Binary counter with master/slave flip/flops

S4 F3 S3 F2 S2 F1 S1 F0 S0 S  F
0 0 0 0 0 0 0 0 0 00000 0000
0 0 0 0 0 0 0 1 1 00001 0001
0 0 0 0 0 1 1 1 0 00010 0011
0 0 0 0 0 1 1 0 1 00011 0010
0 0 0 1 1 1 0 0 0 00100 0110
0 0 0 1 1 1 0 1 1 00101 0111
0 0 0 1 1 0 1 1 0 00110 0101
0 0 0 1 1 0 1 0 1 00111 0100
0 1 1 1 0 0 0 0 0 01000 1100
0 1 1 1 0 0 0 1 1 01001 1101
0 1 1 1 0 1 1 1 0 01010 1111
0 1 1 1 0 1 1 0 1 01011 1110
0 1 1 0 1 1 0 0 0 01100 1010
...........

So, as the input and second flip-flops run through the ordinary binary integers, the first flip-flops 
run through the Gray code. The behaviour of Fi and Si+1 are entirely governed by the changes that 
occur in Si. Assuming that the counter is initially cleared, the following sequence of events will 

repeat itself:
Si+1 Fi Si
0 0 0
0 1 1
1 1 0
1 0 1
0 0 0

It can be seen that at all times Fi = Si+1    Si , so that F indeed is the Gray code. Because Si+1 
is always set to Fi , but delayed, we see another interesting fact:
  
Property P11: Column i of a listing of the Gray code is the same as column i+1 of binary, rotated 
up by 2i.

4. Properties related to the transition bit index



Generation by minimal change

The Algorithms A1 and A2 generate a full Gray Code word at each step. However, because only 
one bit changes it is possible to generate each word from the previous by changing just that bit. But 
which bit?

Follow the execution of a certain level of recursion i in Algorithm A1that is called from level i+1 
and passes control to level i-1. Successive calls to level i will be with direction:

 up (d=0);  down (d=1); up (d=0);  down (d=1); etc. 

The action of level i is then:

G[i-1] := 0, call level i-1, G[i-1] := 1, call level i-1; return; 
G[i-1] := 1, call level i-1, G[i-1] := 0, call level i-1; return; etc

Assuming that the Gray code word is initialised to 0, it can be seen that the above sequence is 
equivalent to: 

 call level i-1, G[i-1] := 1, call level i-1; 
call level i-1, G[i-1] := 0, call level i-1; etc

That is, level i switches bit i-1 between successive calls to level i-1. So we get [Er85]:

{ALGORITHM A3.1: GENERATE WIDTH N GRAY CODE SEQUENCE, BY 
SWITCHING}
procedure generate (n: integer);

var G: word;
i: integer;

procedure generate1 (m: integer);
begin

   if m >= 0 then
    begin

generate1(m - 1);
G[m-1] := not G[m-1];
display(G);
generate1(m - 1);
end;

end;
begin
for i := n-1 downto 0 do G[i] := 0;
display(G);
generate1(n);
end;

The sequence of transition indices

The algorithm A3.1 identifies the location of each element as it is switched. It is straightforward to 
modify the algorithm so that it produces the sequence in which indices change:

{ALGORITHM A3.2: GENERATE SEQUENCE OF GRAY CODE TRANSITION INDICES 



FOR WIDTH N}
procedure generate (n: integer);

var G: word;
begin
   if n >= 0 then
    begin

generate(n - 1);
display(n-1);
generate(n - 1);
end;

end;

We see that the sequence of transitions has an even simpler structure than the original definition of 
the Gray code [BER76]:

sequence for width n = sequence for width n-1, n-1, sequence for width n-1

5. Gray Code Incrementers

The task of an incrementer is, given a Gray code word, find the next in ascending order (likewise 
decrementers and descending).  Incrementers are related to counters, which may save some 
auxilliary information to simplify the task, and to generating algorithms based on incrementing. 

