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André Nies

December 2, 2002

Abstract. We investigate combinatorial lowness properties of sets of natural numbers

(reals). The real A is super-low if A′ ≤tt ∅′, and A is jump-traceable if the values of

{e}A(e) can be effectively approximated in a sense to be specified. We investigate those

properties, in particular showing that super-lowness and jump-traceability coincide

within the r.e. sets but none of the properties implies the other within the ω-r.e. sets.

Finally we prove that, for any low r.e. set B, there is is a K-trivial set A �≤T B.

1 Introduction

In computability theory, one measures and compares the computational com-
plexity of sets of natural numbers (also called reals). The first question one
is interested in is whether the real is computable. Reals which come close to
being computable are therefore of particular interest. A lowness properties of
a real A says that, in some sense, A has low computational power when used
as an oracle (and therefore A is close to being computable). To qualify as a
lowness property, we require that the property be downward closed under Tur-
ing reducibility ≤T , and that each real A with that property is generalized
low2, namely A′′ ≤T A ⊕ ∅′′. In this paper we study and compare two lowness
properties, being super-low and being jump-traceable.
Superlow reals. Recall that a real A is low if its jump A′ is Turing-below
the halting problem ∅′, or, equivalently, A′(e) = limsg(e, s) for a computable
0, 1-valued g. The following concept is more restrictive.

Definition 1.1 The real A is super-low if A′ ≤tt ∅′. Equivalently, A′(e) =
limsg(e, s) for a computable 0, 1-valued g such that g(e, s) changes at most b(e)
times, for a computable function b.

This notion goes back to work of Mohrherr [6], and an unpublished manuscript of
Bickford and Mills [1] (where only super-low r.e. sets are studied, called “abject”
sets there). The canonical construction of a low simple set (see [9, Thm VII.1.1])
produces in fact a super-low set: one satisfies lowness requirements

Le : ∃∞s {e}A(e) ↓ [s-1] ⇒ {e}A(e) ↓.

Le is injured at most e times by requirements
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Pi : |Wi| = ∞ ⇒ Wi ∩ A 	= ∅,
i < e, which enumerate a number x ≥ 2i such that x ∈ Wi,s into A at a stage s
if Wi,s ∩As−1 = ∅. Then {e}A(e) can become undefined at most e times. Thus,
if we let g(e, s) = 1 when {e}A(e) converges at stage s and g(e, s) = 0 otherwise,
then g is an approximation as in definition 1.1, where b(e) = e.
The low basis theorem of Jockusch and Soare [5] can also be strengthened to
“super-low”: each non-empty Π0

1 class has a super-low member (Proposition 3.1
below).
Jump-traceable reals. We write JA(e) for {e}A(e), the jump at argument e.
While lowness and super-lowness restrict the domain A′ = {e : JA(e) ↓} of JA,
jump traceability expresses that JA(e) has few possible values.
Given T ⊆ N, let T [x] = {y : 〈y, x〉 ∈ T}.
Definition 1.2 (i) An r.e. set T ⊆ N is a trace if for some computable h,

∀n|T [n]| ≤ h(n). We say that h is a bound for T .

(ii) The real A is jump-traceable if there is a trace T such that

∀e JA(e) ↓ ⇒ JA(e) ∈ T [e].

This modifies the property of being recursively traceable, used in [10] to give a
characterization of the Schnorr low reals. We will see below that, because of the
universality of the jump, jump traceability of A actually restricts the possible
values of any partial A-recursive function via a trace.
Clearly, both super-lowness and jump traceability are closed downward under
≤T and thus satisfy one criterion for being lowness properties. Super-low reals
A are ω-r.e., that is, A ≤tt ∅′. On the other hand, there are continuum many
jump-traceable reals by a result in [8] (see below for details). Our first two
results are:

• super-lowness and jump-traceability coincide within the r.e. sets

• none of the properties implies the other within the ω-r.e. sets.

We also prove that jump traceability is Σ0
3 on the ω-r.e. sets, namely, if (Θe)e∈N

is an effective listing of all tt-reduction procedures defined on an initial segment
of N, then {e : Θe(∅′) jump-traceable} is Σ0

3. The same result follows for the r.e.
sets. Recall that {e : We low} is Σ0

4-complete [9, Cor. XII 4.7]. Since our two
properties coincide for r.e. sets, super-lowness is strictly stronger than lowness
even for the r.e. sets.
Our “combinatorial” lowness properties can be used to study very interesting
lowness properties related to randomness and prefix Kolmogorov complexity.
We first recall some definitions. For each real A, we want to define KA(y), the
length of a shortest prefix description of y using oracle A. An oracle machine
is a partial recursive functional M : 2ω × 2<ω �→ 2<ω. We write MA(x) for
M(A, x). M is an oracle prefix machine if the domain of MA is an antichain
under inclusion of strings, for each A. Let (Md)d∈N+ be an effective listing of
all oracle prefix machines. The universal oracle prefix machine U is given by
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UA(0d1σ) = MA
d (σ).

