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Abstract

Quantum information and computation is the new hype in physics.
It is promising, mindboggling and even already applicable in cryptog-
raphy, with good prospects ahead. A brief, rather subjective outline is
presented.

1 Is Nature telling us something?

Friends in experimental physics tell me that the essence of their observa-
tions are clicks in some counter. There is a click or there is none. This is
experimental physics in a nutshell. There may be some magic in properly
designing experiments and some magic in interpreting those clicks, but that
is all there is.

A single click represents some elementary physical proposition. It is also
an answer to a question which might not even have been posed consciously.
It is tempting to state that “Nature wants to tell us something” with these
clicks about some formal structures, symmetries, music or numbers beyond
the phenomena. Maybe that is the case, and most physicists tend to believe
so; but maybe we are just observing crap, erratic emanations devoid of any
meaning [1].

Anyway, we have to deal with those clicks, and one way to deal with them
is to interpret them as information. For example, in an experimental input-
output scheme, information is received, transformed and communicated by
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the system. One might think of a physical system as a black box with an
input and an output interface [2]. The experimenter inputs some information
and the black box responds with some information as output.

If we are dealing with mechanical systems, all the conceivable gadgets
inside the black box can be isomorphically translated into a sheet or a tape
of paper on which finite computations are performed and vice versa. This
was Turing’s insight.

But if the black box is essentially quantum driven, then the paper
metaphor becomes questionable. The quantum is illusive and highly nonin-
tuitive. In the words of John Archibald Wheeler, one is capturing a “smoky
[[quantum]] dragon” [3] inside the black box. Or, in Danny Greenberger’s
dictum, “quantum mechanics is magic” [4]. In addition, quantized systems
such as the quantized electromagnetic field have “more” degrees of free-
dom as compared to their classical correspondents. Therefore, any isomor-
phic translation into classical mechanistic devices remains very expensive in
terms of paper consumption, at best. To make things worse, under certain
reasonable side assumption, it can be proven that a complete “mechanical”
paper set of all quantum answers is inconsistent.

Because of these novel non-classical features it is so exiting to pursue
the quantum information concept. But even if we look aside and do not
want to be bothered with the quantum, the quantum catches up on us: due
to the progressing miniaturization of circuits forming logical gates, we shall
soon be confronted with quantum phenomena there. In the following, some
of the recent developments are reviewed below; and some speculations and
prospects are mentioned.

2 Formalization of quantum information

In order to be applicable, any formalization of information has to be based on
its proper realization in physical terms; i.e., as states of a physical system. In
this view, information theory is part of physics; or conversely, physics is part
of information theory. And just as the classical bit represents the distinction
between two classical physical states, the quantum bit, henceforth often
abbreviated by the term ‘qubit,’ represents the conceivable states of the
most elementary quantized system. As we shall see, qubits feature quantum
mechanics ‘in a nutshell.’ Quantum bits are more general structures than
classical bits. That is, classical bits can be represented as the limit of qubits,
but not vice versa.

Classical information theory is based on the classical bit as fundamental
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atom. This classical bit, henceforth called ‘cbit,’ is in one of two classical
states t (often interpreted as “true”) and f (often interpreted as “false”). It
is customary to code the classical logical states by #(t) = 1 and #(f) = 0
(#(s) stands for the code of s). The states can, for instance, be realized
by some condenser which is discharged (≡ cbit state 0) or charged (≡ cbit
state 1).

In quantum information theory (see Appendix A for a brief outline of
quantum mechanics) qubits can be physically represented by a ‘coherent
superposition’ of the two orthonormal1 states t and f . The qubit states

xα = αt+ βf (1)

form a continuum, with |α|2 + |β|2 = 1, α, β ∈ C.
What is a coherent superposition? Formally it is just a sum of two

elements (representing quantum states) in Hilbert space, which results in an
element (a quantum state) again per definition. So, formally we are on the
safe side. Informally speaking, a coherent superposition of two different and
classically distinct states contains them both. Now classically this sounds
like outright nonsense! A classical bit cannot be true and false at the same
time. This would be inconsistent, and inconsistencies in physics sound as
absurd as in mathematics [5].

Yet, quantum mechanics (so far consistently) achieves the implementa-
tion of classically inconsistent information into a single quantum bit. Why is
that possible? Maybe we get a better feeling for this when we take up Erwin
Schrödinger’s interpretation of the quantum wave function (in our terms: of
the qubit states) as a sort of “catalogue of expectation values” [6]. That is,
the qubit appears to be a representation of the state of our knowledge about
a physical system rather than what may be called “its true state.” (Indeed
we have to be extremely careful here with what we say. The straightforward
classical pretension that quantum systems must have “a true state”, albeit
hidden to us, yields to outright contradictions!)

Why have I mentioned quantum superpositions here? Because they lie
at the heart of quantum parallelism. And quantum parallelism lies at the
heart of the quantum speedups which caused so much hype recently.

The coding of qubits is discussed in Appendix C.
The classical and the quantum mechanical concept of information differ

from each other in several aspects. Intuitively and classically, a unit of infor-
mation is context-free. That is, it is independent of what other information
is or might be present. A classical bit remains unchanged, no matter by

1(t, t) = (f, f) = 1 and (t, f) = 0.
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what methods it is inferred. It obeys classical logic. It can be copied. No
doubts can be left.

By contrast, to mention just a few nonclassical properties of qubits:

• Qubits are contextual [7]. A quantum bit may appear different, de-
pending on the method by which it is inferred.

• Qubits cannot be copied or “cloned” [8, 9, 10, 11, 12, 13]. This due to
the fact that the quantum evolution is reversible, i.e., one-to-one.

• Qubits do not necessarily satisfy classical tautologies such as the dis-
tributive law [14, 15].

• Qubits obey quantum logic [16] which is different from classical logic.

• Qubits are coherent superpositions of classically distinct, contradicting
information.

• Qubits are subject to complementarity.

