88868888

CDMTCS
Research Report Series

Deterministic Complexity
and Entropy

Mark R. Titchener

Department of Computer Science
University of Auckland
Auckland, New Zealand

Aaron Gulliver
Department of Electrical & Computer Engineering

Univeristy of Victoria
Victoria, B.C. Canada

Radu Nicolescu
Ulrich Speidel

Department of Computer Science
University of Auckland
Auckland, New Zealand

Ludwig Staiger
Institut fir Informatik
Martin-Luther-Universitat
Halle-Wittenburg, Germany

CDMTCS-255
December 2004

Centre for Discrete Mathematics and
Theoretical Computer Science

CDMTCS TR 255 1-19 1

Deterministic Complexity and Entropy

Mark R. Titchener Aaron Gulliver

Dept. of Computer Science Dept. of Electrical & Computer Engineering
The University of Auckland, New Zealand University of Victoria, Canada

Radu Nicolescu Ulrich Speidel

Dept. of Computer Science Dept. of Computer Science

The University of Auckland, New Zealand The University of Auckland, New Zealand
Ludwig Staiger

Institut fiir Informatik
Martin-Luther-Universitit Halle-Wittenberg, Germany

Abstract. Lempel and Ziv (1976) proposed a computable string production-complexity. In this
paper, our emphasis is on providing the rigorous development, where possible, for the theoretical
aspects of a more recent and contrasting measure of string complexity. We derive expressions for
complexity bounds subject to certain constraints. We derive an analytic approximation to the upper
bound to linearize the complexity measure. The linearized measure enables us to propose an entropy
measure, observed elsewhere to correspond closely with the Kolmogorov-Sinai entropy in simple
dynamical systems.

Keywords: Formal languages, generative systems, prefix codes, complexity measures, T-codes,
entropy, information.

1. Introduction
In 1976, Lempel and Ziv proposed a computable measure, Crz : AT — N for finite strings [6]. Mo-

tivated by the ideas of Solomonoft [13], Kolmogorov [5] and Chaitin [2], their production complexity
measures the minimum number of steps required for the construction of a string. The steps are extracted

Address for correspondence: M. R. Titchener, Dept. of Computer Science, The University of Auckland, New Zealand,
mark @tcode.auckland.ac.nz

2 Titchener et al. / Deterministic Complexity and Entropy

from the string by means of a self-learning automaton. The measure, Cr, discussed in this paper may be
viewed as belonging to the same class of computable complexities as the Lempel-Ziv production com-
plexity. Like the Lempel-Ziv production complexity, the measure discussed here [14, 15, 16, 17, 18, 19]
uses a self-learning automaton to extract a production history from the string, and retains the notion of
complexity based on the number of steps in the production process (or size of the vocabulary). However,
the automaton used differs from that of Lempel and Ziv in that the vocabulary it builds represents new
patterns as a recursive catenation of previously extracted patterns rather than as an existing vocabulary
element extended by an “innovation”. This means that, for a given string the T-complexity measure
tends to be smaller than the LZ measure. For a given production step, the complexity increment in Cr is
further weighted according to the number of repetitions of the corresponding vocabulary element, such
that Cp: AT — R.

As with the LZ complexity measure, the upper bound provides a reference against which string
complexities may be measured, giving an estimate of the corresponding entropies. We derive the lower
complexity bound, logy, n, where n is the string length, and bounds from above and below the upper
complexity bound, for the special case where the copy factor at each production step is held to 1. It
remains an open and mathematically challenging problem, to derive the upper bounds for the general
case, when the copy factors are not restricted. However experimental results support the conjecture that
the present bounds do in fact hold.

From the bounds above and below the upper T-complexity bound, we derive an analytical expression
that lies approximately midway between, based on the logarithmic integral [1]. The expression, li(In "),
where 7 is the alphabet size, though strictly a bound only in the limit turns out to be appropriate to charac-
terise the maximum T-complexities for finite strings, and is thus effective for linearising the complexity
measure. We propose alternative measures of information and entropy for finite strings.

We assume the reader to be familiar with the basic concepts and notations of formal languages and
theory of codes such as alphabets, strings, languages, generative systems, code sets, codewords and
prefix codes.

The rest of the paper is organized as follows. Section 2 introduces without proofs our basic concepts:
T-augmentations, T-codes and the T-complexity measure for T-codes. Section 3 describes our string
decomposition algorithm. Section 4 introduces our T-complexity measure for strings.

The new results on complexity bounds are then presented: a lower bound in Section 5, codeword dis-
tributions in Section 6, codeword distributions for exhaustive T-prescriptions in Section 7, the asymptotic
behavior for the case k; = 1 in Section 9. Alternative measures of information and entropy are proposed
in Section 10, the open problem for k£; > 1 in Section 11, and we conclude in Section 12. Complete
proofs of our results are published in Titchener et al. [20].