Let KA(y) = min{|σ| : UA(σ) = y}. If A = ∅, we simply write U(σ) and K(y).
Us(σ) = y indicates that U(σ) = y and the computation takes at most s steps.
The real A is K-trivial if the K-complexity of its initial segments is as low as
possible (up to a constant), namely ∀n K(X � n) ≤ K(n)+O(1). Let K denote
this class of reals. K contains nonrecursive r.e. sets and is closed under ⊕ (see
[2] for proofs and more references). In this paper we show that,

• for each low r.e. B, there is an r.e. A ∈ K such that A 	≤T B.

In Nies [7], we prove that K is closed downward under Turing reducibility, and
each A ∈ K is truth table-below some r.e. D ∈ K. Thus K is an example of
a lowness property which is an ideal in the ω-r.e. reals, generated by its r.e.
members. In contrast, we will show that the super-low r.e. sets do not form
an ideal, since there are super-low r.e. sets A0, A1 such that A0 ⊕ A1 is Turing
complete.
We also show in Nies [7] that each A ∈ K is superlow. Since the construction
in [2] produces a noncappable A ∈ K, the class of super-low r.e. degrees is
downward dense in the nonrecursive r.e. degrees.
Nies and Stephan [8] use the notion of jump traceability to characterize reals
which are computationally weak in the following sense.

Definition 1.3 Let p : N �→ N be a nondecreasing computable function such that
limnp(n)− n = ∞. A real A is strongly p-low if ∀y K(y) ≤ p(KA(y) + c0) + c1

for some constants c0, c1 ∈ N.

Thus, for such A, KA(y) is not much smaller than K(y). Let SK[p] denote this
class of reals. In [8] we show that

A jump traceable ⇔ ∃ p computable A ∈ SK[p].

We actually use a definition which is effectively equivalent to being jump-
traceable: a real A is U -traceable if there is a trace T such that ∀σ ∈ 2<ω (UA(σ) ↓⇒
UA(σ) ∈ T [|σ|]). We also show in [8] that for each function p satisfying the con-
ditions of Definition 1.3, there is a perfect Π0

1 class Q ⊆ SK[p] of nonrecursive
reals. Thus there are continuum many jump-traceable reals.
Preliminaries. If f : N → N, then we say f is ω-r.e. if f ≤wtt ∅′, that is f
can be computed from ∅′ with recursively bounded use. This is easily seen to
be equivalent to f(e) = limsg(e, s), where g is a computable function such that
g(e, s) changes at most b(e) times, for a computable function b. For instance, if
T is a trace in the sense of Definition 1.2, then f(n) = max T [n] is ω-r.e., via
g(n, s) = max T

[n]
s and b(n) = h(n).

The following notation is also useful. A ∆0
2–approximation (Ar)r∈N of a real A

is an effective sequence of finite sets such that A(x) = limrAr(x). Then A ≤tt ∅′
iff A ≤wtt ∅′ iff the number of changes in such an approximation is recursively
bounded.
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Recall that we write JA(e) for {e}A(e). If A is given by a ∆0
2–approximation,

we write JA(e)[s] for {e}As
s (e). The use of the computation JA(e) is denoted

j(A, e), and the use of JA(e)[s] is denoted j(A, e)[s].
Recall that a partial recursive functional is an r.e. set Ψ of “axioms” 〈σ, e, v〉,
σ ∈ 2<ω such that if 〈σ, e, v〉, 〈σ′, e, v′〉 ∈ Ψ and σ, σ′ are compatible, then v = v′.
Given ∆0

2–approximation (As), to define ΨA(e) = v with use u at stage s means
to put the axiom 〈As � u, e, v〉 into Ψ.
While the proof of the following fact is not hard, it depends on the particular
implementation of the universal machine.

Fact 1.4 From a partial recursive functional Ψ, one can effectively obtain a
primitive recursive function α, called a reduction function for Ψ, such that

∀X ∀e ΨX(e) � JX(α(e)).

2 Jump-traceability

In this Section we collect some basic facts on jump-traceability, and place this
notion in context. First we note:

Fact 2.1 If A is jump-traceable via T , then there is a trace S such that, for
each partial recursive functional Ψ,

a.e.m[ΨA(m) ↓ ⇒ ΨA(m) ∈ S[m]].