3 Complementarity and quantum cryptography

Before we proceed to quantum computing, which makes heavy use of the
possibility to superpose classically distinct information, we shall mention
an area of quantum information theory which has already matured to the
point where the applications have almost become commercially available:
quantum cryptography. At the moment, this might be seen as the “killer
app” of quantum information theory.

Quantum cryptography (for a detailed review see [17]) is based on the
quantum mechanical feature of complementarity. A formalization of quan-
tum complementarity has been attempted by EdwardMoore [18] who started
finite automata theory with this. (Recent results are contained in Ref. [19]
and [20, chapter 10]; see also Appendix B.)

Informally speaking, quantum complementarity stands for the principal
impossibility to measure two observables at the same time with arbitrary
position. If you decide to precisely measure the first observable, you “loose
control” over the second one and vice versa. By measuring one observable,
the state of the system undergoes a “state reduction” or, expressed differ-
ently, “the wave function collapses” and becomes different from the original
one. This randomizes a subsequent measurement of the second, complemen-
tary observable: in performing the subsequent measurement, one obtains
some measurement results (i.e., clicks, you remember?), but they dont tell
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us much about the original qubit, they are unusable crap. There is no other
way of recoving the original state than by completely “undoing” the first
measurement in such a way that no trace is left of the previous measure-
ment result; not even a copy of the “classical measurement”2 result!

So how can this quantum property of complentarity can be put to use
in cryptography? The answer is straightforward (if one knows it already):
By taking advantage of complementarity, the sender “Alice” of a secret and
the receiver “Bob” are able to monitor the secure quantum communication
channel and to know when an eavesdropper is present.

This can be done as follows. Assume that Alice sends Bob a qubit and
an eavesdropper is present. This eavesdropper is in an inescapable dilemma:
neither can the qubit be copied, nor can it be measured. The former case
is forbidden in quantum information theory and the letter case would result
in a state reduction which modifies Alice’s qubit to the point where it is
nonsense for Bob. Bob and Alice can realize this by comparing some of
their results over a classical (insecure) channel.3 The exact protocol can for
instance be found in [17]. Another scheme [21] operates with entangled pairs
of qubits. Here entanglement means that whatever measurement of a partic-
ular type is performed on one qubit, if you perform the same measurement
on the other qubit of the pair, the result is the same.

Actually, in the real world, the communication over the insecure classi-
cal channel has to go back and forth, and they have to constantly compare
a certain amount of their measured qubits in order to be able to assure a
guaranteed amount of certainty that no eavesdropper is present. That is
by no means trivial [22]. But besides this necessary overhead, the quantum
channel can be certified to be secure, at least up to some desired amount of
certainty and up to the point where someone comes up with a theory which
is “better than quantum mechanics” and which circumvents complementar-
ity somehow. Of course, the contemporaries always believe and assure the
authorities that there will never be such a theory!

Quantum cryptographic schemes of the above type have already been
demonstrated to work for distances of 1000m (and longer) and net key sizes
(after error correction) of 59000 Bits at sustained (105 s) production rates
of 850 Bits/s [23]. Yet there is no commercially available solution so far.

2I put a quote here because if one is able to “undo a measurement”, then this process
cannot be classical: per definition, classicality means irreversibility, many-to-oneness.

3Actually, if the eavesdropper has total control over the classical channel, this might
be used for a reasonable attack strategy.
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4 Quantum computing

Quantum computers operate with qubits. We have dealt with qubits already.
Now what about the operation of quantum computers on qubits? We have
to find something similar than Turing’s “paper-and-pencil-operations” on
paper or tape. The most natural candidate for a formalization is the uni-
tary time evolution of the quantum states. This is all there is (maybe besides
measurement [24]), because there is nothing beyond the unitary time evolu-
tion. Unitary operators stand for generalized rotations in complex Hilbert
spaces. Therefore, a universal quantum computer can just be represented
by the most general unitary operator!

That is a straightforward concept: given a finite dimensional Hilbert
space of, say, dimension n, then the most general unitary operator U(n)
can for instance be parameterized by composition of unitary operations in
two (sub)dimensions U(2) [25]. Now we all know how U(2) looks like (cf.
Appendix D), so we know how U(n) looks like. Hence we all know how to
properly formalize a universal quantum computer!

This looks simple enough, but where is the advantage? Of course one
immediate answer is that it is perfectly all right to simulate a quantized
system with a quantum computer — we all know that every system is a
perfect copy of itself!

But that is not the whole story. What is really challenging here is that
we may be able to use quantum parallelism for speedups. And, as mentioned
already, at the heart of quantum parallelism is the superposition principle
and quantum entanglement. Superposition enables the quantum program-
mer to “squeeze” 2N classical bits into N qubits. In processing 1 qubit state
αt + βf , the computer processes 2 classical bit states t and f at once. In
processing N qubit states, the computer may be able to processes 2N clas-
sical bit states at once. Many researchers in quantum computing interpret
this (in the so-called “Everett interpretation of quantum mechanics”) as an
indication that 2N seperate computer run in 2N seperate worlds (one com-
puter in each world); thereby running through each one of the computational
passes in parallel. That might certainly be a big advantage as compared to a
classical routine which might only be able to process the cases consecutively,
one after the other.

There are indeed indications that speedups are possible. The most
prominent examples are Shor’s quantum algorithm for prime factoring [26,
27] and Grover’s search algorithm [28] for a single item satisfying a given
condition in an unsorted database. A detailed review of the suggested quan-
tum algorithms exceeds the scope of this brief discussion and can for instance
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be found in Gruska’s book [29].
One fundamental feature of the unitary evolution is its bijectivity, its

one-to-oneness. This is the reason why copying is not allowed, but this is
also the reason why there is no big waste basked where information van-
ishis into oblivion or nirvana forever. In a quantum computer, one and the
same “message” is constantly permutated. It always remains the same but
expresses itself through different forms. Information is neither created nor
discarded but remains constant at all times.4

Is there a price to be pad for parallelism? Let me just mention one
important problem here: the problem of the readout of the result. This is
no issue in classical computation. But in quantum computation, to use the
Everett metaphor, it is by no means trivial how the many parallel entangled
universes communicate with each other in such a way that the classical result
can be properly communicated. In many cases one has to make sure that,
through positive interference, the proper probability amplitudes indicating
this result build up. One may even speculate that there is no sufficient
buildup of the states if the problem allows for many nonunique solutions
[30, 31].