2. T-Augmentations, T-Codes and T-Complexity

In the following, we define a production step for generating prefix codes, called T-augmentation. Given
an alphabet A, having r symbols, r > 2, a prefix code, C C A™, a codeword, p € C, and k € N*, the
T-augmentation of C' with p and k is defined as:

k k
co =Urc\ Ur' (1)
=0

1=0

Titchener et al. / Deterministic Complexity and Entropy 3

3000
uub e
//
2500 // g b
. “
// //
2 2000 P
§ ’// ,// \ lub
& s ///
= //’ -~ upper bound
£ 100} I Ji(in 2" |
o AP
§ /’////,/
g') 1000 /’/ e b
// ,/ 1
og,n]
500 P 2
7
r il
p /// lower bound
T T T T T T
0 0.5 1 1.5 2 2.5 3 3.5
. . . 4
length of binary string (bits) 10

Figure 1. Lower and upper T-complexity bounds. The lower bound is log, n where n is the string length. uub,
lub are, respectively, the upper and lower bounds on the upper bound, which itself lies near the logarithmic integral
function, li(ln ™).

p is referred to as a copy pattern and k as a copy factor [12]. It follows that C((;f)) is also a prefix
code [4, 12]. Eqn (1) may be applied recursively, starting with the alphabet A, to derive a series of prefix

codes of the form:

(k1yonkq) [4 (krrekg1)) Fa)
A(Pl,...,pZ) - (A(pl,...,pz,l))(pq) 9

where ¢ > 1, p; € Alkueskio1) gop 1,...,q, and by convention A8 = A. Sets of the form

(P1yPi—1)
AEZ’;Z:B are called T-codes, and, unrolling their definition, we may write:
- (kiyka) . (kiowke) |
Apn = U edeta n U el @
(il,...,iq)Z(O,...,O) (ilv--viq):(ov"'vo)

T-augmentations may be visualised in graphical terms. Indeed, any prefix code, C, may be rep-
resented as a tree, denoted I'¢, with the leaf nodes corresponding to the codewords of C'. The T-
augmentation process described by Eqn (1) entails making k copies of ', and appending the first copy

to a selected leaf node, p € C, and then appending each further copy in turn to the corresponding leaf
(k1 skiq)

, the leaf nodes
(P15+-5Pq)

node p in the most recently attached copy. Eqn (2) describes the elements of A
of the tree, as the set of all nodes minus the set of internal nodes.

4 Titchener et al. / Deterministic Complexity and Entropy

Example 2.1. Figure (2) illustrates the recursive construction of the T-code set, Agii)l,’llo)ln,loo)’ where

A = {0,1}. (i) depicts the result of the first T-augmentation step, where k; = 2 implies two copies of
the alphabet tree are to be made. The first of these is appended to the leaf node p; = 1, and the second
to the corresponding position in the first copy. In the remaining steps, k; = 1 for ¢ = 2, 3, 4, so only one
copy is appended to the leaf nodes, p;.

A={0,1} i) p, =1
)7,) p,=10 iii) p, =10111

k=2 -
ky=1 ky=1

0 1

) b, =100
k=1

1001011110110 1001011110111

Figure 2. A recursive T-augmentation of a binary alphabet.

More formally, Nicolescu and Titchener [11, 12] refer to the system P = (A, p, k), formed by the
alphabet, A, together with the vectors p = (p1,...,p,) and k = (k1, ..., ky), as a T-prescription of the
set §' = Ag, written, L(P) = S. The number of elements in arrays p and k is referred to as the arity of
the T-prescription, written arity(P) = ¢. The length of the maximal-length codewords of P is denoted
by maxlen(P).

o Pissimple, if

— all its copy factors are 1,1i.e., k; =1, for 1 < <gq.

e P is systematic, if

1. itis simple, and
2. it systematically uses shortest available codewords as copy patterns, i.e., |p;+1| = min{|p| |
S L(<A, (pl; e 7pi)7 (/{Jl, e ,k1)>)}, for0<i<gq-—1.

e P is exhaustive, if

Titchener et al. / Deterministic Complexity and Entropy 5

1. itis systematic, and

2. it has just exhausted all available copy patterns up to a certain length, but none longer, i.e.,
pE€L(P) = |p| <|p|Vi,1<i<q.

For each of these T-prescription classes, we consider the sets of the lengths of their longest code-
words: Ng = {maxlen(P) | P simple T-prescription}, Ny = {maxlen(P) | P systematic T-prescription},
Nx = {maxlen(P) | P exhaustive T-prescription}. Clearly, Nx C Ny C Ng = NT. Specifically, the
elements in Ny are referred to as exhaustion lengths. One may observe that, in the case of the binary
alphabet, the exhaustion lengths are roughly powers of 2:

Ny = {1,3,9,15,39,69, 135, 261, 549, 1053, 2103, 4149, 8301, 16491, ...}

The T-complexity of P is defined by:

q

Cr(P) =logy([[(ki + 1)) = > loga(ki + 1) (3)
=1

i=1

We extend the definition of the T-complexity by further defining two T-complexity measures for
positive natural numbers, Ct,Cr g : Nt - R:

Cr(n) = max{Cr(P) |Pisa T-prescription, maxlen(P) = n}, 4)
Crg(n) = max{Cy(P) |Pis asimple T-prescription, maxlen(P) = n}. ®)

Fact 2.1. Clearly,
Crs(n) < Cr(n),Vn € NT, (6)

Fact 2.2. To evaluate Cp g(n) for exhaustion lengths we need only consider exhaustive T-prescriptions:
Cr,s(n) = max{Cy(P) | Pis an exhaustive T-prescription, maxlen(P) = n},Vn € Nx. (7)

Fact 2.3. Two exhaustive T-prescriptions with the same length longest codewords have the same T-
complexity. Thus, given n € Nx, Ctg(n) = Cp(P), for any exhaustive T-prescription, P, having
maxlen(P) = n.