For, define S by S[m] =
⋃

i≤m T [αi(m)]), where (αi) is a listing of all primitive
recursive unary functions. Then S is a trace which is as required by Fact 1.4.

Proposition 2.2 Let A be any jump-traceable real. Then A is generalized low1,
namely A′ ≤T A ⊕ ∅′. The reduction can be obtained effectively from an r.e.
index for the trace T . In this reduction, the use on ∅′ is recursively bounded,
and the use on A is ω-r.e.

Proof. Consider the partial A–recursive functional

ΨA(e) = µs [JA(e) ↓ in s steps].

Choose a reduction function α by Fact 1.4. To see if e ∈ A′, first compute
t = max S[α(e)], using ∅′ as an oracle. Then, using A � t, check whether JA(e) ↓
in ≤ t steps. If so, answer Yes, otherwise No.
Since T is a trace, the use on ∅′ to compute t is recursively bounded (see the
end of the first Section). ♦

Next we determine the index set complexity of jump traceability on the ω-
r.e. sets. Recall that (Θe)e∈N is an effective listing of all (possibly partial)
tt-reduction procedures defined on an initial segment of N. Thus Θe(x) can
be viewed as a truth table. Then we obtain an effective listing (Ve)e∈N of the
ω–r.e. sets by letting Ve,s(x) = Θe(∅′; x)[s], which is interpreted as 0 if Θe(x)[s]
is undefined. Now let Ve(x) = limsVe,s(x).
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Proposition 2.3 {e : Ve jump-traceable } is Σ0
3-complete. Similarly,

{e : We jump-traceable } is Σ0
3-complete.

Proof. We verify that Ve is jump-traceable iff

∃T ⊆ N ∃h total (∀n|T [n]| ≤ h(n) & ∀x∀s∃t ≥ s[ JVe(x)[t] ↑ ∨ JVe(x) ∈ T
[x]
t ]).

The direction “⇒” is clear. For the other direction, note that if JVe(x) ↓ then
the condition implies JVe(x) ∈ T [x].
For each e ∈ N we can effectively obtain ê such that We = Vê. This proves the
second index set is Σ0

3. For Σ0
3-hardness it suffices to consider the r.e. case. But

it is easy to show that any nontrivial Σ0
3-class of r.e. sets which is closed under

finite differences and contains the computable sets has a Σ0
3-complete index set.

♦

A real A is weakly recursive (Ishmukhametov [4]) if there is a trace S such that
∀Γ(ΓA total ⇒ a.e. m ΓA(m) ∈ S[m]). By Fact 2.1 each jump traceable real
is weakly recursive. Since the function g(x) = max T [x] is ω-r.e., a weakly
recursive real is array recursive [3], which means that there is an ω-r.e. function
which eventually dominates any A–computable function. For r.e. sets A, the
converse implication holds by [4], a fact which can be proved in the same style
as the proof of Theorem 4.1 below.
The weakly recursive ∆0

2 reals have an interesting uniformity property. Recall
that a real A is Low2 if TotA = {e : {e}A total} ∈ Σ0

3.

Proposition 2.4 The weakly recursive ∆0
2-reals (and hence the jump traceable

∆0
2-reals) are uniformly low2. Thus, from a ∆0

2 approximation (As) to A one
can effectively obtain a Σ0

3-index for TotA.

The point is that the ∆0
2 approximation alone suffices, in case it actually ap-

proximates a weakly recursive real, to obtain the Σ0
3-index.

Proof. Using the same argument as in [10, Fact 1], if a real A is weakly recur-
sive, then it is irrelevant what the actual bound h for the trace is, as long as
limnh(n) = ∞. Thus there is a trace S such that |S[m]| ≤ m. Let Si be a u.r.e.
list of all traces with bound h(m) = m, and let V [e] =

⋃
i≤e S

[e]
i , so that V is a

trace which works for all weakly recursive reals. Let g(m, s) = max V
[m]
s . Then

{e}A is total iff

∃x∃s ∀t ≥ s ∀z < x eA(z) ↓ [t] & ∀z ≥ x∃v ≥ t u(A; e, z)[v] ≤ g(z, v).

The direction from left to right holds since u(A; e, z), the use of {e}A(z) is an
A–recursive function. The converse direction holds because, for each z, there
are only finitely many possibilities for {e}A(z)[v].
The right hand side gives a Σ0

3 index for TotA, which was obtained uniformly
in the ∆0

2-approximation to A. ♦
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3 Super-low reals

Recall that a Π0
1-class P is a subset of 2ω given as the set of paths [B] through

a recursive subtree of B of 2<ω. Jockusch and Soare [5] proved that each non-
empty Π0

1 class has a low member. An analisis of their proof yields

Proposition 3.1 Each non-empty Π0
1 class has a super-low member.