5 Summary and outlook

Let me close with a few observations. So far, quantum information theory
has applied the quantum features of complementarity, entanglement and
quantum parallelism to more or less real-world applications. Certain other
quantum features such as contextuality have not been put to use so far.

There are good prospects for quantum computing; if not for other rea-
sons but because our computer parts will finally reach the quantum domain.
We may be just at the very beginning, having conceived the quantum analo-
gies of classical tubes (e.g., quantum optical devices). Maybe in the near
future someone comes up with a revolutionary design such as a “quantum
transistor” which will radically change the technology of information pro-
cessing.

This is a very exciting and challenging new field of physics and computer
sciences.

4This implicit time symmetry spoils the very notion of “progress” or “achievement,”
since what is a valuable output is purely determined by the subjective meaning the observer
associates with it and is devoid of any syntactic relevance.
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Appendix A: All (and probably more that) you ever
wanted to know about quantum mechanics

“Quantization” has been introduced by Max Planck around 1900 [32, 33, 34].
In a courageous, bold step Planck assumed a discretization of the total
energy UN of N linear oscillators (“Resonatoren”),

UN = Pε ∈ {0, ε, 2ε, 3ε, 4ε, . . .},

where P ∈ N0 is zero or a positive integer and ε stands for the smallest
quantum of energy. ε is a linear function of frequency ω and proportional to
Planck’s fundamental constant h̄ ≈ 10−34 Js; i.e.,

ε = h̄ω.

That was a bold step in a time of the predominant continuum models of
classical mechanics.

In extension of Planck’s discretized resonator energy model, Einstein [35]
proposed a quantization of the electromagnetic field. According to the light
quantum hypothesis, energy in an electric field mode characterized by the
frequency ω can be produced, absorbed and exchanged only in a discrete
number n of “lumps” or “quanta” or “photons”

En = nh̄ω , n = 0, 1, 2, 3, . . . .

The following is a very brief introduction to the principles of quantum
mechanics for logicians and computer scientists, as well as a reminder for
physicists.5 To avoid a shock from a too early exposure to “exotic” nomen-
clature prevalent in physics — the Dirac bra-ket notation — the notation
of Dunford-Schwartz [49] is adopted.6

Quantum mechanics, just as classical mechanics, can be formalized in
terms of a linear space structure, in particular by Hilbert spaces [45]. That is,
all objects of quantum physics, in particular the ones used by quantum logic,

5Introductions to quantum mechanics can be found in Feynman, Leighton & M. Sands
[36], Harris [37], Lipkin [38], Ballentine [39], Messiah [40], Davydov [41], Dirac [42], Peres
[43], Mackey [44], von Neumann [45], and Bell [46], among many other expositions. The
history of quantummechanics is reviewed by Jammer [47]. Wheeler & Zurek [48] published
a helpful resource book.

6The bra-ket notation introduced by Dirac is widely used in physics. To translate
expressions into the bra-ket notation, the following identifications work for most practical
purposes: for the scalar product, “〈≡ (”, “〉 ≡ )”, “,≡ |”. States are written as | ψ〉 ≡ ψ,
operators as 〈i | A | j〉 ≡ Aij .
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ought to be expressed in terms of objects based on concepts of Hilbert space
theory—scalar products, linear summations, subspaces, operators, measures
and so on.

Unless stated differently, only finite-dimensional Hilbert spaces are con-
sidered.7

A quantum mechanical Hilbert space is a linear vector space H over the
field C of complex numbers (with vector addition and scalar multiplication),
together with a complex function (·, ·), the scalar or inner product, defined
on H × H such that (i) (x, x) = 0 if and only if x = 0; (ii) (x, x) ≥ 0
for all x ∈ H; (iii) (x + y, z) = (x, z) + (y, z) for all x, y, z ∈ H; (iv)
(αx, y) = α(x, y) for all x, y ∈ H, α ∈ C; (v) (x, y) = (y, x)∗ for all x, y ∈ H
(α∗ stands for the complex conjugate of α); (vi) If xn ∈ H, n = 1, 2, . . .,
and if limn,m→∞(xn − xm, xn − xm) = 0, then there exists an x ∈ H with
limn→∞(xn − x, xn − x) = 0.

We shall make the following identifications between physical and theo-
retical objects (a caveat: this is an incomplete list).

(0) The dimension of the Hilbert space corresponds to the number of de-
grees of freedom.

(I) A pure physical state x is represented either by the one-dimensional
linear subspace (closed linear manifold) (x) = {y | y = αx, α ∈
C, x ∈ H} spanned by a (normalized) vector x of the Hilbert space H
or by the orthogonal projection operator Ex onto (x). Thus, a vector
x ∈ H represents a pure physical state.

Every one-dimensional projection Ex onto a one-dimensional linear
subspace (x) spanned by x ∈ H can be represented by the dyadic
product Ex = |x)(x|.

If two nonparallel vectors x, y ∈ H represent pure physical states, their
vector sum z = x+y ∈ H is again a vector representing a pure physical
state. This state z is called the superposition of state x and y.8

7Infinite dimensional cases and continuous spectra are nontrivial extensions of the finite
dimensional Hilbert space treatment. As a heuristic rule, which is not always correct,
it might be stated that the sums become integrals, and the Kronecker delta function δij
becomes the Dirac delta function δ(i−j), which is a generalized function in the continuous

variables i, j. In the Dirac bra-ket notation, unity is given by 1 =
∫ +∞
−∞
|i)(i| di. For a

careful treatment, see, for instance, the books by Reed and Simon [50, 51].
8x + y is sometimes referred to as “coherent” superposition to indicate the difference

to “incoherent” mixtures of state vectors, in which the absolute squares |x|2 + |y|2 are
summed up.
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Elements bi, bj ∈ H of the set of orthonormal base vectors satisfy

(bi, bj) = δij , where δij =

{
1 if i = j

0 if i = j
is the Kronecker delta func-

tion. Any pure state x can be written as a linear combination of the
set of orthonormal base vectors {b1, b2, · · ·}, i.e., x =

∑n
i=1 βibi, where

n is the dimension of H and βi = (bi, x) ∈ C. In the Dirac bra-ket
notation, unity is given by 1 =

∑n
i=1 |bi)(bi|.