The number of internal nodes in any T-code tree is given by [[?_; (k; 4+ 1) and, fairly naturally, the
T-complexity gives the number of bits required to label uniquely all the internal nodes. In a sense, we
are effectively computing the effort to construct the T-code set from the alphabet, i.e., the number of
T-augmentation steps. We measure this in faugs rather than bits, implying T-augmentation steps. Since
all k; > 1, we see that Cp(P) > ¢. In the case where only a single copy is made at each of the
T-augmentation steps, Ct(P) = q.

Consider two T-prescriptions, P and P’. P and P’ are equivalent if they generate the same language:
L(P) = L(P'). P is in canonical form if it has minimal arity among all equivalent T-prescriptions, i.e.,
if L(P) = L(P’), then arity(P) < arity(P’). Nicolescu and Titchener [12] have previously shown that
a canonical T-prescription is unique in its equivalence class, i.e., if P and P’ are canonical T-prescriptions

6 Titchener et al. / Deterministic Complexity and Entropy

and L(P) = L(P'), then P = P’. Thus every T-code set S has a unique canonical T-prescription, Ps,
and define its T-complexity:

Cr(S) = Cr(Ps). |)

It can be further shown that the T-complexity for T-prescriptions is equivalence invariant, which
means that any T-prescription, P, may be used to evaluate the T-complexity of a T-code set, .S:

L(P) =S = Cr(S) = Cr(P). ©)
Example 2.2. Examples of T-code sets based on the alphabet A = {0, 1}. Observe:

S, = Ag;’ygg) = {0000, 0001, 00100, 00101,0011, 01, 100, 101, 11},

LCH)
Sy = Ay, = {000,001,01000,01001,0101,011, 1},

P = (A,(0,1,00), (1,1,1)) is the canonical T-prescription that generates the set S1, L(P;) = Si;
Py is systematic. P, = (A,(0,01),(2,1)) is the canonical T-prescription that generates the set So,
L(P,) = So; P, is not simple and therefore cannot be systematic. Calculating the T-complexities we
obtain CT(Sl) = CT(Pl) = 10g2(8) = 3 and CT(SQ) = CT(PQ) = 10g2(6) = 2.58.

Example 2.3. An example of a T-code set with multiple equivalent T-prescriptions based on the alphabet
A = {0, 1}. Observe:
— ABL ALY
S = A(o,l) = A(o,oo,l) = {0000,0001, 001, 01, 10000, 10001, 1001, 101, 11}.

The set S can be generated in two ways: either using the canonical T-prescription, P; = (A, (0,1),
(3,1)), or else the non-canonical T-prescription, P, = (A, (0,00, 1), (1,1,1)). P; is not simple; Ps is
simple but not systematic. Calculating the T-complexities, we obtain C1(S) = Cp(Py) = Cp(FPs) =
log,(8) = 3.

3. String Decomposition

A symmetry implicit in the T-code trees allows one to discover the sequence of steps for construction
of the tree from any one of the longest codewords in the T-code set. As illustrated in Figure (2), the
intermediate trees generated in the course of a recursive T-code construction appear not only at the top
(root) of the tree, as one expects from the copying process, but also at the bottom. This means that
the longest codewords in the set traverse the tree through the root of each intermediate subtree. Thus
implicit in the longest codewords are the steps for the construction of the tree, including the nodes of the
tree which are not traversed by the codeword.

The algorithm for decomposing a string into its constituent copy patterns and copy factors is here
demonstrated by way of example only. Though our example assumes a binary alphabet, the process is
may be extended to cover an alphabet of any size. The foundations of this algorithm are described by
Nicolescu and Titchener [12].

Example 3.1. Assume the alphabet, A = {0, 1}, and the string, 2 = 0100010101101. We use the period
() as a delimiting marker between codewords to facilitate reading along the string.

Titchener et al. / Deterministic Complexity and Entropy 7

1. We start with the T-code set, Sy = AE) = A, and we decode the string, x, over the codewords in
So:
x = 0100010101101 = 0.1.0.0.0.1.0.1.0.1.1.0.1

We identify the penultimate codeword which will be our first copy pattern, p; = 0, and, as this is
not replicated immediately to its left, we take k; = 1. Conceptually, we construct a new T-code
set, 51 = Ag(l)g = {00,01, 1}, and decode the string, x, over the codewords in Sy, In practical
terms, we don’t actually construct the set, but achieve the same by grouping each occurrence of p;
with its next codeword:

z = 01.00.01.01.01.1.01

2. We select the penultimate codeword, po» = 1, and, since this does not repeat immediately to
the left, we take ko = 1. Conceptually, we again construct a new T-code set, So = AEéB =

{00,01, 100, 101, 11}, and decode the string, x, over the codewords in Ss. In practice, we simply
group each occurrence of py with its next codeword:

z = 01.00.01.01.01.101

3. We select the penultimate codeword, p3 = 01, and, since this repeats twice immediately to its left,
we take k3 = 3. Conceptually, we again construct a new T-code set, S3 = Agé’i’g)l), and decode
the string, , over the codewords in Ss5. In practice, we simply group each occurrence of ps with

its next codeword, or codewords, up to 3 times, if p3 repeats itself:

x = 0100.010101101

4. We select the penultimate codeword, p; = 0100, and, since this does not repeat to its left, we take

k4 = 3. Conceptually, we again construct a new T-code set, Sy = Agéyi’gf%mo)’ and decode the
string, x, over the codewords in Sy4. In practice, we simply group each occurrence of py with its
next codeword:

z = 0100010101101

We have reduced the initial string, =, to a single codeword, which indicates completion of the
cycle.