There are many papers, disclosures, and patents on this topic [Fis57, Maj71, CoSh69]. They all 
seem to have as a common concept the condition that is satisfied for a count up to occur. Consider 
algorithm A3.1. When the algorithm switches G[m-1] at level m, then, if m>1, level m-1 has been 
entered an odd number of times and level m-2, and  below, an even number of times. Thus, when 
G[m-1] is switched, G[m-2]=1 and G[m-3] and below are all zero. Conversely, when this 
condition occurs then G[m-1] must be the next to be switched. 

If m=1 then level 0 does not exist so we need another condition to look at. From the construction 
of the code we see that every second switch is of G[0]. Every switch changes the parity,  thus, 
when counting up, G[0] will be switched next if P(G) is 0. When counting down, G[0] will be 
switched next if P(G) is 1.

Property P12: When counting an n-bit Gray Code in direction d (=0 for up, =1 for down), the 
next bit s to be switched is given by:

P(G) = d  then s = 0
P(G) = not d  then s is such that Gs-1=1 and Gi=0, i>s-1

This converts readilly into a circuit if P(G) is known. In making a free-running counter the 
approach taken seems to be to provide an extra flip/flop that is by driven the clock and is used to 
select between the two alternatives. So, if flip/flop P is the parity flip-flop then the signals to toggle 
or switch the counter flip/flops are as in the example in Figure 6.

Figure 6. Gray code up counter

In terms of an algorithm for generating the code, Boothroyd [Boo64] calculates the parity and finds 
the last set bit by a scan from left to right.

{ALGORITHM A4: INCREMENT/DECREMENT A GRAY CODE WORD G OF WIDTH N}



procedure increment (var G: word; n: integer, d:bit);
{d is direction, 0 up, 1 down}
var p:bit;{parity}

i, last1, switch: integer;
begin
p := 0;
last1 := n;
for i := n-1 downto 0 do 

if G[i] then begin
p := not p;
last1 := i;
end;

if p  d 

then switch := 0
else if last1 < n-1 then switch := last1+1 

else switch := n-1;
G[switch] := not G[switch];
end;

Misra [Mis75] gives a generation algorithm based on the concept of incrementing. However, he 
keeps track of the parity separately and maintains a stack of indices of bits that are 1, which gives 
an algorithm that is very fast. [Er85] gives a coding of Misra’s algorithm and incorporates some 
improvements.

6. Serial Addition

We have seen that the sign of the weight assigned to a bit in a Gray code word depends on the 
parity of the word at that bit, starting at the high-order end. However, most serial arithmetic 
operations must commence with the low-order end. If we know the entire parity of the word then it 
possible to commence serial operation from the low-order bits, because of the following property:

Property P13: 

P(G,n-1,k) = P(G,k-1,0) P(G)

We have already seen one example, the Gray code counter, where knowledge of the parity overall 
is maintained in an auxilliary flip-flop. In [Luc59], Harold Lucal proposed using a modified Gray 
Code where the parity is maintained as the least significant bit. Lucal showed how serial arithmetic 
could then be implemented.

It is clear that addition of Gray codes can be performed serially if we commence at the least 
significant end and know the parity of the two operands. We can work out the high-order parities 
at each bit as we go using property P12. From property P10 we can find the parity of the sum and 
maintain the parity of each bit, and we can propagate a carry. This is straightforward but involves 
carrying a large amount of information between bits. Lucal, however, showed that addition could 
be performed by carrying only two bits between each stage as follows:

{ALGORITHM A5: SERIAL ADDITION OF GRAY CODE WORDS}
procedure add (n: integer; A,B:word; PA,PB:bit; 

var S:word; var PS:bit; var CE, CF:bit);
var i: integer; E, F, T: bit;