In the nonpure state case, the system is characterized by the density
operator ρ, which is nonnegative and of trace class.9 If the system is in
a nonpure state, then the preparation procedure does not specify the
decomposition into projection operators (depending on the choice of
basis) precisely. ρ can be brought into its spectral form ρ =

∑n
i=1 PiEi,

where Ei are projection operators and the Pi’s are the associated prob-
abilities (nondegenerate case10).

(II) Observables A are represented by hermitian operators A on the Hilbert
space H such that (Ax, y) = (x,Ay) for all x, y ∈ H. (Observables and
their corresponding operators are identified.) In matrix notation, the
adjoint matrix A† is the complex conjugate of the transposed matrix
of A; i.e., (A†)ij = (A∗)ji. Hermiticity means that (A†)ij = Aij .

Any hermitian operator has a spectral representation A =
∑n
i=1 αiEi,

where the Ei’s are orthogonal projection operators onto the orthonor-
mal eigenvectors ai of A (nondegenerate case).

Note that the projection operators, as well as their corresponding vec-
tors and subspaces, have a double rôle as pure state and elementary
proposition (that the system is in that pure state).

Observables are said to be compatible or comeasurable if they can be
defined simultaneously with arbitrary accuracy. Compatible observ-
ables are polynomials (Borel measurable functions in the infinite di-
mensional case) of a single “Ur”-observable.

A criterion for compatibility is the commutator. Two observables
A,B are compatible if their commutator vanishes; i.e., if [A,B] =
AB − BA = 0. In this case, the hermitian matrices A and B can be
simultaneously diagonalized, symbolizing that the observables corre-

9Nonnegativity means (ρx, x) = (x, ρx) ≥ 0 for all x ∈ H, and trace class means
trace(ρ) = 1.
10If the same eigenvalue of an operator occurs more than once, it is called degenerate.
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sponding to A and B are simultaneously measurable.11

It has recently been demonstrated that (by an analog embodiment
using particle beams) every hermitian operator in a finite dimensional
Hilbert space can be experimentally realized [52].

Actually, one can also measure normal operators N which can be de-
composed into the sum of two commuting operators A,B according to
N = A+ iB, with [A,B] = 0.

(III) The result of any single measurement of the observable A on an ar-
bitrary state x ∈ H can only be one of the real eigenvalues of the
corresponding hermitian operator A. (Actually, one can also measure
normal operators which can be decomposed into the sum of two com-
muting If x = β1a1 + · · · + βiai + · · · + βnan is in a superposition of
eigenstates {a1, . . . , an} of A, the particular outcome of any such sin-
gle measurement is indeterministic; i.e., it cannot be predicted with
certainty. As a result of the measurement, the system is in the state
ai which corresponds to the associated real-valued eigenvalue αi which
is the measurement outcome; i.e.,

x→ ai.

The arrow symbol “→” denotes an irreversible measurement; usually
interpreted as a “transition” or “reduction” of the state due to an
irreversible interaction of the microphysical quantum system with a
classical, macroscopic measurement apparatus. This “reduction” has
given rise to speculations concerning the “collapse of the wave function
(state).”

As has been argued recently (e.g., by Greenberger and YaSin [53],
and by Herzog, Kwiat, Weinfurter and Zeilinger [54]), it is possible to
reconstruct the state of the physical system before the measurement;
i.e., to “reverse the collapse of the wave function,” if the process of
measurement is reversible. After this reconstruction, no information
about the measurement is left, not even in principle.

11Let us first diagonalize A; i.e., Aij = diag (A11, A22, . . . , Ann)ij =

{
Aii if i = j

0 if i 	= j
.

Then, if A commutes with B, the commutator [A,B]ij = (AB − BA)ij = AikBki −
BikAkj = (Aii − Ajj)Bij = 0 vanishes. If A is nondegenerate, then Aii 	= Ajj and thus
Bij = 0 for i 	= j. In the degenerate case, B can only be block diagonal. That is,
each one of the blocks of B corresponds to a set of equal eigenvalues of A such that the
corresponding subblockmatrix of A is proportional to the unit matrix. Thus, each block
of B can be diagonalized separately without affecting A [43, p. 71].
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How did Schrödinger, the creator of wave mechanics, perceive the
quantum physical state, or, more specifically, the ψ-function? In
his 1935 paper “Die gegenwärtige Situation in der Quantenmechanik”
(“The present situation in quantummechanics” [6, p. 823]), Schrödinger
states,12

The ψ-function as expectation-catalog: . . . In it [[the ψ-
function]] is embodied the momentarily-attained sum of the-
oretically based future expectation, somewhat as laid down
in a catalog. . . . For each measurement one is required to
ascribe to the ψ-function (=the prediction catalog) a char-
acteristic, quite sudden change, which depends on the mea-
surement result obtained, and so cannot be foreseen; from
which alone it is already quite clear that this second kind of
change of the ψ-function has nothing whatever in common
with its orderly development between two measurements.
The abrupt change [[of the ψ-function (=the prediction cat-
alog)]] by measurement . . . is the most interesting point of
the entire theory. It is precisely the point that demands the
break with naive realism. For this reason one cannot put the
ψ-function directly in place of the model or of the physical
thing. And indeed not because one might never dare im-
pute abrupt unforeseen changes to a physical thing or to a
model, but because in the realism point of view observation
is a natural process like any other and cannot per se bring
about an interruption of the orderly flow of natural events.