Proof. Suppose P = [B], where B is an infinite recursive subtree of 2<ω. For
each finite set F , let BF = {σ ∈ B : ∀e ∈ F Jσ(e) ↑}. Since being finite
is a Σ0

1-property of recursive trees, there is a computable g defined on (strong
indices for) finite subsets of N such that

BF finite ⇔ g(F ) ∈ ∅′.
As in [5], let B = BF0 ⊇ BF1 ⊇ . . . be a sequence of recursive trees defined as
follows: let F0 = ∅, and Fi+1 =Fi if BFi∪{i} is finite, and Fi+1 =Fi ∪ {i} else.
Then one can compute Fi from ∅′, where the use is bounded by the computable
function max{g(F ) + 1 : F ⊆ {0, . . . , i} }.
By compactness, there is a (unique) path A ∈ ⋂

i[BFi
]. This path satisfies

JA(e) ↑ ⇔ e ∈ Fe+1. Thus A′ ≤wtt ∅′ and hence A′ ≤tt ∅′. ♦

Corollary 3.2 There is a Martin-Löf random superlow real.

Proof. This follows since the random reals form a union of Π0
1-classes (given by

a universal Martin-Löf test). ♦

In contrast, no Martin-Löf random real R can be of n-r.e. degree unless R ≡T ∅′.
This is because there is a fixed point free f ≤T R (i.e., ∀e We 	= Wf(e)), and
the Arslanov completeness criterion applies to n-r.e. sets (see [9, p. 277]).
Recall that, by the Sacks Splitting Theorem, there are low r.e. sets A0, A1 such
that K ≤T A0 ⊕A1. Again, we strengthen this to super-low. This fact was first
obtained in [1].

Theorem 3.3 [1] There are super-low r.e. sets A0, A1 such that K ≤T A0⊕A1.

Proof. We enumerate A0, A1 and also build a Turing functional Γ such that
K = Γ(A0⊕A1). The use of Γ(A0⊕A1; p) is denoted γ(A0⊕A1; p) (and pictured
as a movable marker). For the duration of this proof, k, l denote numbers in
{0, 1}, p, q denote numbers in N and [p, k] stands for 2p + k.
To avoid that JAk(p) changes too often, we ensure that at each stage s, for each
p, k, [p, k] ≤ s,

JAk(p)[s] ↓ ⇒ γ(A0 ⊕ A1)([p, k]) > j(Ak, p)[s] (1)

Construction. At stage s, define Γ(A0 ⊕ A1; s) with large use, and do the
following.
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a) If there is [p, k] such that JAk(p)[s−1] ↑ and JAk(p) ↓ at the beginning of
stage s, choose [p, k] minimal such. Put γ(A0 ⊕ A1; [p, k]) into A1−k and
redefine Γ(A0⊕A1; q), s ≥ q ≥ [p, k], with the correct value and large use.

b) If n ∈ Ks − Ks−1, then put γ(A0 ⊕ A1; n) into A1−k.

A typical set-up looks like this:

�
�

�
�

j(A0, p) j(A1, p)γ(2p) γ(2p + 1)

(Here, JA1(p) converged after JA0(p).)

Verification We first check (1) by induction on s. The condition holds for s = 0.
If s > 0, we may suppose there is [p, k] minimal such that JAk([p, k])[s − 1] ↑
and JAk(p)[s] ↓ (else there is nothing to prove), in which case we put v =
γ(A0 ⊕ A1; [p, k]) into A1−k.

• If [q, l] < [p, k], then v > γ(A0 ⊕ A1; [q, l]) ≥ j(Al, q)[s] by inductive
hypothesis, so that (1) remains true for JAl(q)[s].

• Since we enumerate v into the “other” side, JAk(p)[s] remains convergent,
so we ensure γ(A0 ⊕ A1; [p, k]) > j(Ak, p)[s].

• For [q, l] > [p, k], computations JAl(q) have their use below the new value
of γ([q, l]).