{This adds the Gray code words A and B to form the Gray code word 
S. The operand parities are PA and PB, the sum parity is PS. This 
propagates two carry bits internally, E and F, and produces two 
external carry bits CE and CF}
begin

E := PA; F := PB;
for i:= 0 to n-1 do begin {in parallel, using previous inputs}

S[i] := (E and F) A[i] B[i];
E  := (E and (not F)) A[i];
F  := ((not E) and F) B[i];
end;

CE := E; CF := F; 
end;

This surprising algorithm is based on the observation that it it not necessary to know the exact 
parity of A[i] and B[i] but to know whether they have different parities or the same parity. The 
interpretation of the bits E and F is:

EF = 00 - parity of A and B the same, no change in binary carry
EF = 01 - parity different and B had the last 1
EF = 10 - parity different and A had the last 1
EF = 11 - parity of A and B the same, change in binary carry

CE and CF must both be 0 on completion, otherwise there is an overflow. Refer to  [Luc59] for 
details and a proof that this algorithm is correct. Note the expression for the sum bit which 
represents a change in binary code of the binary sum as occuring when one of the inputs change 
(indicated by A[i] and by B[i]) or the carry changes (indicated by  (E and F)) - this is the same 
equation as for binary addition. 

7. Extensions to Gray codes

Bases other than binary

The original definition of Gray code applied to binary digits. However, it is very straightforward to 
extend the concept of a distance-1 transition to numbers of other bases, or even mixed-base 
numbers. A distance-1 transition is extended to mean a change by 1 in one digit only. The 
algorithms for generation and conversion are straightforward extensions of those for the binary 
case.

For example, to generate the code sequence, for each increment at a given digit, the lower order 
code is generated once,  alternately up and down. Suppose, for example, a code is desired for 
numbers that have a base 5 digit followed by a base 3 digit.
  

Natural Gray Binary
sequence sequence code

0,0 0,0 000,00  
0,1 0,1  000,01
0,2 0,2  000,11
1,0 1,2 001,11
1,1 1,1 001,01
1,2 1,0 001,00
2,0 2,0 011,00
2,1 2,1 011,01  



2,2 2,2 011,11  
3,0 3,2  010,11
3,1 3,1  010,01
3,2 3,0  010,00
4,0 4,0  110,00
4,1 4,1 110,01
4,2 4,2 110,11

 

If the digits are encoded in canonical binary Gray code then the encoding is itself a binary Gray 
code. Note that the Gray code will not be cyclic unless we are willing to regard a transition from 
the maximum digit to 0 as being single distance. In that case the code will be cyclic only if the base 
of the leading digit is even.

The rules for conversion and counting are also natural extensions of the binary case. In binary we 
invert a digit if the immediately higher order digit is 1, signifying that the low order sequence has 
been repeated an odd number of times and is thus descending. The extension is that a digit is 
base-1 complemented if its sequence has been repeated completely an odd number of times. This 
latter fact is easy to test for if the immediately higher digit is of an even base in which case the 
condition is that the digit is odd. However, if odd bases are involved then a digit is complemented 
when the sum of odd-based, immediately-adjacent, higher-order digits is odd.

For example, a number system with bases 4,7,5,2,6:

Original Gray 
code word code word

3,2,2,1,4 3,4,2,1,1  
0,1,0,1,0 0,1,4,0,5 

There have been many papers exploring the generation of Gray codes in bases other than binary 
[ER84], [Dar72], [Bar81]. [ThMu93] introduces a parallel algorithm for generation, but using the 
power of a reconfigurable bus for fast carry propoagation.

Related concepts

The concept of adjacent symbols differing at one bit position only has been extended in many way. 
A shift of concept usually involves refiguring the algorithms that apply to bit strings to apply to the 
new domain.

Finding the order of selection of + or - in the set of expressions +/- f( +/- f(+/- .......)) where f is 
monotone, so that the results are in order, is found to be the Gray code sequence iteslf [Sal72], 
[Sal73].