It therefore seems not unreasonable to state that, epistemologically,

12Die ψ-Funktion als Katalog der Erwartung: . . . Sie [[die ψ-Funktion]] ist jetzt das
Instrument zur Voraussage der Wahrscheinlichkeit von Maßzahlen. In ihr ist die jeweils
erreichte Summe theoretisch begründeter Zukunftserwartung verkörpert, gleichsam wie
in einem Katalog niedergelegt. . . . Bei jeder Messung ist man genötigt, der ψ-Funktion
(=dem Voraussagenkatalog) eine eigenartige, etwas plötzliche Veränderung zuzuschreiben,
die von der gefundenen Maßzahl abhängt und sich nicht vorhersehen läßt; woraus allein
schon deutlich ist, daß diese zweite Art von Veränderung der ψ-Funktion mit ihrem
regelmäßigen Abrollen zwischen zwei Messungen nicht das mindeste zu tun hat. Die
abrupte Veränderung durch die Messung . . . ist der interessanteste Punkt der ganzen
Theorie. Es ist genau der Punkt, der den Bruch mit dem naiven Realismus verlangt. Aus
diesem Grund kann man die ψ-Funktion nicht direkt an die Stelle des Modells oder des
Realdings setzen. Und zwar nicht etwa weil man einem Realding oder einem Modell nicht
abrupte unvorhergesehene Änderungen zumuten dürfte, sondern weil vom realistischen
Standpunkt die Beobachtung ein Naturvorgang ist wie jeder andere und nicht per se eine
Unterbrechung des regelmäßigen Naturlaufs hervorrufen darf.
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quantum mechanics appears more as a theory of knowledge of an (in-
trinsic) observer rather than the Platonic physics “God knows.” The
wave function, i.e., the state of the physical system in a particular
representation (base), is a representation of the observer’s knowledge;
it is a representation or name or code or index of the information or
knowledge the observer has access to.

(IV) The probability Px(y) to find a system represented by a normalized
pure state x in some normalized pure state y is given by

Px(y) = |(x, y)|
2, |x|2 = |y|2 = 1.

In the nonpure state case, The probability P (y) to find a system char-
acterized by ρ in a pure state associated with a projection operator
Ey is

Pρ(y) = trace(ρEy).

(V) The average value or expectation value of an observable A represented
by a hermitian operator A in the normalized pure state x is given by

〈A〉x =
n∑
i=1

αi|(x, ai)|
2, |x|2 = |ai|

2 = 1.

The average value or expectation value of an observable A represented
by a hermitian operator A in the nonpure state ρ is given by

〈A〉 = trace(ρA) =
n∑
i=1

αitrace(ρEi).

(VI) The dynamical law or equation of motion between subsequent, ir-
reversible, measurements can be written in the form x(t) = Ux(t0),
whereU † = U−1 (“† stands for transposition and complex conjugation)
is a linear unitary evolution operator.13 Per definition, this evolution
is reversible; i.e., bijective, one-to-one. So, in quantum mechanics we
have to distinguish between unitary, reversible evolution of the system
inbetween measurements, and the “collapse of the wave function” at
an irreversible measurement.

13Any unitary operator U(n) in finite-dimensional Hilbert space can be represented by
the product — the serial composition — of unitary operators U(2) acting in twodimen-
sional subspaces [25, 52].
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The Schrödinger equation ih̄ ∂∂tψ(t) = Hψ(t) for some state ψ is ob-

tained by identifying U with U = e−iHt/h̄, where H is a hermitian
Hamiltonian (“energy”) operator, by partially differentiating the equa-
tion of motion with respect to the time variable t; i.e., ∂

∂tψ(t) =

− iHh̄ e
−iHt/h̄ψ(t0) = − iHh̄ ψ(t). In terms of the set of orthonormal

base vectors {b1, b2, . . .}, the Schrödinger equation can be written as
ih̄ ∂∂t(bi, ψ(t)) =

∑
j Hij(bj , ψ(t)).

For stationary states ψn(t) = e−(i/h̄)Entψn, the Schrödinger equation
can be brought into its time-independent formH ψn = Em ψm (nonde-
generate case). Here, ih̄ ∂∂tψm(t) = Em ψm(t) has been used; Em and
ψm stand for the m’th eigenvalue and eigenstate of H, respectively.

Usually, a physical problem is defined by the Hamiltonian H and the
Hilbert space in question. The problem of finding the physically relevant
states reduces to finding a complete set of eigenvalues and eigenstates of H.

Appendix B: Complementarity and automaton logic

A systematic, formal investigation of the black box system or any finite in-
put/output system can be given by finite automata. Indeed, the study of
finite automata was motivated from the very beginning by their analogy to
quantum systems [18]. Finite automata are universal with respect to the
class of computable functions. That is, universal networks of automata can
compute any effectively (Turing-) computable function. Conversely, any
feature emerging from finite automata is reflected by any other universal
computational device. In this sense, they are “robust”. All rationally con-
ceivable finite games can be modeled by finite automata.

Computational complementarity, as it is sometimes called [55], can be
introduced as a game between Alice and Bob. The rules of the game are as
follows. Before the actual game, Alice gives Bob all he needs to know about
the intrinsic workings of the automaton. For example, Alice tells Bob, “if
the automaton is in state 1 and you input the symbol 2, then the automaton
will make a transition into state 2 and output the symbol 0,” and so on.
Then Alice presents Bob a black box which contains a realization of the
automaton. Attached to the black box are two interfaces: a keyboard for
the input of symbols, and an output display, on which the output symbols
appear. Again, no other interfaces are allowed. In particular, Bob is not
allowed to “screw the box open.”

14



Suppose now that Alice chooses some initial state of the automaton.
She may either throw a dice, or she may make clever choices using some
formalized system. In any case, Alice does not tell Bob about her choice.
All Bob has at his disposal are the input-output interfaces.

Bob’s goal is to find out which state Alice has chosen. Alice’s goal is to
fool Bob.

Bob may simply guess or rely on his luck by throwing a dice. But Bob
can also perform clever input-output experiments and analyze his data in
order to find out. Bob wins if he gives the correct answer. Alice wins if Bob’s
guess is incorrect. (So, Alice has to be really mean and select worst-case
scenarios).