We thus have a T-code set, S = Sy, and canonical T-prescription, P = (A, (0,1,01,0100), (1,1, 3, 1)).
Computing the complexity: Cp(S) = Cp(P) = Zle logs (ki + 1) = b taugs.

Nicolescu and Titchener [12] show that, for any given string * € A™, the algorithm illustrated
above will always return a canonical T-prescription for a T-code set that contains x as one of its longest
codewords.

Current implementations [21] cater for alphabets of up to » = 256 symbols and may process strings
of more than 4 - 107 symbols, though the time to process a string of length n runs in time O(n?).
Speidel and Yang [22] have made performance improvements, culminating in a more recent unpublished
algorithm running in time O(n).

8 Titchener et al. / Deterministic Complexity and Entropy

4. String T-Complexity

Though T-augmentation was previously defined as a set construction process, it may also be more nar-
rowly viewed as a string production process for the longest codewords in the set. For example, the T-
augmentation given in Example (3.1) may be viewed as a process that produces the string 0100010101101.
As another example, the T-augmentation depicted in Figure (2) may be viewed as a process that produces
the strings 1001011110110 and 1001011110111.

Nicolescu and Titchener [12] show that, for every string, z € A™, there exists a unique T-code set,
T, for which x is a maximal-length codeword. Thus for every string, = € AT, we can compute a
corresponding T-complexity by way of the T-complexity of the associated unique T-code set, T, and its
unique canonical T-prescription, P,:

| Cr(z) = Cr(Ty) = Cr(Py). | (10)

5. Lower Bound

For any n > 0, the T-complexity of a length n string, x, is minimal and equal to log, n when in Eqn (3)
g = 1, with a single copy pattern, p; € A, repeated k1 = n — 1 times. Thus the lower bound is logs n,
which proves the following theorem:

Theorem 5.1. (Lower Bound)
The T-complexity function is bounded below by the logarithm base 2 of the string length.

logon < Cp(x), forall z € A™. (11)

We note that the alphabet size, , does not figure in this bound which is not altogether surprising. A
string of one hundred repeating 1’s (or repeating 5’s for that matter) may be formed from any number
of alphabets, but by our definition its T-complexity is independent of the alphabet size, which is not the
case for the maximal bound.

6. Codeword Length Distributions

The maximal bound is more difficult to derive. For this we need to know something about how the
codeword length distributions grow with each choice of copy pattern, for these ultimately determine
what choices may follow in the construction process. We may visualize the distribution of codeword
lengths in a T-code set by an infinite vector, d, whose elements after index n are all 0, where n is the
length of the longest codewords:

d=(dy,da,...,dy,,0,...).

We introduce the following notations with reference to a codeword length distribution, d:
dl =32, di

e First(d) is the index of the first non-zero element in d; it is the minimum length of all codewords
in d, First(d) = min{i | i € NT,d; # 0}.

e |d| is the distribution size, i.e., the total number of codewords,

Titchener et al. / Deterministic Complexity and Entropy 9

Last(d) is the index of the last non-zero element in d; it is the maximum length of all codewords
in d, Last(d) = max{i | i € Nt d; #0}.

MaxAt(¢) is the largest codeword count that can appear at index, ¢ € NT, over all possible
distributions that have ¢ as the index of the first non-zero element; MaxAt(¢) = max{d, |
Vd s.t. First(d) = (}.

MinLast(¢) is the smallest index of the last non-zero elements over all possible distributions that
have ¢ the index of the first non-zero element; MinLast(¢) = min{Last(d) | Vd s.t. First(d) =

0.

Where the distribution d is obvious, we use the abbreviations: ¢ = First(d), my = MaxAt(First(d)),
ny = MinLast(First(d)).

Fact 6.1.

For an arbitrary T-prescription, dy,,s(q) = 7-
For an arbitrary T-prescription, d; < my and n, < Last(d).
For an exhaustive T-prescription, dy = my and ny = Last(d).

Any systematic T-prescription, for which either dy = my or ny = Last(d), is an exhaustive T-
prescription.

The set of all lengths n is Nx, the set of all exhaustion lengths.

The mapping N* — N’y defined by ¢ — n, is a monotone bijection, thus invertible, and we can
express ny as a function of ¢, and vice-versa.

Example 6.1. Examples of code distributions; items 1, 2, 4 correspond to exhaustive T-prescriptions,
while 3 does not.

L.

2.

3.

4.

For the binary alphabet, d = (2,0,...),{ =1, my =2, n; = 1.
For the T-code set S; of Example (2.2), d = (0,2,2,3,2,0,...),{ =2, my = 3,ny = 5.
For the T-code set Sy of Example (2.2), d = (1,3,1,2,0,...),¢ = 1.

For the T-code set S of Example (2.3), d = (0,2,2,3,2.,0,...),¢ =2, my = 3,ny = 5.