Next we show that both A0 and A1 are super-low. As in the construction of
a (super-)low simple set, let gk(p, s) = 1 if JAk(p)[s] ↓ and let gk(e, s) = 0
otherwise. We define a computable function c such that c([p, k]) is a bound on
the number of times JAk(p) can become defined. Then bk(p) = 2c([p, k]) + 1
bounds how often gk(p, s) changes.
By (1), JA0(p) becomes undefined at most 2p times due to change of K � 2p.
Otherwise, JAk(p) becomes undefined only when some computation JA1−k([q, 1−
k]) becomes defined, where [q, 1−k] < [p, k]. Thus the recursive function c given
by c(0) = 1, c([p, k]) = 2p +

∑{c([q, 1 − k]) : [q, 1 − k] < [p, k]} is as desired.
As a consequence, each marker γ(A0 ⊕ A1; m) reaches a limit. Thus K =
Γ(A0 ⊕ A1). ♦

In contrast to the case of the Sacks Splitting theorem, we cannot achieve that
Γ above is a wtt-reduction. Bickford and Mills [1, Thm. 4.1] show that, in fact,
no super-low r.e. set is cuppable in the r.e. wtt-degrees.
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4 Traceability versus super lowness

Theorem 4.1 Let A be r.e. Then the following are equivalent.

(i) A is jump traceable

(ii) A is super-low.

Both directions are effective.

Proof. (i) ⇒ (ii). Suppose A is jump traceable via a trace T with bound h. By
convention, for each s, Ts ⊆ [0, s). Consider the following partial A–recursive
function:

q(e) = µs(JA(e)[s] ↓ & As � j(As, e, s) = A � j(As, e, s)).

By Fact 1.4 there is a total computable α such that, for all e, q(e) � JA(α(e)).
Then, for each s,

(JA(e)[s] ↑ & JA(e) ↓) ⇒ JA(α(e)) ≥ s, (2)

since JA(α(e)) < s implies that JA(e) has reached a final value by stage s.
We define computable functions g(e, s), b(e) as in Definition 1.1 witnessing that
A is super-low. Let g(e, 0) = 0. For t > 0, if JA(e)[t] ↑ then let g(e, t) = 0. Now
suppose JA(e)[t] ↓. If g(e, t− 1) = 1 then let g(e, t) = 1. If g(e, t− 1) = 0, then
we first test the stability of the computation JA(e)[t] before allowing g(e, t) = 1:
let s < t be the greatest stage such that JA(e)[s] ↑. If v = JA(α(e))[t] ↓, s ≤ v

and v ∈ T
[e]
t then let g(e, t) = 1, otherwise g(e, t) = 0.

We claim that g(e, t) changes at most 2h(α(e)) + 2 times. It suffices to show
that g(e, t) changes from 1 to 0 and back to 1 at most h(α(e)) times. Thus,
suppose s > 0, g(e, s− 1) = 1, g(e, s) = 0 (so that JA(e)[s] ↑) and t > s is least
such that g(e, t) = 1. Then v = JA(α(e))[t] ↓ and s ≤ v. Since Ts ⊆ [0, s) and
v ∈ T

[e]
t , T

[e]
t − T

[e]
s 	= ∅. This can happen at most h(α(e)) times.

s t

g(e, s − 1) = 1, g(e, s) = 0 g(e, t) = 1

JA(e) ↑

v = JA(α(e))

v ∈ T
[e]
t

It remains to be shown that A′(e) = limsg(e, s). If JA(e) ↑, then g(e, s) = 0
for infinitely many s, so limsg(e, s) = 0. Now suppose JA(e) ↓. Let s be
greatest such that JA(e)[s] ↑. Since JA(α(e)) ↓, there is a t ≥ s such that the
computation v = JA(α(e)) is stable and v ∈ T

[e]
t . Then s ≤ v by (2). So we

define g(e, t′) = 1 for each t′ ≥ t.
Note that we have obtained g and b effectively in the trace T and its bound.
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(ii) ⇒ (i). Suppose A is super-low. Thus A′ is ω-r.e. via some functions g,
b. We enumerate a trace T to show A is jump traceable, and also define an
auxiliary partial recursive functional Ψ, which copies computation of the jump
J with some delay. We assume a partial recursive functional Ψ̃ is given, and let
α be the reduction function for Ψ̃ according to Fact 1.4. Since we produce Ψ
effectively from α, by the Recursion Theorem we can assume that Ψ̃ = Ψ, so
that α is also a reduction function for Ψ.
Given e, let ê = α(e). At stage s = 0 Ψ is totally undefined. For s > 0, we
distinguish two cases.

a) g(ê, s) = 0. If ΨA(e)[s − 1] ↑ and JA(e)[s] ↓= v, define ΨA(e)[s] = v with
use j(As, e, s).

b) g(ê, s) = 1. If ΨA(e)[s] ↓ then enumerate y = JA(e)[s] into T [e].