Suppose that Bob tries very hard. Is cleverness sufficient? Will Bob
always be able to uniquely determine the initial automaton state?

The answer to that question is “no.” The reason is that there may be
situations when Bob’s input causes an irreversible transition into a black
box state which does not allow any further queries about the initial state.

What has been introduced here as a game between Alice and Bob is
what the mathematicians have called the state identification problem [18,
56, 57, 58]: given a finite deterministic automaton, the task is to locate an
unknown initial state. Thereby it is assumed that only a single automaton
copy is available for inspection. That is, no second, identical, example of
the automaton can be used for further examination. Alternatively, one may
think of it as choosing at random a single automaton from a collection of
automata in an ensemble differing only by their initial state. The task then
is to find out which was the initial state of the chosen automaton.

The logico-algebraic structure of the state identification problem has
been introduced in [59], and subsequently studied in [59, 60, 61, 62, 63, 64,
65, 19]. We shall deal with it next.

Step 1: Computation of the experimental equivalence classes.

In the propositional structure of sequential machines, state partitions play
an important rôle. Indeed, the set of states is partitioned into equivalence
classes with respect to a particular input-output experiment.

Suppose again that the only unknown feature of an automaton is its
initial state; all else is known. The automaton is presented in a black box,
with input and output interfaces. The task in this complementary game is
to find (partial) information about the initial state of the automaton [18].

To illustrate this, consider the Mealy automaton Ms discussed above.
Input/output experiments can be performed by the input of just one symbol
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i (in this example, more inputs yield no finer partitions). Suppose again
that Bob does not know the automaton’s initial state. So, Bob has to
choose between the input of symbols 1,2, or 3. If Bob inputs, say, symbol 1,
then he obtains a definite answer whether the automaton was in state 1 —
corresponding to output 1; or whether the automaton was not in state 1 —
corresponding to output 0. The latter proposition “not 1” can be identified
with the proposition that the automaton was either in state 2 or in state 3.

Likewise, if Bob inputs symbol 2, he obtains a definite answer whether
the automaton was in state 2 — corresponding to output 1; or whether the
automaton was not in state 2 — corresponding to output 0. The latter
proposition “not 2” can be identified with the proposition that the automa-
ton was either in state 1 or in state 3. Finally, if Bob inputs symbol 3,
he obtains a definite answer whether the automaton was in state 3 — cor-
responding to output 1; or whether the automaton was not in state 3 —
corresponding to output 0. The latter proposition “not 3” can be identified
with the proposition that the automaton was either in state 1 or in state 2.

Recall that Bob can actually perform only one of these input-output
experiments. This experiment will irreversibly destroy the initial automaton
state (with the exception of a “hit”; i.e., of output 1). Let us thus describe
the three possible types of experiment as follows.

• Bob inputs the symbol 1.

• Bob inputs the symbol 2.

• Bob inputs the symbol 3.

The corresponding observable propositions are:

p{1} ≡ {1}: On input 1, Bob receives the output symbol 1.

p{2,3} ≡ {2, 3}: On input 1, Bob receives the output symbol 0.

p{2} ≡ {2}: On input 2, Bob receives the output symbol 1.

p{1,3} ≡ {1, 3}: On input 2, Bob receives the output symbol 0.

p{3} ≡ {3}: On input 3, Bob receives the output symbol 1.

p{1,2} ≡ {1, 2}: On input 3, Bob receives the output symbol 0.

Note that, in particular, p{1}, p{2}, p{3} are not comeasurable. Note also that,

for εijk = 0, p′{i} = p{j,k} and p{j,k} = p′{i}; or equivalently {i}
′ = {j, k} and

{j, k} = {i}′.
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In that way, we naturally arrive at the notion of a partitioning of au-
tomaton states according to the information obtained from input/output
experiments. Every element of the partition stands for the proposition that
the automaton is in (one of) the state(s) contained in that partition. Every
partition corresponds to a quasi-classical Boolean block. Let us denote by
v(x) the block corresponding to input (sequence) x. Then we obtain

no input:
v(∅) = {{1, 2, 3}},

one input symbol:

input output output
1 0

v(1) = {{1} , {2, 3}}
v(2) = {{2} , {1, 3}}
v(3) = {{3} , {1, 2}}.

Conventionally, only the finest partitions are included into the set of state
partitions.

Step 2: Pasting of the partitions.

Just as in quantum logic, the automaton propositional calculus and the as-
sociated partition logic is the pasting of all the blocks of partitions v(i) on
the atomic level. That is, elements of two blocks are identified if and only
if the corresponding atoms are identical.

The automaton partition logic based on atomic pastings differs from pre-
vious approaches [59, 60, 61, 62, 63, 64, 65, 19]. Atomic pasting guarantees
that there is no mixing of elements belonging to two different order levels.
Such confusions can give rise to the nontransitivity of the order relation [59]
in cases where both p→ q and q → r are operational but incompatible, i.e.,
complementary, and hence p→ r is not operational.

For the Mealy automaton Ms discussed above, the pasting renders just
the horizontal sum — only the least and greatest elements 0, 1 of each 22

is identified—and one obtains a “Chinese lantern” lattice MO3. The Hasse
diagram of the propositional calculus is drawn in Figure 1.

Let us give a formal definition for the procedures sketched so far. Assume
a set S and a family of partitions B of S. Every partition E ∈ B can be
identified with a Boolean algebra BE in a natural way by identifying the
elements of the partition with the atoms of the Boolean algebra. The pasting
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Figure 1: Hasse diagram of the propositional calculus of the Mealy automa-
ton.

of the Boolean algebras BE , E ∈ B on the atomic level is called a partition
logic, denoted by (S,B).

The logical structure of the complementarity game (initial-state identifi-
cation problem) can be defined as follows. Let us call a proposition concern-
ing the initial state of the machine experimentally decidable if there is an
experiment E which determines the truth value of that proposition. This can
be done by performing E, i.e., by the input of a sequence of input symbols
i1, i2, i3, . . . , in associated with E, and by observing the output sequence

λE(s) = λ(s, i1), λ(δ(s, i1), i2), . . . , λ(δ(· · · δ(s, i1) · · · , in−1)︸ ︷︷ ︸
n−1 times

, in).