We use a generating function to algebraically work with the distributions resulting from T-augmen-
tations, writing:

d(z) = dy 2t 4 do2? +d323 4+ dpt = Zdjzj-
1

10 Titchener et al. / Deterministic Complexity and Entropy

Prefixing all elements in a T-code set using a copy pattern of length ¢ results in a distribution repre-
sented by the product, d(z) - z¢. Assuming an initial distribution, d(z), for a T-code, S, from Eqn (1),

the distribution for S ((5)) is d(z), as defined by:

d(z) = Zk: d(z)- 247 — Zk: 247 = d(z2) zk: 29— zk: 24 41, (12)
=0 j=1 =0 j=0
where ¢ = [p|. Thus:
d(z)—1=(d(z) - 1) izfv‘ . (13)
=0
If k = 1, Eqn (13) reduces to:
d(z) —1=(d(z) 1)1 +2)=d(z)(1+2) 2* 1 (14)

If we repeat the T-augmentation with another copy pattern also of identical length ¢, then we obtain
a new distribution d, as defined by:

d(z) - 1= (d(z)(l ol zf) (1420 =2t =d(z)(1+ 202 - 241+ 25— 25 (15

7. Code Distributions for Exhaustive T-Prescriptions

We now consider the principal case which was empirically observed to drive the growth of the T-
complexity in terms of the string lengths. Exhaustive T-prescriptions yield codewords that grow min-
imally with each T-augmentation step, which means that, their T-complexity relative to the string lengths
tends towards the maximum. In this and the next section we concern ourselves mainly with exhaustive
T-prescriptions. In Section 9 we show how the results for exhaustive T-prescriptions may be extended
to cover the systematic and simple T-prescriptions. Though examples of T-prescriptions may be found
which have T-complexities that exceed systematic or simple T-prescriptions with the same maximum
length strings, these differences are empirically observed to be, relatively speaking, small perturbations
to the fundamental behaviour.

Consider d* (z), the distribution associated with an exhaustive T-prescription P, where all my_; copy
patterns of length ¢ — 1 are consumed. Thus the smallest available copy patterns in de(z) are of length /.
We may now repeat the T-augmentation process my times and we obtain a new exhaustive T-prescription
with the distribution, d“*1(z). We have:

d(—H(z) — dz(z)(l +Zé)mg o [(1 +Z€)mg—1 4+ (1 +Z€)ml—2 I (1 +Zf)l + 1} ZZ

me | (L= (1+29™)

d'(2)(1 + 2™ — [A7) } 2

f(2) 1+ 29 — (1425 +1

(d(z) —1)(1 4 z5)™e + 1. (16)

Titchener et al. / Deterministic Complexity and Entropy 11

Evaluating the highest order term yields z/¢d’(z), from which we conclude:

’nz+1 = ny + {my. ‘ (17)

Unrolling Eqn (16) to the initial alphabet (having symbols), successively using m; copy patterns of
length ¢, for 1 < ¢ < ¢, yields:

l
dt(z) 1= (rz=1)-J["+ 1) (18)
i=1
—(rz—l)i;O() Z<)zQiz---né%(Zg)zm (19)
TZ -1 % i Z <m1> () (77;4) Si1F2ia+-+Lig (20)
11=012=0 1p=0

8. Upper Bounds for Exhaustive T-Prescriptions

In this section, we consider a given exhaustive T-prescription P and with this P derive the upper bound
of the T-complexity for the special case of exhaustive T-prescriptions. For the first £ coefficients df of
the distribution polynomial d*(2) = >25°, d! - 2* we have

df=---=df_ | =0andd =my. (1)

Consider P*(z) = HZ H(z41)™i. According to Eqns (18) and (21), its first coefficients, 7§, . . ., 5,
satisfy the identities:

7r€ = 1,
7r£ = r-ﬂifl,forkzl,...,f—l, and (22)

Consequently, 7r£ =7k fork=0,...,/ — 1and Wf = r* — my. Differentiating Eqn (18) yields:

d g my - 241
adg(z) = r-P2)+ (rz—1) ; (z“i—l . Pé(z)>

—1 ' ~ 23)

i=1 J=0

For the last sum, we obtain:

e—l %) e_l 0o N
Qlz) = Z(Zmz LTS (1)) = Z(’ml S (—1)ziGHD-1y
=1 =0 =1 =0
oo (-1 ' ey)
= > Y imi-(X (=)t
k=0 i=1 i(j+1)—1=k

12 Titchener et al. / Deterministic Complexity and Entropy

In order to achieve our result, we consider only the first £ coefficients in Eqn (23), i.e., we consider
Eqn(23) modulo 2L

C-omy- 27 = did (z) (mod z%)
= - Pl2) + ((rz—1) - PY(2)) - Q') (mod =) 24)
_ S lrk-l—l E_Qlz) (mod 20),
k=0

because, P*(z) = Zk oFz% (mod 2) and (rz — 1) - P%(2) = —1 (mod 2*). Comparing the coeffi-
cient of z¢~1 yields:
E-mg:re—Z(—l)gﬂ-i-mi. (25)

il
i<l

Now the length of the longest string ny € d'(z), is ng = Zﬁ;i j+mj+1, and therefore by Eqn (25):

-1 0141 _
: i
o S S
j=1 j=1 i=1
i|j
¢ —2 /—1)
rt—1 i .
- () B (B]
=1 j=it+1
ilj
£—1
ol LiJ(k| (26)
pr— —_ 'Z'm’[:-
r—1 :
i=1 k=2

A lower bound on ny is obtained by assuming that every inner sum is 0:

¢ _
ne> 1. @)
r—1
An upper bound is obtained by assuming that every inner sum is 1:
‘_ [(e-1)/2]+1 _ [(6-1)/4]+1
SPRP [t] I Y I NG LY
r—1 r—1 r—1
o DRI LD - flogy(0)] — (r = 1)[log ()]
- r—1
Pl pLE@=1)/2041 4 le=D)/4041 Lty ZL (E=1)/2]+1
r—1 r—1
14 [(€+3)/2]
< 47 . (28)

r—1 (r—1)2

Titchener et al. / Deterministic Complexity and Entropy 13

Bringing Eqns (27) and (28) together:

7 . ALE8)/2]
< .
r—1 — meo< r—1 + (r—1)2 29

Now, selecting the upper and lower bounds on ng41 and ny, respectively, gives an upper bound on
ng+1 — ng. Conversely, selecting the lower and upper bounds on ng4 1 and ny, respectively, gives a lower
bound on ng41 — ny and, from Eqn (17), yields:

S) IO B Ve B s
=1 | 7‘—1+(7"—1)2 e r—1+(r—1)2 Clr—1]

Combining terms and dividing by ¢ gives:

/r'g TL(€+3)/2J +7r— 1 7'(TI_(£+4)/2J +r— 1

T -2 STt T r—r 30)

For our exhaustive T-prescription, P, Eqn (3) reduces to a count of the codewords consumed as copy
patterns, i.e., Cp(P) = Zf:i m;. From Eqn (30):

~
|

1

?\

o 2L G+3) /2J L 1 i LGyl 2L 1

rt r
— : < Cp(P) < —+y — 4 :
pat 1 pat z(r —1)2 pat i(r—1) r(P) —i i(r—1)2 Z_Zl i(r—1)
-1 ’I"i -1 ’I"i
7—5L(€) < Cr(P) < 7+6U(£)7 (31)
1=1 i=1
where
1 L(Z+1)/2J 1 “ly
T T
oull) = (r—1)2 pat i —1) ZZI i
2 12 1 '
r r
oull) = (r—12 & i (r—1) & (52)
From Fact (2.3), Eqn (33) holds also for C g(n¢), where ny € Nx:
Z 7 — (5L(€) < CT S ng < Z + (5U(€) (33)
i=1 i=1

where ¢ is considered a function of ny, as indicated in Fact (6.1). The upper and lower bounds on C(ny)
computed from Eqn (33) for a binary alphabet (r = 2) are plotted in Figure (1), as functions of n,.

14 Titchener et al. / Deterministic Complexity and Entropy

9. Asymptotic Behavior for Simple T-Prescriptions

In this section, we derive an analytic expression for the asymptotic bound for simple T-prescriptions.
Though the proof holds only in the limit, the resultant expression is in practice an adequate approximation
over the whole range of string lengths.

b ,.u
Fact 9.1. li(?) — i(r") = [—du.
u

a

Proof:
The proof uses the definition of li and the substitution, v = r*.

b rb rb
u | d d
Tdu:/ vinr dv :/ Dby — ().
u T T

a « Inv vinr « Inv

o

Fact9.2. lim (1i(r"*!) ~ 1i(r")) = oc.

{—o00
Proof:
The proof uses Fact (9.1).
lim (li(r‘“'l) —li(r€)> = lim " du > lim udu
{—00 l—o0 fy U (—c0 Jp U
0+1 1 1, 1
> lim (u + u(u)> du > lim 4 du
=00 Jy U 2u (—co Jy 2
2 (0 —1)? 20— 1
lim — — = lim —— = 0.
= 4 1 s 4

0

Fact 9.3. lim M =0, lim M =

{— 00 11(111 ’f‘nl) f—o00 ll(ln rnl)
Proof:
The proof uses Cesaro-Stolz, L’Hopital’s rule; and Eqn (29); the details are omitted here. O
rt /e Inr

Fact94. li = .
AT I —h(rh) -1

Proof:
Using L’Hopital’s rule.
/e £/ (Inr —1)/¢ 1/¢ 1/¢
lim T g+:/ N = lim rr/Hl'l(nilT rf-ll/r) =Inr- lim — / T =1Inr- lim er—/é—l
l—00 1(7‘)— 1(7") {—00 T g {—o00 D 1 {—00 0+
(+1) Inr

= 1 -1‘ — .
N e —i—1 r—1

Titchener et al. / Deterministic Complexity and Entropy 15

li O+1\ li y4 -1
Fact 9.5, lim ——v) ZH0m) __r-1
(—oo li(ln rMe+1) — li(ln rne) Inr
Proof:
Using L’Hoépital’s rule and Eqn (29); the details are omitted. a
-1 i
Fact 9.6. lim 2;1 =1
{—o00 h(ln T'ng)
Proof:
Using Cesaro-Stolz.
I V4 /¢
lim M = lim - r/ :
{—oo li(lnrne+1) (oo li(lnrme+1) — li(lnrne)
i rt/e li(re) —li(rt)
= 1m . .
t—oo li(ré+) —1i(rf) li(lnrmest) — li(Inrne)
The rest of the proof follows from application of Facts (9.4) and (9.5). a

Lemma 9.1. (Asymptotic Upper Bound)
For all simple T-prescriptions, li(In 7"¢) is asymptotic to the upper bound of the T-complexity, Ct s(n¢),
for all exhaustion lengths, n,.

. Crg(ne)
lim oSV 34
Pl li(In rne) G4
Proof:
We start by dividing all terms of Eqn (33) by li(In 7).
1 =l
Z —=05(0) < Crs(ng) < Z —+ou(0)
=1 =1
Yiih o Crs(ng) _ Y5 | du(®)
li(lnrme) li(lnrme) lilnrme) = li(lnrme) — li(lnrme)’
The rest of the proof follows from Facts (9.3) and (9.6). O

We note that the concavity of li(Inr") ensures this asymptotic bound is valid not only for the ex-
haustion lengths, ny € Ny, but for all lengths n € Ny, corresponding to maximal-length strings of
systematic T-prescriptions. More so, the simple but non-systematic T-prescriptions are also asymptot-
ically bounded by li(In ™), because the choice of a longer copy pattern has the effect of reducing the
T-complexity relative to the string length. These arguments can be used to prove the following main
theorem. The proof is omitted here, but can be found in [20].