Note that, since Ψ just copies computations of J at a later stage, when a new
computation JA(e)[s] appears, then no computation ΨA(e)[t] which was defined
at t < s still applies at stage s.
Suppose JA(e) = z, and let s be the least stage where this (final) computation
appears. We show z ∈ T [e]. At a stage t ≥ s, we may only define a new
computation ΨA(e)[t] in case g(ê, t) = 0. Since ΨA(e)[t] remains undefined till
this happens, by the definition of α, in fact there must be such a stage t ≥ s.
Since the use for ΨA(e)[t] is j(As, e, s) and As � j(As, e, s) is stable, ΨA(e) ↓.
Hence g(ê, r) = 1 for some r > t, at which point we enumerate z into T [e].
Next we show T is a trace with bound h(e) = � 1

2b(α(e))�. Suppose q < r

are stages where distinct elements y, z are enumerated into T [e]. Then y =
JA(e)[q], z = JA(e)[r], and g(ê, q) = g(ê, r) = 1. Since Aq � j(Aq, e, q) 	= Ar �
j(Aq, e, q), no definition ΨA(e)[q′] issued at a stage q′ ≤ q is valid at stage r.
(Here is where we need that A is r.e.) So we must have made a new definition
ΨA(e)[t] at a stage t, q < t < r, whence g(ê, t) = 0. Since g(e, s) can change
from 1 to 0 and back at most h(e) times, this proves that |T [e]| ≤ h(e).
Using the Recursion Theorem with indices for g and b as parameters, we obtain
T and h effectively in those indices. ♦

We obtain an interesting consequence which is not obvious from the definition.

Corollary 4.2 {e : We super-low } is Σ0
3-complete.

Proof. This follows from the corresponding fact for jump-traceability, Proposi-
tion 2.3. ♦

Theorem 4.3 There is a super-low real A which is not jump-traceable.

Proof. Recall that, by [8], A is jump-traceable iff there is a computable p such
that A ∈ SK[p]. In [8], we also show that no Martin-Löf random real is in any
class SK[p]. Thus the super-low Martin-Löf random real obtained in Corollary
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3.2 is not jump-traceable. ♦

Theorem 4.4 There is an ω-r.e. jump-traceable real A which is not super-low.

Notice however that A is low by Proposition 2.2. Proof.
Fix an effective listing (ge, be)e∈N of all pairs consisting of a binary and a unary
partial recursive function, such that for all w, {q : ge(w, q) ↓} is an initial
segment of N. Then we can assume the same property for the approximation at
a stage s, ge(w, q)[s].
To ensure A is not super-low, we meet the requirements
Pe : ge, be total &∀x ge(x, q) changes at most be(x) times ⇒

∃y ¬A′(y) = limqge(y, q).
We define an auxiliary binary p.r. functional Ψ. As usual, by the Recursion The-
orem, we are given a reduction function α such that ΨX(e, y) = JX(α(〈e, y〉)).
The strategy for Pe is as follows.

1. Pick a fresh candidate y at stage t. Let ỹ = α(e, y). Wait till be(ỹ) ↓ at a
stage t.

2. Pick a fresh number z (thus, z ≥ be(y)), called the parameter of Pe. From
now on, ensure that

ΨA(e, y) ↓ ⇔ z ∈ A.

To do so, for all strings σ of length z, define Ψσ1(e, y) = 1. This is allowed,
since there have been no definitions with arguments e, y so far.

Do the following at most be(ỹ) times at stages s ≥ t: Whenever ge(ỹ, q)[s−
1] ↑, ge(ỹ, q)[s] ↓, and ge(ỹ, q − 1) 	= ge(ỹ, q), then declare As(z) = 1 −
ge(ỹ, q). Otherwise As(z) = As−1(z).

Then, if the hypothesis of Pe is satisfied,

ỹ ∈ A′ ⇔ ΨA(e, y) ↓ ⇔ limsge(ỹ, s) = 0

Moreover, As(z) changes at most z times (since z ≥ be(ỹ)), so that A is ω-r.e. To
ensure A is jump traceable, we enumerate a trace T . We meet the requirements

Qe : |T [e]| ≤ h(e) & (v = JA(e) ↓ ⇒ v ∈ T [e]),

where h(e) is a recursive bound to be determined below.
The priority ordering of requirements is Q0 < P0 < Q1 < . . .. The strategy for
Qe is simple: whenever a computation JA(e) = v appears at stage s which has
not been seen before, then

1. put v into T [e]

2. initialize the requirements Pi, i ≥ e.
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We say that Qe acts. In that case, A(z) retains its value, for any parameter z
of a lower priority requirement Pj . Therefore, unless also a higher priority Pi

is initialized, for t ≥ s, At � j(At, e, t) only depends on the values A(z), where
z is the parameter of a higher priority Pi, which gives at most 2e possibilities
for At � j(At, e, t) (here we need that Pi only needs to change A(z) for a single
number z, which would fail if we had to make A r.e.).
Construction. Let A0 = ∅. At stage s > 0, go through the requirements
Q0, P0, . . . , Qs, Ps and let them carry out one step of their strategies. At the
end, if y ≤ s and no value has been assigned yet to As(y), retain the value at
stage s − 1.
Verification. Let h(0) = 1 and, for e > 0, let h(e) = h(e − 1)(2e + 1)

Lemma 4.5 Let e ≥ 0. Then

(i) Qe is met

(ii) Pe is initialized at most h(e) times and met.