The most general form of a prediction concerning the initial state s of the
machine is that the initial state s is contained in a subset P of the state set
S. Therefore, we may identify propositions concerning the initial state with
subsets of S. A subset P of S is then identified with the proposition that
the initial state is contained in P .

Let E be an experiment (a preset or adaptive one), and let λE(s) denote
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the obtained output of an initial state s. λE defines a mapping of S to the
set of output sequences O∗. We define an equivalence relation on the state
set S by

s
E
≡ t if and only if λE(s) = λE(t)

for any s, t ∈ S. We denote the partition of S corresponding to
E
≡ by S/

E
≡.

Obviously, the propositions decidable by the experiment E are the elements

of the Boolean algebra generated by S/
E
≡, denoted by BE.

There is also another way to construct the experimentally decidable
propositions of an experiment E. Let λE(P ) =

⋃
s∈P

λE(s) be the direct

image of P under λE for any P ⊆ S. We denote the direct image of S by
OE ; i.e., OE = λE(S).

It follows that the most general form of a prediction concerning the out-
come W of the experiment E is that W lies in a subset of OE . Therefore, the
experimentally decidable propositions consist of all inverse images λ−1

E (Q)
of subsets Q of OE , a procedure which can be constructively formulated
(e.g., as an effectively computable algorithm), and which also leads to the
Boolean algebra BE.

Let B be the set of all Boolean algebras BE. We call the partition logic
R = (S,B) an automaton propositional calculus.

Appendix C: Quantum coding

In the usual Hilbert space formulization, qubits can then be written as

#(xα) = eiϕ(sinω, eiδ cosω) ∈ C2, (2)

with α = α(ω,ϕ, δ), ω,ϕ, δ ∈ R Qubits can be identified with cbits as follows

#(xα(π/2,ϕ,δ)) = (a, 0) ≡ 1 and #(xα(0,ϕ,δ)) = (0, b) ≡ 0 , |a|, |b| = 1 ,

(3)
where the complex numbers a and b are of modulus one. The quantum
mechanical states associated with the classical states 0 and 1 are mutually
orthogonal.

Notice that, provided that α, β = 0, a qubit is not in a pure classical
state. Therefore, any practical determination of the qubit xα amounts to a
measurement of the state amplitude of t or f . According to the quantum
postulates, any such single measurement will be indeterministic (provided
again that α, β = 0). That is, the outcome of a single measurement occurs
unpredictably. The probabilities that the qubit xα is measured in states

19



t and f are Pt(xα) = |(xα, t)|2 and Pf (xα) = |(xα, f)|2 = 1 − Pt(α,β),
respectively.

Appendix D: Universal manipulation of a single qubit:
the U(2)-gate

It is well known that any n-dimensional unitary matrix U can be composed
from elementary unitary transformations in two-dimensional subspaces of
Cn. This is usually shown in the context of parameterization of the n-
dimensional unitary groups (cf. [25, chapter 2] and [52, 66]). Thereby, a
transformation in n-dimensional spaces is decomposed into transformations
in 2-dimensional subspaces. This amounts to a successive array of U(2)
elements, which in their entirety forms an arbitrary time evolution U(n) in
n-dimensional Hilbert space.

Hence, all quantum processes and computation tasks which can possibly
be executed must be representable by unitary transformations. Indeed, uni-
tary transformations of qubits are a necessary and sufficient condition for
quantum computing. The group of unitary transformations in arbitrary- but
finite-dimensional Hilbert space is a model of universal quantum computer.

It remains to be shown that the universal U(2)-gate is physically op-
erationalizable. This can be done in the framework of Mach-Zehnder in-
terferometry. Note that the number of elementary U(2)-transformations is

polynomially bounded and does not exceed

(
n

2

)
= n (n− 1)/2 = O(n2).

In what follows, a lossless Mach-Zehnder interferometer drawn in Fig. 2
is discussed. The computation proceeds by successive substitution (transi-
tion) of states; i.e.,

S1 : a → (b+ ic)/
√
2 , (4)

P : b → beiϕ , (5)

S2 : b → (e+ id)/
√
2 , (6)

S2 : c → (d+ ie)/
√
2 . (7)

The resulting transition is

a→ ψ = i

(
eiϕ + 1

2

)
d+

(
eiϕ − 1

2

)
e . (8)

Assume that ϕ = 0, i.e., there is no phase shift at all. Then, equation (8)
reduces to a → id, and the emitted quant is detected only by D1. Assume
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Figure 2: Mach-Zehnder interferometer. A single quantum (photon, neu-
tron, electron etc) is emitted in L and meets a lossless beam splitter (half-
silvered mirror) S1, after which its wave function is in a coherent superpo-
sition of b and c. In beam path b a phase shifter shifts the phase of state
b by ϕ. The two beams are then recombined at a second lossless beam
splitter (half-silvered mirror) S2. The quant is detected at either D1 or D2,
corresponding to the states d and e, respectively.

that ϕ = π. Then, equation (8) reduces to a → −e, and the emitted quant
is detected only by D2. If one varies the phase shift ϕ, one obtains the
following detection probabilities:

PD1(ϕ) = |(d, ψ)|
2 = cos2(

ϕ

2
) , PD2(ϕ) = |(e, ψ)|

2 = sin2(
ϕ

2
) . (9)

For some “mindboggling” features of Mach-Zehnder interferometry, see
[67].

The elementary quantum interference device Tbs21 depicted in Fig. (3.a)
is just a beam splitter followed by a phase shifter in one of the output ports.

Alternatively, the action of a lossless beam splitter may be described

by the matrix

(
T (ω) iR(ω)
iR(ω) T (ω)

)
=

(
cosω i sinω
i sinω cosω

)
. A phase shifter

in a two-dimensional Hilbert space is represented by either

(
eiϕ 0
0 1

)
or(

1 0
0 eiϕ

)
. The action of the entire device consisting of such elements is

calculated by multiplying the matrices in reverse order in which the quanta
pass these elements [68, 69].