Theorem 9.1. (Asymptotic Upper Bound)
For all simple T-prescriptions, li(In ") is asymptotic to the upper bound of the T-complexity, Cr g(n),
for all string lengths, n € N*.

CT7s(n) _
{—o0 ll(ln Tn)

(35)

16 Titchener et al. / Deterministic Complexity and Entropy

If r is the alphabet size, and n the length of a string, we recognize that r™ is simply the number of
distinct strings of length n. In7" is the minimum amount of information in nats, required to uniquely
distinguish each of these strings.

We surmise from this that the T-complexity of a finite string is simply the logarithmic integral of the
total information content of the string. In the next section, we define the T-information and T-entropy
with this assumption in mind.

Figure (3) shows a magnified view of Figure (1), near the origin. It shows the lower T-complexity
bound, represented by the function logy n. The “staircase” represents the upper bound for simple T-
prescriptions. The leading “step-edges” of the staircase correspond to systematic T-prescriptions, and
the vertical drop-lines, at exhaustion lengths, 3, 5, 9, 15, 39, correspond to exhaustive T-prescriptions.
Though only proved to be a bound asymptotically, the expression, li(In 2"), is close to the upper bound,
even for small string lengths.

15

14 P

13

12 s

\;Lli(ln 2"

T-complezity (taugs)

|
|
i
|
|
|
|
|
|
|
|
|
‘,.,,7.77.7.7
|
|
|
|
|
|
|

) 1 I
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

length of binary string (bits)

Figure 3. A magnified view of the T-complexity bounds, near the origin.

10. T-Information and T-Entropy

We define the T-information denoted I(x) of a string, x € A™, as that quantity whose logarithmic
integral yields the corresponding T-complexity of the string. Whereas the T-complexity is measured in
taugs, the T-information of the string is measured in nats. The defining relationships are thus:

Crp(z) (taugs) = li(Ip(x) (nats)),
Ip(z) (nats) = L~ Y(Crp(z) (taugs)).

Titchener et al. / Deterministic Complexity and Entropy 17

The T-entropy is simply defined as the average T-information rate:

Ir(z) (nats) 1i~!(Crp(x) (taugs))
|z| (symbols) ~ |z| (symbols)

Hry(z) (nats/symbols) =

Ebeling, Steuer, and Titchener [3] have empirically shown that the T-entropy is close to the Kolmogorov-

Sinai entropy for certain simple non-linear dynamical systems. Further work continues in this area.

11. Open Problems

For many string lengths, some non-simple T-prescriptions achieve higher T-complexity values than all
simple T-prescriptions.

Claim 11.1. These are some of the first string lengths whose corresponding simple T-prescriptions do
not achieve maximum T-complexity values.

4,6,8,10,12,13,14, 16,17, 18,19, 20, 21,22, 23,

Empirically, the relative differences are observed to be small, and all T-complexity values seem to lie
between the bounds derived in this paper. Further work is necessary.

Example 11.1. Consider two canonical T-prescriptions that generate longest codewords of length 4:
Py = ({0,1},(1,10),(1,1)), P, = ({0,1},(1,0),(2,1)), L(Py) = {0,100,1010,1011, 11}, L(P) =
{00,010,0110,0111,10, 110, 111}. Their complexities are: C1(P;) = logy(2-2) = logy(4), Cr(P) =
logs(3 - 2) = logy(6). Observe that P is simple, but P is not, and yet Cp(P) > Cr(P).

Example 11.2. Consider any two canonical T-prescriptions that generate longest codewords of length
10: P, = ({0,1},p1,k1), Po = ({0,1}, p2, ka), where py has lengths (1,1,2,2,3), pa has lengths
(1,1,2,2), k1 = (1,1,1,1,1) and k2 = (4, 1,1, 1). Their complexities are: Cp(P;) = logy(2-2-2 -
2-2) =logy(32), Cr(Ps) = logy(5-2-2-2) =log,(40). Observe that P is simple, but P; is not, and
yet CT(PQ) > CT(Pl).

Example 11.3. Consider any two canonical T-prescriptions that generate longest codewords of length
14: P, = ({0,1},p1,k1), Po = ({0,1}, p2, k2), where py has lengths (1,1,2,3), po has lengths
(1,1,2,2,3,4), k1 = (4,4,1,1) and k2 = (1,1,1,1,1,1). Their complexities are: C1(P;) = logy(5 -
5-2-2) =1ogy(100), Cr(Ps) =logy(2-2-2-2-2-2) =logy(64). Observe that P; is not simple, but
P, is simple, and yet Cp(P;) > Cp(Pa).

The authors have identified the following open problems:

e To prove, or disprove, that there is an infinity of string lengths n, where Cr(n) > Crg(n), i.e.,
where non-simple T-prescriptions achieve higher T-complexity values than all simple T-prescrip-
tions.

e To prove, or disprove, that our bounds hold in general, for C, not only Cr g, i.e., for all T-
prescriptions, and not just for simple T-prescriptions.