Proof. For e = 0, (i) and (ii) hold, since P0 is initialized at most once, when
JA(0) converges for the first time. Assume e > 0.
(i) While Pe−1 is not initialized, the requirements Pi, i < e pick at most one
number z. If Fs is the set of such numbers at a stage s, then there are at most
2e possibilities for As ∩ Fs. Hence Qe enumerates at most 2e numbers into T [e]

before Pe−1 is initialized another time. Hence, by inductive hypothesis (ii) for
e − 1, |T [e]| ≤ 2eh(e − 1) ≤ h(e).
(ii) If Pe is initialized, then either Pe−1 is also initialized, or Qe acts. So Pe is
initialized at most h(e) times. Once it is no more initialized, Pe diagonalizes
successfully. ♦

5 A construction of a K-trivial r.e. real

The following theorem was considered in discussions with Downey and Hirschfeldt.

Theorem 5.1 For each low r.e. set B there is an r.e. K-trivial set A such that
A 	≤T B.

Proof. Let N
〈e〉 denote the set of numbers of the form 〈y, e〉. We meet the

requirements

Pe : A 	= {e}B ,

by enumerating numbers x ∈ N
〈e〉 into A. To ensure A is K-trivial, we apply the

criterion implicit in [2, Theorem 3.1] in the form presented in [7, Prop. 3.3.].
This is actually a characterization of K, as proved in [7, Theorem 5.12]. We
refer to those papers for motivation, and to [7] for a proof.
Note that K(y) = limsKs(y), where Ks(y) = min{|σ| : Us(σ) = y}. One uses
the “cost function”
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c(x, s) = 1/2
∑

x<y≤s 2−Ks(y),

which bounds the cost of changing A(x) at stage s. Note that c(x, s) is non-
decreasing in s, limsc(x, s) ≤ 1/2 for each x, and limxlimsc(x, s) = 0 by the
definition of prefix Kolmogorov complexity.

Fact 5.2 ( [7]) Suppose that A(x) = limsAs(x) for a ∆0
2–approximation (As)

such that

S =
∑

{c(x, s) : s > 0 & x is minimal s.t. As−1(x) 	= As(x)} ≤ 1/2. (3)

Then A is K-trivial.

To meet the requirements Pe, we use a Robinson type procedure, using the
lowness of B to “certify” computations {e}B(x)[s] = 0. We may ask a a Σ0

1(B)-
question about the enumeration of A, and we have a ∆0

2-approximation to the
answer. But which enumeration? We may assume that it is given, by the re-
cursion theorem. Formally, an enumeration is an index for a partial recursive
function A defined on an initial segment of N such that, where A(t), is inter-
preted as a strong index for the part of A enumerated by stage t, A(s) ⊆ A(s+1)
for each s. We write At for A(t). Given any (possibly partial) enumeration Ã,
we effectively produce an enumeration A, asking Σ0

1(B)-questions about the
given enumeration Ã. We must show that A is total in the interesting case that
A = Ã (by the recursion theorem), where these questions are actually about A.
Here is the Σ0

1(B)-question for requirement Pe:
Is there a stage s and an x ∈ N

〈e〉 such that Ã is defined up to s − 1, and

• {e}B(x) = 0[s], where Bs � u(Bs, e, x, s) = B � u(Bs, e, x, s) (B is correct
on the use of the computation), and

• c(x, s) ≤ 2−(e+n+3),

where n = |N〈e〉 ∩ Ã(s − 1)| is the number of enumerations for the sake of Pe

prior to s.
Since B is low, there is a total computable function g(e, s) such that lim g(e, s) =
1 if the answers is Yes, and lim g(e, s) = 0 otherwise. (The function g(e, s)
actually depends on a further argument which we supress, an index for Ã.)
Construction. We define As, assuming As−1 has been defined or s = 0.
For each e < s, if there is an x < s, x ∈ N

〈e〉 satisfying

{e}B(x) = 0[s] & c(x, s) ≤ 2−(e+n+3),

where n = |N〈e〉 ∩As−1|, then choose x least and search for the least t ≥ s such
that g(e, t) = 1, or Bt � u 	= Bs � u, where u = u(Bs, e, x, s) is the use at s. In
the first case, enumerate x into A (at the current stage s). If the search does
not end for some e < s, then we leave As undefined.
Verification. We may assume A = Ã by the recursion theorem.
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Lemma 5.3 A is total.