Algorithms have been developed for the single change set partition sequences [ Kay76],
e.g. ( 1 2 3); (1 2) (3); (1) (2) (3); (1) (2 3); (1 3) (2). Similarly for the partitions of an integer 
[Sav89]. P(5,3): 1+1+1+1+1 = !+1+1+2 = 1+2+2 = 1+1+3 = 2+3. Also for compositions, split of 
n into k parts[Kli82] L(6,3): 2+2+2 = 3 + 2 + 1 = 4 + 1 +1. Others analogous transition sequences 
are covered in [KoRu93] and [Pro85]  

Another path of generalization remains within weighted number systems but seeks variations to its 
properties.  One direction is to look for uniformly weighted codes (those with the same number of 
1 bits) [BER76] and another is for distance-1 codes with the “snake in the box” property that 
words distance k apart in the counting sequence differ by k bits [Kau70]. There are legions of 
other codes with similar and realted properties studied in the literature.



Paths on the n-cube

 In the binary case, code words of length n can be regarded as the vertices of an n-cube and a 
complete Gray code sequence represents one of the Hamiltonian paths. This can have an 
application in hypercube computer networks. If the nodes are assigned binary numbers then the 
Gray code defines a path that allows a message to be sent ot all processors, once only.

As mentioned earlier the Gray codes are just a small subset of the distance-1 codes and 
Hamiltonian paths. The number of such paths as a function of n is not known, however paths that 
have additional properties have been enumerated [Gil58].

The n-cube can be generalized to a more-complex graph in the case of bases other than binary. 
Paths of special interest have also been studied in this case [ShRa78], [Coh63]. 

8. Applications of Gray codes

Gray codes continually turn out to have new applications. Two of the more-interesting applications 
are considered here.

Gray codes and Walsh functions

Yuen has shown that there is a nice relationship between width n Gray code sequence and the set 
of Walsh functions of length 2n. A set of Walsh functions of length  2n is usually defined as a set 
of discrete-valued functions in an interval with values that are orthogonal [Bea75]. However, they 
may also be regarded as set of 2n binary code words of length that are maximally distant, i.e. each 
word is distance 2n-1 from all others. For example, n=3, a set of 8 length-8 Walsh functions, each 
distance 4 from all others, is:

Gray Gray Walsh
rank code code

0 000 0 000 00000000
1 001 1 001 00001111
2 010 3 011 00110011
3 011 2 010 00111100
4 100 7 111 01010101
5 101 6 110 01011010
6 110 4 100 01100110
7 111 5 101 01101001

The contrast with Gray code is striking. Walsh are maximally distant, there is no natural sequence 
to the code words. Gray words are minimally distant with a well-defined sequence. It is surprising 
that there is a relationship between the two concepts. 

The algorithm to generate each member of a set of Walsh functions is also delightfully simple:

{ALGORITHM A6: GENERATE WIDTH 2N WALSH FUNCTION CODE WORD I} 
(0≤I≤2N-1}
procedure generatew (n, i,: integer);

procedure generatew1 (n, i,: integer; d:bit);
{d represents an inversion of all bits}
if n = 0 then output d

    else begin
generatew(n-1,i div 2,d);
generatew(n-1,i div 2,d(i mod 2));
end;



begin
generatew1(n.i,0)
end;

The similarity of this algorithm to algorithm A3.1 is striking. As pointed out by Yuen, the number 
of transitions in the Walsh code word is the rank of the binary pattern of i in the Gray code 
sequence, and there must be one word for each possible number of transitions. Furthermore, the 
bits of the corresponding Gray code word may be used to specify the transition points in the Walsh 
word, in the same sequence as the sequence of index changes when generating the Gray sequence. 
So, if I has Gray-rank G with bits G2,G1,G0 then the sequence of changes in Walsh word number 
i is 0,G2,G1,G 2,G0,G2,G1,G2.