18 Titchener et al. / Deterministic Complexity and Entropy

12. Summary and Conclusions

Practical computable information measures are becoming increasingly important in areas, as diverse as
medical instrumentation, bio-informatics, dynamical systems, communications, network management
and monitoring, coding, compression and data mining. In this paper, we have described a particular
set of measures based around the structured coding properties implicit in the T-code construction. Fol-
lowing the example of Lempel and Ziv, we have proposed a string production process from which the
complexity of individual strings may be computed. We have derived bounds on the complexity measure
for systematic T-prescriptions. We have observed from an extensive body of empirical evidence that the
mathematically less tractable general case is at least consistent with the derived bounds. The upper and
lower bounds for the upper T-complexity bound are dominated by a series which we further proved to be
asymptotically equivalent to an analytical expression involving the logarithmic integral. The significance
of the latter is that it allows us to propose linearized measures of the complexity, that reflect the additivity
properties and units more usually associated with information and entropy.

We further identified open problems in respect of the derivation of a generalized proof of the bounds.
However the growing weight of empirical evidence encourages us to believe that a full proof will pos-
sible in the course of time. The close correspondence between our measures and the Kolmogorov-Sinai
entropy of well studied dynamical systems like the logistic map provides evidence of the connections
between Shannon’s probabilistic definitions and our own deterministic formulations. The duality that
exists between stochastic and deterministic descriptions of non-linear dynamical systems appears to sug-
gest that ultimately a formal proof of equivalence with Shannon’s probabilistic information theory will
be forthcoming.

13. Acknowledgements

The authors wish to acknowledge the fundamental contributions by Prof Solomon Marcus, who has
pioneered new directions in the study of information, entropy and complexity measures [7, 8, 9, 10]. We
are grateful for his generous advice and encouragement.

We are indebted to John Morris and Ioan Tomescu for their many thoughtful suggestions. Of course,
the authors take full responsibility for all remaining shortcomings in this article.

References
[1] Abramowitz, M., and Stegun, 1. A.: Handbook of Mathematical Functions, Dover Publications, Inc., NY,
1965.

[2] Chaitin, G.: A theory of program size formally identical to information theory, Rep. RC 4805, IBM, York-
town Heights, N.Y., April 1974.

[3] Ebeling, W., Steuer, R., Titchener, M. R.: Partition-based entropies of deterministic and stochastic maps,
Stochastics and Dynamics, 1(1), 2001, 45-61.

[4] Giinther U.: Robust source coding with generalized T-codes, PhD Thesis, The University of Auckland,
1998, http://www.citr.auckland.ac.nz/~ulrich/phd.ps.gz.

[5] Kolmogorov, A. N.: Three approaches to the quantitative definition of information, Probl. Inform. Trans-
mission, 1, 1965, 1-7.

(6]

(7]

(8]
[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

Titchener et al. / Deterministic Complexity and Entropy 19

Lempel, A., and Ziv, J.: On the Complexity of Finite Sequences, IEEE Transactions on Information Theory,
22(1), 1976, 75-81.

Marcus, S.: Entropie et energie poetique, Cahiers de Linguistique Théorique et Appliquée, 4, 1967, 171—
180.

Marcus, S.: On types of meters of a poem and their informational energy, Semiotica, 4(1), 1971, 31-36.

Marcus, S.: The poetic relevance of the information energy, in: Studies in Probability and Related Topics
(M. Demetrescu, M. losifescu, Eds.), Nagard, Roma, 1983, 355-360.

Marcus, S.: Symmetry as periodicity and complexity as absence of symmetry, Proceedings of the 2nd In-
ternational Conference on Symmetry and Antisymmetry in Mathematics, Formal Languages and Computer
Science, Satellite Conference of the Third European Congress of Mathematics, Brasov, June 29 — July 1,
2000, 17-19.

Nicolescu, R.: Uniqueness theorems for T-codes, TR.9, Tamaki Report Series, Auckland, September 1995.

Nicolescu, R., Titchener, M. R.: Uniqueness theorems for T-codes, Romanian Journal of Information Sci-
ence and Technology, 1(3), 1998, 243-258.

Solomonoff, R. J.: A formal theory of inductive inference, Information and Control, Part I. 7(1), 1964,
1-22, Part II: 7(2), 1964, 224-254.

Titchener, M. R.: A measure of information, Proceedings Data Compression Conference, Snowbird, UT,
2000, 353-362.

Titchener, M. R.: Deterministic computation of complexity, information and entropy, Proceedings IEEE
International Symposium on Information Theory, 16-21 Aug 1998, 326.

Titchener, M. R.: A novel deterministic method for evaluating the entropy of language texts, 3rd Conference
in Information-Theoretic Approaches to Logic, Languages, and Computation, Hsi-tou, Taiwan, June 1998.

Titchener, M. R.: A deterministic theory of complexity, information and entropy, IEEE Information Theory
Workshop, San Diego, CA, February 1998, 80.

Titchener, M. R.: Generalised T-codes: extended construction algorithm for self-synchronising codes, IEE
Proceedings — Communications, 143(3), 1996, 122—-128.

Titchener, M. R.: Digital encoding by means of new T-codes to provide improved data synchronization and
message integrity, IEE Proceedings — Computers and Digital Techniques, Technical Note, 131(4), 1984,
51-53.

Titchener, M. R., Gulliver, A., Nicolescu, R., Speidel, U., Staiger, L: Deterministic Complexity and Entropy,
TR 255, CDMTCS, Auckland, 2004.

Wackrow, S., Titchener, M. R., Giinther U.: Tcalc.c, Source code under GNU licence, The University of
Auckland, 1999, http://tcode.auckland.ac.nz/~mark/tcalc.c.

Yang, J., Speidel, U.: An improved T-decomposition algorithm, Fourth ICICS and IEEE PCM Proceedings,
Singapore, December 2003, Vol.3, 1551-1555.