Proof. Assume that As−1 is defined or s = 0. Since A = Ã and by the correct-
ness of limtg(e, t), the search at stage s ends for each e. So we define As. ♦

Lemma 5.4 A is K–trivial.

Proof. We apply the Fact 5.2. At stage s, suppose x is minimal s.t. As−1(x) 	=
As(x). We enumerate x for the sake of some requirement Pe, which so far has
enumerated n numbers. Then c(x, s) ≤ 2−(e+n+3), hence S ≤ ∑

0≤e,n 2−(e+n+3) =
1/2. ♦

Lemma 5.5 Each requirement Pe is met.

Proof. Suppose for a contradiction that A = {e}B . First assume limsg(e, s) = 1.
Choose witnesses x, s for the affirmative answer to the Σ0

1(B) question for Pe.
Since B � u does not change after s where u = u(Bs, e, x, s), we search for t till
we see g(e, t) = 1. Then Pe enumerates x at stage s.
Now consider the case g(e, s) = 0 for all s ≥ s0. Then we do not enumerate
numbers for the sake of Pe after stage s0. Then there is n such that Pe puts
just n numbers into A. Since A = {e}B , there is x ∈ N

〈e〉 and s ≥ s0 such that
{e}B(x) = 0[s] and c(x, s) ≤ 2−(e+n+3), where n = |N〈e〉 ∩A|. So the answer to
the Σ0

1(B) question for Pe is Yes, contradiction. ♦
Note that the action of Pe may be infinitary, which is harmless here, but could
be avoided by refining the Σ0

1(B) question.
Also note that the argument in the proof of Lemma 5.5, in the case lims g(e, s) =
1 breaks down if B is merely ∆0

2. The opponent can now present the correct
computation {e}B(x) = 0 at a stage s where the limit lims g(e, s) has not yet
been reached. Then he temporarily changes B below the use at stage t > s
while keeping g(e, t) = 0, and we do not put x into A at s. At a later stage
where the old computation {e}B(x) = 0 comes back, he has increased the cost
function above 2−(e+n+3). Thus the following question remains:

Question 5.6 Does Theorem 5.1 hold for ∆0
2 low sets B?

We may replace B by a u.r.e. sequence of uniformly low sets Bi and obtain a
stronger result, which is proved by making the appropriate notational changes
in the proof of Theorem 5.1.

Corollary 5.7 For each u.r.e. sequence of uniformly low sets Bi, there is an
r.e. K-trivial set A such that A 	≤T Bi for each i.

We apply this to a class first studied by Andrei Muchnik (1998).

Definition 5.8 ([7]) A is strongly K–trivial via a constant b if
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∀y K(y) ≤ KA(y) + b.

Let SK denote this class of reals.

In [7] it is proved as a main result that K = SK.
Note that SK ⊆ SK[p] for reach p as in Definition 1.3. Thus each A ∈ SK
is jump traceable. In [7, Prop. 2.8] we prove a uniform version of this: if A
is strongly K-trivial via b, then A is jump-traceable, where the trace and its
bound are obtained effectively in b.
The class SK is Σ0

3 on both the ω-r.e. and the r.e. sets. Since it includes all
finite sets, there is a u.r.e. listing of the r.e. sets in SK. However, there is no
way to determine a constant for the strong K-triviality:

Theorem 5.9 There is no effective sequence (Bi, bi) of pairs of an r.e. set and
a constant such that each Bi is strongly K-trivial via bi, and for each r.e. set
A,

A ∈ SK ⇒ ∃i A ≤T Bi.

In particular, there is no such sequence listing all the r.e. sets in SK.

Proof. By [7, Prop. 2.8], each Bi is jump-traceable, where the trace and its
bound are obtained effectively in bi. By Theorem 4.1, we obtain a witness for
the (super)-lowness of Bi, effectively in i. The result follows by Corollary 5.7 ♦

We close with a further question.

Question 5.10 Find an elementary property which distinguishes the classes of
low and super-low r.e. degrees. For instance, is there a noncappable (hence, low
cuppable) degree which does not cup with a super-low r.e. degree to 0′?

It would also be interesting to see to what extent Theorem 4.1 holds for d.r.e.
sets.
Acknowledgement. The author thanks Frank Stephan and Sebastiaan Ter-
wijn for helpful comments.
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