 Although there is no natural order as such, one which has reason is where the code words are 
listed in order of number of transitions. This can be generated by replacing d(i mod 2)
by  d(i mod 2)(i div 2)mod 2)) in the above algorithm, effectively 
converting from binary to Gray en passent.

Analog to digital conversion

The original application of Gray code was in A to D conversion. It is interesting that even with 
fully electronic A-D it appears to be somwhat faster and simpler to convert an analog signal V to a 
Gray code than to convert it to binary. The standard approach, if V is in the range 0 to 2n-1, is to 
determine the first bit by subtracting  2n-1  - if the result is positive then the first bit is 1, if negative, 
the first bit is 0. The process continues with the reduced signal in the first case but with the original 
signal in the second case. There is thereby a decision to be made at each stage that slows the 
process down.

V1 := V;
for i from n-1 downto 0 do begin 

V2 := V1- 2i-1;
B[i] := (V2≥0);
if V2≥0 then V1:= V2; 
end;

However, it is possible to produce the Gray code version of the signal without making decisions, 
though it requires the determination of the absolute value of a voltage (which is realised as a 
rectifier). 

{ALGORITHM A7: CONVERSION OF ANALOG SIGNAL V TO GRAY CODE}
V2 := V- 2n-1;
G[n-1] := (V2≥0);
V1 := |V2|;
for i from n-2 downto 0 do begin 

V2 := (V1- 2i);
G[i] := (V2≤0);
V1 := |V2|;
end;

The fact that the Gray code is produced can be shown by noting that the V1 in the second 
algorithm is the same as the first where B[i] = 1 but is the 2i-1 complement elsewhere. The 
second algorithm treats the first bit in the opposite fashion to the others.



This algorithm has difficulty in dealing with the integer boundary values. For example, in two bit 
codes for signals in the range [0,4) the ranges mapping to 0, 1, 2, 3 are [0,1),[1,2),[2,3], (3,4). This 
is finessed, as is the issue of rounding, by incrementing V by 0.5 before commencing the 
algorithm.

The algorithm was expounded by Yuen [Yue77], [Yue78]. Lippel [Lip78] pointed out that the idea 
was in [Smi56] and attributed there to a 1949 thesis by R. P. Sallen. 

The algorithm above is related to non-restoring division. Yuen [Yue88] showed how it could be 
extended to division and square rooting.

9. Parallel Arithmetic

The Gray code is a non-redundant representation of integers that appears to be far more suited to 
computers than to humans. However, Gray code could only be considered for use in a computer if 
it offered better or comparable cost and performance compared to the standard representation. A 
brief survey of parallel operations on Gray code is thus in order. 

We have seen that binary to Gray conversion is simple and local whereas conversion the other way 
involves calculation of xor at every bit in a word by use of a parallel prefix tree. Apart from this, 
little has been written on parallel operations. We will have to look at more complex operations 
ourselves.

This a practical rather than a theoretical matter. We know that Gray code can be converted to binary 
in O(log n) time and converted back in constant time. Hence any operation that can be done in O
(log n) time with standard representation can be done in O(log n) time in Gray code. What we 
really want to discover is whether the cost and speed working within Gray is comparable to the 
cost/speed of conversion and doing the work in binary. This is a technology-dependent question. 
There are many traps to avoid. There is little point, for example, in a new algorithm that adds an 
xor delay to each level in the binary circuit as this will be similar to making the conversion first.

Because the interpretation of the weights of Gray-code bits depends on the word’s parity, 
arithmetic is much faster if the parity is known in advance. In many computers, where parity is 
used for error checking in memory, it is possible to maintain the parity at very little extra cost, so it 
is reasonable to assume that the parity is known, but we will consider the situation where the parity 
is known and when it is not known.

Incrementing

Lets deal with counting up, only.