P1 : 0 → 0eiα+β , (10)
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Figure 3: Elementary quantum interference device. An elementary quan-
tum interference device can be realized by a 4-port interferometer with two
input ports 0,1 and two output ports 0′,1′. Any two-dimensional unitary
transformation can be realized by the devices. a) shows a realization by
a single beam splitter S(T ) with variable transmission t and three phase
shifters P1, P2, P3; b) shows a realization with 50:50 beam splitters S1(
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and S2(
1
2) and four phase shifters P1, P2, P3, P4.22



P2 : 1 → 1eiβ , (11)

S : 0 → T 1′ + iR0′ , (12)

S : 1 → T 0′ + iR1′ , (13)

P3 : 0′ → 0′eiϕ . (14)

If 0 ≡ 0′ ≡

(
1
0

)
and 1 ≡ 1′ ≡

(
0
1

)
and R(ω) = sinω, T (ω) =

cosω, then the corresponding unitary evolution matrix which transforms
any coherent superposition of 0 and 1 into a superposition of 0′ and 1′ is
given by

Tbs21(ω,α, β, ϕ) =

[
ei β

(
i ei(α+ϕ) sinω eiα cosω

eiϕ cosω i sinω

)]−1

= e−i β
(
−i e−i(α+ϕ) sinω e−iϕ cosω

e−iα cosω −i sinω

)
. (15)

The elementary quantum interference device TMZ21 depicted in Fig. (3.b)
is a (rotated) Mach-Zehnder interferometer with two input and output ports
and three phase shifters. According to the “toolbox” rules, the process can
be quantum mechanically described by

P1 : 0 → 0eiα+β , (16)

P2 : 1 → 1eiβ , (17)

S1 : 1 → (b+ i c)/
√
2 , (18)

S1 : 0 → (c+ i b)/
√
2 , (19)

P3 : c → ceiω , (20)

S2 : b → (1′ + i0′)/
√
2 , (21)

S2 : c → (0′ + i1′)/
√
2 , (22)

P4 : 0′ → 0′eiϕ . (23)

When again 0 ≡ 0′ ≡

(
1
0

)
and 1 ≡ 1′ ≡

(
0
1

)
, then the corresponding

unitary evolution matrix which transforms any coherent superposition of 0
and 1 into a superposition of 0′ and 1′ is given by

TMZ21 (α, β, ω, ϕ) = −i e−i(β+
ω
2
)

(
−e−i (α+ϕ) sin ω2 e−i ϕ cos ω2

e−i α cos ω2 sin ω2

)
. (24)
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The correspondence between Tbs21(T (ω), α, β, ϕ) with TMZ21 (α′, β′, ω′, ϕ′)
in equations (15) (24) can be verified by comparing the elements of these
matrices. The resulting four equations can be used to eliminate the four
unknown parameters ω′ = 2ω, β′ = β − ω, α′ = α − π/2, β′ = β − ω and
ϕ′ = ϕ− π/2; i.e.,

Tbs21(ω,α, β, ϕ) = TMZ21 (α−
π

2
, β − ω, 2ω,ϕ −

π

2
) . (25)

Both elementary quantum interference devices are universal in the sense
that every unitary quantum evolution operator in two-dimensional Hilbert
space can be brought into a one-to-one correspondence to Tbs21 and TMZ21 ;
with corresponding values of T,α, β, ϕ or α,ω, β, ϕ. This can be easily seen
by a similar calculation as before; i.e., by comparing equations (15) (24)
with the “canonical” form of a unitary matrix, which is the product of a
U(1) = e−i β and of the unimodular unitary matrix SU(2) [25]

T(ω,α, ϕ) =

(
ei α cosω −e−i ϕ sinω
ei ϕ sinω e−i α cosω

)
, (26)

where −π ≤ β, ω ≤ π, − π2 ≤ α,ϕ ≤ π2 . Let

T(ω,α, β, ϕ) = e−i βT(ω,α, ϕ) . (27)

A proper identification of the parameters α, β, ω, ϕ yields

T(ω,α, β, ϕ) = Tbs21(ω −
π

2
,−α− ϕ−

π

2
, β + α+

π

2
, ϕ− α+

π

2
) . (28)

Let us examine the realization of a few primitive logical “gates” corre-
sponding to (unitary) unary operations on qubits. The “identity” element
I is defined by 0→ 0, 1→ 1 and can be realized by

I = T bs21(−
π

2
,−

π

2
,
π

2
,
π

2
) = TMZ21 (−π, π,−π, 0) =

(
1 0
0 1

)
. (29)

The “not” element is defined by 0→ 1, 1→ 0 and can be realized by

not = T bs21(0, 0, 0, 0) = TMZ21 (−
π

2
, 0, 0,−

π

2
) =

(
0 1
1 0

)
. (30)

The next element, “
√
not” is a truly quantum mechanical; i.e., nonclas-

sical, one, since it converts a classical bit into a coherent superposition of 0
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and 1.
√
not is defined by 0→ 0+ 1, 1→ −0+ 1 and can be realized by

√
not = T bs21(−

π

4
,−

π

2
,
π

2
,
π

2
) = TMZ21 (−π,

3π

4
,−

π

2
, 0) =

1
√
2

(
1 −1
1 1

)
.

(31)
Note that

√
not ·

√
not = not · diag(1,−1) = not (mod 1). The relative

phases in the output ports showing up in diag(1,−1) can be avoided by
defining

√
not

′
= T bs21(−

π

4
, 0,

π

4
, 0) = TMZ21 (−

π

2
,
π

2
,−

π

2
,−

π

2
) =

1

2

(
1 + i 1− i

1− i 1 + i

)
.

(32)
With this definition,

√
not

′√
not

′
= not.

It is very important that the elementary quantum interference device
realizes an arbitrary quantum time evolution of a two-dimensional system.
The performance of the quantum interference device is determined by four
parameters, corresponding to the phases α, β, ϕ, ω.
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