When counting up an n-bit Gray Code the next bit s to be switched is given by:

P(G) = 0  then s = 0
P(G) = 1  then s is such that Gs-1=1 and Gi=0, i>s-1

If we calculate the terms: and

Ci = Gi-1 and (not Gi-2 ) and ..... and  (not G0 )  (i>0)



Writing P(G) as P. Then we have the result of incrementing G to give S as:

Si = P Ci Gi     (i>0)
S0 = (not P) G0     

Compare this with incrementing in binary:

Di = Bi-1  and  Bi-2  and ..... and  B0  (i>0)
Si = Di Bi     (i>0)
S0 = notB0    

There is little significant difference between calculating in parallel the terms Ci and the terms Di . 
The main complication is the extra xor in the calculation of the output terms Si.  However, if P is 
known in advance and propagated in parallel with the generation of the terms Ci then the extra term 
in the xor amounts to wider and-gates and increased cost, but little performance loss. 

If P is not known in advance then it can be evaluated and propagated in parallel to determining the 
terms Ci then much of the time taken in forming P will be overlapped. However, it will still 
dominate performance, and need to be followed by the last xor which will cause an additional 
delay. However, the total time should be well within that taken for most computer clock cycles.

Addition

This is interesting. Comparing Lucal’s algorithm with the standard serial addition we can see that 
the main difference is the propagation of two carries rather than one. 

Lucal:
E := PA; F := PB;
for i:= 0 to n-1 do begin {in parallel}

S[i] := (E and F) A[i] B[i];
E  := (E and (not F)) A[i];
F  := ((not E) and F) B[i];
end;

CE := E; CF := F; 
end;

Binary:
C := 0;
for i:= 0 to n-1 do begin {in parallel}

S[i] := C A[i] B[i];
C  := (A[i] and B[i]) or (B[i] and C) or (C and A

[i]);
end;

CO := C; 
end;

The sum equations are similar and each carry term in the Lucal form is of comparable complexity, 
when expanded, to the binary carry, though there are some 3-input terms.

E  := (E and (not F) and (not A[i])) or



((not E) and A[i]) or  (F and A[i]);
F  := (F and (not E) and (not A[i])) or

((not F) and A[i]) or (E and A[i]);

We can apply the carry lookahead technique to the Gray code, just as to the binary case. However, 
whereas in binary there are only 2 possible carry conditions (C= 0, C=1) there are 4 conditions for 
Gray code (EF = 00, 01, 10, 11).  

In the binary case the basic recursion step involves two equations (to find the carry out, assuming 
carry-in of 0 and 1), each being the or of two terms each of which is a two input and. Assuming 
that cost is proportional to gate inputs, this is a cost of 2*6 = 12 per recursion step. 

For the Lucal equations, to generate the carry we will need 4 equations, each a 4-input sum of 3-
input terms for a cost of 4 * (4*3+4) = 64. A rough estimate would put the cost of the parallel 
Gray carry look-ahead as 5.3 times that of binary (it is not that bad because the initial terms are 
simpler). However, the speed would be of the same order, involving the same number of levels of 
logic. Of course, the standard carry look-ahead is made faster by a factor of about 2 by combining 
two levels of recursion and using 4-input gates. This would be harder with the Gray case as it 
would involve gates of 6 inputs.

The bottom line is that a carry-lookahead Gray adder is feasible but at a considerable cost, and, 
whatever way you look at it, a significant performance penalty as well. Not the note we would like 
to end on.

10. Summary

The algorithms and circuits involving Gray-codes are of particular interest because they are so 
simple and surprising. The simple Gray code offers a dense counting sequence that is not very 
useful for humans but has the potential of being more “natural” for machines.

However, when it comes to practical and long-lasting use of the codes it does turn out Gray code 
does not offer significant advantage over conventional representation. Indeed, Gray encoding 
usually gives rise to more complexity. 

Be that as it may, Gray code continues to turn up in diverse areas, some of which are listed in the 
bibliography that follows.
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